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Abstract—Domain-specific  machine  learning (ML)
accelerators such as Google’s TPU and Apple’s Neural Engine
now dominate CPUs and GPUs for energy-efficient ML
processing. However, the evolution of electronic accelerators is
facing fundamental limits due to the limited computation
density of monolithic processing chips and the reliance on slow
metallic interconnects. In this paper, we present a vision of how
optical computation and communication can be integrated into
2.5D chiplet platforms to drive an entirely new class of
sustainable and scalable ML hardware accelerators. We
describe how cross-layer design and fabrication of optical
devices, circuits, and architectures, and hardware/software
codesign can help design efficient photonics-based 2.5D chiplet
platforms to accelerate emerging ML workloads.

Keywords—2.5D chiplet platforms, machine learning, silicon
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1. INTRODUCTION

Deep neural networks (DNNSs) are ubiquitously employed
today in a wide range of applications, including, but not
limited to, autonomous vehicles, medical diagnosis, network
security, recommendation systems, and navigation solutions
[1]-[5]. To cater to the objectives of these applications, DNNs
have become quite varied, with the DNN family including
convolution neural networks (CNNs), recurrent neural
networks (RNNs), graph neural networks (GNNs),
transformers, etc. A commonality among these DNN variants
is the increasing model complexity and upward trend of
parameter count. To meet the processing and latency demands
of these applications, the hardware architecture must also
scale in terms of processing capabilities, on-chip memory
capacity, and on-chip communication capabilities. Graphic
processing units (GPUs) are usually tasked with accelerating
DNN execution today, but several limitations of the general-
purpose nature of GPU architectures have become apparent in
recent years. These limitations include high power
consumption, increasing area overhead, reducing performance
per watt, and memory bandwidth limitations [6].

The limitations of GPUs highlight the need for more
efficient domain-specific accelerator architectures. However,
the growing processing requirements of modern DNNs does
not favor monolithic (single chip) architectures [7].
Monolithic implementations of domain specific accelerators
can face scalability, power density, fabrication yield, and
latency issues [8]. To tackle these problems and to effectively
accelerate modern DNNs in a scalable manner, 2.5D
architectures are actively being considered today [9].

Scaling 2.5D architectures comes with the challenge of
increasing inter-chiplet distances. In this scenario, it can be
shown that inter-chiplet metallic interconnects pose a major
challenge to system performance due to excess latency and
energy consumption [10]. Because of these limitations,
electrical interconnect alternatives must be considered to
ensure that 2.5D accelerators can deliver on the demands for
low latency and energy efficient DNN acceleration.

Optical interconnects based on silicon photonics can
overcome the limitations posed by metallic interconnects
through advantages such as high bandwidth communication
[11], single-hop data propagation [12], and high energy
efficiency [13]. Silicon photonic interconnects also allow for
ease of broadcast [13], [14], which is a desirable feature for
DNN acceleration [15]-[17]. Further energy and latency
benefits can be extracted from photonics by utilizing
photonics for computation as well. Many prior efforts have
shown that photonic processing for DNN inference
acceleration provides significant benefits in terms of latency
and energy efficiency [18]-[26]. Thus, it stands to reason that
utilizing photonics for both communication and computation
may amplify the aforementioned benefits. In this work, we
explore the benefits provided by silicon photonic chiplets and
networks for DNN acceleration in 2.5D chiplet platforms.

The organization of the remainder of this paper is as
follows. An overview of silicon photonics is provided in
Section II. Section III discusses silicon-photonic based DNN
accelerators. In Section IV, state-of-the-art silicon photonic
interposer networks are presented. Section V describes our
2.5D chiplet-based DNN accelerator. Section VI presents
various experimental results. Finally, Section VII provides
conclusions and open challenges in this emerging area.

II. SILICON PHOTONICS OVERVIEW

Silicon photonics emerged as a CMOS-compatible
technology to enable chip-scale optical communication. To
achieve this, silicon-on-insulator (SOI) waveguides are
employed, which use silicon (Si) for the core material and
silicon-dioxide (SiOz) for cladding and substrate material.
Moreover, by using wavelength-division multiplexing
(WDM), optical signals on different wavelengths can
simultaneously traverse the same waveguide. Silicon
photonics promises high energy efficiency, bandwidth
density, and low latency, as the overall scale in terms of
communication distances increases [27]. Due to the benefits
that silicon photonics offers, there has been a growing interest
in using silicon photonics for computation, including
realizing digital logic using photonics [28], [29]. To realize
any photonic-based computation or network system, there is
aneed for many fundamental components, as discussed next.

Silicon photonic waveguides are analogous to metallic
wires in electrical chips and enable optical signal
transmission and routing in chips. Photonic waveguides
operate on the principle of total internal reflection (TIR) to
contain and guide optical signals [30]. To ensure TIR, these
waveguides require high refractive index contrast between
their core and cladding materials (e.g., an SOI platform).

Lasers are a key requirement for any photonic system as
they act as light sources for communication and computation.
The laser sources employed can be on-chip or off-chip [31].
Off-chip lasers offer better light emission efficiency, but they
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face high optical power losses during coupling to on-chip
waveguides. On-chip lasers provide better integration density
and lower optical loss, as there is no need to couple light, but
they suffer from low light emission efficiencies. In most
photonics-based systems, the laser that is commonly utilized
is a vertical cavity surface emission laser (VCSEL) or a
microring laser. If off-chip lasers are used, then couplers are
necessary devices to couple the optical signals from off-chip
sources to on-chip waveguides. Coupling solutions employed
can be surface grating couplers or edge couplers [33].
Microring resonators (MRs) are photonic devices that are
widely used to design modulators, switches, and optical
filters [34]. In computation systems, they can be used to
perform multiplication operations, through amplitude
modulation [35]. MRs are fabricated with a ring-shaped
silicon photonic waveguide (see Fig. 1). An MR can be in one
of two different states of on- or off-resonance, based on
which the optical signal can be switched to different ports.
The resonant wavelength of an MR can be tuned using
electro-optic (EO) or thermo-optic (TO) effects of silicon that
alter the effective index of the composite waveguide of the
device. In a communication system, active MRs or MRs with
a tuning circuit are used to filter wavelengths that correspond
to Os in an on-off keying (OOK) modulation scheme. In
advanced modulation schemes such as 4 pulse amplitude
modulation (PAM-4) [44], MRs can be used to modulate
signal amplitude on four distinct levels. Multiple MRs
sensitive to the same wavelength can be used for consecutive
amplitude modulation resulting in parameter multiplication.
Microdisk resonators [36] are similar to MRs but are
composed of a disk structure instead of a ring structure. They
are more compact than MRs but have higher operation losses.
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Fig.1 Microring resonator (MR): (a) off / on states, (b) MR filter,
and (c) MR modulator.

Mach-Zehnder interferometers (MZIs), are made of two
3-dB directional couplers and two waveguide arms with
phase shifters. The phase shifters, implemented using electro-
optic or thermo-optic tuning, can change the optical phase in
one or both arms of the MZI, introducing constructive or
destructive interference at the output, to switch an optical
signal between the output ports. MZIs are applied to the
design of optical modulators, switches, and filters. MRs have
a smaller footprint and lower power consumption than MZIs.
However, MZIs provide better thermal stability in operation
and better extinction ratios than MRs [20].

Photodetectors (PD) are used to convert photonic signals
to electrical signals. The operation of a PD may trade off
bandwidth of operation with power efficiency. An efficient
PD provides the desired electrical output with a small optical
signal at its input. However, this small optical signal at the
input of a PD may result in a low-bandwidth performance.
For an efficient conversion of a photonic signal to an
electrical signal, the intensity of the photonic signal received
by the PD should be larger than the responsivity of the PD.

High-bandwidth PDs can be employed in photonic
computation to perform accumulation operations across
signals of different wavelengths [32].

III. SILICON-PHOTONIC-BASED DNN ACCELERATORS

With the promise of improved energy efficiency and
latency, silicon photonics for DNN acceleration has become
increasingly prominent in both academic and industrial
research [36]. Photonics is especially suited to accelerate
DNN inference operations, which rely heavily on fixed
matrix multiplications. The linear transformations involved
in matrix multiplication can be implemented efficiently in the
analog domain using photonics. Silicon photonic DNN
accelerators can be implemented as either coherent or non-
coherent architectures, as described below.

Coherent architectures utilize a single wavelength and
rely on constructive and destructive interference to change
the relative power levels of a coherent optical beam [18]-[20].
Optical phase control is used to imprint the parameters onto
the light wave signals. To achieve this, coherent architectures
make use of MZIs, with phase modulators embedded on their
arms. Weighting occurs with electrical field amplitude
attenuation proportional to the weight value, and phase
modulation that is proportional to the sign of the weight.
Cascaded combiners, which facilitate coherent interaction of
the signals, are used for accumulation. A lot of work in this
field is focused on reducing the computational complexity of
the DNN being implemented on-chip. The reduction of
computational complexity is achieved using pruning methods
[18] or singular value decomposition (SVD) [19], [20].

Noncoherent architectures, such as [21]-[26], use multiple
wavelengths, where each wavelength can be used to perform
computations in parallel. In these architectures, parameters
are imprinted onto the signal amplitude using wavelength-
selective devices, such as MRs. Several prior works, as
mentioned above, have explored DNN acceleration using
non-coherent photonic principles. In [21], an MR-based DNN
accelerator architecture was proposed which utilizes modular
vector-dot-product units with optimized MR designs and
tuning circuit optimization, for energy and throughput
efficiency. For further optimizing power and energy
consumption of non-coherent accelerators, especially at the
electrical-photonic interface, [22] employed heterogeneous
quantization (i.e., potentially different parameter bit-widths
for each DNN layer) along with hardware-software co-
optimization. For lowering area and power consumption, the
work in [23] utilized microdisks instead of MRs. For further
reducing the power consumption at the electro-optical
interface, binarized neural networks can be considered. A
microdisk-based photonic accelerator was proposed in [24]
for fully binarized DNNs (single-bit weight and activation
parameters). While fully binarized neural networks offer
higher efficiency in storage and power consumption, they
may lack in achievable accuracy. To tackle the accelerator
needs of partially binarized neural networks, the work in [25]
proposed an MR-based partially binarized DNN accelerator.
Non-coherent architectures have also been proven effective
for RNN acceleration, as shown in [26]. In [26], the speed of
operation of the photonic accelerator substrate was used to
perform large-scale matrix operations needed for different
types of RNNs, including deep long short-term memory
(LSTM) and gated recurrent unit (GRU) models.



IV. SILICON PHOTONIC INTERPOSER NETWORKS

Conventionally, chiplet systems are packaged using
passive [39] and active [40] electronic interposers. Compared
to passive electronic interposers, active electronic interposers
employ an interconnection fabric with logic elements, instead
of only passive metal interconnects to offer better
communication scalability. However, both active and passive
electronic interposers are unable to efficiently support a
system with a large number of chiplets due to the inherent
limitations of metallic interconnects: high latency for long
interconnects and low bandwidth per each interconnect.

On the other hand, as optical interconnects offer low
latency and high bandwidth, a photonic interconnection
fabric can be a promising solution for interposer designs.
Therefore, photonic interposers have recently received much
attention in chiplet systems [10], [11]. For example, [10]
employs high-bandwidth arrayed-waveguide grating routers
(AWGRs) to get around the high latency and low bandwidth
of conventional electronic interposers used in chiplet
systems. Besides the high bandwidth and low latency in long
interconnects, silicon photonic interposers are inherently
capable of dynamic inter-chiplet bandwidth tuning.
PROWAVES [11] describes a photonic interposer network
that dynamically manages inter-chiplet bandwidth by tuning
the number of active wavelengths with respect to the traffic
load. Under a low traffic load, where low bandwidth is
required, PROWAVES utilizes a smaller number of
wavelengths and deactivates unused wavelengths in an off-
chip laser to save power consumption. On the other hand,
under a high traffic load, PROWAVES activates a larger
number of wavelengths to offer a high bandwidth and, as a
result, high performance for inter-chiplet communication at
the cost of higher power consumption. To handle high traffic
load in PROWAVES, a high bandwidth gateway on each
chiplet is used (i.e., a gateway with a large number of
wavelengths). However, in this architecture, the high
bandwidth gateway can create congestion on the chiplet as all
the nodes on the same chiplet utilize the same gateway to
communicate with the interposer. Moreover, access to the
gateway is not enabled in a fair manner for the nodes across
the chiplets. For example, a node far from the gateway can
encounter very high latency to reach the gateway.

ReSiPI [37] improves on the PROWAVES design by
employing several gateways on a chiplet with a relatively
lower number of wavelengths. Moreover, ReSiPI manages
inter-chiplet bandwidth while considering the online traffic
by tuning the number of active gateways instead of the
number of active wavelengths. In the ReSiPI architecture, the
traffic load of inter-chiplet communication is monitored in
time epochs and the number of active gateways is defined
based on the required inter-chiplet bandwidth. Activating or
deactivating gateways is done using a phase-change-
material-based coupler (PCMC), based on the coupler design
in [38]. As shown in Fig. 2, a PCMC can be in three states: 1)
crystalline state to guide input light to the Bar (B) output, 2)
partially crystalline state to guide a portion of input light to
the Cross (C) output and the rest to the Bar output, and 3)
amorphous state to guide the light to the Cross output. CLam
and CLc are the coupling lengths of the amorphous and
crystalline states, respectively. By tuning the ratio of CLam to
CLcrthe appropriate input optical power from an optical laser

to a writer gateway can be adjusted. Typically, in a silicon
photonic network where a writer gateway modulates data on
an optical signal to be received by a reader gateway, passive
splitters are used to divide and deliver the optical signal from
the optical laser to the writers. However, passive splitters
prevent the network from dynamically deactivating writer
gateways, while the PCMC can tune optical input of each
writer and facilitate dynamic gateway activation and
deactivation. Using the PCMC, the ReSiPI interposer is
designed to reconfigure the number of active gateways and
improve power consumption of the network. A controller is
used to tune the number of active gateways in each chiplet
according to the inter-chiplet traffic of that chiplet. Based on
the number of active gateways, the PCMCs are tuned to
deliver appropriate optical power to each gateway. Besides
tuning the PCMC, the controller also tunes the laser power
accordingly, to save the power consumption of the laser.
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Fig. 2 PCM-based coupler (PCMC) used in ReSiPI with three
states: (a) crystalline, (b) partially crystalline, and (c) amorphous.

V. SILICON PHOTONIC 2.5D DNN ACCELERATORS

To explore the implications of accelerating DNNs on 2.5D
interposer platforms, we present a case study that involves
extending the CrossLight [21] photonic DNN accelerator to
the 2.5D chiplet platform.

CrossLight is a neural network accelerator designed to
perform high speed multiply and accumulate (MAC)
operations in the photonic domain. However, the original
monolithic CrossLight architecture suffers from low
scalability and relatively low energy efficiency. We propose
to use a ReSiPI-based photonic interposer architecture to
design a more scalable and energy-efficient 2.5D CrossLight
implementation. A high-level overview of our chiplet-based
2.5D CrossLight accelerator with a photonic interposer is
shown in Fig. 3. Several chiplets are packaged on a silicon
photonic interposer substrate. We consider different types of
chiplets as part of a heterogeneous architecture. Such a
heterogeneous design allows system-on-chip (SoC) designers
to utilize appropriate off-the-shelf chiplets and create diverse
2.5D packages to meet their design targets [8].

Fig. 3 Overview of proposed 2.5D interposer chiplet-based DNN
accelerator architecture.

The chiplets in the proposed architecture consist of
various computational and memory chiplets. One or more



chiplets consist of an optically-interfaced memory
architecture, such as high bandwidth memory (HBM; shown
in Fig. 3), with a dedicated gateway to communicate with the
rest of the system. Each compute chiplet (e.g., chiplets 1-4 in
Fig. 3) hosts several photonic MAC units and has its local
gateway(s) to read data from the memory chiplets and write
data to them through the interposer network. Each gateway
has two main parts: electronic circuitry on the chiplet and a
Microring Resonator Group (MRG) on the interposer. The
electronic part of a gateway is connected to the microrings of
an MRG using the microbump technology.

The photonic MAC units utilize noncoherent photonics to
perform multiply operations between parameters, and
photodetectors are used to obtain the sum of products. The
weights and activations are imprinted on wavelengths using
banks of wavelength-specific MR filters. The imprinting
process follows the broadcast-and-weight protocol as
described in [35]. Even though the proposed design utilizes
photonic communication to move data, moving multi-bit
amplitude modulated data in a robust manner is challenging.
Thus, the interposer relies on on-off keying (OOK) based data
transmission, with intermediate photonic-to-electronic
conversion at the gateways and buffering of the parameters at
the MAC units. The buffered data is used to tune the
respective MRs so that the parameter value can be
represented using the wavelength amplitude. For tuning the
MRs, EO tuning is used. The proposed architecture employs
heterogeneous MAC unit sizes (size referring to the size of
the vectors that can be deployed) across different chiplets to
cater to the different kernel sizes and to handle the large-scale
MAC operations needed for the fully connected layers. For
example, in Fig.3, Chiplet 1 includes 33 convolution MACs,
while Chiplet 2 contains 7x7 convolution MACs. Moreover,
as footprint of MACs with various sizes are different, the
number of MACs per chiplet can vary for each chiplet. Fig.
4 shows an overview of a MAC unit.
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An example of the optical interface and communication
on the interposer in this architecture is shown in Fig. 5. In this
example, MACs are reading data from the HBM on a separate
chiplet. For successful communication, a writer gateway,
including buffers to store and forward data, is utilized in the
HBM chiplet, and similarly, a reader gateway is utilized on
the chiplet with MAC units. The stored data in the buffers of
the writer gateway is modulated on the optical signals which
are generated by an off-chip laser. Different colors of
modulators show that they are used to modulate different
optical signals on different wavelengths. As discussed earlier,
employing several optical signals with different wavelengths
enables our network to transmit more data at the same time

on the same waveguide, to improve the communication
bandwidth. Several MR filters are also connected to the
reader gateways. Each MR filter is tuned at a specific
wavelength to filter and drop the specified optical signal.
After this step, the optical signal is converted to an electronic
signal using a photodiode, and this signal is delivered to the
reader chiplet using microbumps. The reader gateway
converts the electronic signal to digital data, and stores the
received data in its buffer. Finally, the data will be forwarded
to the MACs. Such a protocol for optical communication,
where a reader is receiving data from a writer using a
waveguide, is called the single writer single reader (SWSR)
protocol. Similarly, if several readers are receiving data from
a writer using a waveguide, the protocol is referred to as
single writer multiple reader (SWMR) protocol.
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Fig. 5 Example of optical communication on interposer: MACs are
reading data from memory.
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Fig. 6 Silicon photonic network in our 2.5D chiplet-based DNN
accelerator. Each MRG is connected to a gateway on a chiplet.

In our architecture, we have two types of traffic between
the chiplets: 1) reading weights and inputs needed by MACs
from memory, and 2) writing MAC outputs to the memory.
As aresult, from the memory chiplet to the compute chiplets,
we utilize the SWMR protocol to perform reads from
memory. Moreover, from the compute chiplets to the
memory, we use the SWSR protocol. Therefore, the MRG of
the memory chiplets requires several sets of MR filters (each
set of MR filters is a row of the MRG shown in Fig. 3) to
receive data from the compute chiplets. On the other hand, a
compute chiplet requires only one set of MR filters as it only
receives data from the memory. Both compute and memory
chiplets require one set of MR modulators to send data.
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An example of our 2.5D CrossLight with the integrated
ReSiPI interposer is shown in Fig. 6. Although this example
is shown with six gateways (associated with one memory
chiplet and five compute chiplets), the interposer design can
be extended to a larger system without loss of generality. As
shown in Fig. 6, the MRG of the memory chiplet (MRG,) has
six filter rows to receive data from the six gateways of the
compute chiplets (MRG;— MRGg), while MR Gp, has one row
of modulators to send data to all the gateways. The photonic
interposer network architecture is a passive network to save
energy. This means that there is a specific waveguide to
transmit data from each writer gateway to each reader
gateway and the route (waveguide) does not change.

TABLE 1. MODELING PARAMETERS

Parameter Value

Data rate of optical link (per wavelength) 12 Gb/s

Gateway frequency 2 GHz

Electrical network-on-chip link width 128 bits

Electrical network-on-chip frequency 2 GHz

Number of wavelengths 64

Number of memory-chiplets 1

Number of compute-chiplets 8

100 unit Number of chiplets 2

dense MAC Number of MACs per chiplet 4
Number of MACs per gateway 1

Tx7 Number of chiplets 1

convolution Number of MACs per chiplet 8

MAC Number of MACs per gateway 2

5%5 Number of chiplets 2

convolution Number of MACs per chiplet 16

MAC Number of MACs per gateway 4

3x3 Number of chiplets 3

convolution Number of MACs per chiplet 44

MAC Number of MACs per gateway 11

TABLE 2. CONSIDERED DNN MODELS IN OUR EVALUATION.

Model CONV layers FC layers | Parameters
LeNet5 3 2 62,006
ResNet50 53 1 25,636,712
DenseNet121 | 120 1 8,062,504
VGG16 13 3 138,357,544
MobileNetV2 | 52 1 3,538,984

VI. EXPERIMENTAL RESULTS

We designed two variants of the 2.5D CrossLight
architecture: with a ReSiPI-based interposer [37] (2.5D-
CrossLight-SiPh-Interposer), and an electrical mesh
interposer [40] (2.5D-CrossLight-Elec-Interposer). We also
compare the two 2.5D CrossLight variants with the original
monolithic (single-chip) CrossLight architecture in terms of
power, latency, and energy efficiency. The model parameters
assumed in this study are summarized in Table 1. We also
employ the power model and power parameters used in [11]

and [37]. We consider one memory chiplet and eight compute
chiplets in which two of the chiplets include dense-layer
MACs and six of them include convolution layer MACs
(3%3, 5x5 and 7%7 convolution MACs). We used various
DNN models, summarized in Table 2, for our evaluation.
The performance results are shown in Fig. 7. In general,
2.5D-CrossLight-SiPh-Interposer is able to achieve superior
energy efficiency and latency across almost all models,
except for very small ones (e.g., LeNet5). The heterogeneous
chiplets and high bandwidth inter-chiplet photonic network
enable more energy-efficient execution of DNNs than in the
monolithic CrossLight case.
2.5D-CrossLight-SiPh-Interposer imposes a non-trivial
power overhead as its photonic network consumes higher
power for communication than an electronic network.
However, 2.5D-CrossLight-SiPh-Interposer has relatively
lower power consumption for smaller DNN models (e.g.,
LeNet5) as the ReSiPI controller reconfigures the photonic
interposer and  deactivates = unnecessary  gateways.
Nonetheless, for the smaller model (LeNet5), where each
layer only takes up a small fraction of the overall compute
real estate, the 2.5D-CrossLight-SiPh-Interposer overheads
become significant and adversely affect energy efficiency.
For larger models where multiple layers are mapped to
chiplets, the 2.5D-CrossLight-SiPh-Interposer overheads in
terms of power consumption are better amortized across these
mappings. The controller also activates gateways in the large
models to cope with high traffic volumes, which helps to
improve inter-chiplet latency. Although 2.5D-CrossLight-
Elec-Interposer has lower power consumption, it suffers due
to the significantly higher latency of metallic interconnects,
especially for relatively long distances on large interposers.

TABLE 3. AVERAGE POWER, LATENCY, AND ENERGY-PER-BIT ACROSS
ELECTRONIC AND PHOTONIC DNN ACCELERATOR PLATFORMS.

Power (W) | Latency (ms) | EPB (nJ/bit)

CrossLight [21] 50.8 3.6
2.5D-CrossLight-Elec 453 41.4 20.5
2.5D-CrossLight-SiPh 89.7 1.21 1.3
Nvidia P100 GPU 250 13.1 12.3
Intel 9282 CPU 400 86.5 64.4
AMD 3970 CPU 280 141.3 73.7
Edge TPU 2 2366.4 17.6
Null Hop [42] 2.3 8049.3 68.9

Deap CNN [43] 122 619.01 1959.4
HolyLight [23] 66.5 86.4 40.3

On average, in comparison with monolithic CrossLight,
2.5D-CrossLight-SiPh-Interposer shows 6.6x lower latency,
which also results in 2.8x lower energy-per-bit (EPB).
Compared to 2.5D-CrossLight-Elec-Interposer, 2.5D-
CrossLight-SiPh-Interposer offers 34x lower latency and



15.8x lower EPB. Such significant improvement comes from
the ability in 2.5D-CrossLight-SiPh-Interposer to select
appropriate chiplets to map layers of each DNN model and
tuning the required inter-chiplet bandwidth accordingly. We
also compared 2.5D-CrossLight-SiPh-Interposer accelerator
with state-of-the-art accelerators in terms of average power,
latency (total latency of layers), and EPB (Table 3). As 2.5D-
CrossLight-SiPh-Interposer performs well for larger models
and also outperforms state-of-the-art electronic and photonic
accelerators (in terms of latency and EPB), such a photonics-
based 2.5D chiplet platform shows great promise to support
acceleration of emerging large DNN models.

VIL

In this paper, we presented a 2.5D chiplet platform-based
photonic DNN accelerator where both communication on the
interposer and computation on the chiplets employ silicon
photonics. Compared to a monolithic photonic accelerator, a
chiplet-based one not only improves fabrication yield and
cost, but also reduces latency using a high-bandwidth
photonic network on the interposer. Moreover, chiplets can
be designed heterogeneously and off-the-shelf chiplets can be
integrated in 2.5D packages to make various systems with
different computation power budgets and capabilities.

There are several open challenges in this field to design a
more efficient silicon photonic DNN accelerator: 1) power
consumption of the state-of-the-art photonic devices are
relatively high, and there is a need for device-level efforts to
design low-power devices; 2) designing an efficient
electronic controller is essential to efficiently control the
communication and computation operations with low
latency; and 3) the silicon photonic 2.5D DNN accelerator
architecture requires design-space exploration (e.g., in terms
of the number of wavelengths, number of gateways per
chiplet, and number of MACs per chiplet) to create an
optimized architecture tailored to DNNs of interest.

CONCLUSIONS AND OPEN CHALLENGES
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