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Abstract: We assess the accuracy of Structure-from-Motion/Multiview stereo (SM) terrain models acquired
ad hoc or without high-resolution ground control to analyze their usage as a base for inexpensive 3D bedrock
geologic mapping. Our focus is on techniques that can be utilized in field projects without the use of heavy
and/or expensive equipment or the placement of ground control in logistically challenging sites (e.g., steep
cliff faces or remote settings). We use a Terrestrial Light Detection and Ranging (LiDAR) survey as a basis for
the comparison of two types of SM models: (1) models developed from images acquired in a chartered
airplane flight with ground control referenced by natural objects located on Google Earth scenes; and (2)
drone flights with a georeference established solely from camera positions located by conventional,
differentially corrected Global Navigation Satellite systems (GNSS). We find that all our SM models are
indistinguishable in scale from the LiDAR reference model. The SM models do, however, show rigid body
translations and rotations, with translations generally within the 1-5 m size of the natural objects used for
ground control, the resolution of the GNSS receivers, or both. The rigid body rotations can be attributed to a
poor imaging plan, which can be avoided with survey planning. Analyses of point densities in various models
show a limitation of Terrestrial LiDAR point clouds as a mapping base due to the rapid falloff of resolution
with distance. In contrast, SM models are characterized by relatively uniform point densities controlled by
camera optics, the numbers of images, and the distance from the target. This uniform density is the product
of the Multiview stereo step in SM processing that fills areas between key points and is important for bedrock
geologic mapping because it affords direct interpretation on a point cloud at a relatively uniform scale
throughout a model. Our results indicate that these simple methods allow SM model construction to be
accurate to the range of conventional GNSS with resolutions to the submeter, even cm, scale depending on
data acquisition parameters. Thus, SM models can, and should, serve as a base for high-resolution geologic
mapping, particularly in a steep terrain where conventional techniques fail. Our SM models appear to provide
accurate visualizations of geologic features over km scales that allow detailed geologic mapping in 3D with a
relative accuracy to the decimeter or centimeter level and absolute positioning in the 2—5 m precision of
GNSS; a geometric precision that will allow unprecedented new studies of any geologic system where
geometry is the fundamental data.

Keywords: Structure-from-Motion; 3D mapping; accuracy assessment

1. Introduction

Geologic field observations are a basic tool in the geosciences, but common methods for
making these observations have changed very little since the early 20th century when aviation led
to the first aerial photography and travel on horseback was replaced by automobiles and aviation
e.g., [1]. A typical geology field study requires a trained observer to physically examine geologic
features at a wide range of scales (cm to km, typically),
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make measurements in the field, collect samples for additional laboratory examination, identify
the locations of all observations, and compile these data in some way (map, interpretative figures,
etc.) that can be shared with the broad community of geoscience researchers and the general
public. In the process, a field geologist may hike across difficult terrain with logistical obstacles
ranging from weather to fending off an occasional predator while making their detailed
observations. Typically, aviation has been limited to obtaining remotely sensed data over large
areas (e.g., aerial photography or satellite imagery), but in remote areas, it might also be used for
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access and aerial reconnaissance. When these data are released as a publication, they are typically
shown as a few 2D representations (i.e., maps and cross-sections) that are assumed to provide
sufficient information for most current applications. This assumption is rarely true. In particular,
most field data are inherently three-dimensional (3D) and 2D representations of these data can
be misleading. Fortunately, new tools are available that begin to solve this 3D visualization
problem. Specifically, 3D terrain models are revolutionizing field geology by allowing visualization
of complex and/or remote geologic features where conventional 2D maps and vertical aerial
photography distort or obscure geologic observations. Three-dimensional models are particularly
important in structural geology where geometry is a major observable factor and steep slopes
carry much of the 3D geometric information. Terrain model visualizations are widely used today
(e.g., Google Earth and in Geographic Information System (GIS) software), yet most of these
visualizations are not true 3D, and in steep terrain, can contain serious errors that may lead to
misinterpretations, e.g., [2,3]. Light Detection and Ranging (LiDAR) systems address many of these
problems with high-resolution terrain models, yet LiDAR data are expensive to acquire and are
flawed when applied to most bedrock geology studies [2]. All the digital 3D visualization methods
provide information on an area that can be preserved indefinitely and add the ability to digitally
revisit field sites to document changes or review previous observations with newer digital tools to
enhance the 3D model. Note that these types of visualizations ultimately should advance the
efficiency of field research by minimizing the need to revisit sites several times because critical
information may not be sufficient for newer scientific interests. Thus, the need to repeat surveys
or re-map areas with ground-based methods to collect some new information is rapidly being
replaced by a variety of digital mapping techniques that can now provide 3D visualizations at some
level of accuracy.

One of the more recent developments is the use of a modern photogrammetry method to
build 3D terrain models from a suite of overlapping images that capture views from a variety of
look directions. The images are merged to generate a quantitative, 3D representation of Earth’s
surface, regardless of terrain slope [4]. The method is commonly referred to as Structure-from-
Motion, but this term misrepresents the process. In reality, the method is based on two distinct
processes [5]: (1) a feature-matching algorithm that recognizes common features on a suite of
photographs, then uses optical theory to calculate positions of key points and camera parameters
as a first step (the Structure-from-Motion step) and (2) a model refinement step (Multiview stereo
step) that fills in the model between key points with additional photo data to produce a high-
resolution model. The Multiview stereo step is particularly important because it produces a dense,
photo-realistic point cloud that can be directly viewed in a 3D visualization. We refer to the entire
process as SM (Structure-from-Motion/Multiview stereo). SM has become an important tool for
geology because it provides realistic 3D visualizations at low cost with no requirement for special,
expensive equipment. Photographs can be obtained relatively easily from a variety of sources
including handheld cameras, drones, aircraft, or satellites. Geologic applications range from
detailed imaging of small fossil beds, e.g., [6], to imaging of large areas, e.g., [2,4,7-10]. Moreover,
the ease with which photos can be collected and processed into 3D models makes SM potentially
transformative for field geology applications by affording unprecedented resolution of geologic
structure, e.g., [2,8-12]. Nonetheless, when and where 3D photo-based models can be used and
how they compare with LiDAR-based models for geologic field studies remains uncertain because
comparative studies, e.g., [13], are relatively rare and geologists are just beginning to explore the
full potential of some of the data acquisition techniques.

Most studies of 3D model accuracy have focused on engineering applications or
highresolution topographic analyses in geomorphology, typically using high-resolution ground
control to constrain the model, e.g., [14-18]. This level of accuracy, however, may not be
necessary or practical for many geologic field studies where logistical considerations limit access.
Nonetheless, measurements of orientations and accurate mapping of the geometry of geologic
bodies are a critical part of field geology. Thus, it is important for the geologist using a 3D model
to know that the model is scaled properly and free of distortion as well as oriented properly for
digital measurements to be directly compared to those made in the field.

We and our students, e.g., [2,3,6,8,19], have spent much of the last decade experimenting
with the collection and processing of SM data from a variety of geologic settings, and we now
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have a number of sites where multiple methods have been applied. We use some of these data
here to establish some preliminary information on the accuracy and resolution of 3D models
based on different data acquisition methods. This is intended as a starting point for determining
what methods work for solving a variety of problems.

In this paper, we analyze the accuracy and resolution of SM point clouds emphasizing a data
set from the eastern California desert (Figure 1). These data include a LiDAR survey acquired with
a Terrestrial Laser Scanner (TLS) that was acquired early in the project through assistance from
UNAVCO. The LiDAR data serve as a basis for comparison to SM data acquired from ground-based
imaging, drone-based imaging, and imaging acquired using a chartered fixed wing aircraft. Merged
data sets are also examined for multiple drone flights merged into a single model. Our emphasis
is on techniques that do not require any ground control placement because that process can be
time-consuming and potentially dangerous or logistically impossible in remote field settings. Thus,
our intent is not an analysis of high-resolution surveying methods; rather, our emphasis is on
determining the accuracy of SM surveys acquired ad hoc, using only conventional GNSS systems
and access to applications such as Google Earth or GIS for georeferencing. We begin with a
description of our data acquisition and data processing methods and then assess the different
methods. We then compare the models quantitatively and assess sources of error. We end with a
discussion of the pros and cons of different methods in the context of field geology.
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Figure 1. Location maps for the study. (a) shows location of the surveys within the Death Valley region, CA,
USA, with (b) showing detailed locations of the canyons where surveys were conducted. (c) shows location
of the reference survey in southern New Mexico, west of El Paso, TX, USA. Base map is from Google Maps.
2. Background and Methods

2.1. Background

Stereo aerial photography was the first major tool in photogrammetry when camera optics
were quantified and used as a basic tool to produce regional topographic maps [20]. By the late
20th century, computational power had progressed to allow the development of terrain models
and orthoimagery using vertical incidence photogrammetric methods, e.g., [20]. At nearly the
same time, radar techniques were applied to low earth orbit missions, most notably the space
shuttle missions of the 1990s, to produce digital elevation models (DEMs) of most of Earth’s
surface (https://www?2.jpl.nasa.gov/srtm/, accessed on 29 May 2023). Together, these
technologies afforded the first 3D visualizations of Earth’s surface at a global scale, including the
introduction of online viewers such as NASA’s WorldWind site and Google Earth. These tools were
important for the geosciences by affording a 3D view of virtually anywhere on the planet.
Nonetheless, these tools had limited application for geologic mapping because they were typically
of low resolution.

GIS software developed during this time interval also provided powerful tools for geologic
mapping, e.g., [1], yet these tools remained flat-map centric. A widely used exception to the flat-
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map approach arrived in 1999 when ESRI released ArcGlS, which included Arcscene, a 3D viewer
based on draping orthoimagery onto a DEM. This approach to the 3D visualization of Earth’s
surface is not true 3D however, and is often referred to as a 2.5D method [2] or pseudo-3D.
Specifically, an orthocorrected image with parallax removed to make a flat-map representation of
the image is projected vertically onto an elevation model to produce the pseudo-3D view. It is
pseudo-3D because the accuracy of the projection is dependent on the accuracy and resolution of
the terrain model as well as the orthocorrection of the imagery. Thus, in areas of steep terrain,
this method often produces artifacts such as pixel smear and scenes that do not resemble reality,
e.g., see examples in [2], and off-nadir images can introduce artifacts that look real but are highly
distorted [3].

LiDAR is the first technology that was developed to accurately locate points on the Earth’s
surface with high accuracy because it is based on measurements of the travel time of a light wave
between a scanner and the surface being mapped. It can be acquired from either an airborne
platform or a terrestrial scanner (TLS) with the primary source of error coming from the accuracy
of the scanners known location for each measurement and the distance between the scanner and
the point of measurement on a surface. In geosciences, the main applications of high-resolution
LiDAR terrain models have been in geomorphology, measuring surface morphology and surface
changes through time based on repeat surveys, e.g., [21,22]. Although LiDAR has been very
important for geomorphic studies, it has seen less use in bedrock geologic studies because it is
often expensive and requires either heavy field equipment in terrestrial surveys or an airborne
platform. In addition, LiDAR was not designed to acquire true color visualizations of the measured
surfaces and, as a result, photographicimages need to be added to a LIDAR model by draping them
onto the surface model. Thus, as with DEM-based methods, the resultant model is pseudo-3D
when an image is draped on the model. The high accuracy of the LiDAR surface models often
reduces the need for very closely spaced measurements, and 3D scene visualizations often use a
mesh surface to fill in the spaces between measurements and then imagery is draped onto the
mesh. Although these methods can produce stunning visualizations, they produce challenges for
studies such as bedrock geology, where the quality of the imaging is critical and minor variations
in features can be significant in terms of measuring and observing small-scale features.

SM technology solves the visualization limitations of LiDAR that handicap bedrock studies
because the data acquisition can be tuned to ideal photographic conditions rather than things
such as an arbitrary time schedule and aircraft flight limitations. Moreover, the only equipment
required is a camera, although airborne platforms and GNSS positioning aid data acquisition and
processing to greatly improve SM model creation. That is, the variations in look directions and
proximity to the surface that can be provided by using aerial imaging and the use of a GNSS
system to georeference the camera position can significantly improve processing and model
accuracy. Data acquisition and the processing of SM data have been extensively reviewed
elsewhere, e.g., [3,14]. For our purposes here, the key feature of SM data is that when a point
cloud is generated in an SM survey, every point in the cloud will have its true color (typically an
RGB value) assigned to it, such that each point can be thought of as a 3D pixel on an irregular
surface [2]. This feature is critical for applications to bedrock geology because a user of the data
can be confident the data are free of artifacts from improper image drapes, e.g., a color change
seen within a family of points in a point cloud is in its proper position in space, free of distortions
from image drape. Virtually all of the operations that a field observer makes, except the
collection of samples, can be made using the SM model if it is reasonably accurate.

Unfortunately, SM technology is sufficiently new that less is known about the accuracy of
these data relative to LiDAR [4]. There is significant information on the subject in the engineering
literature, e.g., [14-18], yet in many respects, these studies are not applicable to geological
mapping applications outside of geomorphology. For example, most engineering studies have
focused on the absolute accuracy of SM models, particularly the accuracy of the georeference,
e.g., [15,17], and virtually all use high-resolution ground control points for model referencing. The
placement of ground control points is often difficult or impossible for a geologic mapping project
in rugged terrain. More important for geologic studies is the accuracy of relative positions such
that a 3D model is a true representation of geometry free of distortions (straight lines are not
curved) and scaling errors. Wilkinson et al. [23] provided an assessment of some of these issues in
virtual outcrop models for geology and found that properly acquired SM data typically lacked scale
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distortions but did suffer in areas where topographic features produced sharp corners. Our
experience at virtual outcrop and larger scales is consistent with that conclusion and arises
because the featurematching algorithms in the SM software have difficulty tracking shape changes
in objects that accompany changes in look direction [4]. Here we emphasize that absolute
positioning errors are most likely to be important in SM studies at larger scales than the virtual
outcrop level. That is, in geologic studies where adjoining, independent surveys are merged,
absolute errors could cause a mismatch that would need to be reconciled to make a larger, 3D
model. Note, however, that these kinds of absolute errors are likely small when data are
constrained by modern GNSS technology. Thus, the questions we consider here are: how large are
absolute errors and relative errors in SM data acquired under different acquisition methods? How
do errors vary under different georeferencing techniques, and across scale ranges? What level of
accuracy is “good enough” for a typical geologic problem with today’s technology? We address
these questions here with direct comparisons between SM data and a TLS survey. In addition, a
critical concern for field geologists is what can be seen and measured (resolution) in an SM model
compared to true field observations and what is needed in an SM survey to achieve a desired
resolution.

2.2. Methods

The data for this study consist of a variety of surveys conducted over a period of
approximately 10 years in the Panamint Mountains of southern California (Figure 1) to support
geologic mapping in an area of rugged terrain. The geologic structures of interest are complex and
are well exposed on steep slopes and cliffs that are extremely difficult to access. This is the ideal
setting to apply remote sensing techniques that are highly reliable.

The initial work involved collecting ground-based LiDAR data, geologic mapping, and ground-
based SM acquisition and interpretation, e.g., [3]. This was followed in subsequent years by flying
drones, first in Surprise Canyon where geologic mapping had previously been performed but many
of the more remote areas had not been accessible for direct observations. The drone study was
expanded into Pleasant Canyon and more data were collected in Surprise Canyonin 2021 and 2022
with newer models of drones with higher quality cameras and onboard georeferencing. An
autonomous flight was used with one of the new drones in Pleasant Canyon. Finally, in 2021 we
used a low-flying aircraft with handheld cameras to collect additional data over Surprise, Jail,
Happy, Hall, and Pleasant Canyons (Figure 1). These various surveys did not all overlap, and there
are variations in lighting conditions that affect the comparison of these data sets.

As a comparison to these data collected in steep terrain, we also analyzed a data set from
southern New Mexico (Figure 1), west of El Paso, TX. This area was recently covered in a small
SM survey within an area where the USGS recently acquired airborne LiDAR data. The New
Mexico site has relatively low topographic relief so it shows how LiDAR and SM models compare
in a more typical setting.

2.2.1. LiDAR Data

In this study, we analyze the accuracy of a series of SM surveys relative to LiDAR data under
the assumption that the LiDAR data are a high-resolution reference that accurately maps positions
(reflecting points) on a surface at the cm level. This accuracy assumption is based on the accuracy
of GNSS used to locate the scanner and reference the survey point positions relative to the
scanner. Our primary reference survey is a TLS data set from the Panamint Mountains (Figure 1)
that was acquired in 2013 as part of experiments in 3D geologic mapping. These data are available
at opentopography.org. A description of data acquisition and processing is in Brush et al. [3]. For
this paper, the key information for these LiDAR data are that the scanner positions were accurate
to 2—-3 cm with point positions accurate to ~1 cm relative to the scanner, indicating the LiDAR point
cloud is accurate to 3—4 cm overall [3].

Because this reference survey is TLS data, scanner positions were controlled by logistics. In
this case, the survey sites were all located on the floors of canyons, each with slightly different
characteristics: (1) Pleasant Canyon is a steep-walled canyon ~300—-600 m deep and 800—3000 m
across that is accessible by a road on the canyon floor; (2) lower Surprise Canyon is only accessible
on foot along a trail at the bottom of a deep, steep-walled canyon with a tight inner canyon (~200-
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700 m deep and ~250-300 m across) and a broader canyon overall (total depth of ~500-1300 m
and ~3000-4000 m across).

2.2.2. SM Data

For SM, our principal data are a series of photographic site surveys conducted between 2013
and 2022 that overlapped with the TLS survey area. Our initial work was strictly ground-based
photography with details in Brush et al. [3]. More recently, we acquired two aerial SM data sets in
this area: (1) a group of drone-based surveys using a DJI Mavic 2 Pro drone as well as a DJI Mini 2
drone and (2) an aerial survey using a chartered, fixed-wing aircraft with imagery acquired using
handheld cameras imaging through open windows on both sides of the aircraft.

Drone Imaging: For the drone imagery, we acquired data using different methods as
experiments on best approaches to use in a deep canyon with steep walls. We used two drones
(DJI Mavic 2 Pro and DJI Mini 2). The Mavic Pro’s lens is a 28 mm equivalent of a 35 mm film camera
and a still image size of 5472 x 3648 (https://dominiondrones.com/ pages/dji-mavic-2-pro-
specifications, accessed on 29 May 2023). The Mini 2 has a lens that is a 24 mm equivalent of a 35
mm film camera with an image size of 4000 x 3000 pixels (https://www.dji.com/mini-2/specs,
accessed on 29 May 2023). Because of ease of access and relatively “open sky” conditions where
GNSS operates best, our main experiments were in Pleasant Canyon, but we also conducted
experimentation in Surprise Canyon.

Most of our drone flights were launched from the valley floor for the same reason the
TLS data were acquired from the valley floor. In tight canyons such as these, the canyon geometry
was a challenge for line-of-sight flights, and we developed a method where the flight begins with
a low-elevation flight paralleling the cliff face, while the drone camera is pointed at the cliff. In this
pass, the drone could easily be kept in sight either directly or by walking with the drone. Once this
pass is completed, continuing the flight was aided by a feature of the DIJI flight software that
provides a map view showing the track of the drone. This track allows a procedure where the track
can be used as a reference as the drone is flown to successively higher elevations, by following a
comparable track with each pass, typically moving toward the cliff face with each higher pass and
using live video to evaluate safety of the closer approach. The result is a semi-vertical grid pattern
to the flight with imagery acquired in successive sub-horizontal passes that parallel the cliff face
at similar distances. This pattern mimics autonomous flight patterns used on flat terrain in
programs such as drone deploy (www.dronedeploy.com accessed on 29 May 2023) or in Agisoft
Metashape flight plans for imaging vertical features (www.agisoft.com accessed on 29 May 2023).
This imaging pattern avoided problems we recognized in ground-based imaging [3] and in poorly
executed drone flights (see below).

Within this series of experiments on imaging geometry, we also conducted experiments on
how the actual images are acquired. The simplest method is to set the drone to interval shooting,
which, on both our drones, is a minimum of 2 s, and that value was used in all our experiments.
Although this method is simple and assures continuous coverage, it can lead to numerous
redundant images (e.g., when the drone is stopped in flight) and potentially image blur if the drone
is flown too fast at close range. Thus, we experimented with other approaches including: (1) a
manual equivalent of interval shooting where the drone is flown short increments, stops, and an
image is acquired manually, and (2) a modification of this manual shooting where at each stop
position, the drone is rotated on a vertical axis using the controller and horizontal axis via the
camera gimble. The second method is an aerial equivalent of a method we used in ground-based
images with a relatively long lens where scenes are panned from individual camera positions (2).
Ultimately, we found the first manual method a waste of flight time because we used high enough
shutter speeds that image blurring was minimal to nonexistent. Based on our ground-based
methods, we expected the second method to produce superior results but ultimately saw no
significant difference from simple interval shooting. A more controlled experiment shooting the
same scene by the two methods might reveal distinctions, but our qualitative assessments suggest
the increased efforts for the pilot make manual imaging methods less desirable.

Finally, at one site, we were able to conduct an autonomous flight experiment by launching
the drone from the canyon rim. In this flight, we utilized the program “drone deploy” and flew a
constant elevation survey at a height of 100 m above the starting point. The survey imaged an
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area outside the coverage of our TLS data but overlapped extensively on a cliff face, allowing
assessment of a vertical imaging survey compared to the TLS data acquired from the canyon floor.

Imaging from a chartered aircraft: In addition to drone imagery, we conducted a lowelevation
(~400 m to 800 m above terrain) imaging flight in March 2021 with a chartered fixed-wing aircraft
(Cessna 180). In this flight, two people, each looking out opposite sides of the aircraft, acquired
oblique images through open windows on the aircraft with a camera. This flight produced a
serendipitous experiment when both GPS units attached to the cameras failed to provide
continuous GPS positioning, leading to a flight with unreferenced camera positions. The cameras
were Nikon DSLRs: a D5300 and a Df. Both cameras had Nikkor fixed focal length lenses that
approximated a 50 mm lens in a 35 mm film camera. The Nikon Df contains a full frame sensor,
and thus, its 50 mm lens was 50 mm senso stricto, whereas the D5300 has a smaller sensor and
we used a 35 mm lens to approximate a 50 mm lens. Both cameras were operated on a fixed f-
stop with exposures adjusted by the camera through variable shutter speeds. The cameras were
set torecord in both jpg and raw modes, with the latter providing improved image processing. The
raw format proved particularly important when data from the two cameras were merged due to
differences in the sensors producing different appearances of the images, which could be easily
adjusted in the raw imagery. During image acquisition, each operator collected imagery using a
vertical sweeping motion that ranged from 20-70 degrees, depending on the flight position
relative to the scene. The flights were flown in a grid pattern with 3 passes parallel to the mountain
front and 4 cross-lines flown down four major canyons at a height about midway between the
canyon rim and the canyon floor. Note that because of limitation of the aircraft climb rate, imagery
was only acquired in downcanyon flights.

Drone control experiment, Kilbourne Hole, New Mexico: As a comparison to the models
obtained in the steep terrain of the Panamint Mountains, we flew a small drone survey over the
low-relief volcanic field northwest of Kilbourne Hole in southwestern New Mexico (Figure 1). The
area was chosen because it had been recently covered in an airborne LiDAR survey
(https://www.usgs.gov/3d-elevation-program, accessed on 29 May 2023), allowing direct
correlation to an SM survey over the same area. The survey was flown at a height of 100 m using
the Mavic 2 pro drone flying autonomously using drone deploy software.

2.2.3. Data Processing

In this project, we processed the SM data using both Metashape 1.8 and Pix4D mapper
4.6.4 software. We experimented with a variety of data processing techniques. Aside from point
density variation under different options in the Multiview stereo step (described below), the
variations in processing parameters had little effect on the model accuracy in almost all cases. One
exception was recognized in Metashape when the parameter “camera accuracy” was varied in the
Structure-from-Motion step. Specifically, when camera accuracy is set relatively low (10 m or
more), the “alignment” of images can improve, but model accuracy can degrade and produce
distortions on drone models. When set to 2 m or less, however, these problems disappear.

Because our GNSS system failed in our manned aircraft data, these data were not
georeferenced by camera position, which afforded a test of a likely scenario when SM data are
acquired ad hoc, or ground control placement is impossible. For example, we have worked in
remote settings accessible exclusively by aviation, and in these settings, ground control placement
is not possible, and ad hoc imaging might be performed literally “on the fly” when some feature is
observed out the window of an aircraft. Thus, the method used here is potentially relevant to a
range of future SM data acquisitions.

In both Metashape and Pix4D, we used a similar georeferencing procedure with these aircraft
data. We began by running the SfM and MvS steps with unreferenced images to build a low-
density point cloud. We then compared our model to Google Earth visualizations of the same area
and identified 10-15 potential ground control points (GCPs) visible in both scenes. In these scenes,
we used exclusively natural objects, but other GCPs are possible where man-made structures are
visible (e.g., buildings or road intersections). For GCPs, we focused on objects 1-3 m in size or
larger objects that had recognizable shape patterns where a common point could be easily
located. Google Earth provides coordinates by placing a marker at the object, which can then be
entered manually into SM software when the comparable point is picked on the SM model. Both
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Pix4D and Metashape have features where once the GCP is picked, individual images can be
queried for quality control on the point placement. We experimented with different GCP
placement schemes and processing streams that might arise under different situations and, not
surprisingly, a range of referencing issues arose.

Itis of note that Google Earth uses an unusual georeference that made us suspicious of using
Google Earth for referencing. Specifically, Google Earth uses a pseudo Mercator projection with a
WGS84 datum for horizontal reference and variable DEM resolution with a geoid reference
(https://en.wikipedia.org/wiki/Web_Mercator_projection, accessed on 29 May 2023), although
which geoid is used is not clear in documentation we have seen. Because of the uncertainties in
the datum, particularly vertical where a low-resolution DEM could introduce large errors, we were
uncertain on how well this referencing technique would work. Nonetheless, because this is likely
the simplest procedure for field geologic studies, we used this method exclusively with the results
reported here.

2.2.4. Point Densities and Cloud Mismatch Measurements

For comparison of results among the different acquisition and processing methods we used
the open-source program, CloudCompare, to analyze point clouds for point density and distance
between SM point clouds relative to the TLS data. We also used Maptek Ltd.’s program,
PointStudio, to compare point clouds locally as a visual check on the
CloudCompare results and used PointStudio for fine cloud alighments where point clouds were
merged to form a single model outside of SM processing software.

3. Results
3.1. Point Densities
Animation 1

Point density is the number of data points within a specific area or volume of a model divided
by the area or volume. It may vary throughout the model and provides an estimate of the
resolution of the area of the model because the more points within a given area, the more likely
it is that one or more points will image a small feature. The model is unlikely to image objects
smaller than twice the inverse of the point density and spatial aliasing is possible at these
resolutions. In our models, the point density was not specifically considered during the data
collection, but we knew that the distance between the camera and the surface was inversely
proportional to the resolution and that camera parameters would affect resolution. By simple
visualizations of our models (Figure 2 and https://www.youtube.com/watch?v=Ajk34HKzGDo,
accessed on 29 May 2023), it is clear that point density varies markedly among the models,
depending on the method.
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Effects of Variations Point Cloud Density on Visualization

a. LiDAR scene, map view b. same view as a., single flight Mavic Pro SM model

c. same flight as b., Mavic Pro SM model, d. same scene as ¢., Mini 2 SM model
oblique close view

Figure 2. Illustration of effects of variations in point density on ability to resolve geologic features in 3D
mapping onto a point cloud. Scenes are from lower Pleasant Canyon. (a,b) are a map view visualization of
the same area showing the poor visualization in the relatively low density of the LiDAR scene (a) vs. SM
model (b) developed from a single Mavic Pro flight. (c,d) show a zoomed in, oblique view of a part of the
scene shown in (a,b) (box shows location). (c) shows the zoomed in Mavic Pro SM model and (d) shows the
zoomed in image from the DJI Mini 2 model. There is no image of the LiDAR zoomed in because it is too
sparse to show at this scale. Similarly, the DJI Mini 2 model is not shown at the smaller scale because it
looks the same as the Mavic Pro at that scale but differences are apparent at the larger, zoomed in scale.
Point densities are quantified in Figures 3 and 4 for these data.
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Pleasant Canyon LiDAR Point Densities

a. Raw Point Cloud (RGB from
camera on Scanner)

Surface Density Historgram

b. Error Cloud (0-500 pts/m2)
(color legend for error cloud)

2x108
€

é’ 108
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Surface Density (points per m?)
G Surface Density Historgram Error Cloud (0-20 pts/m?2)

(color legend for error cloud)
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0 5 10 15 20
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Figure 3. Point density analysis for LiDAR data in Pleasant Canyon illustrating decrease in point density with
distance in TLS data such as these. All views are map view of 3D data. (a) shows the raw point cloud colored
with RGB values obtained from a camera on the scanner, (b) shows error cloud (right) colored by the
surface density histogram (left). Note that high-density areas show locations of scanner positions. (c) splits
the point cloud into low point densities recolored to histogram (left) in the error cloud (right).

Fleming and Pavlis [19] and Brush et al. [3] discussed the pros and cons of high-density point
clouds vs. textured mesh models as a base for 3D geologic mapping. These studies both
emphasized the advantages of high-density point clouds because areas of sparse data are more
obvious and afford visual assessments of mapping accuracy not possible with mesh models where
the image drape can produce a false sense of high accuracy, even in areas where the data are
sparse. The animations of our Surprise Canyon data (https:
//www.youtube.com/watch?v=Ajk34HKzGDo, accessed on 29 May 2023) and Pleasant Canyon
(Figure 2) show, however, that the viability of a point cloud for visualization depends on point
density. Software can partially compensate for this limitation by enlarging the point size in the
visualization, but that visualization option has limited capability to compensate for sparse data.
Thus, because point density will strongly effect the ability to interpret the 3D terrain model, we
analyzed point density among the different methods (Figures 2—6 and Table 1).
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DJI Mavic, north wall Pleasant Canyon

0 |
0 200 400 600
Surface Density (points per 1 m2)

DJI mini, 4 flight merge, close range,
north wall Pleasant Canyon

o

1000 2000
Surface Density (points per 1 m?)

Figure 4. Quantification of point densities per square meter for two drone-based models in Pleasant
Canyon that were shown qualitatively in Figure 2. Both drone models were processed to high-density point
option in Metashape and displayed here in map view. Upper figure illustrates typical point densities for the
Mavic drone at intermediate distances (100-200 m) in a single flight vs. a close range (10s of m) model for
the mini merging 4 flights. Note the two figures are approximately at the same scale but overlap only about
30% along the eastern part of the DJI mini model and western part of Mavic model as in Figure 2.

Note that point density is a crude measure of point spacing and, therefore, model resolution,
e.g., 100 points/m?is ~10 cm point spacing, whereas 400 points/m2would be ~5 cm point spacing,
etc. CloudCompare provides three ways to measure point density: surface density, volume
density, and measured neighbor density (https://www.cloudcompare.
org/doc/wiki/index.php/Density, accessed on 29 May 2023). We primarily used surface density for
this study, which is a measure of the number of points within a given area. In this method, the
program places a measurement circle centered on each point and oriented by neighboring points
and counts the number of points falling within the circle. In our case, we used a 0.56 m radius (1
m?) circle for high-resolution models and a 2 m radius circle for lower resolution models. We tested
the surface density vs. neighbor density on one site with a high-density point cloud and found no
significant difference between the two methods. The neighbor density was useful, however, in
assessing point densities of our LiDAR point clouds that fall off in density with distance from the
scanner. The results of this analysis are displayed in Figures 2—5 as a colored point cloud with an
accompanying histogram of density vs. count with a color ramp in this histogram corresponding
to the colored point cloud. Table 1 summarizes the results from all our data analysis.
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Point Densities: pix4D processing

Generic (Optimal) Density, Pix4D
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Figure 5. Point densities for the part of the Surprise Canyon data analyzed in this study. All figures show
surface density as a color map on the right with a histogram of point density on the left indicating the color
ramp for the figure to the right. (a) is for the TLS data and (b) is for the SM data acquired in the airplane flight.
Red lines show approximate equivalent points on the TLS and SM airplane model. (c,d) show point density
comparisons for an SM model processed using the utra-high point density option (c) and high-density option
(d) in Metashape software. Scene is from a single flight with the Mavic Pro drone and a relatively small
number of images (178). Ultra-high-density scene is visualized in
https://www.youtube.com/watch?v=Ajk34HKzGDo (accessed on 29 May 2023). (e,f) show point densities for
the same scene as 4c and 4d but processed in the two point density modes in Pix4D software.

The TLS data were clearly the sparsest (Figure 2 and https://www.youtube.com/
watch?v=Ajk34HKzGDo accessed on 29 May 2023) and Figure 2 illustrates this quantitatively. Note
that the relatively low density of the TLS data and presence of large holes in the data is a function
of two issues that are related to the logistics of data acquisition: (1) the data were acquired on a
canyon floor, which limited each scan to a 1/r? point spacing, decreasing the point density
dramatically with distance from the scanner sites as well as limiting look direction; and (2)
time/cost restrictions led to a compromise on the spacing of scanner positions. The decrease in
point density with distance is clearly shown in Figure 3 where all of the high point densities are
within a few meters of the scanner (Figure 3b) and even the close in data (Figure 3c) on the cliff
face are in the 5-20 points/m? range with the upper slopes all at low densities of <5 points/m>.
The Surprise Canyon LiDAR data are comparable (Figure 3 and Table 1). This point density is as
expected from the data acquisition because LiDAR data are limited by the geometry of the scanner
position vs. distance with no way to fill information between measured points other than
increasing scan density with accompanying increased data collection time. In contrast, the
Multiview stereo step in SM data can fill in voids, as long as there are enough look directions to
cover a 3D scene. This distinction is shown in the analysis of SM data (Table 1 and Figures 3-5).


https://www.youtube.com/watch?v=Ajk34HKzGDo
https://www.youtube.com/watch?v=Ajk34HKzGDo
https://www.youtube.com/watch?v=Ajk34HKzGDo
https://www.youtube.com/watch?v=Ajk34HKzGDo

Geosciences 2023, 13,217

14 of 34

a. SM survey point density

¢. USGS LiDAR survey

Point Densities: SM drone survey at max height vs USGS airborne LiDAR
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Figure 6. Point density analysis of an SM model developed from a vertical imaging, autonomous drone flight
flown at 100 m vs. USGS LiDAR survey (www.usgs.gov/3d-elevation-program, accessed on 29 May 2023)
flown over the same area. Drone flight covers a subset of the LiDAR coverage. (a) shows a map view point
density distribution in SM model based on color scheme in histogram of point densities shown in (b). Note
the average point density of the survey of ~16 points/mz2. (c) shows a map view point density distribution for
the LiDAR data colored based on the color scheme of the point density histogram (d). Note the stripped
pattern reflects NS flight lines with general point densities (blue) ~2.5 points/m2 and two times higher
densities (~5 points/m2) in areas of data overlap (green strips).

In Figure 4, SM models from two different drones in Pleasant Canyon but with different flight
plans are illustrated: a close in (10s of m from target) DJI mini composite model and a single flight
with the Mavic Pro at intermediate distances (100-200 m from target). These data confirm our
observation  from  visual inspection  that our LIDAR data (https://www.
youtube.com/watch?v=Ajk34HKzGDo accessed on 29 May 2023 and Figure 2), in general, are
approximately an order of magnitude lower density than any of the drone data. That is, the LiDAR
point densities are less than 20 pts/m? (point spacing > 20 cm) and <5 pts/m? for more than half
the model, whereas the drone data range from 300-1000 pts/m? (point spacing ~3—6 cm). The
distinction in the close in DJI mini vs. Mavic flight (Figure 2) also illustrates the effects of range and
number of images used in model construction
(487 images for mini flown at ~50 m from the target vs. 186 images for the Mavic flown at ~200
m from the target).

Table 1. Point densities and point cloud spacing for different methods.

Point Density at Peak Estimated Resolution at

Location Acquisition Method Point Density Range Count Peak Count
LiDAR (Points/m?2) (Points/m2) cm
Pleasant Canyon Brush 1-100 at target
TLS <20 >22

et al., (2018)

(spatial dependence)
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Surprise Canyon Brush

1-100 at target

et al., (2018) LS (spatial dependence) <20 <
Kilbourne Hole, NM See USGS airborne LiDAR, 2.5 (background) to 5
USGS metadata low-relief terrain (overlap areas) 2.5 63
Aircraft
Pleasant Canyon-HD Manned aircraft, Nikon Df
. 1-15 10 32
Metashape camera, single pass
Surprise Canyon HD Manned aircraft, two
Metashape cameras 10-40 25 20
Handheld Camera
Surprise Canyon HD G d-based. Nik
Metashape Droun - ;se ,7 ikon 1-500 990 6
(Brush et al., 2018) 5300 at 200-700 m
Pleasant Canyon HD .
Metashape Ground-based, Nikon 1-80 45 15
(Brush et al., 2018) D5300 at 600-1500 m
Autonomous Drone flt
Kilbourne Hole, NM HD DJI Mavic autonomous
Metashape flight 100 m elevation 15-18 16.2 25
UAV (Drone)
Pleasant Canyon HD DJI Mavic, 100-200 m
Metashape from target, single flt. 1-400 375 5
Pleasant Canyon HD DJI mini, close range (10—
Metashape 30 m) 1-1200 850 3
Pleasant Canyon HD DJI Mavic, 4 flight merge dual max at ~210 and
Metashape 1-800 390 7and5
Surprise Canyon HD o )
Metashape DJI Mavic, single flight 1-400 200 7
Surprise Canyon DJI Mavic, single flight
Ultra HD Metashape (same as above) 1-1000 500 4
Surprise Canyon DJI Mavic, single flight
Pix4D (optimal) processing (same as above) 1-200 20 22
Surprise Canyon DJI Mavic, single flight
HD Pix4D (same as above) 1-600 100 10
Surprise Canyon HD DJI Mavic, two-flight
1-230 170 8

Metashape

merge in canyon bend

In Figure 5, we illustrate the model resolution of the LiDAR, SM model from the airplane
flight, and drone data under different data processing schemes using data from Surprise Canyon
(area shown in https://www.youtube.com/watch?v=Ajk34HKzGDo accessed on 29 May 2023).
Figure 5a confirms the observations for the LiDAR resolution in Pleasant Canyon (Figure 4) with
similar model resolution, including a higher resolution close to the scanner near the canyon floor,
but point densities <10 points/m? (point spacing >~30 cm) anywhere more than a few 10s of m
from the scanner. The airplane model (Figure 5b) demonstrates that this model overlaps in point
density with the LIDAR model but has a more uniform distribution of point density with a
histogram peak that is 3 to 4 times higher than the point density in most of the LiDAR model (~25
point/m2, ~20 cm spacing, Table 1). This spatial distribution is consistent with the different data
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acquisition methods—fixed scanner positions with the TLS systems producing a 1/rfalloff in point
spacing for each scan with overlaps in the scans’ increasing point density vs. a range of look
directions for the airplane data with a 3D image acquisition geometry.

For the drone data in Surprise Canyon, we illustrate the range of point densities afforded by
different processing schemes. Figure 5c,d illustrate a reason for the improvement in visualization
provided by “ultra-high-density” Metashape models with an increase in point density ~2.5 times
the point density of the “high” density option (200 vs. 500 pts/m?, Table 1), an estimate consistent
with Agisoft’s documentation (www.agisoft.com, accessed on 29 May 2023). Similarly, point
densities from Pix4D processing illustrate why our qualitative observation of generic Pix4D models
appears to be of lower resolution because in Figure 5e, the point densities in the Pix4D models are
dominantly in the 20-60 pt/m? range vs. 180-220 pt/m?in the high-density Metashape model
(Figure 5c). Even the high-density option in Pix4D (Figure 5f) produces a more sparse point cloud
than the high-density option in Metashape, albeit with a more geographically dispersed density in
the Pix4D model and with higher densities in parts of the model. Note that the high-density options
in both Pix4D and Metashape take comparable processing times. Thus, our analysis here suggests
the programs produce complementary results when data are processed to high-density options,
whereas there is no Pix4D processing comparable to the “ultra-high” option in Metashape.

Finally, Figure 6 illustrates a comparison of point densities from an SM model developed from
an autonomous DJI Mavic drone flight flown at 100 m vs. a USGS LiDAR survey collected over the
same area as part of the USGS national LiDAR data acquisition program (https://www.usgs.gov/3d-
elevation-program, accessed on 29 May 2023). The survey area is in southern New Mexico, just
west of Kilbourne Hole and represents a low-relief site (total relief less than 30 m) in volcanic
terrain. As such, this comparison serves as a general reference for large parts of the United States
where relief is low and LiDAR data of this type is, or will be, available. This analysis shows an
expected result based on USGS metadata for the survey. That is, the survey was flown with NS
flight lines with an overlap of ~25%, producing a striped resolution (Figure 6c) with a background
point density of
~2.5 points/m?and approximately double density in the overlap zones (~5 points/m?). These point
densities equate to a point spacing of ~0.5—1 m for the model. The SM model, in contrast, has ~5
times the point density of the LiDAR data (Figure 6a and Table 1) and the point densities are
relatively evenly distributed across the model. Note that the point density of the SM model is
approximately a minimum density for this drone because the drone was flown near the legal
maximum elevation for drone operations in the United States and data were processed to the
“high” point density option. Thus, had we flown at a lower elevation, processed the data to the
“ultra-high-resolution” option in Metashape, or both, we would have increased point densities
well above the measured densities here. Moreover, note an important distinction in any
visualization obtained from these data: Not only are the SM data a higher resolution than the
LiDAR data, but the SM data are also a fully colored point cloud, while the LiDAR data carry no
color information. Thus, although the LiDAR data can be used to produce a colored visualization
through an image drape, or other methods, none of those steps are needed to use the SM model
directly as a visualization.

3.2. Cloud—Cloud Distance Measurements
3.2.1. Data Processing Procedure

In CloudCompare and PointStudio, we first compared the LiDAR and SM models visually,
simply by viewing both clouds simultaneously, to look for obvious mismatches and discrepancies
between model pairs. The LiDAR model is assumed to be the most accurate, so we compared the
SM models to the LiDAR in all cases. In all cases, model offsets were not obvious when viewing the
entire model, and in most cases, inspection showed the main differences were in the z (vertical)
dimension, i.e., one cloud was above the other, covering most of the underlying model in the
visualization. In all cases, however, this visual inspection is not quantitative, and thus, we used the
“cloud—cloud distance” function in CloudCompare to measure the actual mismatch. This function
has three levels of analysis, and in this study, we used the least squares plane method for full point
clouds because that method requires lower computation times. Specifically, the large point clouds
analyzed here (>40 million points) required computation times of 3—10 h on our 8 and 12 core
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Windows machines, and other methods took days. Because of this issue, for most of our drone-
based models with >80-100 million points, we decimated the point cloud to point spacings of 20
to 50 cm, which sped up operations and allowed use of the more sophisticated algorithms in
CloudCompare. The results of the cloud—cloud distance measurements showed only minor
differences among the three CloudCompare methods, presumably due to differences in resolution
(e.g., point density) among the data sets.

We present the results of the CloudCompare analyses in two types of graphics: (1) an error
cloud, contoured by color ramp tied to the mismatch between clouds and (2) a histogram of the
total number of points for each range of differences between the LiDAR and each camera-based
model. The histogram color scheme is used to color the error cloud. Note that we did not use the
same range for the color scheme in different models because the parameter varied sufficiently so
that many models would have been monochrome, obscuring details of model mismatch. In all
cases, the overlap between our models was incomplete, and thus, we used the initial cloud—cloud
distances estimates in the function to limit the maximum search distance for model comparison.
This value was less than 20-50 m in all our data. After the computation was complete, we then
produced a histogram display for the analysis, which invariably showed a Gaussian tail to larger
errors. To refine the visualization, we visually estimated the position where this tail was
approaching zero and used the “min-max” function in CloudCompare to split the error cloud into
far offset vs. close offset components. This function recolors the error cloud to improve the error
visualization and removes the larger offsets that are produced by data outside the overlap of the
models, large holes in one of the models, or both. CloudCompare also allows the cloud— cloud
distance function to estimate the X, Y, and Z components of the mismatch, and we used this
function extensively where the discrepancy was not clear from visual inspection.

3.2.2. Analysis of Aircraft Imaging SM vs. LiDAR

For this study, we used a subset of our aircraft-acquired imagery over areas that had been
covered in our 2013 LiDAR data. In Pleasant Canyon, the area was imaged with only a single camera
(Nikon Df) in a single pass looking up the canyon as the aircraft flew along the mountain front. In
Surprise Canyon (Figure 7), both cameras were used with three passes along the mountain front
and a fourth pass downcanyon to form a grid pattern.

Because the Pleasant Canyon data were acquired on a single pass, data processing was
straightforward. The data were processed unreferenced in both Pix4D and Metashape, then
georeferenced using ground control points (GCP) obtained from Google Earth as described above.
Given the simplicity in the data acquisition scheme for the Pleasant Canyon data, the SM-LiDAR
comparison indicates a close correlation between the models. Specifically, the histogram for
cloud—cloud distance (Figure 8) shows that virtually all of the SM model corresponds within 5 m,
and most of the data are within 2 m. Component analysis as well as the error cloud (Table 2) show
that nearly all the error is in Z with the largest errors on the south wall of the canyon where camera
angles were poor for imaging. This range of error is comparable or better than the size of the GCPs
used to reference the model and suggest the Google Earth georeferencing method was very
successful for these data.
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b.

Figure 7. Map views of the SM model developed from the images acquired in the charter airplane flight. (a)
shows the final camera positions after georeferencing and camera merges and (b) shows a simple
visualization of the point cloud alone.

The Surprise Canyon data presented a greater challenge with two different cameras and a
cross-line geometry (Figure 7). We experimented with different techniques processing these data
(Table 1): (1) an accelerated processing scheme (Model 1) to simulate a scenario that might be
conducted while in the field, and (2) an in-depth data processing scheme (Model 2) that included
image processing to improve the overall visualization. We estimate model 1 could be
accomplished within 24 h, whereas the second would require at least a week of dedicated
processing time.

Figure 9 and Table 2 summarize the results of these approaches for these data. In the
accelerated processing model (Model 1, Table 2) the results are disappointing with a significant
percentage of the model diverging from the reference LiDAR model by more than 10 m. This
suggests this type of procedure should be avoided unless field processing is essential, errors of 10s
of meters are allowable, or both. In contrast, Model 2 led to results comparable to the Pleasant
Canyon data (Figure 9). Specifically, virtually all of the data are within 5 m of the LiDAR reference
with most of the data within 2—3 m. Component analysis (Table 2) shows that, as with the Pleasant
Canyon model, the error is largely in Z, and on the error cloud, that error is spatially distributed
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with the largest errors on the south side of the canyon and west-facing slopes on the north side of
the canyon (Figure 9). Given this spatial distribution and the dominance of Z in the error, we
suggest that, as with Pleasant Canyon, this error results from poor elevation control on GCPs
provided by the low-resolution DEM of Google Earth. Note that this conclusion is not surprising
given the terrain where the scale of topographic features is much smaller than the resolution of
the DEM used in Google Earth in this area.

Pleasant Canyon Lidar vs SM airplane model

40x10°

3.0x105

20x105

Count

1.0x 105

3 6 9
Cloud to Cloud distance (m)

Figure 8. Absolute distances between LiDAR point cloud and SM point cloud model developed from images
acquired in the chartered airplane flight. Histogram (left) shows point totals vs. distance and the color ramp
is used in the error cloud (right), i.e., blue colors are in close correspondence between models, whereas
warm colors are large mismatches.

3.2.3. Analysis of Drone Imaging SM vs. LiDAR

There are many permutations possible in the analysis of our data. In Pleasant Canyon, we
conducted multiple flights at different times of the day and different times of the year with both
drones. In Surprise Canyon, we conducted fewer flights because of greater logistical challenges,
but that area serves as an important comparison because the canyon is narrower and deeper than
Pleasant Canyon. We conducted a number of experiments (Table 2), but here we focus on four
subsets of the data: (1) models developed from a single flight, or a pair of successive flights, with
a single drone; (2) models developed from an autonomous flight flown above the canyon; (3)
models developed from merging several independent flights into a single model; and (4) models
where the flight plan led to poor geometry of the imaging array vs. flights with a good 3D imaging
array. Each subset has distinctive features.

For subset 1, Figure 10 shows one family of results. The data in Figure 10 were from flights
flown the same day in March 2022 but approximately 4 h apart. Two observations are relevant in
Figure 10. First, the afternoon flights (Figure 10, upper left) show a systematic error of ¥~3 m shown
as a peak on the histogram. Visual inspection of the two models and component analysis (Table 2)
reveals that this systematic error is primarily in Z because the drone model appears below the
LiDAR model. Moreover, the conspicuous blue stripes on the error cloud (Figure 10, upper right)
correspond to vertical to near vertical cliffs: sites where a vertical shift would minimize the
calculated misfit in the method used here. This interpretation is confirmed in component analysis
(Table 2).
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Surprise Canyon LiDAR vs SM airplane models
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Figure 9. Absolute distances between LiDAR point cloud and SM point cloud models developed from images
acquired in the chartered airplane flight in Surprise Canyon with extensive data processing of Model 2.
Histograms (left) show point totals vs. distance, and the color ramp is used in the error cloud (right), i.e., blue
colors are in close correspondence between models, whereas warm colors are large mismatches. Note the
difference in color schemes for the south vs. north side of the canyon (histograms on left) merged into a
single error cloud.

In contrast, the flight that same morning (lower half Figure 10) shows no comparable misfit
with a near Gaussian curve in the histogram plot (Figure 10, lower left), indicating nearly all of the
data are within 3 m. Indeed, all of the misfits >3 m are either located around holes in the LiDAR
data (reddish rings surrounding black spots) or are on the fringes of the LIDAR model. Importantly,
there is no systematic spatial distribution of the error visible on the error cloud (Figure 10, lower
right) other than a slightly larger error toward the top of the cliff face, which likely reflects the fact
that the drone was farther from the ridgetop due to the flight plan, the LiDAR data are sparse, or
both. In other flights in Pleasant Canyon, we saw similar discrepancies from flight to flight (Table
2). Had we placed ground control points in these scenes, it is likely we could have avoided issues
such as that in Figure 10, but in this site, that would have been virtually impossible on the steep
cliffs that were imaged. Because these errors in Z are common within our drone data, we
tentatively conclude that these errors arise from a well-known problem in GNSS data, the lower
precision in Z vs. horizontal (https://www.gps.gov/technical/ps/2008-WAAS-performance-
standard.pdf, accessed on 29 May 2023).

For subset 2, Figure 11 shows comparisons of the SM model for an autonomous flight flown
from the ridge north of Pleasant Canyon at 90 m above the ridgetop. Note that in the drone deploy
flight plan, the data were flown as a series of ~NS flight lines plus a perimeter flight where the
camera is pointed inward toward the center of the model. Thus, on the cliff face where the model
overlaps with the LiDAR (Figure 11), the images are primarily nadir (vertical) images with a few
images looking northward, toward the cliff at a 45 degree incidence. The comparison (Figure 11)
shows small systematic errors in both Z (up) and Y (north) components but negligible errors in X
(east). As noted above, errors in Z are common in these data, likely due to GNSS imprecision, but
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the origin of systematic errorsin Y are less obvious. The systematic shift is most conspicuous in a
comparison of an east view vs. a west view of the model (Figure 11), with the yellow tones on the
west view illustrating the shift on cliffs that face nearly south, and green tones (smaller mismatch)
on an east view showing cliffs that face southwest. Although more data are needed, our tentative
interpretation of this observation is that this shift originates from the limited look directions in the
autonomous flight together with GNSS error. That is, the dominance of nadir images with only a
few images looking north and down may limit the accuracy of the model, particularly in Y, which
is affected by depth calculations in the model. The larger errorsin Y in west views (Figure 11g) are
not due to errors in X because X is nearly perfectly aligned, but instead, results from cliff face
geometry with south-facing cliffs showing larger apparent errors in Y vs. northwest-facing cliffs
seen in the east view (Figure 11f).

Drone SM vs LiDAR case1: single drone flight

Pleasant Canyon south canyon wall
LiDAR vs drone SM

Count (256 classes) x 10°

0 3.0 6.0 9.0
Cloud to cloud distance (m)

Pleasant Canyon north canyon wall
LiDAR vs single flight drone SM

120

o o
(=] o

w
=]

Count (256 classes) x 10°

0 30
Cloud to cloud distance (m)

Figure 10. Absolute distances between LiDAR point cloud and SM point cloud models developed from images
acquired in single drone flights in Pleasant Canyon. Upper Figure shows results from a pair of consecutive
flights in the afternoon along the south canyon wall, whereas the lower figure is from a single flight along the
north canyon wall, taken the morning of the same day. Histograms (left) show point totals vs. distance, and
the color rampis used in the error cloud (right), i.e., blue colors are in close correspondence between models,
whereas warm colors are large mismatches.



Geosciences 2023, 13,217

24 0f 34

Autonomous (vertical imaging) drone flight vs LiDAR, case 2
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Figure 11. Cloud—cloud distance estimates as components showing discrepancies between the SM model
developed from the autonomous flight over the north wall of Pleasant Canyon vs. the LiDAR model.
Histograms on left (a,c,e) show cloud—cloud distances on a decimated point cloud using the quadric method
in CloudCompare with error clouds on the right shaded to correspond to the histogram. Upper figures (b,d)
are map views of the error cloud, whereas the lower figures of the Y component show different spatial views.
(f) is a view east, upcanyon, whereas (g) is a view downcanyon to the west and (h) is a view to the north.
Note the larges mismatch in Y (yellows) is for south-facing cliffs. See text for discussion.

Subset 3 provides some of the most intriguing results. The merging of images from individual
drone flights into a single model should improve model accuracy because, in theory, the more look
directions, the better the model. However, systematic errors in georeferencing that vary among
individual flights (e.g., Figures 10 and 11) could cause problems such as image distortion or rigid
body rotation in the merged model. Figure 12 shows a family of results in merging data. Here, five
flights taken over a period of four days during three separate field excursions were merged into a
single model, processed with all images used for the model as a single data set. This data merge
was aided by the fact that all flights were made at approximately midday, albeit with different sun
angles in different seasons. Nonetheless, because the imaged cliff was more or less in full sun
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during all of the imaging, changing shadows had minimal effects. Thus, both in Pix4D and
Metashape, the data were easily combined into a single model. In the merged model (Figure 12),
the correspondence with the LiDAR data is variable across the model with variations primarily in
the Z (up—middle section, Figure 12) and Y (North—lower section, Figure 12) components with
little variation in X (east—not shown). In line with the analysis of individual flights from which the
model was built (e.g., Figures 10 and 11), the Y and Z component vary the most (Figure 12) with a
close match in X (not shown). Note that the absolute error (top, Figure 12) varies across the model
with the largest errors near the base of the slope, where the LiDAR data are most dense but the
SM model is most poorly constrained by imaging geometry. In the histogram for the Z offset, much
of the data are well aligned (near 0) but tail off toward negative values as large as ~—5 m (middle
histogram, Figure 12). This offset is clearly primarily at the base of the slope, as seen in an east-
view visualization of the LIDAR RGB point cloud together with the Z error cloud (middle right,
Figure 12) where the LiDAR model lies above the SM error cloud. The Y offset shows a similar
offset, with the largest error at the base of the slope (bottom, Figure 12). The component analysis,
in this case, clearly explains the absolute offset at the base of the slope as a combination of Z and
Y offsets—the SM model below and slightly north of the LIDAR model at the base of the cliff. We
suggest this observation is explained by the flight plans of the SM data used to construct the
model. Specifically, all the drone camera positions were high above the valley floor and focused
on the upper cliffs, including an autonomous flight above the cliffs, indicating the data are highest
resolution on the upper parts of the cliffs. In contrast, the LiDAR data were acquired on the valley
floor, looking up at the cliffs and the highest resolution is on the valley floor. Thus, the drone data
contain a mismatch because of the poorer resolution of the SM model on the valley floor.

Subset 4 is best illustrated in Surprise Canyon. This canyon affords a somewhat different
perspective in drone comparisons to our LiDAR data because the canyon is significantly narrower,
and deeper, than Pleasant Canyon. This distinction affects the results of both the LiDAR and drone
data because: (1) the narrow canyon was a handicap to the TLS survey because upper cliffs could
not easily be viewed to make a model, producing a model with the highest resolution toward the
valley floor and poor resolution on upper slopes; and (2) conversely, the drone imagery tended to
be flown well above the valley floor for flight safety, producing a model focused on the upper parts
of the canyon walls. In addition, the narrow canyon led to known GNSS location errors on the
canyon floor including real-time positioning with obvious mislocations, drone GNSS systems
having problems defining a “home” position, and warnings from drone software about location
problems. Thus, we knew that GNSS data used in camera locations could have significant errors,
making these data an important test case.

Figure 13a—d illustrate a model with a serious error that was produced by the combined
effects of a defective flight plan and GNSS errors. In this case, the error appears as both shifts in
histogram peaks (Figure 13b) from the expected (0) position as well as a clear geographic variation
in the error with the largest discrepancies near the top of the cliff (Figure 13a). When analyzed in
terms of components (Table 2), the largest error is in Z (peak at ~3 m), but there is also significant
error in'Y (north) with virtually no error in X. Together, these observations indicate this model has
a systematic error with the model too low and too far north near the upper parts of the cliff, but
a pattern that is systematic across the model. From our experience with ground-based models [3],
this pattern indicates clear evidence of a rigid body rotation in the model, with a tilt to the north.
We interpret this result as a quirk of the imaging scheme (Figure 13c,d) used in the acquisition of
this model where, because of the tight canyon, the flights were flown relatively high, but through
a limited altitude range. Thus, we introduced a geometry problem in the data akin to the problems
with ground-based models recognized by Brush et al. [3] where the imaging array was relatively
linear, allowing rigid body rotations in the absence of ground control.

This problem was likely compounded by poor GNSS locations. None of our other flights in
Surprise Canyon suffered from this problem because of different flight plans, although, as with
Pleasant Canyon, single flights showed variable errors in both Zand Y (Table 2).



Geosciences 2023, 13,217 26 of 34

Merged Mavic Pro drone flights SM vs LiDAR: Pleasant Canyon
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Figure 12. SM models produced by merging images from 5 Mavic pro drone flights vs. LiDAR reference. Error

clouds on the right with respective histograms showing color ramp on the left. Lower two pairs of figures are
components of the total offset shown in the upper pair of figures. See text for discussion.
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a.

Variation of Errors from Acquisition Geometry, Surprise Canyon

Error cloud, good acquisition scheme
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Figure 13. lllustration of errors introduced by acquisition geometry. (a—d) show data from a drone flight
with poor acquisition geometry in lower Surprise Canyon. (a,b) show the absolute error cloud and
histogram, respectively, of offset relative to the LIDAR data. Note the systematic increase in error across the
model indicative of a rigid body rotation. (c,d) illustrate the poor acquisition geometry with a relatively
linear array aside from imaging while the drone was ascending and descending, allowing a rigid body
rotation of the model. In contrast, the model on the right is just upcanyon from the other model and shows
offsets from the LiDAR model in the range of GNSS errors. (e,f) show the error cloud and histogram,
respectively, for these data relative to LiDAR, with all data other than fringes of the model within ~4m and
nearly all variance in the vertical (not shown). (g,h) illustrate the acquisition geometry that forms a 3D grid
pattern, which eliminates the rigid body rotation problem in (a—d).

In contrast, one pair of flights flown in Surprise Canyon showed a close correspondence with
the LiDAR data (Figure 13h). In this model, all three components show a strong peak within 1 m of
the LiDAR (Table 2). We suggest this model produced a close correlation to the LiDAR because of
the combined effects of a good flight plan and a geographic quirk of the canyon geometry that
aided both the TLS acquisition and drone imaging. Specifically, at this site, the canyon deviates
from a relatively linear geometry with a sharp jog in the canyon (Figure 13e—h). For the TLS data
the geometry allowed a greater range of look direction as well as greater overlap among scans,
increasing the density of the LiDAR point cloud, particularly higher on the slopes. Similarly, this
geometry allowed the drones’ GNSS to receive data from satellites low on the north and south
horizons: satellites blocked in the deep, EW sections of the canyon, affording higher precision
image locations that improved model accuracy. More importantly, however, this model was
obtained with a 3D flight geometry (Figure 13g,h) that eliminated the potential for rigid body
rotation similar to that seen in Figure 133, leading to a closely correlated model.
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4. Discussion

In this project we compared a wide variety of data acquisition methods to determine how
these methods could be used to assist and improve geological field observations. There was no
clear standout method identified; the data suggest that all the methods could significantly improve
current field data acquisition with adequate planning. What appears to be most important is to
plan for the type and quality of data needed for a given project. The major considerations we feel
are important for a geological field study are the desired resolution and cost in terms of time,
implementation, and money.

4.1. Resolution and Scale

Table 1 summarizes the results of our study in terms of the point density from the study
areas. Point density is @ measure of resolution and, if we assume the points are uniformly
distributed, then we can obtain an estimate of the size or scale of objects we should be able to
resolve in our models. All of the methods we used had an “average” resolution of less than 1 m
and most were of the order of a few cms. However, when we look at the distribution of the point
densities in our data (https://www.youtube.com/watch?v=Ajk34HKzGDo accessed on 29 May
2023 and Figures 2—6), there is significant variation among the methods. The primary factor in this
is the distance (r) of the camera or scanner from the target area. That is, by simple geometry,
spherical spreading of the light waves over the distance, r, increases as a function of r3, which
indicates that the closer the scanner or camera is to the objective, the better the resolution will
be. We observed a comparable decrease in resolution with distance in the TLS data because the
scanner was located at the base of a steep-walled canyon and took data systematically up the
canyon walls so that the distance between the scanner and the objective increased with the height
of the wall above the scanner. In contrast, the LiDAR data from near Kilbourne Hole, NM show
uniform point densities aside from swath overlap (Figure 6) consistent with a method where the
spherical spreading geometry has an insignificant impact on resolution because the scanner is
located on a moving platform.

In contrast, all our SM data show relatively uniform point densities, in line with the SM
method where the Multiview stereo step fills in areas between key points. This is perhaps most
prominent in the autonomous drone flight at Kilbourne Hole, NM (Figure 6), because the land
surface was fairly flat and the drone flew at a constant elevation so the distance did not change
significantly. Accordingly, variations in point density are insignificant. In the steep terrain of the
Panamint Mountains, however, the point density was most affected by flight parameters. We used
the DJI Mini for close photography because it was easy to maneuver but hard to track at any great
distance from the operator. Thus, all of our DJI Mini models were made from close-range images
leading to the highest resolution models
(Figures 2 and 3 and Table 1). Point density dropped off with distance as shown by DJI Mavic
models (Figure 3) vs. Mini, and even farther in the airplane models (Figure 5); a result expected
from simple geometry and optics.

Another factor in the resolution is the camera used for the images. A poor-quality camera or
inadequate consideration of lighting conditions can make the best photogrammetry survey a
waste of time. It is possible to post process images after data collection, but there are limits on
what can be done. We also looked at the data processing steps in a couple of places and recognized
there are options to increase the number of points added to a model after the Structure-from-
Motion step that can increase the point density. We show one example in Table 1 where we used
different software and/or processing options to improve the point density of our Surprise Canyon
model. The Metashape ultra-high-density option gave the highest resolution but also took
significantly more time than any of the other methods. Pix4D typically built the fastest model but
with lower resolution.

Point density is also dependent on the amount of overlap between images and/or scans. The
greater the overlap, the higher the resolution. The simplest example is in the Kilbourne Hole LiDAR
data where the USGS data show a striped pattern in the point density display because there are
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twice as many points in the areas where the scanner overlapped with a previous scan (Figure 6).
This is, however, more subtle in SM models. Upon visual inspection, there does not appear to be
any variation in density in most SM models, yet, in detail, such variations exist (Figures 2—6). Most
prominent is the Surprise Canyon scene processed in Pix4D where the point densities are highest
in the areas of great image overlap (Figure 5e,f), yet, even in that scene, the visual distinction
between the Pix4D and Metashape “high-density” models is indistinct, particularly compared to
the “ultra-high” resolution model.

The variations that we see in the various point cloud data sets were all predictable from the
geometry, data acquisition method, and camera parameters. The resolutions we see in these
models (Table 1), however, provide important guidelines for the data acquisition of SM or LiDAR
data to achieve desired results when applied to a field campaign. Specifically, if features to be
analyzed for geometry have scales of meters, even the lowest resolution data we analyzed
(Kilbourne Hole LiDAR) would be adequate to resolve geometry, particularly in a flat terrain such
as that area. When features become smaller, however, more highresolution techniques become
appropriate that are largely dependent on distance to the target, e.g., airplane models with
resolutions to the decimeter level vs. drone models to the cm or even mm level possible.

4.2. Comparison between LiDAR and SM Photogrammetry Model Scale and Absolute Registration

In this study, we used the LiDAR data from our areas as reference to check the validity of our
SM models by comparing them directly and to measure how much our model positions differed
from the LiDAR positions. The result of our analysis here suggests strongly that SM models are
very accurate renderings of the terrain that very faithfully reconstruct overall terrain geometry
with the primary errors occurring as rigid body translations, rotations, or both, relative to the
LiDAR reference. That is, all of our models are scaled precisely to the LiDAR reference, but the SM
models are commonly shifted 2—3 m from the LiDAR reference with some models aligned perfectly
to the LiDAR.

The results reported here indicate that drone-based SM models georeferenced by camera
positions based on standard differential GNSS systems are located within the wellknown error
range for differential GNSS. That is, with one exception (Figure 13), all of our models were
referenced to within 5 m vertical and 2—3 m horizontally with most referenced better than this
range. We conclude that the main source of error in models georeferenced by this method is the
random error in the accuracy of the GNSS positioning of the cameras. In most cases, the vertical
error dominates, as expected, but in other cases, we see shifts that are influenced by the unique
issues of GNSS positioning in a canyon that limits the GNSS system’s ability to acquire satellites
from low-angle positions, imprecision in depth calculations due to imaging array geometry, or
both.

In one case (Figure 13), we recognized a larger error that can be attributed to a rigid body
rotation similar to the rotations Brush et al. [3] experienced in ground-based data acquisition
systems. In this case, the imaging array geometry was almost certainly at fault because it was
nearly linear (constant elevation) aside from images acquired while the drone was ascending or
descending to the flight height (Figure 13c,d). Had we reflown this flight, as with other flights flown
in a vertical grid pattern (e.g., Figure 13g,h), we are certain this error would have disappeared.
Thus, future studies should all recognize the pitfall of improper data acquisition. Note that this
conclusion is important because this problem would have been invisible had we not had the LiDAR
reference model.

Our data collected from a manned aircraft provide an important test of an alternative
method where a model is developed for unreferenced cameras and then georeferenced using
natural objects as GPCs referenced by Google Earth imagery and tools in Google Earth. Figures 7—
9 show that with careful image processing and SM processing, an unreferenced model can be
referenced as well as, or even better than, drone imagery where only camera positions with
standard differential GNSS errors are used for the georeference. The Surprise Canyon model is
particularly important in this context because it produces a dual problem of unreferenced images
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and images acquired from two different cameras looking in different directions (Figure 7), yet the
final model is closely correlated to the LiDAR reference (Figure 9).

A question that arises from this observation is why these models, whether aligned by Google
Earth GCPs or GNSS camera positions, are aligned so well, given all the assumptions in the
method? The answer to that question will require more experiments of the type we conducted
here, but we suggest that the main reason these methods worked so well is scale. Specifically, the
models developed from these data all cover significant areas, comparable to map scales of
traditional 2D field geology, i.e., models from 2-20 km across. At these scales, errors in GCP
positions (or camera positions) in the range of 1-5 m are a tiny fraction of the model size. For
example, even a 5 m error across a 2 km model is only 0.25% of the model dimensions anda 1 m
error across 20 km is only 0.005% of the model dimensions. That arithmetic illustrates one reason
why a simple observation from our data, that all of our models were scaled within error of the
LiDAR model, is seen, i.e., scaling errors are trivial as long as model size is >> the GCP (or camera)
positional error. Similarly, when dispersed across the model as GCPs or an imaging array that is at
least 2D (nonlinear), rigid body rotations in the model are negligible. Thus, the SM models are
closely aligned to the LiDAR reference as long as the SM depth calculations are accurate, which
they appear to be in our data. Note that this tentative conclusion is supported by work at virtual
outcrop scales, e.g., [19], where the use of GCPs located by conventional GNSS led to small rigid
body rotations, scaling issues, and even distortions. In that case, however, the GNSS error was a
sizeable fraction of the model size (5-50 m) and those errors are not surprising [19].

4.3. Camera Quality, Functionality, and Cost

The remaining considerations in comparing the methods are primarily a matter of
practicality. The better quality the camera, the more detail and clarity the photos are likely to
provide. However, camera quality is also a function of cost and, to some extent, functionality. A
field geologist who is hiking in rugged terrain may not choose to carry a heavy, expensive camera
because of concerns about damaging it. A small, drone-based camera is likely to be a better choice
in rugged terrain because the geologist can stop and fly the drone over features that are difficult
to access on foot and look at the images in the field to determine whether their quality is sufficient
for the purpose of the project.

Carrying a LiDAR system in the field is generally impractical, but there are now some portable
LiDAR systems available. The Apple iPhone 12 Pro and more recent models of cell phones can
acquire LiDAR data and process them in the field, but the results are unimpressive with the phone
processing and they have not yet been shown to work well over large distances (i.e., 10s of meters
or greater). The phone LiDAR data can be downloaded and processed using the same software we
used for our camera data, and the quality appears to improve significantly (Martinez, 2022). This
is a method that needs more testing but does have potential as a field data collection method.
Drone-based LiDAR systems are also becoming widely available (e.g.,
https://enterprise.dji.com/zenmuse-I1 accessed on 29 May 2023) and may ultimately resolve
some of these issues. Nonetheless, these drones remain relatively expensive, are relatively heavy,
and require considerably more technical expertise to operate. Thus, for now, they are likely to
remain niche applications where both accuracy and visualization are critical, e.g., engineering
applications.

The comparisons discussed in this paper are similar to those reported by Martinez and Serpa
[6] and Martinez [13], but the scale of the two studies is very different. Martinez et al. [6] evaluated
a range of methods similar to this study to determine their applicability in a very small area, 72
m?, to map dinosaur footprints. The results also showed that the methods that collect very close
data were better than more remote data collection. However, location errors of the order of a
meter were not acceptable in that case, and none of the techniques other than LiDAR or placing
GCPs in the area appear to provide sufficient accuracy, although, as with this study, the relative
positions of features appeared to be preserved. One significant outcome of the Martinez study
was the use of image processing to bring out footprints in the data that were not visible to the
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naked eye or in camera images because of variations in the color patterns of the host rocks that
obscured the images. The topography of the footprints became apparent when the true colors of
the outcrop were removed and depth contouring was added; an important contrast to the
application here where color visualization is critical. Thus, application remains an important
concern in data acquisition.

We have not yet explored the use of advanced image processing to this extent on the large-
scale areas we looked at in this study. Nonetheless, remote measurement tools have been
developed in both CloudCompare and PointStudio that can be used to make remote orientation
measurements (e.g., see [3] for an example of the methods), and both software packages allow
routine mapping of lithologic contacts in 3D. These types of data can be used to easily extract
other information such as unit thicknesses, 3D curvature, intersections, etc. We believe that even
more information can be measured, observed, and preserved using 3D digital field methods and
anticipate that additional image processing may further enhance these capabilities. This suggests
further reasons to collect photogrammetry data in all field mapping programs, and these programs
could be further enhanced by advanced sensors such as multispectral data.

4.4. Significance for Geologic Field Studies

Based on all the analyses here, it is clear that all the techniques evaluated can generate
terrain models with resolutions at the ~1 m to cm scale over ranges of several kilometers with
increasing resolution closely correlated to camera optics, camera resolution, and image array
geometry. Varying these parameters produces results that are qualitatively obvious, e.g., a longer
lens produces an image with higher resolution that carries through to the model, a higher
resolution sensor produces greater resolution, and images closer to the object increase resolution.
All these parameters have a tradeoff, however, in data acquisition that must be keptin mind, e.g.,
the effort of processing a data set with 10,000 images vs. 1000 is huge and unnecessary if the
subject of the investigation is at a scale far larger than the resolution obtained in the 10k image
model. In addition, capturing images too close in can lead to major problems in the Structure-
from-Motion step of data processing because image overlaps in the data may be insufficient for
the software’s feature-matching algorithm, potentially generating an unusable data set when
images cannot be matched (“aligned” in the terminology of Metashape software). Our data sets
illustrate these issues. In parts of our airplane data set (not shown here), there was insufficient
image overlap in the image sequence, requiring more elaborate processing. In drone data, this
overlap issue was less common for two reasons: (1) the images are tagged with a georeference,
which allows the software to refine image searches and minimize potential for error; and (2) using
the 2 s interval shooting method and slow flight speeds produced enough image overlap we rarely
had image correlation problems. On the resolution issue, our data show a range of results that
strongly effect their use. Our LiDAR data (Figure 2) is at far too low a resolution to resolve the fine
structural details we observed in Pleasant Canyon (cm scales). In contrast, all of the SM data are
sufficient for this task, yet obtaining more imagery and/or higher resolution models through
processing such as the “ultra” option in Metashape are unnecessary in most cases. Similarly, in a
study related to this one [8], an image set acquired from a fixed-wing aircraft using a technique
similar to the one we describe here was more than adequate to resolve geologic features that
were at a meter scale or larger. Thus, focused drone fights were unnecessary other than in small
areas where the structural complexities dropped below the resolution of the aircraft model.

This observation suggests a new paradigm for geologic field studies is now possible. Following
the suggestions in Rutkofske et al. [8], conventional 2D geologic mapping, albeit digital, should be
the beginning step in any field study. Where topographic relief is significant, a study might
progress first to a 2.5D method using public domain GIS data with orthoimagery draped on a digital
elevation model or simply Google Earth. However, where terrain is steep, the 2.5D method
typically fails, with some failures invisible, e.g., [2,3], and in these cases, the high-resolution 3D
methods can be truly transformative. The choice of method, however, should depend on the scale
of the problem at hand and the scale of the geologic features to be analyzed as well as logistical
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considerations of access. The latter is undoubtedly particularly critical in frontier areas where
access is limited. In these cases, drone flights might be impossible due to time and access
limitations, and in these cases, conventional manned flights would be the obvious solution. In
other cases, however, where road access or reasonable access on foot is possible, a drone-based
method is likely superior with the imaging details dependent on the scale of the problem. In all
these cases, however, field geologists will need to learn some basic photogrammetric issues
including camera parameters vs. resolution to optimize imaging studies as well as care in data
acquisition; most notably, the need for significant image overlaps in an imaging sequence. Our
results here (Tables 1 and 2) provide starting guidelines for these types of future studies.

Finally, we note that our experience with aircraft imaging suggests that SM applications may
produce fundamental new understanding of the geology of remote areas. For example, based on
field experience in remote parts of Alaska where large topographic relief in glacial valleys is the
norm, and access to field sites is exclusively by aircraft, SM methods could revolutionize these field
studies. In past field studies it was common to use a “fly-by” investigation of an inaccessible cliff
exposure. In these fly-bys, we might photograph the site, sketch the feature, or both, while in the
air, yet that procedure is neither quantitative nor accurate. For example, sketching may be crude
and later interpretations of photos may be inconclusive due to image quality, lack of georeference
for the image, poor recollection of the feature being observed, etc. Moreover, this activity is
typically rushed because of logistical factors ranging from flight time costs to weather concerns.

Based on our experience here, a procedure that would be superior to this “quick look”
approach would be to collect imagery, comparable to our aircraft flights, at a problem site such
as this, and analyze the site with a 3D terrain model. In general, the data would be analyzed after
field work, although it is conceivable the data could be processed at a field site with electrical
power and computational power for data processing. In any case, were these data are acquired
ad hoc, without a GPS-enabled camera, a researcher would need to employ a ground control
technique for georeferencing. Thus, given the ubiquitous access to Google Earth, our test here is
an important one to answer the question: is using natural objects as ground control, using
Google Earth for reference (or GIS), a workable method?

Based on our results here, we suggest the answer is an emphatic yes, with some caveats. The
principal caveat is the answer to a simple question of what level of accuracy is “good enough”? In
comparison to conventional fixed-scale paper mapping where a pencil line may be 10-20 m wide,
even our worst results would have an accuracy an order of magnitude better than a paper map.
More importantly, however, is that in all our models, scale and shape correlated well to the LiDAR
reference models, and the main errors introduced by georeferencing were rigid body translations
and rotations. Thus, if absolute locations are critical, they could easily be resolved by more
sophisticated georeferencing, and any geologic models developed from the data could easily be
shifted to their proper position. That is, because geometry is the key for most geologic studies, not
absolute positioning, these problems are not significant to most studies.

Finally, we note that this field paradigm also opens opportunities for studies that were simply
impossible in conventional mapping methods because geometry could not be quantitatively
evaluated. To illustrate the importance of this development, consider a structural geology
example. Ramsay [24] long ago recognized that fold style, as indicated by the geometry of folded
surfaces among different layers, was indicative of variability in flow between layers, e.g., flexural
flow vs. flexural slip. Moreover, Ramsay [24] developed a method for quantitatively evaluating
fold style that related directly to intra-layer flow using the dip isogon method. Ramsay and Hubber
[25] and Ramsay and Lisle [26] showed examples of how these methods can be extended to strain
variations within a fold system. Although elegant, these theories were ahead of their time because
until now, little, if any, geologic mapping was sufficiently accurate to use these methods for true
guantitative analysis of features 100s of m in size. With photogrammetry methods and the
resolutions we recognize here, these 3D mapping methods should now be relatively routine, and
we expect a proliferation of studies of that type in the near future, entirely due to the
development of the high-resolution 3D terrain models analyzed here.
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4.5. Suggestions for Further Work

Although our work affords an assessment of the accuracy of SM data relative to LIDAR, more
work is needed in the context of field geologic studies. Engineering assessments of the problem
are useful but are focused on absolute accuracy as well as projects that are typically in a different
scale range than the study analyzed here—10s to 100s of m in engineering vs. km scales analyzed
here. Most important might be a study that analyzes the accuracy of the Multiview stereo step in
SM data beyond what we show here. Specifically, our data compare a relatively low point density
LiDAR data set to SM data that are at least an order of magnitude higher in point density. Thus,
because the higher point density in our SM data is derived primarily from the Multiview stereo
step in the data processing, the accuracy at these fine scales remains nearly unresolved by our
analysis. Although the accuracy of this fine topographic texture is unimportant for most geologic
analyses, it could be critical in some instances. For example, both CloudCompare and PointStudio
have orientation analysis tools that allow remote measurement of planar orientations (e.g.,
[3,8,19]. The accuracy of these remote measurements depends on the accuracy of individual
points, and if these points are closely spaced and a model has inaccuracies, the measurements
could suffer.

An experiment that might be particularly fruitful to analyze our hypotheses would be to use
a drone equipped with a LiDAR system and a camera to acquire a joint LIDAR/SM model of a cliff
face with a size >1 km. Ideally, an imaging experiment from a manned aircraft across the same
scene would be useful. An ideal experiment would also allow enough access to place high-
resolution (mm level) ground control across the scene. These data could then be run through
similar processing schemes as those employed here (e.g., camera reference only vs. Google Earth
reference vs. high-resolution gcp, etc.).
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