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Abstract: This study introduces a novel method to enhance numerical simulation accuracy for
high-speed flows by refining the weighted essentially non-oscillatory (WENO) flux with higher-
order corrections like the modified weighted compact scheme (MWCS). Numerical experiments
demonstrate improved sharpness in capturing shock waves and stability in complex conditions like
two interacting blast waves. Key highlights include simultaneous capture of small-scale smooth
fluctuations and shock waves with precision surpassing the original WENO and MWCS methods.
Despite the significantly improved accuracy, the extra computational cost brought by the new method
is only marginally increased compared to the original WENO, and it outperforms MWCS in both
accuracy and efficiency. Overall, this method enhances simulation fidelity and effectively balances
accuracy and computational efficiency across various problems.
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1. Introduction

High-order numerical schemes are essential tools in the realm of computational fluid
dynamics, enabling the accurate simulation of the complex physical phenomena encountered
in diverse scientific and engineering applications. Over the past two decades, significant
progress has been made in the development of high-order schemes including but not limited
to compact difference schemes [1-3], essentially non-oscillatory (ENO) schemes [4—6] and their
weighted counterparts (WENO) [7-9], discontinuous Galerkin (DG) methods [10-12], spec-
tral element (SE) methods [13], spectral volume methods (SVM) [14,15], spectral difference
methods (SDM) [16,17], group velocity control schemes [18], and hybrid schemes [19,20].
These schemes offer sophisticated techniques for discretizing partial differential equations,
facilitating the precise representation of intricate flow dynamics, wave propagation, and
other phenomena characterized by sharp gradients and discontinuities. ENO schemes
represent a significant advancement in high-order numerical techniques and are renowned
for their robustness and ability to mitigate spurious oscillations near discontinuities. By
employing sophisticated stencil selection procedures and weighted reconstructions, ENO
schemes achieve high-order accuracy while maintaining stability in the presence of shock
waves and other discontinuities. DG methods have garnered considerable attention in
recent years as a versatile framework for high-order discretization of partial differential
equations. DG methods partition the computational domain into disjoint elements and em-
ploy polynomial approximations within each element, facilitating accurate representation
of solution gradients and discontinuities. By introducing discontinuities at element inter-
faces and employing suitable numerical fluxes, DG methods effectively handle shocks and
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other complex flow phenomena, making them well-suited for a wide range of applications,
including compressible flows, turbulence modeling, and multi-phase flow simulations. SE
methods represent yet another class of high-order numerical techniques, leveraging the
spectral accuracy of polynomial approximations within each element to achieve exception-
ally high levels of solution accuracy. By combining the advantages of spectral accuracy
with the flexibility of element-based discretization, SE methods offer a robust framework
for simulating complex flow phenomena with superior accuracy and efficiency. These
methods have found widespread applications in turbulent flow simulations, aerodynamics,
and environmental fluid dynamics, among others. SVM and SDM also belong to the family
of spectral-based numerical techniques, offering alternative approaches for high-order
discretization of partial differential equations. SVMs integrate the advantages of spectral
accuracy with the concept of control volumes, allowing for accurate representation of fluxes
and gradients within each computational cell. SDMs, on the other hand, combine spectral
approximations with finite difference formulations, offering a balance between accuracy
and computational efficiency. Both SVMs and SDMs have demonstrated effectiveness in
simulating a wide range of flow phenomena, including turbulent flows, shock waves, and
combustion processes. Group velocity control schemes represent a unique approach to
high-order numerical discretization, focusing on controlling the propagation characteristics
of numerical schemes to enhance stability and accuracy. By manipulating the group ve-
locity of numerical methods through suitable modifications to the discretization scheme,
these methods mitigate dispersion and dissipation errors, leading to improved fidelity in
wave propagation simulations. Group velocity control schemes have found applications
in a diverse range of fields, including acoustics, electromagnetics, and solid mechanics.
Hybrid schemes represent a synthesis of multiple numerical methodologies, leveraging the
strengths of different approaches to achieve optimal performance in diverse flow scenarios.
By combining elements of finite volume, finite difference, and spectral methods, hybrid
schemes offer a versatile framework for simulating complex flow phenomena with high
accuracy and efficiency.

Among the plethora of high-order numerical schemes available, weighted essentially
non-oscillatory (WENO) schemes and compact schemes have emerged as leading con-
tenders due to their ability to achieve exceptional accuracy and resolution. WENO schemes,
conceptualized by Liu et al. in 1994 [7], have garnered widespread acclaim for their capac-
ity to minimize numerical oscillations near discontinuities while maintaining high-order
accuracy. The fundamental principle underlying WENO schemes lies in their weighted
reconstruction approach, which combines multiple local polynomial reconstructions to
generate a globally smooth and accurate approximation of the solution. This unique
methodology has proven highly effective in capturing sharp gradients and discontinuities
encountered in fluid dynamics, combustion, and other complex flow phenomena. Re-
searchers have proposed several improved variants of WENO schemes to address specific
challenges encountered in numerical simulations. These variants include WENO-JS [8],
which implements a new smoothness indicator by utilizing the Lagrange form of inter-
polation polynomials. Additionally, modified versions such as WENO-Z [21] have been
developed to reduce numerical dissipation near shocks while maintaining high-order
accuracy with a global smoothness indicator that is recombined from all the stencils of
WENO-JS. Building upon this, Castro et al. [22] developed a comprehensive framework
for higher-order smoothness indicators, thereby enabling the extension of WENO-Z to
achieve arbitrary odd-order precision. Ha et al. [23] contributed by designing a novel
smoothness indicator, which, upon evaluation within the stencil, facilitated the creation of
a fifth-order, accurate WENO-Z scheme specifically tailored for first-order critical points.
Acker et al. [24] further advanced the field by introducing WENO-Z+, which enhances
numerical resolution through the manipulation of less smooth sub-stencils. Wang et al. [25]
uncovered a limitation in the accuracy of fifth-order WENO-Z schemes at high-order critical
points. To address this issue, they proposed a remedy in the form of a new fifth-order
scheme termed WENO-D. This approach incorporates a corrective function to adjust the
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convergence accuracy relative to the weight function employed in the WENO-Z method.
The central WENO (CWENO) [26,27] schemes prioritize the central stencil as the most sta-
ble, particularly emphasizing its importance in smooth flow conditions. In such scenarios,
the method consistently gravitates towards the reliability of the central stencil. Conversely,
in instances of non-smooth flow, the utilization of smoothness indicators enables the re-
construction process to identify and select the smoothest one-sided stencil available. The
adaptive-order WENO (WENO-AOQO) scheme [28] uses a convex combination of fourth-
degree polynomial and three quadratic polynomials to propose a new adaptive fifth-order
scheme, and Legendre polynomials are used to calculate the smoothness indicators.

In contrast, compact schemes, pioneered by Lele in 1992 [1], are distinguished by
their compact stencil and high-order accuracy. The compactness of these schemes refers
to the fact that they require fewer grid points compared to traditional finite difference
schemes of similar accuracy. These schemes excel in efficiently simulating smooth solutions
with minimal numerical dispersion and dissipation. The crux of compact schemes lies in
their finite difference approximations with compact stencils, which allow for the represen-
tation of higher-order spatial derivatives within a smaller computational domain. As a
result, compact schemes have found widespread use in applications such as aerodynamics,
acoustics, and other fields where accurately resolving smooth, high-frequency features is
paramount. However, the implementation of compact schemes can be challenging due to
the need for specialized techniques to handle boundary conditions and non-uniform grids
effectively. A weighted compact scheme (WCS) introduced by Jiang, Shan, and Liu [29]
employs the WENO weighting method to evaluate stencil candidates. WCS enhances
accuracy by utilizing Hermite polynomials instead of Lagrange within each candidate. In
shock regions, WCS effectively controls the contributions of different stencils to mitigate
the impact of those containing shocks or discontinuities. Nevertheless, WCS, as originally
formulated, exhibits limitations when applied to solving the Euler equations with shocks, as
it does not sufficiently address global dependency issues associated with derivatives used
in compact schemes. In response to these challenges, Fu et al. [30] proposed the modified
weighted compact scheme (MWCS). This method combines elements of the WENO and
WCS to address the shortcomings encountered in the approximation of fluxes on Euler
equations. By the integration, MWCS aims to eliminate oscillations while facilitating the
local computation of weight coefficients for pressure and density at each time step. How-
ever, MWCS incurs additional computational costs compared to the conventional WENO
scheme due to the extra work in solving a tridiagonal system.

This paper proposes a method to enhance numerical simulation accuracy, especially
for shock-turbulence interactions in which a shock propagates into a small-scale smooth
flow. This method corrects the numerical flux obtained by WENO using the concept of
WCS as inspired by the idea of MWCS and effectively mitigates the conventional trade-off
between accuracy and computational efficiency. The structure of this paper is as follows:
Section 2 introduces the numerical formulas utilized in the study. In Section 3, we present
the numerical simulation results for three one-dimensional shock tube problems: Sod, Shu-
Osher, and two interacting blast waves. Section 4 offers a comparison and discussion of the
numerical results obtained using the original WENO, MWCS, and the WENO with flux
correction. Finally, Section 5 summarizes the findings and provides concluding remarks.

2. Numerical Formula

This section outlines the numerical formulations of MWCS and a new approach to
enhance accuracy by correcting the WENO flux using high-order WCS.

To comprehensively examine these schemes within a unified framework, we begin
with the scalar conservation equation in the one-dimensional case (Equation (1)). This
provides a convenient starting point for comparing and contrasting the various approaches.

%u(x, b+ %F(u(x, ) =0 (1)
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The spatial discretization utilizes the following grid configuration, which is also
illustrated in Figure 1.

1
x;i = =[x X hi= x — X1, =1,2,...,N. 2
] 2(11+1+1) = Xy T 2)
Xj-5/2  Xj-3/2 Xj-1/2 Xj+1/2  Xj+3/2 Xj+5/2
o | o | o | O | O L o | o
T T T T T T
Xj-3 Xj-2 Xj-1 Xj Xj+1 Xj+2 Xj+3

Figure 1. Grid configuration. The cell centers are represented by dots, and the cell interfaces are
denoted by triangles.

The numerical flux F is associated with the original function F through an implicit
definition represented by the following integral:

£y = Fu(x, 1) h/F 8)dg ©)

Thus, the convection term in Equation (1) at x; can be expressed as follows:

] Pj+l B ijl
Fl= ZF(x;)=-2"2_ 12 4
] ax (X]) h] ( )
Now, we can define H as the primitive function of F(¢) and its function value at the

cell interfaces can be calculated by the following:

Hyy =H(x,) = [ R = » / EQi- Y A )

i=—oc0v A1 i=—o00

N\

It is important to emphasize that the derivative of the primitive function at the cell
interfaces aligns precisely with the numerical flux:

AEERNAS: ©

T
|
X

il _1
F/ — ]+2 2 (7)

The above methodology was introduced by reference [4], and the only numerical ap-
proximation is associated with computation for H’, with all other computations being exact.

2.1. The 5th-Order WENO Scheme

The fundamental concept behind the WENO scheme is to derive a high-order approxi-
mation for the numerical flux by employing a weighted average of multiple lower-order
candidate approximations. The weights assigned to these candidates are determined based
on the “smoothness” characteristics of the original function on each stencil. In the pursuit
of a fifth-order WENO scheme, three second-order approximations of F; 1, are derived
from three distinct candidate stencils as follows:

EO - { 2/ ] 1/F} El - { Aj+1}IE2 = {P]'/Pj+1/ﬁ/+2} (8)
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Opting for the Lagrange polynomial to achieve a second-order approximation of

Fi1/2 within these stencils results in the following expression:

E 1, 7 4 11

F]:f; ~ § -2~ 6 j—1 + ZF] (9a)
E 1, 55 14

F]<+1; ~ —gBi+ h 4 5hn (9b)

()

To compute the weighted average of the three lower-order approximations mentioned
earlier, we need to employ the optimal weights based on the “smoothness” characteristics
of the stencils:

_ (Eo) (E1) (E2)
ey oyttt el o

Yi . — Ci _ 1 — 3 _ 3 .
T Vi = s and ¢y = 0- €1 = 5. and c; = ig- 1S; represents the

smoothness indicators [8].
The WENO scheme stands out as a highly effective numerical approach. However, its
performance tends to exhibit a slight diffusivity in small-scale smooth regions.

where w; =

2.2. Modified Weighted Compact Scheme (MWCS)

The foundational concept of the weighted compact scheme (WCS) [29] revolves around
forming a weighted average of two third-order and one fourth-order approximations of the
numerical flux. In a manner akin to the WENO scheme, WCS establishes three candidate
stencils as follows:

Ey = {H;'73/2, ijl/z,H,'+1/2},E1 = {ijl/le,'H/z, Hj+3/z},Ez = {H;'+1/z, Hji3/2, Hj+5/2} (11)

The numerical flux approximations, 15] +1/2 = H/j 12, are computed by applying a
compact scheme on these three stencils:

. / ! ~ 1 ( _

Eo: 2H' ) +H'yy ~ o (<H 3 —4H; y+5H, ) (12a)
.oy / / ~ 3 —

Ey: H +4H  +H | 3~ (H 3 —H ) (12b)
.oy ’ ~ 1 (

Er: H'yy +2H' g ~ o (<5H ) +4H; 3 +H,, 3) (12¢)

Similar to the WENO scheme, computing the weighted average of the three lower-
order approximations yields the following results:

(2600 + wl)H’j —|—(CLJO +4w1 —+ wz)H/j+% —+ (w1 + sz)H,H’%

_ w 3w
= (-Hy g4y +5H ) B (g - 1) )

_1
2

172
tH (_5HJ‘+% A Hi+%)
where w; = 70+;’;’+72,'y,- = sﬁs,ﬂ and ¢y = 15,c1 = §,and ¢ = 5.
After solving the tridiagonal linear system from Equation (13), the convection term
can be calculated by Equation (7).
To resolve the instability issue of WCS in solving problems with strong discontinuity
(sharp shock waves), the modified weighted compact scheme (MWCS) [30] integrates both

WENO and WCS as follows:
A(MWCS) ~(WCS) ~(WENO)
FEoyp = (1- "‘j)ij/z +aiF ), (14)
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1— (1Sg—151)>+ (151 —15,)*+(15,—159)*
2+ (I1S3+152+15%)
MWTCS is capable of capturing both small-scale smooth flow and sharp shocks. How-
ever, this improvement comes with a significantly increased computational workload due
to the extra work in solving the tridiagonal linear system.

wherea =1 — 0.5 %

2.3. WENO with Flux Correction

Inspired by the above two schemes, we propose a new method to enhance the accuracy
of numerical simulations by correcting the WENO flux through the concept of WCS. The
fundamental concept of this method is to amplify the weight of the central stencil E; under
conditions of small-scale smooth flow.

Substituting Equations (5) and (6) in Equation (12b) yields the correction formula
as follows: ) )

E = 3F]'+1+3F]'—F]’7% _Fj+% (15)
J+2 4

where IC"J-H and 1:"] are the numerical flux at the cell centers, while Fj_ 1 and F jy3 are the
flux at the cell interfaces calculated by the WENO scheme. The corrections are exclusively
applied to locations where the central stencil weight w; of the WENO scheme falls below a
predetermined threshold (set at 0.04 in this paper). The original WENO scheme achieves
second-order accuracy within its stencils, whereas the WCS scheme achieves fourth-order
accuracy within the central stencil. Through the flux correction at the central stencil, the
newly devised method achieves fourth-order accuracy within the central stencil, thereby
yielding a significant enhancement in overall accuracy. The algorithm can be succinctly
summarized as follows:

o  Step 1: Calculate all flux F, iy at the cell interfaces using Equation (10). Mark interfaces

where w; is smaller than the threshold;
e  Step 2: Correct the flux F] 1 using Equation (15) at the cell interfaces that have been
2

marked in Step 1.

By incorporating this correction, the numerical simulation can effectively capture
features of small-scale smooth flow with higher accuracy, all without imposing a significant
increase in computational overhead. These enhancements will be thoroughly demonstrated
and discussed in the upcoming sections.

3. Results

In this study, we validate and evaluate the proposed scheme through several bench-
mark tests of the one-dimensional Euler equation. These benchmark tests can reveal the
ability of numerical schemes on resolving small scales (turbulence) and capturing strong
discontinuities (shock waves). The one-dimensional Euler equation, expressed in vector
and conservation form, is given as follows:

alP P} pu
—lpul +=—|pu*+p| =0 (16)
ot ox

E u(E+p)

where p, u, and E represent density, velocity, and total energy, respectively. p represents
pressure and is calculated by p = (v — 1) (E - %pu2).

3.1. Numerical Results Comparison against WENO and MWCS

The presented WENO with flux correction is applied to solve the one-dimensional Eu-
ler equations for three benchmark tests—the Sod shock tube problem, Shu-Osher problem,
and two interacting blast waves problem. These problems serve as standard benchmarks in
the evaluation of high-order schemes. Widely utilized in previous research, these test cases
offer insight into the capability of numerical methods to handle turbulence and accurately



Processes 2024, 12, 642

7 of 14

capture shock waves. Essentially, these scenarios present one-dimensional challenges
representing high-speed flows with varied boundary treatments and initial conditions. The
results are presented with a comparison against the ones of WENO and MWCS. Note that
the exact solutions for the subsequent problems were obtained using WENO with fine
grids, specifically with a grid number of N = 1601, and other results are simulated with
coarse grids with N = 201.

3.1.1. Sod Shock Tube Problem

The Sod shock tube problem stands as a cornerstone in computational fluid dynamics
(CFD) and gas dynamics, serving as a fundamental benchmark for evaluating the accuracy
and robustness of numerical schemes. Introduced by Gary A. Sod in 1978 [31], this canoni-
cal problem presents a simple yet profound scenario that illuminates the intricate dynamics
of shock wave propagation and fluid interactions within a compressible medium. In the
Sod shock tube configuration, a long cylindrical tube is initially divided into two distinct
regions by a thin diaphragm. One region contains high-pressure gas, while the other
contains low-pressure gas, separated by the diaphragm. When the diaphragm is suddenly
ruptured, a shock wave propagates into the low-pressure region, creating complex flow
phenomena including rarefaction waves, contact discontinuities, and shock reflections.
The significance of the Sod shock tube problem lies in its ability to encapsulate key as-
pects of compressible flow physics, making it an invaluable tool for validating numerical
methods and assessing their performance in capturing shock wave dynamics, resolving
discontinuities, and preserving solution accuracy.

To assess the shock-capturing capability of the proposed method, the Sod shock tube
problem with the following initial conditions is conducted:

oL 1.0] [per 0.125
pr| = (10|, |pr| = | 01 (17)
ur 0.0 Ur 0.0

where the indices L and R denote conditions on the left- and right-hand sides, respectively,
with the center located at x = 0.

Figure 2 illustrates the density profile in the Sod shock tube problem. Comparing
WENO with flux correction to the original WENO and MWCS schemes, the WENO with
flux correction exhibits a pronounced capability for capturing the shock with heightened
precision. This augmentation enables the scheme to depict the shock phenomenon with
sharper delineation and increased fidelity compared to its counterparts.

W0~ = Exact solution 045 === Exact solution
\ —— WENO A —— WENO
— MWCS 0.40 : — MWCS
08 —— WENO with correction - —— WENO with correction
206 0.30
(7]
5
[a] 0.25
04
0.20
0.2 a2
0.10
=1 0 1 2 0.5 1.0 1.6 2.0 25
X X
(@) (b)

Figure 2. Density variation along the shock tube in Sod problem. (a) Global view; (b) enlarged
perspective focused on the shock waves.
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3.1.2. Shu-Osher Problem

The Shu-Osher problem, introduced by Chi-Wang Shu and Stanley Osher in 1989 [5],
stands as a pivotal challenge in computational fluid dynamics (CED) for evaluating numer-
ical schemes in capturing complex shock wave interactions and resolving contact disconti-
nuities. This problem involves the advection of a smooth scalar field over a sequence of
periodic square waves, resulting in intricate shock wave dynamics and wave interactions.
The significance of the Shu—Osher problem lies in its ability to test the robustness and
accuracy of numerical methods, particularly in handling the challenge due to the sensitivity
of entropy waves to numerical dissipation, which may lead to excessive damping.

To assess the efficacy of the proposed method in capturing shocks and their interaction
with turbulence, the Shu-Osher problem is conducted. The same governing Equation (16)
is solved, with the initial conditions specified as follows:

oL 3.857143] [px 1+ 0.2sin(5x)
po| = |1033333], [pr| = 1.0 (18)
ug 2.629369| |ug 0.0

where the indices L and R denote conditions on the left and right-hand sides, respectively,
with the center located at x = 0.

Figure 3 illustrates the density profile in the Shu—-Osher shock tube problem. The
outcomes derived from employing WENO with correction reveal its adeptness in sharply
capturing small-scale smooth flow phenomena. In contrast, MWCS tends to blur the small-
scale waves, while the original WENO scheme fares even worse, failing to adequately
capture fluctuations altogether. This comparison underscores the superiority of WENO
with correction in representing intricate flow dynamics, particularly at smaller scales. The
precision of this approach contrasts starkly with the smearing effect observed with MWCS
and the inability of the original WENO scheme to capture nuanced fluctuations.

5 5.0
4.5
4
4.0
2‘3 2
@ B
5 G35
[=] [=]
2
. 3.0
----- Exact solution
—— WENO M — WENO
— MWCS 25 —— MWCS
—— WENO with correction —— WENO with correction
0 2 4 6 8 10 5.0 55 6.0 6.5 7.0 75 8.0
X X
(a) (b)

Figure 3. Density variation along the shock tube in the Shu-Osher problem. (a) Global view;
(b) enlarged perspective focused on the small-scale smooth region.

3.1.3. Two Interacting Blast Waves Problem

The two interacting blast waves problem serves as a critical test case in CFD for
studying shock wave interactions and the formation of complex flow patterns. Initially
proposed as a benchmark by Woodward and Colella in 1984 [32], this scenario involves
the collision of two shock waves traveling in opposite directions, resulting in intricate
wave interactions and shock wave reflections. The significance of the two interacting blast
waves problem lies in its relevance to various real-world phenomena, including explosion
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dynamics, supersonic flow over obstacles, and astrophysical events such as supernova
remnants. By simulating this problem, researchers can assess the capability of numerical
methods to accurately capture shock wave dynamics, resolve contact discontinuities, and
predict the formation of secondary shocks and rarefaction waves.

To assess the capability of the proposed method in simulating strong shock waves and
multiple interactions, the two interacting blast waves problem is simulated with the initial
conditions specified as follows:

pr| = [1000.0(, [pam| = [0.01|, |pxr| = |100.0 (19)
ur 0.0 Um 0.0 UR 0.0

where the indices L, M, and R denote conditions in the left (0 < x < 0.1), middle (0.1 < x < 0.9),
and right (0.9 < x < 1.0) regions, respectively.

Figure 4 illustrates the density profile in two interacting blast waves problem. The
application of WENO with correction yields promising results in simulating the intricate
interaction between two blast shock waves, surpassing the performance of both the original
WENO and MWCS schemes. Notably, it demonstrates a superior capability in capturing
shock phenomena with remarkable sharpness while also adeptly handling multiple interac-
tions involving rarefactions and contact discontinuities. This development highlights the
efficacy of WENO with correction in precisely depicting intricate flow dynamics, especially
in situations characterized by interactions of shock waves.

----- Exact solution -----  Exact solution
7 — weno 7 — weno )
s —— Mwcs i s —— Mwcs
—— WENO with correction i) —— WENO with correction |
5 ’
2z /
[0}
]
3
2
T 1!
0
0.0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 0.7 0.8 0.9
b X
(a) (b)

Figure 4. Density variation at t = 0.038 along the shock tube in two blast waves problem. (a) Global
view; (b) enlarged perspective focused on the interaction of two blast waves.

3.2. Grid Convergence

Figure 5 illustrates the density distributions in Sod, Shu-Osher, and two blast waves
problems, comparing the results obtained by the WENO with correction using a coarse grid
(N = 201) and a fine grid (N = 401). Notably, the figure highlights the remarkable grid
convergence exhibited by the WENO with correction, as evidenced by the alignment of
results obtained from both grid resolutions. This convergence emphasizes the reliability and
accuracy of the WENO scheme with correction across varying grid densities, thus bolstering
confidence in its predictive capabilities for a wide range of fluid dynamics scenarios.
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----- Exact solution
—— WENO with correction 201
—— WENO with correction 401

0.50 0.75 1.00 125 1.50 1.75 2.00 225 2.50

Exact solution
—— WENO with correction 201

2 —— WENO with correction 401
5.0 55 6.0 6.5 7.0 75 8.0
X
(b)
P Exact solution
—— WENO with correction 201 \
Zg = WENO with correction 401 i
2 =.
8 :
2 !
0
0.4 0.5 0.6 0.7 0.8 09
X
()

Figure 5. Density variation along the shock tube in the (a) Sod problem, (b) Shu-Osher problem, and
(c) two interacting blast waves problem. Red lines represent the results using a coarse grid (N = 201),
and green lines represent the results using a fine grid (N = 401).

3.3. Spatial Discretization Independence

Figure 6 demonstrates the consistency of numerical simulation outcomes when em-
ploying the Courant number for time step calculation versus using a fixed time step across
three distinct shock tube problems. This coherence verifies the spatial discretization’s
independence from the time-marching approach.

3.4. Efficiency Comparison

Figure 7 presents a runtime comparison among the original WENO, the WENO with
flux correction, and the MWCS schemes across three distinct shock tube problems. Each
problem underwent three executions with each scheme, with the color bars representing the
mean of the three results and the error bars depicting the standard deviations within this
statistical analysis. Analysis of the figure reveals that while the WENO with flux correction

exhibits slightly slower runtime compared to the original WENO, it showcases a substantial
improvement over the MWCS scheme.
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—— WENO with correction (C=0.1)

04
= WENO with correction (dt=0.0001)
-go.s
2 0.2 e = -
0.50 0.75 1.00 1.25 1.50 1.75 2.00 225 250
X
(@)
5

—— WENO with correction (C=0.1)
+  WENO with correction (dt=0.0001)

5.0 5.5 6.0 6.5 7.0 7.5 8.0
X

(b)

—— WENO with correction (C=0.1)
6 = WENO with correction (dt=0.00001)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
X

(©

Figure 6. Density variation along the shock tube in the (a) Sod problem, (b) Shu-Osher problem, and
(c) two interacting blast waves problem. Red lines represent the results using the Courant number
C = 0.1, and green dots represent the results using fixed time step (dt = 0.0001 for the first two
problems and dt = 0.00001 for the last problem).

400
Scheme
mm WENO
300  mmm  WENO with correction
. MWCS
Sod

0
Shu-Osher Two Blast Waves

Run time (sec)
ye]
(=]
o

-
o
[=]

Figure 7. Run time comparison for different schemes. Each problem was executed three times
with each scheme, and the rectangles display the average result. The error bars represent the

standard deviations.
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4. Discussion

According to the numerical experiments in the last section, the new method by cor-
recting the WENO flux through the concept of WCS improves the ability to capture shock
waves sharply and is stable when dealing with complex conditions such as two interacting
blast waves. The grid convergence test also shows that this new method is grid indepen-
dence. The consistency of numerical results of using the Courant number and fixed time
step shows that this new method does not impose instability in time marching.

The highlights of this method are that it can capture small-scale smooth fluctuation
and shock waves at the same time. Unlike the original WENO and MWCS that smeared
the small-scale waves, this method captures the undulation in a more precise way. Another
highlight is that while it improves the simulation accuracy significantly, its computing cost
is just slightly increased compared to the original WENO, and it transcends the MWCS in
both accuracy and computing cost.

The new method’s applicability to any PDE model and its ability to increase accuracy
at discontinuities hold significant implications for advancing numerical simulations across
various domains. In fluid dynamics, structural mechanics, electromagnetics, and beyond,
precise resolution of discontinuities promises more accurate predictions and optimizations
in aerospace engineering, structural design, telecommunications, and electromagnetic
compatibility analysis. The impact of this new method, while promising, remains open to
further exploration and refinement, offering a potential pathway to more reliable simula-
tions and deeper insights across scientific and engineering disciplines.

5. Conclusions

Building upon the ideas of MWCS, we have introduced a novel method aimed at
enhancing the accuracy of numerical simulations by refining the WENO flux. This en-
hancement involves amplifying the influence of the central stencil under conditions of
small-scale smooth flow. By integrating this correction, the numerical simulation becomes
adept at capturing the nuances of small-scale smooth waves with heightened precision,
all without imposing a significant increase in computational burden. This advancement
enables the simulation to represent subtle variations and intricate dynamics inherent in
the flow more accurately, thereby enhancing the overall fidelity of numerical simulations.
Three one-dimensional benchmark cases of the Euler equation were conducted in this
study for validation. In all the cases, the numerical solution given by the new method
shows significant improvement in the capture of strong discontinuity and small-scale
waves simultaneously. Grid convergence and spatial discretization independence were
also conducted to confirm the accuracy of the results. In addition, an efficiency comparison
was also made among the new method, original WENO, and MWCS, the results show that
the new method only requires an acceptable amount of additional calculations compared
to the original WENO and far less than what MWCS requires. This suggests that this
new method effectively mitigates the conventional trade-off between accuracy and com-
putational efficiency, presenting a promising avenue for advancing numerical simulations
across diverse domains.
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