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Abstract: Background: SARS-CoV-2's remarkable capacity for genetic mutation enables it to
swiftly adapt to environmental changes, influencing critical attributes, such as antigenicity and
transmissibility. Thus, multi-target inhibitors capable of effectively combating various viral mu-
tants concurrently are of great interest.

Objectives: This study aimed to investigate natural compounds that could unitedly inhibit spike
glycoproteins of various Omicron mutants. Implementation of various in silico approaches al-
lows us to scan a library of compounds against a variety of mutants in order to find the ones that
would inhibit the viral entry disregard of occurred mutations.

Methods: An extensive analysis of relevant literature was conducted to compile a library
of chemical compounds sourced from citrus essential oils. Ten homology models representing
mutants of the Omicron variant were generated, including the latest 23F clade (EG.5.1),
and the compound library was screened against them. Subsequently, employing comprehensive
molecular docking and molecular dynamics simulations, we successfully identified
promising compounds that exhibited sufficient binding efficacy towards the receptor
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Results: Out of ten built homology models, seven were successfully validated and showed to be
reliable for in silico studies. Three models of clades 22C, 22D, and 22E had major deviations in
their secondary structure and needed further refinement. Notably, through a 100 nanosecond
molecular dynamics simulation, terpinen-4-ol emerged as a potent inhibitor of the Omicron
SARS-CoV-2 RBD from the 21K clade (BA.1); however, it did not show high stability in com-
plexes with other mutants. This suggests the need for the utilization of a larger library of chem-
ical compounds as potential inhibitors.

Conclusion: The outcomes of this investigation hold significant potential for the utilization of a
homology modeling approach for the prediction of RBD’s secondary structure based on its se-
quence when the 3D structure of a mutated protein is not available. This opens the opportunities
for further advancing the drug discovery process, offering novel avenues for the development of
multifunctional, non-toxic natural medications.
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1. INTRODUCTION

Different variants of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spread quickly around the
world, causing severe acute respiratory syndrome disease
(COVID-19) with high rates of morbidity and mortality and
provoking a global economic crisis [1]. In the last few years,
researchers have been interested in developing vaccines and
drugs to stop the spread of the virus [2, 3]. In clinical trials,
vaccines with mRNA, such as Pfizer-BioNTech and Moder-
na [4, 5], and vaccines with viral vectors, such as Johnson &
Johnson and AstraZeneca [6, 7], have proven to be effective.
However, the level of protection these vaccines can provide
against the newest strains of the virus is still poorly under-
stood [8-10]. During the SARS-CoV pandemic in 2003, tests
were performed on infected patients and showed that the
antibody response persisted for more than two years after
infection [11]. According to Edridge et al. [12], the immuni-
ty against human coronavirus strains does not remain perma-
nent, and reinfection is possible within six months. New
emerging spike mutants of SARS-CoV-2 may hinder recog-
nition by neutralizing antibodies, which may lead to more
reinfections and reduced vaccine efficacy [13, 14].

On 26 November 2021, the World Health Organization
(WHO) declared Omicron a global variant of concern (VOC)
[15]. The existence of a huge number of mutations in its ge-
nomic sequence, specifically in the spike glycoprotein, raises
the suspicion that Omicron could pose an epidemiological
threat and cause another wave of COVID-19 on a global
scale [16-18]. The Omicron strain appeared to be more con-
tagious, but its clinical effects were less dangerous than
those of Delta [19, 20]. As documented by the scientific lit-
erature [21, 22], Omicron is characterized by a less severe
onset, lower rates, and shorter duration of hospitalization, as
well as declining case fatality rates. Nonetheless, some ex-
perimental studies have shown that the Omicron variant is
characterized by high immune escape, which provokes a
decrease in the efficiency of vaccines [13, 23, 24]. These
data are consistent with the rapid spread of the Omicron
strain and increased incidence in countries and regions with
high percentages of vaccinated populations [25]. At first, the
vast majority of the virus genetic sequences detected in pa-
tients belonged to subspecies BA.1, which has shown sub-
stantial escape from neutralizing antibodies induced by vac-
cination [26]. One of the further Omicron mutants was char-
acterized by low detection by test systems and has been
called "stealth". This BA.2 sub-lineage has increased muta-
tions and a defect in the spike gene deletion in the 69-70
sequence region, which indicates that it will not be identified
by the S Gene Target Failure (SGTF) assay [27]. The num-
ber of BA.2 mutants has been increasing since the second
half of January 2022, and now it has branched into new sub-
lineages, such as BA.5, BQ.1, BA.2.75, XBB, XBB.1.5,
XBB.1.16, etc. [28]. Mutations occurring in the receptor
binding domain (RBD) of novel variants have different ef-
fects on its binding to human receptors, including ACE2 and
human neutralizing antibodies, and its inhibition by drugs.
For all that, not only the current vaccines should be consist-
ently improved, but also new antiviral drugs must be rapidly
developed. Thus, it is of great importance to consider muta-
tions of a virus in the drug discovery process.
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A series of studies used a computational approach to in-
vestigate the binding strength of Omicron RBD to the ACE2
receptor [29-32], therapeutic antibodies [24, 33, 34], and
various drug candidates [32, 35-37]. In [32], it was computa-
tionally evaluated that the inhibitors of Omicron RBD should
be acidic compounds, such as m-carboxyl-L-tyrosine, citric
acid, citric acid glycosides, ferulic acid, gallic acid, glycyr-
rhizic acid, ibuprofen, lactic acid, malic acid, mefenamic
acid, nalidixic acid, and naproxen, which would repulse from
ACE-2 in a contact site. High-molecular-weight compounds,
such as heparin oligosaccharides and desulphated heparins,
also showed a potency for preventing viral entry of some
Omicron clades (BA.2.12.1, BA.4, and BA.5) as it was
shown by a combined experimental and computational study
in [37]. The use of peptide inhibitors was evaluated compu-
tationally [38] for BA.1, BA.2, and BA.3 subvariant and, as
a result, five antiviral peptides (AVP1056, AVP1059,
AVP1225, AVP1801, and HIP755) were proposed to poten-
tially hinder omicron-host interactions. It must be noted that
the vast majority of studies involve only several variants as
targets, which does not provide a full picture of how muta-
tions may influence the success of the drug-design process.
In [39], a large number of mutants, including Alpha, Beta,
Delta, and Omicron (BA.1, BA.2, BA.2.75. BA.2.75.2,
BA.S5, BQ.1.1, XBB, XBB.1.5) variants, was used as targets
for the development of SARS-CoV-2-neutralizing antibodies
against Omicron subvariants.

To perform an accurate computational elucidation of a
such type, the 3D structure availability is crucial. This puts
forward another computational approach, namely homology
modeling, as a useful tool [40]. In our previous work [41],
the methodology for the efficient discovery of potent inhibi-
tors targeting mutant RBDs of SARS-CoV-2 was proposed
and tested. This work featured a combination of homology
modeling, molecular docking, molecular mechanics, and
molecular dynamics simulations to scan a library of active
ingredients from Traditional Chinese Medicines. We identi-
fied three lead compounds present in citrus essential oils
(hesperidin, narirutin, and neohesperidin) suitable for multi-
target SARS-CoV-2 inhibition; however, none of these com-
pounds showed efficacy in targeting an Omicron variant.
Due to their antiviral and immune-strengthening properties,
natural compounds can serve as promising candidates for
preventing COVID-19 infection. The purpose of this study is
to investigate the potential of natural compounds from citrus
essential oils against the Omicron lineage of SARS-CoV-2.
Of particular interest is the ability of natural compounds to
inhibit the RBD of a spike glycoprotein, which might pre-
vent the virus from binding to its entry point ACE-2 recep-
tors. To test the effectiveness of the proposed ligands, we
built homology models of multiple clades of the Omicron
variant. Molecular docking and molecular dynamics were
used to test natural compounds and identify those that have
the greatest potential of inhibiting various mutants simulta-
neously.

2. MATERIALS AND METHODS
2.1. Protein Preparation and Homology Modelling

The spike glycoprotein receptor binding domains of the
Wild Type SARS-CoV-2 and its Omicron variants were cho-
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sen for this work as reference. The 3D structures with PDB
IDs: 6M0J (Wild-Type), 7T9L (21K or BA.1), 7XAZ (21K
R346K mutant or BA.1.1), 7XB0 (21L), 7XWA (22B),
7XNS (22C), and 8IF2 (22E) were retrieved from the Protein
Databank (https://www.rcsb.org/). The Schrodinger software
package was used for all calculations [42]. We used Protein
Preparation Wizard [43] to prepare the RBD structures for
further simulations. All crystallographic water molecules
were removed. Hydrogen atoms were added after the remov-
al of the original Hydrogen atoms. Protonation states at tar-
get physiological pH = 7.4 + 0.0 were generated using the
Epik program [44]. To ensure a consistent and robust protein
structure, we minimized the hydrogen bond network and
optimized the structures using the OPLS3e force field [45].
Further, chain A containing RBD was extracted from the
structure of Omicron RBD and ACE2 complex (PDB ID:
7T9L) and was used as a template for homology modeling of
mutants represented as clades 21K, 21L, 22A, 22B, 22C,
22D, 22E, 22F, 23C, and 23F. Mutations for each clade were
collected from the GISAID database [28] (https:/nextstr
ain.org/ncov/gisaid/global/6m) and are illustrated in Table 1.
Schrodinger Software Package was used to build Homology
Models with the ClustalW alignment method [46] and Loop
Refinement using Prime Module. All models were built us-
ing an energy-based method. The comparison of built mod-
els with their reference structures showed some deviations in
loop positioning. It suggested the necessity of further struc-
ture refinement. Guided by the approach utilized in our pre-
vious work [41], we subjected all homology models to Mo-
lecular Dynamics simulation with the Desmond module [47].
Using System Builder, models were placed in an orthorhom-
bic box of minimal size and solved with the single-point
charge (SPC) water molecules. The imitation systems were
neutralized with Cl" or Na" as counterions. Before the actual
launch, systems went through the standard eight-step Des-
mond relaxation protocol. We used the OPLS3e force field.
The models were simulated during 100 ns with a 25 ps
recording time step using the NPT ensemble class (T=300 K,
p =1.01325 bar). The Simulation Interaction Diagram was
further used to analyze MD trajectories evaluating protein
root-mean-square deviations (RMSD) and root-mean-square
fluctuations (RMSF). All trajectories were clustered, and the
most populated clusters were used as final prepared models.

2.2. Ligand Preparation and Molecular Docking

Scientific literature sources [48-55] were used to create a
database of 232 natural compounds contained in citrus essen-
tial oil. Their 3D structures were retrieved from the Pub-
Chem database (https:/pubchem.ncbi.nlm.nih.gov/). We
employed the LigPrep tool [43] to minimize ligand structures
using the OPLS3e force field. The Epik was used to generate
possible ionization states at target pH = 7.4 + 0.00. All struc-
tures were additionally subjected to toxicity assessment us-
ing a ProTox-II web server [56]. Reference structures and
created homology models were used as targets to scan the
developed library of natural compounds as potential SARS-
CoV-2 spike glycoprotein inhibitors. Grids were generated
and centered on the interface of RBD’s interactions with the
host ACE2 receptor (x: -2, y: -30, z: 0, with a length of 36 A
and a size of the inner box of 10 A). Ligands were docked to
selected receptors flexibly with Extra-Precision (XP) mode
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and OPLS3e force field using a Glide Module [57]. The lig-
ands were further ranked based on their average docking
score for all developed homology models and reference
structures. An additional assessment of toxicity was carried
out using the SwissTargetPrediction [58] and ADMETlab
2.0 [59] web servers. The top 25 most promising ligand-
protein complexes were selected for further investigation.

2.3. Molecular Mechanics and Molecular Dynamics

We used complexes of 25 compounds with the best aver-
age docking scores to all RBD structures from XP simulation
to execute MM-GBSA calculations in the Prime module,
leveraging the VSGB solvation model and the OPLS3e force
field. Protein residues were flexible up to a 12.0 A distance
for all ligands. Rankings of the protein-ligand complexes
were determined by their predicted binding free energy aver-
ages. After molecular mechanics, the produced poses under-
went molecular dynamics simulations. Complexes were po-
sitioned in a minimized orthorhombic box and solvated with
SPC water molecules. Chlorine anions were added to neu-
tralize complexes. Desmond's default eight-step relaxation
protocol was applied before the main 100 ns simulation with
the 25 ps step. The OPLS3e force field was used for all sim-
ulations. Lastly, we assessed RMSD, RMSF, and ligand-
protein interactions using Simulation Interaction Diagrams.

3. RESULTS AND DISCUSSION
3.1. Homology Models of Omicron RBD Mutants

Based on the 3D structure of the reference Omicron spike
glycoprotein RBD, we successfully built ten homology mod-
els of mutated clades 21K, 21L, 22A, 22B, 22C, 22D, 22E,
22F, 23C, and newly emerged 23F. Among all selected mu-
tants, some mutations were persistent and characteristic of
the Omicron variant (Table 1). For example, for all clades of
Omicron, the following mutations were present: S373P,
S375F, K417N, N440K, S477N, T478K, E484A, Q498R,
N501Y, and YSOSH. The other sets of persistent mutations
include T376A, D405N, and R408S, characteristic for all the
clades except 21K. Common for Omicron mutation, G339D
was altered by G339H in the case of clades 22D, 22F, and all
further clades (23C and 23F, in this investigation). The other
mutations varied from clade to clade. It must be noted that
the reference structures 7T9L and 7XAZ both represent the
RBD structure of a virus from the 21K clade; however, these
mutants belong to different Pangolin lineage of viruses
(BA.1 and BA.1.1, respectively). Thus, the latest one has an
R346K mutation, which is not common for other subvari-
ants. All models were refined with molecular dynamics sim-
ulation followed by further trajectory clustering. Fig. (1)
illustrates the results of molecular dynamics simulations and
refined 3D structures of developed RBD’s homology mod-
els.

The models of 21L, 22A, 22B, 23C, and 23F were the
most stable, with root mean square deviations (RMSD) not
exceeding 2 A throughout the simulation (Fig. 1a). The larg-
est deviations in the secondary structure were observed for
the 22D model. It stabilized only after a 110 ns run, with
deviations at an initial stage of simulations exceeding 7 A.
Mostly, it was associated with fluctuations in the loop be-
tween residues L455 and P488, as one can see from root
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Table 1.  The list of occurred receptor binding domain mutations in selected Omicron clades of SARS-CoV-2.

# 3391346] 356 |368|371]|373|375|376|405|408|417|440|444|445|446|448|452]|456|460]477|478(484(486]490|493494|496(498|501 (505
G|IR|K|L|S|S|[S|T|D|R|K|N|K|V|G|IN|L]|JF|IN|JS|T|E|F|F|Q]S|G|Q|N|Y
DIK|-|-|L|P|F|-]- N|IK[-]-|S|-|-]-|-|N|IK|A]-]-]R|]-|S|R|Y|H
D|-|]-1]-|F|P|F|A|IN|]S|IN|K|[-]-|-]-|-]-]-|N|K|A|]-]-]R]-|-|R|Y|H
D|T| -|-|F|P|F|A|IN]S|IN|K|[-]-]-]-|R|]-]-|N|K|A -l-1-1-|IR|Y|H
D|-|]-]|-|F|P|F|A|IN|]S|IN|K|[-]-|-]-|R]- N|IK|A -l-1-1-|IR|Y|H
D|-|]-1]-|F|P|F|A|IN|]S|IN|K|[-]-]-]-1Q]-|-|N|K|A|]-]-]R]-|-|R|Y|H
H|T|T|-|F|P|F|A|IN|]S|N|K|-]-|S|-|-]-|K|N|K|A[S|S]-]|]P|-|R|Y|H
D|T| -]|-|F|P|F|A|IN|]S|N|K|T]-|-]-|R]-|K|N|[K|A|[V]-]-]-]-|R|Y|H
H|T| -|I|F|P|F|A|IN|]S|N|K|-|P|S|]-]|-]-|K|N|K|A|[P|S]-]-]-|R|Y|H
H|T| -|-|F|P|F|A|IN|]S|N|K|T]-|S|K|R]-|K|N|K|A|[S]-|K]-]-|R|Y|H
H|T| - |I|F|P|F|A|N|]S|N|K|-|]P|S|]-|-]JL|K|N|K|A|[P|S]-]-]-|R|Y|H

Note: * “-” indicates no mutation from the original sequence.
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Fig. (1). The results of 3D structures of reference spike glycoprotein RBDs and created homology models: a) Protein root mean square devia-
tion plots (RMSD); b) Protein root mean square fluctuations (RMSF); ¢) Superposition of ten most populated clusters from MD trajectories of
built homology models (in corresponding colors) and their reference structures (in black). Reference structures included the following PDB
ID: 7XAZ (for 21K), 7XB0 (for 21L), 7XWA (for 22B), 7XNS (for 22C), and 8IF2 (for 22E), 7TOL (for all other clades as their reference
structures are not available yet). (4 higher resolution / colour version of this figure is available in the electronic copy of the article).
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mean square fluctuation (RMSF) plots (Fig. 1b). Similarly,
the model of 22C underwent major conformational changes
before it was fully stabilized after 120 ns, with the region
near residue N385 being characterized by the most fluctua-
tions. A superposition of the ten most populated clusters
from molecular trajectory with reference structures is illus-
trated in Fig. (1¢). Models 21K, 21L, and 22B showed the
best reproductivity when compared to the corresponding
reference structures. Even though the reference structures for
22A, 22F, 23C, and 23F were not available, the comparison
of their homology models with other crystallographic Omi-
cron RBDs’ structures showed high similarity in secondary
structure and geometry. Models 22C, 22D, and 22E showed
a significantly different position of the loop between residues
L455 and P488 (bottom-left corner of protein structure in
Fig. 1¢), similar to model 22F. We did not find any specific
trends in 22C, 22D, 22E, and 22F mutations, which could
cause this geometry deviation during homology modeling;
rather, it could be caused by an additive influence of each
mutation that occurred. All developed homology models, as
well as all reference structures, were used for further mo-
lecular docking, mechanics, and dynamics study.

3.2. Molecular Docking, MM/GBSA and Toxicity Prediction

Molecular docking was performed for all 232 compounds
against all target mutants and reference structures. Our goal
was to find compounds with equally high docking scores for
all mutants. Thus, docking scores of each compound towards
each mutant RBD were averaged to make a ranking of lig-
ands. The results for the top 25 compounds based on the av-
eraged docking score are illustrated in Fig. (2) as a heatmap.
Interestingly, almost all selected ligands docked well to the
21L, 22A, and 22F homology models, while the docking
scores for homology model 22E and the reference 7T9L
structure were significantly inferior. One can see almost no
correlation when comparing docking score trends between
homology models and their corresponding reference struc-
tures. Molecular docking allows the flexibility of a ligand.
However, it does not take into consideration the flexibility of
the protein’s residues. Homology models, even with high
similarity in the backbone geometry, may have varying side-
chain positions, which subsequently may influence docking
results significantly. That is why we decided to implement
molecular mechanics with generalized Born and surface area
solvation (MM/GBSA). This approach is commonly used to
estimate relative binding affinities. While the absolute calcu-
lated values are not always in agreement with experimental
data, the ranking of the ligands based on the calculated bind-
ing energies is expected to agree reasonably well with the
ranking based on experimental binding affinities. The results
of the binding energy calculations Fig. (2) showed a signifi-
cant improvement in ligands’ activity correlation between
homology models and their corresponding reference struc-
tures, with 21K, 21L, and 22B models showing the best
agreement of results with reference RBDs.

Nonetheless, the data obtained for models 22C and 22E
still lack consistency with their crystallographic counter-
parts. Insufficient performance of these models most proba-
bly related to improper geometry, as it was shown in Fig. (1)
and discussed in the previous subsection. The ligand with
PubChem ID: 11230 (terpinen-4-ol or 4-carvomenthenol)
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was found as the best-scoring compound on average for all
clades, followed by p-Cymen-8-ol (PubChem ID: 14529)
and 2,7-Cyclodecadien-1-ol, (PubChem ID: 522445). Most
of the hit ligands bound strongly to 7T9L, while the worst
average binding was noticed for reference 22C structure
(noted in Fig. (2) as 22C*, PDB ID: 7XNS). Top-scoring
terpinen-4-ol mostly showed the comparable binding affinity
for both homology models and their corresponding crystal-
lographic structures, except for the 22E clade, where its
binding energy with the reference structure (22E*) was sig-
nificantly higher compared to the 22E homology model.

A more detailed analysis of the MM/GBSA results re-
vealed that terpinen-4-ol has the same binding modes for all
RBDs except for homology models 22C, 22D, and 22E (Fig.
3). The ligand binding was reinforced by a hydrogen bond
formed between the hydroxyl group of a ligand and F490
residue (S490 in the case of 22F and 23F). For 22C, 22D,
and 22E models, this binding is obstructed due to the specif-
ic orientation of the loop. Keeping this in mind and referring
to the results of homology modeling, we can say that the
above-mentioned models are insufficient for further investi-
gations and must be further refined.

Toxicity prediction using ProTox-II webserver was per-
formed to provide an additional selection criterion (Fig. 4).
While the larger portion of top-scoring compounds (14 out
of 25) was predicted to be safe, a few potential ligands were
shown as active in toxicity endpoints, such as carcinogenici-
ty, immunotoxicity, cytotoxicity, and Mitochondrial Mem-
brane Potential (MMP). The least promising natural com-
pound was furfural (PubChem ID: 7362), with the lowest
value of LD50, the highest toxicity class, and predicted as
potentially carcinogenic and mutagenic. Indeed, experi-
mental studies showed that furfural had carcinogenic and
genotoxic effects on humans and rats [60-62]. An interesting
toxicity profile was predicted for b-Cyclocitral (PubChem
ID: 9895). Being inactive in the majority of toxicity end-
points, it showed mitochondrial membrane potential activity
and potency of being an aromatase and estrogen receptor
(ER-LBD) inhibitor. This indicates its potency as an anti-
cancer drug.

The p-Cymen-8-ol (PubChem ID: 14529), which was
scored as a second, had the potential of being carcinogenic.
The top-scoring ligand terpinen-4-ol (PubChem ID: 11230)
and the third-best-scoring 2,7-Cyclodecadien-1-ol (PubChem
ID: 522445) were both predicted to be non-toxic. The ter-
pinen-4-ol is a terpineol that has a role as a plant metabolite
and possesses antibacterial, antioxidant, anti-inflammatory,
antiparasitic, and antineoplastic activities [63-65]. Addition-
ally, it must be noted that some computational studies high-
lighted the potency of terpinen-4-ol as an inhibitor of SARS-
CoV-2 Main Protease [66] and Wild-type spike glycoprotein
RBD [67, 68]. Considering this and its more favorable tox-
icity profile (Fig. 4), we selected this natural terpineol for
further elucidation as a potential inhibitor of the Omicron
RBD.

3.3. Molecular Dynamics Simulation

In order to assess terpinen-4-ol’s binding to Omicron
RBD, we performed a molecular dynamics simulation.
Complexes with 21K (PDB ID: 7T9L) and the Wild type
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Fig. (2). Heatmaps represent the results of toxicity prediction and molecular docking for the most promising ligands. *indicates the reference
structure. (4 higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (3). Superposition of ligand binding poses refined by MM/GBSA calculation. Colored as follows: wild type — black; 21K (PDB ID:
7T9L) — grey; homology models — according to their corresponding colors in Table 1; other reference structures according to their corre-
sponding colors in Table 1, but in a darker shade. (4 higher resolution / colour version of this figure is available in the electronic copy of the

article).
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Predicted Toxicity Endpoints
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Fig. (4). The top 25 natural compounds best-scoring as inhibitors of an Omicron SARS-CoV-2 RBD and its predicted toxicity profile. *Hepat

— hepatotoxicity; Carcin — carcinogenicity, Immun —

immunotoxicity; Muta — mutagenicity; Cytoto — cytotoxicity; AhR — Aryl hydrocarbon

Receptor; AR — Androgen Receptor; AR-LBD — Androgen Receptor Ligand Binding Domain; ER — Estrogen Receptor; ER-LBD — Estrogen
Receptor Ligand Binding Domain; PPAR-g — Peroxisome Proliferator Activated Receptor Gamma; nrf2/ARE — Nuclear factor (erythroid-
derived 2)-like 2/antioxidant responsive element; HSE — Heat shock factor response element; MMP — Mitochondrial Membrane Potential; TS
p53 — Phosphoprotein (Tumor Suppressor) p53; ATADS — ATPase family AAA domain-containing protein 5. (4 higher resolution / colour

version of this figure is available in the electronic copy of the article).

(6MO0J) RBDs were used as the most and the least successful
targets. Additional simulations were carried out to compare
homology model 22E and its corresponding reference struc-
ture, considering contradictions in their predicted binding
energies. The results of this simulation (Fig. 5) revealed the
sufficient stability of the ligand only within the binding
pocket of a 21K (PDB ID: 7T9L) RBD. The deviations in
protein RMSD (Fig. 5a) were relatively low for wild type
and 22E reference structure, meanwhile, significant devia-
tions were noted for the reference 21K and 22E homology
model. Protein RMSF (Fig. 5b) for complexes of 21K and
22E reference structures showed insignificant change in res-
idue positions during the simulation, with the only area near
residues 478-484 being flexible (up to 4.5 A). The complex
with the wild-type SARS-CoV-2 RBD had an additional

flexibility near residues S371, A372, and S373. Overall,
large fluctuations were noticed for homology model 22E.
Plotting the ligand’s RMSD fit on the protein (Fig. 5¢) pro-
vided a clearer understanding of the complexes' stability.
With both the 22E homology model and crystallographic
structure as targets, terpinen-4-ol did not form stable com-
plexes, as shown by the ligand’s RMSD ranging up to 80 A.
The ligand complexed with the wild-type RBD showed high
deviations at the beginning of the trajectory but stabilized
after 30 ns of simulations, which indicated a shift in the lig-
and’s binding site. The most stable was the complex of ter-
pinen-4-ol with 21K RBD, maintaining its deviations near 3
A from the original frame and its RMSF (Fig. 5d) not exceed-
ing 1.5 A. Another measurement used to evaluate the stability
of a complex was the radius of gyration (rGyr) (Fig. Se),
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Fig. (5). Results of Molecular Dynamics Simulation for terpinen-4-ol complexes with Wild type (PDB ID: 6M0J, colored black), 21K (PDB
ID: 7T9L, colored red), 22E (homology model, colored cyan), and 22E (PDB ID: 8IF2, colored blue): a) — protein Ca RMSD; b) — Protein Ca
RMSF; ¢) — Ligand RMSD fit on protein; d) — Ligand RMSF fit on protein; e) — Radius of Gyration; f) — Solvent Accessible Surface Area. (4
higher resolution / colour version of this figure is available in the electronic copy of the article).

which assesses the 'extendedness' of a ligand and is equiva-
lent to its principal moment of inertia and solvent assessable
surface area (SASA) (Fig. 5f). According to the radius of
gyration, the most compact were the complexes of terpinen-
4-ol with the 21K and the wild-type RBDs. Both complexes
with 22E showed significant deviations in the extendedness
of the ligand, suggesting the instability of these complexes.
Solvent assessable surface area for the complex of a wild
type RBD decreased significantly after 30 ns simulation,
similarly to the Ligand RMSD trend. The smallest exposure
to a solvent had a complex of ligands with 21K RBD.

Another good evidence of the complex’s stability was
obtained by clustering the molecular dynamics simulation.
The ten most populated clusters superimposed in Fig. (6a)
showed the ligand being kept within the same binding site
near residues R493, S494, Y495, and S496, which showed a
critical role in spike-glycoprotein binding to host ACE2 re-
ceptor [41, 69]. As can be seen in the 2D Ligand-Protein
Interaction Diagram for this complex Fig. (6b), one strong
hydrogen bond was formed between the hydroxyl group of
terpinen-4-ol (as a donor) and S496 of the Omicron RBD.
This bond remained intact within 75% of the simulation
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Fig. (6). Results of molecular dynamics simulation for terpinen-4-ol complexes with Omicron (21K clade) RBDs: a) - superposition of 10
most populated clusters; b) — 2D Ligand-Protein Interaction Diagram; and its complexes with the with wild type RBDs: ¢) - superposition of
10 most populated clusters; d) — 2D Ligand-Protein Interaction Diagram (arrows indicate H-bonds). (4 higher resolution / colour version of

this figure is available in the electronic copy of the article).

time. Additional water bridges between the hydroxyl and S494
and Y453 stabilized the complex for 72% and 69% of the
simulation time, respectively. The seven out of ten most popu-
lated clusters from the molecular dynamics trajectory of the
terpinen-4-ol-RBD(wild type) complex (Fig. 6c¢) also revealed
the ligand being fixed in the same position, located on the
interface of RBD-ACE?2 interactions. However, it was fixed at
this binding pocket solely by hydrophobic interactions (Fig.
6d) and maintained no hydrogen bonds for longer than 30% of
the simulation time. Considering all of the above, the proposed
ligand does not look promising as a multivariant inhibitor but
rather has the potency of inhibiting SARS-CoV-2 spike gly-
coprotein from 21K clade with no R346K mutation.

CONCLUSION

The objective of this study was to identify potential in-
hibitors for the receptor binding domain of the spike glyco-
protein of the latest SARS-CoV-2 variant, Omicron. Consid-
ering the diverse range of mutant sub-lineages derived from
the original Omicron strain, we aimed to evaluate the inhibi-
tory activity of selected compounds against these mutants.
Due to the limited availability of 3D structures in the Protein
Data Bank, we constructed homology models of the SARS-
CoV-2 spike glycoprotein for ten clades of the Omicron var-
iant (21K, 21L, 22A, 22B, 22C, 22D, 22E, 22F, 23C, and
23F. Models were validated by comparing their structures
with crystallographic data. All models except for 22C, 22D,
and 22E showed high similarity with their corresponding
reference structures. This suggested a need for further struc-
ture refinement for the three above-mentioned clades. Our
previous work [41] demonstrated the inhibitory potential of

hesperidin, narirutin, and neohesperidin (all present in citric
essential oils) against the RBD of certain SARS-CoV-2 vari-
ants (specifically Delta). However, these compounds did not
exhibit stable interactions with the RBD of the Omicron var-
iant. To address this, we compiled a database of 232 natural
compounds found in citrus essential oils. This library was
docked into the developed homology models and studied
reference structures of spike glycoprotein. Based on the
docking scores, toxicity endpoint predictions, and binding
energies predicted using molecular mechanics, terpinen-4-ol
emerged as the most potent inhibitor, targeting the RBD of
the Omicron strain. A molecular dynamics simulation was
conducted to assess the stability of the terpinen-4-ol complex
bound to the RBD of the Wild type and certain Omicron
strains. The simulation revealed a high degree of stability for
the ligand complex with a 21K dereference structure (PDB
ID: 7T9L). However, it did not show decent stability in the
case of other tested clades. These findings suggested that
further extension of the ligand library is needed for the de-
sign of potential multivariant inhibitors of the SARS-CoV-2
spike glycoprotein. Even though the library scanned in this
work did not yield anticipated results, the methodology pro-
posed here holds promise for further improvements in in
silico drug discovery targeting viruses with high mutation
rates, such as SARS-CoV-2.

LIST OF ABBREVIATIONS
ACE2 =
ADMET

Angiotensin-converting enzyme 2

Absorption, Distribution, Metabolism,

Excretion, and Toxicity
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BBB = Blood-brain Barrier

COVID-19 = Coronavirus Disease of 2019

MD = Molecular Dynamics

RBD = Receptor-binding Domain

RMSD = Root-mean-square Deviations

RMSF = Root-mean-square Fluctuations

SARS-CoV-2 = Severe Acute Respiratory Syndrome
Coronavirus 2
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