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The microbes present in the human gastrointestinal tract are regularly linked to human
health and disease outcomes. Thanks to technological and methodological advances in re-
cent years, metagenomic sequencing data, and computational methods designed to analyze
metagenomic data, have contributed to improved understanding of the link between the
human gut microbiome and disease. However, while numerous methods have been recently
developed to extract quantitative and qualitative results from host-associated microbiome
data, improved computational tools are still needed to track microbiome dynamics with
short-read sequencing data. Previously we have proposed KOMB as a de novo tool for
identifying copy number variations in metagenomes for characterizing microbial genome
dynamics in response to perturbations. In this work, we present KombOver (KO), which
includes four key contributions with respect to our previous work: (i) it scales to large
microbiome study cohorts, (ii) it includes both k-core and K-truss based analysis, (iii)
we provide the foundation of a theoretical understanding of the relation between various
graph-based metagenome representations, and (iv) we provide an improved user experience
with easier-to-run code and more descriptive outputs/results. To highlight the aforemen-
tioned benefits, we applied KO to nearly 1000 human microbiome samples, requiring less
than 10 minutes and 10 GB RAM per sample to process these data. Furthermore, we
highlight how graph-based approaches such as k-core and K-truss can be informative for
pinpointing microbial community dynamics within a myalgic encephalomyelitis/chronic fa-
tigue syndrome (ME/CFS) cohort. KO is open source and available for download/use at:
https://github.com/treangenlab/komb

Keywords: metagenomics; graph based methods; anomaly detection.

1. Introduction

Metagenomics, the study of the genomes of microbes that inhabit a microbiome, offers an
unprecedented and highly granular view into the interaction between host-associated micro-
biomes and host disease phenotypes. Numerous computational tools now exist to uncover the
taxonomic composition and functional profiles of human host associated microbiomes [1-4]. Of
particular relevance to this work, higher taxonomic and functional diversity of the microbiota
is associated with healthy individuals, while lower diversity correlates with disease states [5-8].
Furthermore, with the growing number of metagenome assembled genomes (MAGs) [9, 10] the
association between the genomic composition of microbial communities and the host health
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has become better quantified and understood [11, 12]. However, metagenomic assembly from
short reads remains a challenge in highly repetitive regions of bacterial genomes [13-15], and
among closely related strains of a given bacterial species [16, 17]. Genomic repeats arising from
horizontal gene transfer or duplication events have been associated with bacterial adaptation
and evolution [18-20], functional diversification [20], and pathogenesis [18]. Recent advances
in long-read sequencing offer a path to resolution of complex inter- and intra-genomic repeats
in microbial communities [21, 22]. However, limitations in high molecular weight DNA extrac-
tion [23] and financial cost of hybrid or high-quality long-read approaches poses a roadblock
for large scale studies involving long-read sequencing. Additionally, a large existing corpus
of metagenomic sequencing data consists predominantly of short paired-end reads, thus war-
ranting the development of novel methods that can better capture and quantify inter- and
intra-genomic repeat dynamics and flux.

To address this challenge, we have previously proposed the software KOMB [24] to extract
high copy number sequences of potential biological significance in the microbial communi-
ties from the short paired-end read metagenomic sequencing data, expanding on prior ap-
proaches [25-27]. As the genomic diversity of a bacterial community has been correlated with
host health, we hypothesize that the corresponding inter- and intra-genomic repeat structures
can act as a “biomarker” for host health. Our prior work highlighted the ability of KOMB
to detect shifts in the microbial community associated with antibiotic treatment and bowel
cleanse, as well as identify associations between observed shifts and key bacterial members of
pre- and post-FMT bacterial communities. Additionally, similarly to de novo assembly meth-
ods, KOMB is a database independent tool, and hence it avoids database biases [28]. However,
unlike the common assembly approaches [29, 30] KOMB does not simplify the compacted de
Bruijn graph, thus retaining the diversity originally present in the sequencing data. Further-
more, in contrast to k-mer profiling methods [1, 2], KOMB offers a set of genomic sequences
that can be annotated for downstream analyses. Thus, KOMB bridges the gap between fast
profiling methods that either require a database or do not yield sequence units that can be
readily annotated, and computationally expensive assembly-based approaches.

For the purpose of identifying key sequences in the graph, KOMB employs the graph
mining concept of k-core decomposition, which iteratively determines densely connected graph
components. Previously, we had not investigated the set of sequences contained in the core of
the graph as a whole, only focusing on sequences with high Core-A anomaly score [31] which
captures deviations in coreness/degree ratios of a vertex. In KombOver (KO), we introduce
and implement analysis of the maximal K-truss subgraph. Similarly to the vertices of the
maximal k-core, the vertices of the maximal K-truss have been shown to have strong spreading
(i.e. centrality) [32] which can be relevant in certain biological contexts as an alternative to
betweenness centrality measure [25, 33].

One of the limitations of our prior work was its scalability to large metagenomic studies.
In particular, the construction of the main data structure employed by KOMB, the hybrid
unitig graph (HUG) incurred a high computational cost. It resulted in run times ranging from
over an hour per single metagenomic sample, resulting in overwhelming computational costs
for thousands to tens of thousands of samples. To address this limitation, in this work we pro-
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pose a set of improvements to the HUG construction and analysis in KO aimed at enabling
large-scale processing of genomic data and characterization of phenotype-associated dynam-
ics. Furthermore, in addition to computational improvements, we provide a more extensive
characterization of HUGs within the context of bacterial pangenomics, and draw parallels
between pangenome graphs constructed from MAGs and HUGs. In order, to assess our tool,
we analyzed short-read metagenomic sequencing data from a cohort of controls and patients
with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), previously published by
Xiong et al. [34]. Additionally, we have benchmarked KOMB on integrative human microbiome
project [35] inflammatory bowel disease (IBD) cohort samples, as well as human genome se-
quencing data from Genome in a Bottle project [36], to demonstrate KO’s scalability to both
large data volumes, and complex repeat architectures.

2. Results
2.1. Hybrid unitig graphs

Hybrid unitig graphs (HUGs) are an extension of compacted de Bruijn graphs [37-39] used
as a primary data structure in de novo de Bruijn graph assembly approaches [29, 30, 40]. The
key addition in HUGs is presence of paired-end edges coming from the sequencing read data.
Hence, while during assembly, the de Bruijn graphs are iteratively simplified to construct
MAGs [29, 30] in KO denser and more complex HUGs are analyzed directly to facilitate the
capture of repeat dynamics within microbial communities. Conversely, pangenome graphs are
typically constructed from annotated genome assemblies, and capture high-level variation in
synteny and copy numbers of gene clusters across related microbial genomes. In this context,
HUGs bridge the gap between exact compaction achieved in the compacted de Bruijn graphs
and high-level genomic variation representation of pangenome graphs [41-43].

Thus, compared to compacted de Bruijn graphs (Figure 1¢) HUGs offer additional connec-
tivity information based on local similarity and inferred adjacency between unitigs. Compared
to the pangenome graphs, HUGs do not require neither complete genome assembly nor iden-
tification of putative gene clusters (Figure 1d) and hence can be constructed more efficiently
from short paired-end read data.

2.2. Analysis of an ME/CFS cohort

First, we compared the overall distributions of the number of unitigs reconstructed from con-
trol samples with the ones from patients with short and long-duration ME/CFS. We observe
that all samples in the control cohort contain more than 50,000 unitigs per sample, with 85
out of 92 samples containing between 50,000 and 400,000 unitigs (Figure 2). In contrast, 3
samples derived from patients with short-term ME/CFS contain less than 50,000 unitigs, and
62 out of 73 samples in this category contain up to 250,000 unitigs (Figure 2). Similarly, the
data for long-term ME/CFS contains 6 samples with less than 50,000 unitigs, and 68 out of
73 the samples fall into the 0 to 300,000 unitigs range (Figure 2).

Next, we have designated unitigs with Core-A anomaly scores three standard deviations
(30) above their corresponding sample’s mean (p) as the anomalous unitigs for the correspond-
ing samples. We have explored the distribution of degrees (Figure 3A) in the anomalous unitigs
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Fig. 1. (a) A set of 5 unitigs labeled w1, ug, ug, u4, and us with the corresponding read mappings of
r1, T2, and r3. Note, that the read r3 maps to both the end of unitig us and the start of the unitig uq.
(b) A HUG corresponding to the unitigs and reads in (a). Edges marked in red are local similarity
edges, and edges marked in black are adjacency edges arising from the paired reads (ri1, r2). The
magenta edge {ua,us} is an adjacency edge arising as a result of multi-mapping of a single read.
(c) A schematic representation of a compacted de Bruijn graph. Dark blue nodes represent k-mers,
while light blue and red nodes represent unitigs that have been compacted from unambiguous paths.
(d) A schematic representation of a pangenome graph. Colored blocks represent gene clusters and
arrows indicate possible paths through the gene sequences as indicated by corresponding genome
assemblies.
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Fig. 2. Distribution of total unitig counts in HUGs constructed from control (left), ME/CFS short
duration (center), and ME/CFS long duration (right) subjects’s gut microbiome samples. Samples
corresponding to short ME/CFS condition show lower absolute counts of unitigs, while those cor-
responding to the long ME/CFS are more similar to the controls. Both short and long ME/CFS
associated samples have less high unitig count representatives.

based on the sample type and noted that the overall distributions are skewed to the left for all
sample types. However, in the range of degrees from 250 to 1250, short-term ME/CFS samples
exhibit sharper concentration towards the lower degree values than long-term ME/CFS and
control samples. Additionally, in the 380-500 range of degrees long-term ME/CFS samples
exhibit a more uniform distribution. The distributions in Figure 3A were tested for statistical
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difference using Kolmogorov-Smirnov (KS) test. All three pairwise distribution comparisons
were significant with p-value < 107%. Since the degree of a unitig in an HUG depends on the
number of locally similar unitigs and potential genomic adjacencies of it, this indicates that
long-term ME/CFS communities have more anomalous highly connected unitigs.

We also investigated the distribution of coreness values in the anomalous unitigs grouped
by condition (Figure 3B). Similarly to the degree distributions for the low coreness values
(0-100) all three sample types agree. Analogously, short-term ME/CFS samples also have the
distribution of the coreness skewed towards lower values. This agrees with the observations
in Figure 2 and Figure 3A, as the lower overall unitig count (and hence a smaller graph),
and lower degrees (which provide an upper bound on coreness) would result in lower coreness
values. Long-term ME/CFS samples have several peaks in the distribution (coreness 180-200,
280-320) that are not observed in the controls. The distributions in Figure 3B were tested for
statistical difference using KS test. All three pairwise distribution comparisons were significant
with p-value < 107, Since coreness is a proxy for the level of interconnectedness in a group of
unitigs, this can indicate the presence of clusters of unitigs corresponding to either a complex
repeat architecture or a high abundance of closely related organisms.

A Ditribution of degrees in anomalous unitigs [Core-A >= u + 30]
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Fig. 3. (A) Distribution of the degrees of the unitigs that have Core-A anomaly score above p+ 30
for their corresponding samples. Distributions for unitigs of degrees 0-250 are omitted for clarity.
We note the samples corresponding to short-term ME/CFS have a distribution more skewed to the
left. (B) Distribution of the coreness of the unitigs that have Core-A anomaly score above p + 30
for their corresponding samples. Distributions for unitigs of coreness 0-100 are omitted for clarity.
Similarly to degree distribution, short-term ME/CFS samples show a skew towards lower coreness
values. Additionally, long-term ME/CFS samples have more uniform distribution in the 100-200
range compared to controls and more unitigs in the 250-350 coreness range.
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Next, we investigated the a-diversity at the species and genus level, as well as the overlaps
between species and genus level classifications based on Kraken 2 [44] predictions for the
anomalous unitigs in the three groups (Figure 4). We note that at both species and genus level
the short-term ME/CFS samples exhibit a lower average a-diversity which can be indicative
of dysbiosis. Additionally, at both species and genus levels, most taxonomic annotations are
shared among the three cohorts. Still, the control group has consistently more unique taxa
identified, further supporting the role of diverse microbial community composition in healthy
individuals. Similarly, the long-term ME/CFS cohort has more unique taxa than the short-
term ME/CFS cohort, indicating partial recovery from the dysbiosis.

We next compared the results for a-diversity and the overlaps obtained from anomalous
unitigs, to the same information computed for the unitigs in the highest K-truss (Figure 5). We
note that unlike in the case of general anomalous unitigs, those that belong to the highest K-
truss show more similarity in the a-diversity between control and short-term ME/CFS samples,
with long-term ME/CFS sample being the outlier (Figure 5A, B). Additionally, the total a-
diversity in the trusses (Figure 5A, B) is noticeably lower than in general anomalous unitigs
(Figure 4A, B). This is expected given trusses are densely connected subgraphs of a HUG, and
hence have higher propensity to represent closely related genomic segments. Higher a-diversity
in the long-term ME/CFS trusses can be a potential indicator for functional enrichment with
multiple taxa coding for the same function in the long-term ME/CFS microbiota. Furthermore,
we observed that, while the number of species and genera shared between all three cohorts
makes up a smaller fraction of the total classifications. Namely, while species shared between
all three categories make up 27.5% (1808 of 6567) of all species identified in the anomalous
unitigs of the three cohorts (Figure 4C), they make up only 24.1% (177 of 735) of all species
identified in the trusses of the samples (Figure 5C). Analogously, the shared genera make up
55.0% (1008 out of 1834) of all classifications for anomalous unitigs, and only 33.0% (156 out
of 473) of all classifications for truss unitigs.

Additionally, when individual KO profiles are visualized for samples matched by age, gen-
der, and race (Figure 6) we observe more compact profiles for the disease-associated samples.
This matches the dysbiosis hypothesis, with the long-term ME/CFS sample showing a more
complex profile than the short-term one. In all samples shown in Figure 6 unitigs with high
anomaly scores are the ones for which the degree is larger than the expected coreness. This
pattern occurs when a unitig is flanked by varying genomic contexts across the metagenome,
and hence indicate unitigs with high inter- and intra-genomic copy numbers.

2.3. Computational performance

The k-core decomposition algorithm runs in O(|V| + |E|) time [45] and hence scales linearly
with the size of the graph. This scaling is particularly attractive in metagenomic communities,
where the number of edges |E| is proportional to the number of vertices |V|. In the case of more
complex repeat architectures, such as Alu repeats in human genome, the number of edges is
be proportional to the square of the number of vertices. Compared to Brandes’s algorithm for
betweenness centrality (a common algorithm for detecting influential nodes in a network) [46]
k-core decomposition algorithm is significantly faster. The asymptotic time complexity of
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Fig. 4. (A, B) Distribution of alpha diversity (Shannon entropy) for anomalous unitigs that have
anomaly score three standard deviations above the mean for the respective sample grouped by the
condition and duration. p-values from Welch’s t-test for equality of means are displayed above the
boxplots. (A) Alpha diversity of samples associated with the ME/CF'S condition is lower than that of
control samples. Long ME/CFS samples on the other hand do not appear to be noticeably distinct
from the control ones. Entropy was calculated based on the unitigs for which Kraken 2 provided
species-level classification. (B) Alpha diversity of samples associated with the ME/CFS condition
is lower than that of control samples and long ME/CFS samples. Long ME/CFS samples on the
other hand do not appear to be noticeably distinct from the control ones. Entropy was calculated
based on the unitigs for which Kraken 2 provided genus level classification (species annotations are
rolled up into respective genus). (C) Venn diagram representing intersections between sets of species
identified in the control, short ME/CFS, and long ME/CFS sample collections. (D) Venn diagram
representing intersections between sets of genera identified in the control, short ME/CFS, and long
ME/CFS sample collections.

Brandes’s algorithm for unweighted graphs is O(|E||V]), which even in the |E| ~ «|V| regime,
leads to O(|V|?) complexity compared to O(|V]) for the k-core decomposition.

The K-truss decomposition has an asymptotic time complexity of O(|E|'®) [47], making
it slower than the k-core decomposition. Nevertheless, since we are only interested in the
vertices contained in the maximal K-truss, we make the simplification of running the K-truss
decomposition on only the maximal k-core of the graph, similar to the prior work [32].

Empirically, in addition to analyzing the ME/CFS data from Xiong et al. study [34], we
have also benchmarked KO on the IBD data [35] from integrative HMP, as well as chromosome
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Fig. 5. (A, B) Distribution of alpha diversity (Shannon entropy) for anomalous unitigs that belong
to the highest K-truss. p-values from Welch’s t-test for equality of means are displayed above the
boxplots. (A) Alpha diversity of samples associated with the ME/CF'S condition is lower than that of
control samples. Long ME/CFS samples on the other hand do not appear to be noticeably distinct
from the control ones. Entropy was calculated based on the unitigs for which Kraken 2 provided
species level classification. (B) Alpha diversity of samples associated with the ME/CFS condition
is lower than that of control samples and long ME/CFS samples. Long ME/CFS samples on the
other hand do not appear to be noticeably distinct from the control ones. Entropy was calculated
based on the unitigs for which Kraken 2 provided genus level classification (species annotations are
rolled up into respective genus). (C) Venn diagram representing intersections between sets of species
identified in the control, short ME/CFS, and long ME/CFS sample collections. (D) Venn diagram
representing intersections between sets of genera identified in the control, short ME/CFS, and long
ME/CFS sample collections.

21 and chromosome 11 aligned reads from human genome HG002 from the Genome in a Bottle
project [36]. The choice of human genome sequencing data is motivated by highly repetitive
complex Alu regions present in the genome, hence the regime in which |E| ~ a|V|? is in
the HUG. All benchmarking was performed on a Ubuntu 18.04.6 LTS system with Intel(R)
Xeon(R) Gold 5218 CPUs and 312GB of RAM and all runs used 60 threads. The results of
benchmarking are summarized in Table 1.

The results in Table 1 showcase that resulting graph edge density is an important com-
ponent of the overall computational performance, as indicated by a high run time value for
the HG0O02 chromosome 11 experiment. Compared to the original KOMB implementation, we
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Fig. 6. Individual KO profiles (color: normalized Core-A anomaly score) for three samples from
the ME/CFS cohort matched by age, gender and race. We observe a more complex profile in the
control sample, while short- and long-term ME/CFS show compact profiles associated with lower
bacterial genomic diversity. In all three samples, anomalous unitigs are predominantly high in degree
compared to their coreness.

Table 1. Performance of KO on metagenomic and human genome datasets. Total dataset size refers
to the cumulative size of all data processed, while average sample size describes the mean size of a
single sample in a dataset. Analogously average runtime refers to mean time to process a single sample,
while total runtime refers to cumulative time spent analyzing the dataset sequentially.

Dataset # samples | Total dataset | Average sample | Average wall clock | Total wall clock
size (GB) size (GB) runtime (hrs) runtime (hrs)
ME/CFS cohort 238 2,422 10.18 0.11 26.42
iHMP IBD 540 3,120 5.78 0.19 104.82
HGO002 chr21 (300x) 1 26.17 - - 0.71
HGO002 chr21 (250bp) 1 5.90 - - 0.14
HGO002 chrll (250bp) 1 20.43 - - 1.70

achieve up to a 3-fold speed up for metagenomic samples containing an average of 16 million
reads [24]. Additionally, we have performed a head-to-head comparison of KOMB and KO on
a Zymo mock community sequenced by DOE Joint Genome Institute (BioProject Accession:
PRJNA699918). We chose the Zymo mock community due to the large sample size (42 GB)
and relatively simple genomic structure, allowing us to focus on the HUG construction perfor-
mance, which we identified as a bottleneck, rather than the efficient k-core decomposition part
of the analysis. On this data KOMB required a total of 7Th16m of wall clock time (CPU time:
273h34m) and 48.28 GB of RAM to produce the final results, while KO required a total of
1h4m of wall clock time (CPU time: 14h34m) and 156.18 GB of RAM, note that both versions
were ran with 40 threads for this experiment. The speedup is the result of three major changes
in KO: (1) replacement of ABySS [48] with GGCAT [39] for the unitig construction, (2) change
from BWA MEM to BWA MEM 2 for read mapping, and (3) improved parallelization in the
KOMB codebase.

3. Discussion

In this work, we have provided a set of computational improvements to KOMB implemented
in KO, and theoretical analysis of connections between HUGs and pangenome graphs. Addi-
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tionally, we showcased the usage of KO on a ME/CFS patient cohort and identified disease-
associated patterns. The dynamics inferred from KO profiles and taxa associated with im-
portant unitigs are concordant with the observations from a prior study [34]. Namely, we
observe pronounced dysbiosis in short-term ME/CFS patients gut, and partial recovery from
the dysbiosis in the long-term ME/CFS patients. We envision KO as an important tool to
be integrated alongside existing approaches into clinically relevant microbiome studies. The
key benefits of KO are: (a) selection of a small set of anomalous sequences without relying
on taxonomy nor functional annotation, which can allow de novo analyses of these sequences
and more sensitive detection of perturbations to host microbiome health, and (b) rapid pro-
filing of a large number of samples, which can aid in the exploration of genotype-phenotype
connections for large study cohorts.

An important next step is extending KO to an integrated approach that can annotate
unitigs within the graph with associated transcriptomic or metabolomic information. Enriching
the graph with multi-omic annotations can provide additional context for the nodes identified
by KOMB as anomalous, enabling further functional associations to be extracted from the
HUG structures. We believe that by adding -omics annotations KO can be further used to
select genomic features relevant to the pathology, and hence enable better machine learning
diagnostic tools. We also plan to add ability to distinguish between the edge types described
in the Methods section and add the multi-omics annotations to the HUGs to directly extract
hubs of functionally important genomic regions of a microbiome.

Additionally, it can be of interest to construct HUGs based on publicly available MAG
catalogs as an annotation-rich reference for common community patterns identified in pre-
vious studies. We believe that this integrative large-scale approach can further illuminate
mechanistic associations between microbiome and disease phenotypes.

4. Methods
4.1. Hybrid unitig graph construction

We begin construction of the HUG by constructing the underlying de Bruijn graph with a
user-specified k-mer size parameter. The construction is done with the GGCAT [39], and the
user can control the parameters exposed by the GGCAT command line interface. GGCAT
produces a FASTA output file containing all maximal non-branching paths through the de
Bruijn graph (unitigs). After unitigs are constructed the user has an option to specify an
additional length based filtering step. Our recommended choice is setting this filter to be
equal to the read length.

After construction and filtering, the final set of unitigs becomes the set of vertices in the
HUG. Next, we perform read mapping of the input paired-end reads to the set of unitigs
using BWA MEM 2 [49] v2.2.1 with the default parameters. We retain all read mappings for
constructing the edges of the HUG. An edge is constructed between two unitigs u; and ws if
either the same read maps to both of the unitigs, or, one read in the pair maps to u; and the
other read in the pair maps to uy. More precisely, let r; and ro be two paired end reads and
let M(r1), M(r9) be the sets of unitigs that 71 and ro are mapped to. Then the initially empty
set of edges (F) in the HUG is united with the set of newly created edges, i.e.

515



Biocomputing 2024 Downloaded from www.worldscientific.com
by 2600:1700:120:ee8£:8973:15fd:618d:6229 on 04/28/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Pacific Symposium on Biocomputing 2024

(a) E+ EU{{u,v}:ue M(r;) and v € M(r;)\ u for i =1,2}
(b) B+ EU{{u,v}:ue M(r) and v € M(ry) \ u}

Conceptually two kinds of edges arise from this construction: (a) local similarity edges,
which capture subregions of unitigs that are similar as evidenced by the read mapping, and
(b) adjacency edges which have potential proximity of two unitigs with a genome. While it is
natural to expect that single read multi-mapping corresponds to similarity edges and paired-
end information corresponds to the adjacency ones, it is worth noting that single read mapping
also can contribute to the adjacency edge formation (see Figure la, b). We currently do not
distinguish the two edge types (local similarity vs adjacency) in implementation.

4.2. k-core decomposition and Core-A anomaly score

The k-core of a graph is the maximal induced subgraph in which each node has a degree of
at least k. If the vertices of the k-core of a graph are represented by Vi, then the coreness
of vertex v is defined as coreness(v) = max{k : v € Vi}. Computing the coreness of each
vertex is called k-core decomposition. Once the HUG is constructed, we perform a k-core
decomposition of it using the igraph C library [50] implementation of the linear time Batagelj-
Zaversnik [45] algorithm, which assigns a coreness to each vertex in the HUG. Subsequently,
for each unitig a Core-A anomaly score is computed as specified in previous work on anomaly
detection in networks [31]. In particular, for each vertex v we compute its rank based on the
degree rank,(v), and its rank based on coreness rank.(v). The Core-A anomaly score is then
defined as the absolute value of the difference of the log of the two ranks, i.e. Core-A(v) =
| log rank,(v) — log rank.(v)|.

There are two key groups of unitigs with high anomaly scores: (a) individual anomalies
and (b) anomalous clusters. In general, for any vertex v the shell number is upper bounded
by the degree of that vertex. Thus, individual anomalies are nodes with a large discrepancy
between their degree and coreness. In particular, this is can be described by the individual
influence, i value, defined as # = 1 — coreness(v)/deg(v) that is equal to 0 if the degree and
shell number are equal, and approaches 1 for values of degree significantly larger than that
of coreness. Individual anomalies are unitigs likely to have varying genomic contexts in the
metagenome. Thus, individual anomalies are good candidates for mobile genetic elements or
duplicated genes. Anomalous clusters on the other hand are more likely to arise due to shared
local similarities between a large group of unitigs. Those can be nearly identical repeats, such
as Alu elements in human genomes, or hypervariable regions of ribosomal proteins in bacterial
genomes.

4.3. K-truss computation

A K-truss of a graph is an induced subgraph in which every edge is present in at least
K — 2 triangles. A method proposed by Malliaros et al. [32] computes the maximal K-truss
by computing it for the k-core of the graph, since the K-truss of a graph is always a subgraph
of its K — 1-core. Thus, as the k-core decomposition of the HUG is computed, we select the
k-core subgraph of the HUG and then compute its K-truss decomposition using the igraph
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C library’s implementation of Wang and Cheng’s algorithm [47]. The algorithm assigns a
trussness value to each edge in the subgraph, representing the maximum value of K for which
the edge is present in the K-truss.

Now, let V} be the set of nodes and let Ej, be the set of edges of the maximal k-core subgraph
of the HUG, and define 7 : E, — N to be the mapping realized by the igraph algorithm, whose
time complexity is O(|Ex|'®). We then set K = max{7(e) : e € E},} and select the vertices (i.e.
unitigs) in the maximal K-truss to be those in {v € V} : 7(e) = K for some e incident to v}.

4.4. Taxonomic classification and a-diversity calculations

Taxonomic classification of the unitigs was performed with Kraken 2 [2] with the standard
parameters (k = 35, £ = 31) and the standard Kraken 2 database consisting of RefSeq viral,
bacterial, and archeal genomes, as well as human genome and known vector sequences from
UniVec_Core. For a-diversity computations, the unclassified portion of unitigs was discarded,
and the remaining fractions were re-normalized to add up to 1. The a-diversity was defined
as the Shannon entropy of the classified unitig fractions H = — 3", filog fi, where f; is the
fraction of unitigs classified as taxa i.

5. Data availability

This work has not produced any new sequencing data, and relied on publicly available datasets.
Details for accessing these datasets are specified below.

ME/CFS metagenomic sequencing data. Illumina short paired-end sequences
(150bp) from stool samples of 92 controls, 73 short-term ME/CFS, and 73 long-term ME/CFS
patients were analyzed [34]. Original sequencing data was deposited into SRA under BioPro-
ject accession PRJNA878603.

IBD data from integrative HMP. Illumina short paired-end sequences from stool
samples of patients with IDB were analyzed [35]. We analyzed a subset of 540 out of 1,613
available samples. Data is available from the HMP portal (https://portal. hmpdacc.org/) via
study IBDMDB.

Human genome dataset. We have used Illumina short paired-end reads (150bp
and 250bp) from Genome in a Bottle project. We used aligned reads for HG002 genome
that can be accessed via the index hosted on GitHub: https://github.com/genome-in-a-
bottle/giab_data_indexes.

6. Code availability
KOMB source code is publicly available on GitHub: https://github.com/treangenlab/komb.
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