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ABSTRACT: Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to
forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient con-
vective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this under-
standing comes only from examining the mean characteristics of large hail environments. How much variety exists within
the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to
that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study,
we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERAS modeled proximity sound-
ings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we
find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth de-
pends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is impor-
tant in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless
CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predict-
able by the depth of buoyancy, rather than CAPE itself.
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1. Introduction
Background

Of severe thunderstorm hazards, severe hail is the most ex-
pensive in the United States, incurring around $10 billion
(USD) in insured losses annually, and up to $1 billion in a sin-
gle event (Gunturi and Tippett 2017). Significant-severe hail
(=2.0 in.) has particularly damaging safety/economic impacts
(Hales 1988; Johnson and Sugden 2014; Blair et al. 2017).
Compared to tornadoes, literature on hail and its dependency
on the near-storm environment is less abundant.

Traditionally, the thermodynamic profile has been treated as
critical in hail forecasting. Indeed, hail growth depends on a
favorable temperature range (Nelson 1983; Browning and Foote
1976; Miller et al. 1988; Knight and Knight 2001), such that an
updraft that fails to extend into subfreezing air aloft will simply
not produce hail. The layer between —10° and —30°C is gener-
ally considered as optimal for hail growth (Nelson 1983; Brow-
ning and Foote 1976; Miller et al. 1988; Knight and Knight 2001;
Pilorz et al. 2022), and is often appropriately termed the “hail
growth zone” (HGZ). This layer varies in height for any given
storm, but is generally in the midlevels of the troposphere. Both
cloud models (Brimelow et al. 2002; Kumjian and Lombardo
2020) and observational studies (Knight and Knight 2005) have
shown that hail grows almost exclusively in subfreezing tempera-
tures. As hailstones fall into warmer temperatures, they can melt
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before reaching the ground, but this disproportionately reduces
the mass of smaller stones due to their slower fall speeds and
larger surface-area-to-mass ratio (Rasmussen and Heymsfield
1987).

Proxies for updraft buoyancy [such as convective available
potential energy (CAPE) and temperature lapse rates] have
also shown some skill in hail size forecasting (Groenemeijer
and Van Delden 2007; Johnson and Sugden 2014; Pucik et al.
2015; Taszarek et al. 2017, 2020). However, owing to the limi-
tations of parcel theory, CAPE can be an unrealistic approxi-
mation. An updraft’s net total buoyancy depends not only on
CAPE, but also on how much CAPE is lost through the en-
trainment of air outside the updraft. While wider updrafts are
more resistant to entrainment, narrower updrafts are more
readily diluted, especially in drier tropospheres (Holton 1973;
Kuo and Raymond 1980; Peters et al. 2019, 2023). Updraft
width depends strongly on mixed-layer depth (Mulholland
et al. 2021) and the mass flux provided by storm-relative in-
flow (Peters et al. 2020a,b; Lasher-Trapp et al. 2021). Conse-
quently, CAPE can be maximized with higher relative humidity,
deeper mixed layers, and stronger storm-relative inflow. Indeed,
stronger deep-layer shear that induces stronger storm-relative in-
flow has been found in simulations to support broader updrafts
that produce more hail embryos and increase their residence
time aloft (Dennis and Kumjian 2017; Kumjian et al. 2021). A
“balance” between CAPE and shear has been noted throughout
literature, such that more favorable kinematics can supplement
less favorable thermodynamics, and vice versa (Johns et al. 1993;
Brooks et al. 2003; Brooks 2009; Taszarek et al. 2020).

Observational and modeling studies have also linked hail po-
tential to the shear profile. Storm-relative winds have been con-
sidered critical in regulating hail growth since the 1970s. An
observational study by Browning and Foote (1976) was among
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the first to recognize that the ice nuclei responsible for hail for-
mation are supplied by the flanking line of a supercell—a series
of weak but progressively maturing updrafts. Since this region
consisted of hail “embryos,” it was termed the “embryo curtain.”
This flanking line was thought to be induced by a stagnation
point between two diverting midlevel flow streams. Nelson
(1983) deduced that updraft-relative flow within this flanking line
fundamentally modulated the residence time of embryos within
it, and thus their propensity to grow. In theory, this residence
time would be maximized by moderately strong updrafts (i.e.,
strong enough but not intense), and slow storm-relative flow
(Rasmussen and Heymsfield 1987).

How exactly storm-relative wind governs hail trajectories is
a topic of current investigation. Stronger low-level shear, es-
pecially that is directed obliquely to the deep-layer shear
(such that creates a sickle-shaped hodograph) has been found
to suppress hail growth (Dennis and Kumjian 2017; Kumjian
et al. 2021). This suppression is attributed to an increase in
low-level storm-relative winds, which can impart excessive
momentum on air parcels as they approach the hail growth
zone. Consequently, excessive updraft-relative flow within the
hail growth zone can limit the residence time of any hailstones
within it (Kumjian et al. 2021; Lin and Kumjian 2022). Litera-
ture has not yet clarified whether this process is predictable
solely by the storm-relative winds or also in part to the shear
or its direction. Regardless, recent observational studies unam-
biguously find large hail environments to be associated with rela-
tively weak shear in the lowest 1 km (Johnson and Sugden 2014;
Kumyjian et al. 2019; Gutierrez and Kumjian 2021; Taszarek et al.
2020; Nixon and Allen 2022). Idealized simulations have found
that unfavorable trajectories may also be induced by excess
CAPE, and may similarly limit a hailstone’s residence time in
optimal conditions (Lin and Kumjian 2022).

This study investigates three critical yet contradictory rela-
tionships between hail and the near-storm environment. First,
although stronger CAPE and deep-layer shear can support
stronger updrafts, these profiles alone, when taken in the
mean sense, have shown surprisingly weak skill in predicting
hail size (Johnson and Sugden 2014; Gensini et al. 2021; Nixon
and Allen 2022). Recent literature even suggests that both
CAPE and shear behave nonlinearly, such that increasing
buoyancy (Lin and Kumjian 2022) and shear (Dennis and
Kumjian 2017) in certain layers can have detrimental impacts
on hail trajectories and growth potential beyond an “optimal”
amount. So while increasing CAPE and shear may be more
favorable for hail occurrence (Taszarek et al. 2020), this may
not always be true for hail size, as is assumed in some parame-
ters (e.g., Johnson and Sugden 2014).

Second, although stronger storm-relative inflow may support
larger updrafts that can supply more hail embryos (Dennis and
Kumjian 2017; Kumyjian et al. 2021), it may also shorten the resi-
dence time of hailstones in the hail growth zone (Dennis and
Kumyjian 2017; Kumjian et al. 2021; Lin and Kumjian 2022). It is
not known whether these impacts are primarily a result of the
storm-relative winds, or also the low-level wind shear itself—this
is an important, unresolved problem for forecast applications.

Last, although temperature is fundamental in hail growth,
attempts to incorporate this dimension into the forecast
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process have so far been met with confusion. Counterintui-
tively, neither freezing level height nor CAPE within the hail
growth zone add significant value to hail size forecasting, and
the thickness of the hail growth zone itself has actually been
shown to decrease with increasing hail size, at least in the United
States (Johnson and Sugden 2014). It is not clear why tempera-
ture, a critical control of hail growth, has shown little practical
utility so far in forecasting.
These contradictions motivate three main hypotheses:

1) A balance of CAPE, shear, and relative humidity (such that
all affect net CAPE after entrainment) is necessary for hail
growth.

2) Strong low-level storm-relative wind is unfavorable for hail
growth, except in certain thermodynamic environments

3) The depth of CAPE (not CAPE itself), particularly above
the freezing level, inextricably controls hail growth and
potential size.

These hypotheses challenge the efficacy of our most com-
monly used parameters for hail prediction. Though stronger
deep-layer bulk wind difference is thought to support stronger
supercells more capable of hail production, there is already evi-
dence that shear can be more or /ess favorable depending on its
height in the profile. Though larger CAPE and steeper midlevel
lapse rates are thought to support stronger updrafts capable of
lofting larger hail, this assumes that these parameters are good
estimates of updraft speeds, and that larger hail actually needs
stronger updrafts in the first place. In light of recent literature,
we question these assumptions. Rather, we believe that parame-
terizations of updraft width, updraft depth, storm-relative flow,
and the freezing level are just as critical to large hail prediction.

2. Data and methods
a. Case selection

This study uses a new dataset developed by Allen et al.
(2023, manuscript submitted to Wea. Forecasting), which amasses
independent hail reports from multiple sources of sizes ranging
from 2.5 to 200 mm. Hail events in excess of 100 mm were
cross validated using radar data for plausibility. The dataset
includes portions derived from the hazard-storm mode
dataset developed by the Storm Prediction Center (Smith
et al. 2012; Thompson et al. 2012), for the period 2005-17
(most reports coming from 2014 to 2015), the Storm Data
database (Schaefer and Edwards 1999) from 1990 to 2019,
the Community Collaborative Rain, Hail and Snow net-
work (CoCoRaHS; Reges et al. 2016) for the period 1998-
2019 and mPING (Elmore et al. 2014, 2022) for the period
2012-19. The net result is a dataset which, unlike any prior
study, includes nearly a quarter of its reports smaller than 1 in.
(25 mm), since data below 19 mm are not found within Storm
Data (Elmore et al. 2022).

Unlike prior bulk approaches with Storm Data, the dataset
is designed to ensure independent and reliable cases. Reports
on the same day are queried to maintain a minimum separa-
tion of 75 km in space, with duplicate reports in the same vi-
cinity discarded in favor of the largest hail event observed in
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that environment. Sampling an environment from a given grid
point only once on a single day is used to avoid convective
contamination issues that may arise with activation of the con-
vective parameterization scheme (Allen and Karoly 2014).
Unlike the hazard-storm mode dataset (Smith et al. 2012;
Thompson et al. 2012), this dataset does not contain informa-
tion on convective mode. All cases with less than 250 J kg™
CAPE were omitted for this study prior to any analysis, in an
effort to minimize cases that may have had inaccurate report
times, or cases where model data did not accurately resolve
the position of boundaries (e.g., Potvin et al. 2010). After this
removal, this study considers 92323 cases of hail. We will
subsequently refer to hail smaller than 1 in. (25 mm) as
“subsevere” (Kumjian et al. 2019), 1-1.75 in. (25-45 mm) as
“severe,” 2-3.75 in. (50-95 mm) as “sig.-severe,” and greater
than 4 in. (102 mm) as “giant” (Knight and Knight 2001).
More generally, “large” is used throughout to refer to hail of
at least 1 in.

The imperfect nature of reporting will always affect report-
based observational datasets such as those used in this study,
and hence we rely on a larger sample size to offset the uncer-
tainty this may introduce in distinguishing between classes.
Humans do not always accurately report hail times, locations,
or sizes (Schaefer and Galway 1982; Amburn and Wolf 1997;
Baumgardt 2011; Allen et al. 2015; Allen and Tippett 2015).
This may affect the size bin that reports are put into (Jewell
and Brimelow 2009; Schaefer et al. 2004), and as a result may
increase the difficulty of using parameters to distinguish be-
tween sizes that are close to size thresholds. In addition, the
probability and density of hail reports is biased toward popu-
lation density, where more people are available to make them
(Dobur 2005; Blair and Leighton 2012; Groenemeijer et al.
2017; Allen et al. 2020). This can impact environmental pa-
rameters by leading to oversampling where observations are
more frequent, potentially biasing against events which occur in
more remote areas. Reports are also more likely during the day
when more people are awake, which may exclude representative
samples of nocturnal cases (Ashley et al. 2008; Blair et al. 2017).
The priority placed on seeking hail reports may vary per event,
and per National Weather Service Weather Forecast Office
(Doswell et al. 2005). Hail reporting may also be deferred during
life-threatening events (such as a tornado), possibly causing it to
go unreported during tornadoes (Warren et al. 2021), but this
has not yet been investigated in published literature.

b. Environmental data

Environmental data for each case were obtained from the
fifth-generation ECMWF reanalysis (ERAS; Copernicus Climate
Change Service 2017; Hersbach et al. 2020). This reanalysis
has been shown to faithfully represent the vertical profiles
of severe convective events in the United States and Europe
(Coffer et al. 2020; Taszarek et al. 2021b; Pilguj et al. 2022),
but still, some known biases exist. Like many reanalysis and
model analysis products, the profiles derived from these
data show the largest biases in the boundary layer (Gensini et al.
2014; Taszarek et al. 2018; King and Kennedy 2019; Taszarek
et al. 2021b). In particular, some of the largest differences
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TABLE 1. Environmental parameters.

Definition
S01 Bulk wind difference (0-1 km)
S06 Bulk wind difference (0-6 km)
SRWO01 Storm-relative wind (0-1-km mean)
RH13 Relative humidity (1-3-km mean)
RHI16 Relative humidity (1-6-km mean)
LCL Lifted condensation level (SB parcel)
EIB Effective inflow base
LPL Lifted parcel level (MU parcel)
LFC Level of free convection (MU parcel)
MPL Maximum parcel level (MU parcel)
CAPE Convective available potential energy

(MU parcel)

HGZ CAPE CAPE between —10° and —30°C (MU parcel)
Sub-HGZ CAPE = CAPE below —10°C (MU parcel)
CIN Convective inhibition (SB parcel)
FZL Freezing level (MU parcel)
HGZ Hail growth zone (layer from

—10° to —30°C, MU parcel)

between ERAS reanalyses and observed soundings have been
found in low-level convective parcel parameters and low-level
shear, especially in proximity to surface boundaries (Taszarek
et al. 2021b). These biases also differ per geographic location
and surface elevation. Though this study is concerned with more
deep-layer features such as bulk shear, CAPE and its depth, and
relative humidity, we also examine the relationship between
CAPE and shear in the low levels. As explored later, reports are
from a variety of locations and elevations across the United
States. Thus, conclusions drawn from this study, especially on
the relationship between low-level CAPE and shear, are based
on assumptions that ERAS accurately represents the boundary
layer profiles of these cases, and does so consistently regardless
of location. Fortunately, however, ERAS is still one of the most
reliable reanalyses for convective environments (Coffer et al.
2020, Taszarek et al. 2021b).

Vertical profiles were obtained from hybrid sigma-pressure
level ERAS data. To ensure comparable vertical resolutions
upon compositing, profiles used in composites were interpo-
lated to a common 250 m. This spacing was chosen to ensure
a balance between computational cost and resolution of the
environmental features relevant for hail. Profiles were taken
at the closest grid point to the latitude and longitude of each
report. This study does not employ a design such as is sug-
gested in Potvin et al. (2010) to minimize the impacts of con-
vective contamination using spatial offsetting, but it does aim
for preconvective conditions by using the analysis hour rounded
down to the top of the hour preceding each report (in accordance
with Thompson et al. 2012). For instance, a report at 2045 UTC
would be represented with a 2000 UTC ERAS sounding.

All derived kinematic and thermodynamic variables used in
this study were calculated from their respective raw hybrid
sigma-pressure level ERAS profiles using xcape (https:/github.
com/xgcm/xcape). A list of variable abbreviations and their
meanings can be found in Table 1. The kinematic variables used
include bulk wind difference in the 0-6-km (S06) and 0-1-km
(S01) layers, and the mean storm-relative wind from 0 to 1 km
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(SRWOL1), all with units of meters per second (m s~ ). Storm-
relative wind was subject to assumptions on storm motion, since
neither observed storm motions, supercell type (right-moving
or left-moving) nor storm mode (supercell, multicell cluster,
squall line, etc.) were recorded for this dataset. To account for
this, storm motion was calculated by assuming a right-moving
supercell storm motion (Bunkers et al. 2000) for all cases with
S06 = 15 m s~ ! (similar to Houston et al. 2008). For cases with
S06<15ms ', a supercell was not assumed, and storm motion
was assumed to be the 0-6-km non-pressure-weighted mean
wind (Bunkers et al. 2000). Although left-moving supercells were
assumed to make up a portion of this dataset (as explored by
Nixon and Allen 2022), no assumptions were made as to whether
cases were associated with a left-moving supercell. Rather, a
right-moving supercell was always assumed for S06 = 15m s ".
Though this introduces inaccuracies into the storm-relative wind
profiles of any left-moving supercell cases, the shear profiles in
this sample were fortunately predominantly straight. As a result,
SRWO1 (the most closely examined storm-relative wind parame-
ter herein) varied little between right-moving and left-moving
supercells—less than 1.5 m s~ ! per case on average.

The thermodynamic variables used in this study use either
most-unstable (MU) and surface-based (SB) parcel profiles
depending on their meteorological significance. CAPE (J kg™ '),
level of free convection (LFC), and maximum parcel level
(MPL) all assume the MU parcel, since this can be used in
both surface-based and elevated storm scenarios (a signifi-
cant portion of hailstorms was associated with elevated
storms, as explored later). CIN (J kg ') and lifted condensa-
tion level (LCL) both assume the SB parcel, since this par-
cel best detects the degree of low-level stability, and the
lowest potential cloud base, respectively, in both surface-
based and elevated storm scenarios (e.g., in the case of a
storm elevated above a stable layer, most-unstable CAPE is
necessary to better approximate the maximum potential en-
ergy available to an updraft, but most-unstable CIN may
considerably underestimate the CIN that this updraft expe-
riences pulling parcels from the surface). The buoyancy pro-
file is calculated using the virtual temperature correction.
Where referenced, the most-unstable lifted parcel level
(LPL) refers to the height of the most unstable parcel in the
lowest 400 hPa (which may be different from the surface-
based parcel especially in elevated storm scenarios). Other
significant heights include the effective inflow base (EIB,
Thompson et al. 2007) and the freezing level (FZL). All
heights are measured in meters unless otherwise specified.
The —10° and —30°C levels are used to calculate CAPE
both within the HGZ (HGZ CAPE) and below the HGZ
(sub-HGZ CAPE). This study also examines the relative
humidity of the ambient air between 1-3 km (RH13) and
1-6 km (RH16), a proxy for lower-tropospheric RH above
the cloud base where entrainment matters most (Peters et al.
2019), as a fraction from 0 to 1.0.

c. Self-organizing maps

A self-organizing map (SOM; Kohonen 2013) approach was
used initially to find relevant environmental relationships and
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guide further investigations. A SOM can procure information
on the variance of a sample, and can thus better detect the multi-
ple different weather regimes found throughout the year and
across the United States that are not apparent by examining the
mean alone. The particular SOM application used can be found
at https://github.com/JustGlowing/minisom. SOMs have been
used to discriminate between the vertical profiles of tornadic and
nontornadic storms (Nowotarski and Jensen 2013; Anderson-
Frey et al. 2017; Nowotarski and Jones 2018). Warren et al.
(2021) used SOMs to identify severe hail environments, while
Zhou et al. (2021) used this technique to find that the environ-
ments of hailstorms vary across the globe. This study, unlike pre-
vious efforts, examines only cases of hail-producing storms using
a very large sample of observed hailstorms, including both severe
and subsevere reports, thus better representing the full distribu-
tion of hail sizes.

A SOM is a type of artificial neural network that sorts input
data into an array of clusters (“nodes”) in a two-dimensional
space. Nodes are arranged in this space such that similar no-
des are positioned closer together, and data can fall anywhere
within the lattice of their positions. The number of nodes are
user-specified, and can be chosen to optimize their distinctive-
ness from one another (Kohonen 2013). These nodes are ini-
tialized with random weights, and an input vector is initialized
randomly from the input data. Then, the nearest node to the
input vector is calculated (via Euclidean distance), along with
the nearest neighbors. The process of selecting a new input
vector and assigning data to clusters is repeated over multiple
iterations to produce robust clusters. In this way, the SOM is
an iterative and unsupervised learning process. For more in-
formation on SOMs and their application in meteorological
tasks, the reader is directed to Chase et al. (2023) and the
aforementioned studies that used them (e.g., Nowotarski and
Jensen 2013; Anderson-Frey et al. 2017, Nowotarski and
Jones 2018; Warren et al. 2021; Zhou et al. 2021).

In this study, SOMs were set up using a 3 X 3 matrix of no-
des, following Nowotarski and Jensen (2013), Warren et al.
(2021), and Anderson-Frey et al. (2017), who noted an opti-
mal balance between the diversity and distinctiveness of the
resulting nodes using this array size in large datasets of severe
convective data. To ensure convergence, 200 iterations of this
self-organizing map algorithm were used to train the nodes,
since Anderson-Frey et al. (2017) noted that increasing more
than 200 iterations held little extra benefit. Initially, SOMs
were trained on hail cases of all sizes. However, since stones
around 1 in. were disproportionately common in this dataset,
the SOMs produced nodes with minimal environmental dif-
ferences, and little difference in mean hail size. Since the goal
of using SOMs was to find differences in the environment
and its effect on hail size, this oversampling was undesirable.
Instead, all cases of hail = 12.5 mm and hail < 50 mm were
omitted from this sample; a total of 17830 cases were then
used in the SOMs.

Input to the SOMs are the interpolated vertical kinematic
and thermodynamic profiles. The variables representing these
profiles were selected to best preserve the most relevant fea-
tures of each input profile. For the kinematic profile, hodo-
graph shape (especially in the low levels) must be preserved
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Mean Environment by Hail Size
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FIG. 1. Mean skew T and hodograph for subsevere hail, severe hail, significant-severe hail, and giant hail, shown from left to right, re-
spectively. The mean skew T is composed of the dewpoint mean (blue line) and interquartile range (blue shading) for each sample, the
temperature mean (red line) and interquartile range (red shading) for each sample, the most-unstable parcel path (dashed gray line,
changing to blue above the FZL, truncated at the MPL) and surface-based parcel path (dashed gray line, if different from the most-unstable
parcel path), the LCL (blue horizontal mark), the LFC (red horizontal mark), and the effective inflow layer (red line above the 40°C
mark). The mean 0-3-km shear-relative hodograph is displayed in the storm-relative sense by subtracting the right-moving storm motion
calculated from this mean profile, and is composed of the 0~1-km shear (purple), the 1-3-km shear (red), the 3-6-km shear (orange), the
6-9-km shear (gold), the 9-12-km shear (light yellow), and the storm motion (red dot at origin), with the 10 and 20 m s~ ! storm-relative
wind range rings plotted outside the storm motion (red). An assortment of parameters (their definitions and units defined in section 2) are
plotted on left hand side of each panel; these are calculated using the mean profile. Height is in meters, temperature in degrees Celsius,

and wind in meters per second.

in such a way that does not depend on storm motion, ground-
relative speed, or direction. Before compositing, shear profiles
were transformed by first rotating them by the direction of
the 0-3-km shear vector (such that this vector lays parallel to
the x axis), then subtracting the surface u and v wind (such
that the hodograph starts at the origin). This methodology,
which is used to better ensure that mean hodograph shapes
represent their constituents, is described in more detail in
Nixon and Allen (2022). These rotated shear-relative u and v
components were inputs to the SOM. For the thermodynamic
profile, temperature (7)) must first be preserved, since hail
growth depends on both buoyancy and favorable tempera-
tures. Consequently, 7" was selected as an input. This differs
from the solely buoyancy-preserving approach in Warren
et al. (2021), which was necessary to cluster tornadic envi-
ronments. Alongside 7, the moisture profile must also be
preserved. Though dewpoint was considered for this, it is a
weak function of pressure, so it cannot consistently approxi-
mate water vapor mass or relative humidity across different
elevations (Warren et al. 2021). Instead, mixing ratio (w), a
more direct measure of water vapor content, was selected
as an input.

Before the SOM was trained on these parameters, wind
profiles were truncated to 9 km to minimize the influence of
the upper-level wind profile (which was found to have consid-
erable spread, especially in cases with low tropopauses), simi-
lar to Warren et al. (2021). We acknowledge that wind data
above 9 km may still influence upper-level storm-relative
flow, storm motion, and storm size (Warren et al. 2017). Ther-
modynamic profiles were considered up to 15 km in accor-
dance with Warren et al. (2021), since some of the parameters
examined herein (especially CAPE and MPL) depend on tro-
popause height and how high the buoyancy profile extends.
Before these parameters were input to the SOM, they were
normalized by subtracting the mean and dividing by the

standard deviation of each parameter (at each height) across
the entire input sample. According to Warren et al. (2021),
this method better equalizes the weights of each parameter in
the training of the SOM. Although it assumes that each param-
eter is normally distributed across the input sample, this assump-
tion was deemed justifiable for both wind and temperature
profiles by Warren et al. (2021). For all SOMs, the mean 7, w, u,
and v is obtained from each node, and used to reconstruct a rep-
resentative hodograph and skew 7.

Though this study identifies multiple relevant relationships
using SOMs, it also employs strategic subsetting to further in-
vestigate them. Throughout this study, environments will be
subset by percentile, such that “high” refers to all cases where
a specified parameter is at least one standard deviation above
the mean, and “low” refers to all cases where that parameter
is less than one standard deviation below the mean (e.g.,
“high CAPE” will refer to any value of CAPE greater than or
equal to the 84.1st percentile of CAPE, or one standard devi-
ation above the mean of CAPE, assuming a normal distribu-
tion). This subsetting approach was used to display important
environmental relationships in a more simple manner and to
better highlight differences between environments.

3. Results
a. Variance in the environments of hail-producing storms

With the exception of Warren et al. (2021), most studies
have examined hail environments statistically (e.g., Johnson
and Sugden 2014; Taszarek et al. 2020; Gensini et al. 2021;
Nixon and Allen 2022; Homeyer et al. 2023), focusing on mean
environmental parameters and their spread. Because of the con-
siderably larger size and improved robustness of the dataset used
herein, we include the mean environments of hail binned by size
in Fig. 1. Similar to Johnson and Sugden (2014), larger hail is
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FIG. 2. As in Fig. 1, but the mean skew T and storm-relative hodograph for each node produced by a SOM given inputs of kinematic
profiles for two hail size bins [smaller than 12.5 mm (0.5 in.), and at least 50 mm (2.0 in.)]. All composite hodographs are displayed relative
to the estimated storm motion (Bunkers et al. 2000) calculated from the mean profile. The median hail size in each node is displayed on
the top right, as is the number (N) of cases in each node. Various other aspects of the display are outlined in Fig. 1.

associated with greater CAPE and stronger S06 than smaller
hail. Also similar to Johnson and Sugden (2014) and Nixon and
Allen (2022), S06 varies little per hail size beyond 25 mm (1.0 in.).
In other words, as hail size increases, the shear profile appears to
become less able to distinguish between hail sizes. This is in
contrast to CAPE, which increases continuously with hail size.
Although this may initially suggest that the shear profile is less
important than the thermodynamic profile in hail prediction
[a conclusion drawn by Warren et al. (2021)], we choose to
consider the alternate hypothesis, and investigate how wind
shear regulates large hail potential.

Although examining the mean characteristics of hail environ-
ments can prove useful in operations (e.g., Johnson and Sugden
2014; Nixon and Allen 2022), this may mask important relation-
ships between parameters that add complexity. As the physical
processes that govern relationships, such as those between

CAPE and shear, are unknown, we leverage the self-organizing
map to separate out cases that may originate due to different en-
vironmental processes. We first consult a self-organizing map
trained on all kinematic (u and v wind) profiles of hail of any
size (Fig. 2). A variety of shear profiles were associated with sig.-
severe hail, with strong variance between nodes, which included
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FI1G. 3. 2D kernel density estimate of the locations of reports in each node produced by a SOM given inputs of kinematic profiles for
two hail size bins [smaller than 12.5 mm (0.5 in.), and at least 50 mm (2.0 in.)]. The mean month and time of day for each node is also dis-
played, calculated using circular statistics (which account for ranges of values without a significant zero point, e.g., to ensure that the aver-
age of 2300 and 0100 UTC is 0000 UTC, not 1200 UTC).

veering, backing, and straight hodographs. However, the nodes
with the weakest S06 (Nodes 1 and 8) were associated with a
subsevere average hail size. In general, stronger S06 was associ-
ated with smaller CAPE, and weaker S06 was associated with
larger CAPE. Stronger SO1 (e.g., in Nodes 4, 5, and 9) was also
accompanied by stronger CIN.

The prevalence of the various shear regimes varied across
the central United States (Fig. 3). While nodes with weak S01
were found especially in the southern and central High Plains
(and associated with deeper mixed layers per Fig. 2), the no-
des with the strongest SO1 (Nodes 4, 5, and 9) were found es-
pecially from the southern plains into the Ohio River valley.
The shear profiles varied considerably by time of day and
month, such that seasonal variability and the diurnal cycle
were likely important in each regime. The cases with the
strongest S06 were most common in April, while the cases
with the weakest S06 were more common in June and July.

In contrast, a self-organizing map trained on only the 7 and
w profiles shows that while a variety of temperature and mois-
ture profiles are conducive to hail, some dependencies may
exist (Fig. 4). A variety of CAPE and moisture profiles were
associated with sig.-severe hail, but profiles with drier mid
and upper-level air (Nodes 1, 3, and 6) were accompanied by

stronger CAPE. The profiles with the weakest CAPE (Nodes
2, 5,7, and 9) were accompanied by the lowest FZLs, and
stronger S06 (especially for sig.-severe hail cases).

The various thermodynamic regimes also exhibited differ-
ences in frequency by region (Fig. 5). Drier profiles (e.g., No-
des 1, 3, and 6) were generally confined to the central and
southern plains and High Plains. Profiles with higher relative
humidity through a deeper layer (e.g., Nodes 4, 5, and 8) ex-
tended into the Midwest. The shallowest CAPE profiles (e.g.,
Nodes 2 and 7) were found in the higher terrain around the
Colorado Front Range. Compared to the clusters of kinematic
profiles, the clusters of thermodynamic profiles were less sen-
sitive to the time of day.

b. Deep-layer shear, CAPE, and relative humidity

As a first hypothesis, we investigate if larger hail is favored
by a balance of wind shear, CAPE, and relative humidity. As
explored above, the variance in the self-organizing maps may
be a function of multiple potential relationships between
these profiles. Though the SOMs were useful in revealing
these, they are less helpful at isolating the impacts of each
profile on hail growth. Consequently, we hereafter investigate
each relationship separately. By subsetting cases based on
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F1G. 4. As in Fig. 2, but for a SOM given inputs of thermodynamic profiles.

“low” and “high” thresholds of various environmental param-
eters, we can more directly examine their individual controls
on hail potential, and any factors that may compensate for a
change in another aspect of the profile.

The mean relationship between CAPE and S06 is illustrated
in Figs. 6 and 7. In Fig. 6, weaker CAPE is accompanied by
stronger S06 and a lower FZL. S06 is highest for sig.-severe hail
in low CAPE. Differences in both S06 and FZL between the
low CAPE and high CAPE sig.-severe hail samples are statisti-
cally significant at the 1% level using a Mann—Whitney U test
(Mann and Whitney 1947). In Fig. 7, similar relationships are ev-
ident, with weaker S06 accompanied by stronger CAPE (even
for smaller hail), and stronger S06 accompanied by a lower

FZL. Stronger S06 is also associated with weaker CAPE and
stronger CIN. Differences in CAPE, CIN, and FZL between the
low S06 and high S06 sig.-severe hail samples are all statistically
significant at the 1% level.

Since relative humidity of the ambient air also impacts the
reduction of CAPE through entrainment, the relationship be-
tween CAPE and relative humidity in cases of sig.-severe hail
is examined in Fig. 8. As RH13 decreases, the magnitude of
CAPE favorable for sig.-severe hail increases substantially.
The differences in CAPE between the low RH13 and high
RH13 samples are statistically significant at the 1% level using
a Mann—-Whitney U test. This relationship is still notable in
the 3-6-km layer, and even the 6-9-km layer (not shown).
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FIG. 5. As in Fig. 3, but for a SOM given inputs of thermodynamic profiles.

Since the entrainment of dry and stable air into an updraft may
dilute its buoyancy (Peters et al. 2019, 2023), this result may be
observational evidence of the impacts of entrainment on hail
growth (or, perhaps, storm formation and maintenance).

The relationships shown in Figs. 14 suggest that hailstorms
can form in a variety of combinations of CAPE, shear, and
relative humidity. This is not surprising, since the net CAPE
available to an updraft depends not only on the CAPE profile,
but on the wind shear and relative humidity of the ambient
environment (Peters et al. 2019, 2023). The relationship be-
tween these parameters in hail environments is illustrated in
Fig. 9. Rather unsurprisingly, lower RH16 is accompanied by
stronger CAPE and/or stronger S06. Likewise, weaker S06 is
accompanied by stronger CAPE and/or higher RH16 (which
may combat entrainment). On the other hand, the reverse is
also true; stronger S06 paired with a moister troposphere is
accompanied by weaker CAPE. This may be observational
evidence that excess CAPE without entrainment may be det-
rimental to hail growth (Lin and Kumjian 2022). Rather, an
“optimal” degree of entrainment-adjusted CAPE may exist
that depends on wind shear and relative humidity.

c¢. Low-level storm-relative winds and CAPE

For the second hypothesis, we investigate excess low-level
storm-relative winds as unfavorable for hail growth without com-
pensation from the low-level buoyancy profile. As noted in

simulations by Dennis and Kumjian (2017), Kumjian et al. (2021),
and Lin and Kumjian (2022), in cases of strong low-level shear,
strong low-level storm-relative winds can detrimentally affect the
trajectories of hailstones through the hail growth zone. The ther-
modynamic profiles favorable for sig.-severe hail in high SO1, high
S06, and high SRWO0L1 shear profiles are shown in Fig. 10 relative
to an average shear profile (a “control” sample). Evidently, sig.-
severe hail is still possible even with strong SO1 [a conclusion also
drawn from Kumyjian et al. (2021) and Homeyer et al. (2023)] and
SRWO01. However, these cases are accompanied by weaker
CAPE, stronger CIN, and a higher most-unstable LPL than aver-
age. The differences in CIN between these samples and the con-
trol sample are statistically significant at the 1% level using a
Mann-Whitney U test. The buoyancy profile of the strong
SRWO01 sample is particularly different from the control sample,
with stronger CIN, a higher LFC, and weaker sub-HGZ CAPE
(statistically significant at the 1% level). On the other hand, the
thermodynamic profiles favorable for sig.-severe hail in strong
S06 without strong SO1 or SRWO01 are more similar to the average
sample.

How do the favorable low-level shear profiles of hailstorms
change with changes in the low-level buoyancy profile? To dis-
entangle this question, the relationships between S01, SRWO01,
CIN, and LFC are explored in 2D histograms in Fig. 11. The re-
lationship between S01 and the low-level thermodynamic profile
is complicated; while increasing SO01 is generally accompanied by
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FIG. 6. As in Fig. 1, but the mean skew 7" and storm-relative hodograph for (top) hail smaller than 12.5 mm (0.5 in.),
and (bottom) at least 50 mm (2.0 in.), only for cases with (left) low CAPE (CAPE less than the 15.9th percentile) and
(right) high CAPE (CAPE greater than or equal to the 84.1st percentile). Although all cases with CAPE < 250 J kg™!
were removed prior to this analysis, some samples may still have mean CAPE < 250 J kg~ ! because variables are
calculated using the mean profile, not the mean across the sample.

increasing CIN (as showed above), this relationship is less clear
when compared to the LFC. Furthermore, it is not known
whether or not the increase in CIN with increasing SO01 is simply
a by-product of boundary layer decoupling beneath strong
low-level flow (e.g., Mead and Thompson 2011), rather than a
physically relevant consideration for hail potential. Conversely,
the relationship between SRWO01 and these parameters has no
known codependency, yet is more consistent: stronger-than-
average SRWO1 is accompanied by both stronger CIN and a
higher LFC, especially when S01 is weaker. Thus, the correlation
between SRWO01 and the low-level buoyancy profile may be
meaningful to hail prediction.

What is the significance of stronger CIN or a higher LFC in
cases of stronger low-level storm-relative winds? Since both low-
level buoyancy and storm-relative winds affect the trajectories
and residence time of hailstones within the hail growth zone

(Dennis and Kumyjian 2017; Kumyjian et al. 2021; Lin and Kumjian
2022), we hypothesize that the favorable ranges of these parame-
ters may differ depending on the height of the HGZ. In cases of
sig.-severe hail subset by strong SRWO01 (Fig. 12), a higher FZL is
accompanied by stronger CIN and a higher LFC (such that
CAPE below the HGZ is minimized). On the other hand, a lower
FZL evidently need not be accompanied by strong CIN or a high
LFC (perhaps because CAPE below the HGZ is already mini-
mized). The differences in CIN between the low FZL and high
FZL profiles are statistically significant at the 1% level using a
Mann-Whitney U test. Thus, we have reason to hypothesize that
the relationship between the favorable low-level storm-relative
winds and buoyancy profiles of hailstorms depends also on the
FZL.

The relationship between S01, SRWO01, and sub-HGZ CAPE
is shown in Fig. 13. Here, SRWOL1 is consistently correlated with
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F1G. 7. Asin Fig. 6, but only for cases with (left) low S06 and (right) high S06.

sub-HGZ CAPE, such that increasing SRWO1 is met with de-
creasing sub-HGZ CAPE, regardless of SO1. Likewise, the re-
verse relationship is also true: increasing sub-HGZ CAPE is met
with decreasing SRWO1. The full distribution of sub-HGZ
CAPE for two subsets of the SRWO01 parameter space are also
shown via violin plots (Fig. 13). A difference in only 5 m s™!
(~10 kt) between samples is accompanied by a large shift in the
favorable ranges of sub-HGZ CAPE (statistically significant at
the 1% level using a Mann—Whitney U test). While weaker
SRWO1 is accompanied by a wide range of CAPE magnitudes,
stronger SRWOL1 is skewed toward weaker sub-HGZ CAPE.
The reverse relationship was similar (not shown), where stron-
ger sub-HGZ CAPE was skewed toward weaker SRWO01. Given
these results, we find evidence that in environments with stron-
ger low-level storm-relative winds, large hail is more likely with
weaker sub-HGZ CAPE. Likewise, in environments with stron-
ger sub-HGZ CAPE, large hail is more likely with weaker low-
level storm-relative winds.

A SOM of the variety of buoyancy profiles favorable for
large hail in strong SRWO1 is shown in Fig. 14. In this sample,

regardless of SO1 and for all hail sizes, hail is produced in envi-
ronments with weaker than average sub-HGZ CAPE. However,
this is possible in a variety of different thermodynamic regimes.
For instance, Nodes 1, 4, and 5 feature elevated effective inflow
bases (Thompson et al. 2007). Elevated storms have often been
noted to produce severe hail (Colman 1990; Horgan et al. 2007,
Corfidi et al. 2008), and elevated EIBs are found in over 12% of
all cases of severe hail in this dataset. Nodes 3, 7, and 9, while
not elevated as defined by Thompson et al. (2007), feature an
elevated most-unstable LPL. The nodes with the least surface-
based CIN (Nodes 6 and 8) have the highest surface elevations.
Thus, large hail is possible even with strong low-level storm-
relative winds, but most of these cases feature either elevated
buoyancy profiles or an otherwise low FZL.

d. Storm depth and freezing level

Finally, we investigate the role of storm depth on hail
growth. Although depth can be defined in several ways, the
most-unstable MPL is used here to approximate the maximum
potential height that an updraft can reach above the EL. Given

Unauthenticated | Downloaded 04/28/24 07:16 PM UTC



2228 WEATHER AND FORECASTING VOLUME 38
Low RH13 High RH13
Size: =2.00" ‘\ Size: =2.00"
12 N: 1485 12 N: 1485
< N
-9 e 10 20| |9 e 10 20
-6 L6
S06: 20 S06: 21
S01:5 S01: 8
SRWo:: 14 SRWo;: 15
1 3 RHi6: 48 | 3 RHi6: 75
FZL: 4.2 FZL: 4.2
1 CIN: -138 CIN: -74
I+ CAPE: 1575 +1 CAPE: 852
—}0 9 lp %O p 4p —}0 9 \ %0 4p

FIG. 8. As in Fig. 6, but the mean skew 7" and storm-relative hodograph for hail of at least 50 mm (2.0 in.), only for
cases with (left) low RH13 (mean relative humidity from 1 to 3 km) and (right) high RH13.

previous studies (e.g., Nelson 1983; Browning and Foote 1976;
Miller et al. 1988; Knight and Knight 2001), hail growth is not
possible if an updraft fails to extend into sufficiently cold tem-
peratures. The ability of an updraft to reach these optimal tem-
peratures depends on two factors: the height of the FZL, and
the depth of the storm. In Fig. 15, when the MPL is varied, we
find that a shallower storm depth must be accompanied by a
lower FZL. The differences in FZL heights between the low
MPL and high MPL samples are statistically significant at the
1% level using a Mann—Whitney U test.

The extent to which potential storm depth (particularly
above the freezing level) may affect maximum expected hail

Parameter Space of Hail Environments
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F1G. 9. 2D histogram of S06 and RH16 for all hail reports, col-
ored by mean CAPE. Bins with less than four cases are omitted to
reduce noise.

size is examined in more detail here. Past studies have noted
that overshooting top height can serve as a reliable indicator
for large hail potential in midlatitudes (Homeyer and Kumjian
2015; Murillo and Homeyer 2019). In Fig. 16, two relevant re-
lationships can be seen. First, as MPL lowers (or as maximum
potential storm depth becomes shallower), the mean FZL
height for each size bin also lowers. In other words, though
hail is possible with a variety of storm depths, these storms
must have sufficient depth above the FZL to produce large
hail. This result supports Zhou et al. (2021), who found that
several different types of buoyancy profiles were associated
with severe hail, but weaker and shallower buoyancy was most
often found with a lower FZL.

We acknowledge that CAPE and storm depth are ulti-
mately correlated with the temperature profile through latent
heat release, such that environments with higher FZLs gener-
ally feature more moisture and stronger CAPE. However,
this correlation strongly depends on the lapse rate of tempera-
ture between the surface and the FZL, which may vary con-
siderably per hail environment as shown throughout. Thus,
although we acknowledge that the change in average FZL per
MPL may be due in part to this correlation, we argue that
there is also a fundamental reason why a shallower storm
must have a lower FZL to produce hail [i.e., to reach suffi-
ciently deep into the HGZ (Nelson 1983; Browning and Foote
1976; Miller et al. 1988; Knight and Knight 2001)].

Second, and more importantly for the sake of hail size fore-
casting, is that MPL serves as a limiting factor on maximum po-
tential hail size. In Fig. 16, although large hail is possible with a
variety of storm depths, increasingly larger hail is distinctly lim-
ited to increasingly higher MPLs. In other words, deeper storms
can produce larger hail, as has been noted in remote sensing
studies (Homeyer and Kumjian 2015; Murillo and Homeyer
2019). When all unique observed hail sizes are compared to the
lowest MPL for each size, they are correlated with a Pearson
correlation of 0.49, significant at the 1% level using a Student’s ¢
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FIG. 10. As in Fig. 6, but the mean skew 7 and storm-relative hodograph for hail of at least 50 mm (2.0 in.), only for cases with (top left)
moderate (defined as within one standard deviation from the mean) S06 and SRWO01 but high SO01; (top center) moderate SO1 and SRWO01
but high S06; (top right) moderate SO1 and S06 but high SRWO01; and (bottom) moderate SO01, S06, and SRWO01.

test. Neither CAPE nor HGZ CAPE displays a similar relation-  the bounds of the HGZ have been defined in previous studies
ship in Fig. 16, despite their more prevalent use in hail size fore-  (e.g., perhaps from —30° to —10°C is not ideal), we find evidence
casting, echoing past studies (Brooks 2013; Sherburn and Parker  that estimations of storm depth may better serve hail size predic-
2014; Taszarek et al. 2020). Although this may be related to how  tion than estimations of buoyancy.
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FIG. 11. As in Fig. 9, but 2D histograms of S01 and SRWO1 for all hail reports, colored by (left) CIN and (right) LFC.
Bins with less than four cases are omitted to reduce noise.
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FIG. 12. As in Fig. 6, but the mean skew 7 and storm-relative hodograph for hail of at least 50 mm (2.0 in.), only for
cases with a high mean 0-1-km storm-relative wind and (left) low FZL and (right) high FZL.

e Strong low-level storm-relative winds are unfavorable
for large hail, unless CAPE below the HGZ is suffi-
ciently weak.

¢ Strong CAPE below the HGZ is unfavorable for large hail,
unless low-level storm-relative winds are sufficiently weak.

3) Sufficient storm depth into favorable temperatures:

e Lower freezing levels support large hail more readily,
even with shallower buoyancy, stronger low-level CAPE,
or stronger storm-relative winds.

e Storm depth (particularly in/above the freezing level),
rather than CAPE, may be useful in forecasting maxi-
mum potential hail size.

4. Summary and discussion

To summarize the key findings of this analysis, the envi-
ronments of large hail appear to depend on the following
relationships:

1) Favorable wind shear, CAPE, and relative humidity:
¢ Favorable CAPE values depend on deep-layer shear and
relative humidity, presumably as a function of entrainment.
¢ An entrainment-adjusted CAPE may be useful in hail
forecasting.
2) Favorable storm-relative winds and CAPE below the hail
growth zone

CAPE p-Hez Vs. 0—1 km Kinematics CAPEgp-Hcz VS. SRWO1

25 700
CAPE (sub-HGZ)
2000 -
204 I 600
|
] 1500 -
I 500
_ 151 s .
o ~
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- n B w
) 400 % 1000
"104 | ©
B |
300 SRWO01 =15 ms™
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5 .
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5 10 15 20 25
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FI1G. 13. (left) As in Fig. 11, but 2D histograms of SO1 and SRWO01 for all hail reports, colored by LFC-FZL. Bins
with less than four cases are omitted to reduce noise. (right) A violin plot of the distribution of FZL-LFC for two sub-
sets of cases: SRWOL < 10 m s~ ! and SRW01 = 10ms ™.
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FIG. 14. As in Fig. 2, but for a SOM given inputs of kinematic profiles, only for cases with SRWO01 at or above the 75th percentile. Al-
though all cases with CAPE < 250 J kg~ ! were removed prior to this analysis, some samples may still have mean CAPE < 250 J kg~ * be-
cause variables are calculated using the mean profile, not the mean across the sample.

This study finds that hail growth is a multivariate problem af-
fected by multiple factors. The relevant parameters and physical
relationships involved in these factors are found to be very differ-
ent than those consulted traditionally in severe weather forecast-
ing. The three main facets examined herein are explored below.

First, large hail environments appear to depend on a favor-
able combination of CAPE, deep-layer shear, and deep-layer
relative humidity. Though the concept and ramifications of
entrainment (Peters et al. 2020a) and condensate loading
(Storer and Van den Heever 2013) are becoming more preva-
lent in literature, our current parameter-based workflow does

Unauthenticated |

not yet account for these in CAPE estimations. However, this
study shows that CAPE, deep-layer shear, and deep-layer rel-
ative humidity all appear intertwined, such that deficits in one
can be compensated by excesses in another in cases of large
hail. This strongly suggests that entrainment-based adjust-
ments to traditional calculations of CAPE (i.e., Peters et al.
2020a) may add value for hail prediction.

Second, large hail environments appear to depend on a fa-
vorable balance between storm-relative winds and buoyancy
below the hail growth zone. Although stronger storm-relative
inflow can sustain larger storms (Peters et al. 2020b) that
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FIG. 15. As in Fig. 6, but the mean skew 7" and storm-relative hodograph for hail of at least 50 mm (2.0 in.), only for
cases with (left) low MPL and (right) high MPL.

produce more hail mass (Dennis and Kumjian 2017; Homeyer
et al. 2023), excess low-level storm-relative winds have been
found to inhibit hail growth (Dennis and Kumjian 2017; Lin and
Kumjian 2022; Kumjian et al. 2021). Likewise, excess low-level
buoyancy may have similar impacts (Lin and Kumjian 2022).
This study finds evidence that large hail is common even with
strong low-level storm-relative winds, but that these environ-
ments are accompanied by weaker-than-average buoyancy be-
low the hail growth zone. Likewise, environments with stronger

Hail Size by MPL Height

buoyancy below the hail growth zone are accompanied by
weaker low-level storm-relative winds. Though the physical rea-
sons for this compensation are beyond the scope of this paper,
we speculate that the higher the FZL, the more time an ascend-
ing air parcel has to be acted upon by the storm-relative wind,
and thus the more momentum it will have once it reaches the
hail growth zone [and the less residence time it will have within
it, as explored in Lin and Kumjian (2022)]. In this way, if low-
level storm-relative winds are stronger, a hailstorm may benefit

Hail Size by CAPE
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FIG. 16. As in Fig. 9, but 2D histograms of (left) MPL and hail size; (top right) MUCAPE and hail size; and (bottom
right) HGZ CAPE and hail size, for all hail reports, colored by mean FZL..
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from a higher level of free convection. This may explain the
prevalence of cases with elevated inflow bases, which account
for over 12% of severe hail reports in this study. More research
through simulations may be necessary to better understand how
parcel trajectories through the hail growth zone are modulated
by low-level CAPE.

Third, parameterizations of storm depth, especially with re-
spect to the hail growth zone, may be critical in hail predic-
tion. Although CAPE is more commonly used in forecasting,
we find that the MPL serves as a more robust limiting factor
for hail size, such that deeper storms can produce larger hail
[which reflects the utility of overshooting top height in large
hail detection (Homeyer and Kumjian 2015; Bedka et al.
2018; Bang and Cecil 2019; Murillo and Homeyer 2019)]. In
other words, it may matter less how much CAPE exists in a
vertical profile, and more how deep a storm can potentially
become in that profile. We also find that shallower storms are
associated with lower FZLs, a result also found by Zhou et al.
(2021). Future work may seek to better understand the con-
trols of CAPE and storm depth on hail size, and to gain more
clarity on whether a storm’s depth above the FZL, or total
depth, would be a more skillful predictor of hail size. Investi-
gations of storms producing large accumulations of small hail
(Kumjian et al. 2019) may also consider the possibility that
shallower storms limit maximum hail size.

These controls may provide new insights into the climatol-
ogy of large hail. For instance, in the United States, hail is
common in the Great Plains, yet comparatively infrequent
east of the Mississippi River (Allen and Tippett 2015; Allen
et al. 2017; Elmore et al. 2022). A number of environmental
factors may influence this. First, a higher surface elevation
typically means a lower FZL. Given the sensitivity of large
hail to FZL as explored above, this may explain the preva-
lence of large hail in the High Plains and the Appalachian
Mountains (Allen and Tippett 2015), as well as the Alps in
Europe (Pucik et al. 2019). These results corroborate those
found by Zhou et al. (2021), who found a variety of different
thermodynamic profiles to be favorable for large hail, includ-
ing cases with low FZLs. Second, the prevailing shear profiles
for severe weather episodes change across the country. Events
in the Southeast United States are often accompanied by
strong synoptic low-level flow and a warm, buoyant marine
boundary layer, a combination that may limit hail production
[this is supported by observations (Murillo et al. 2021)]. Al-
though events in the central Great Plains are also often ac-
companied by a diurnally driven low-level jet (Bonner 1968),
nocturnal cooling during the early evening transition may
serve to limit surface-based convection, but allow elevated
storms (Colman 1990; Horgan et al. 2007; Corfidi et al. 2008)
that are more apt to produce severe hail. In contrast, events in
the High Plains are generally removed from the influence of the
diurnal low-level jet (Bonner 1968), thus perhaps more apt to
produce severe hail even with stronger low-level buoyancy.

How can these results inform operational forecasting? The
understanding of hail environments has evolved rapidly over the
past decade. Evidence from this (and previous) research propose
several new approaches to the prediction of large hail. First,
an entrainment-adjusted CAPE (Peters et al. 2023) may aid
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forecasters in assessing whether CAPE is “optimal” for large
hail. Second, an analysis of low-level storm-relative winds and
CAPE below the hail growth zone may be critical in distinguish-
ing between environments that can and cannot support large
hail. Third, an assessment of potential storm depth, particularly
above the freezing level, may support more informed predictions
of maximum potential hail size.

While forecasters may favor the simplicity of parameters, this
study challenges those currently used in hail forecasting. Though
variables such as CAPE, lapse rates, FZL, and bulk shear show
apparent statistical significance in prior studies (e.g., Johnson
and Sugden 2014; Storm Prediction Center 2019), we argue that
these may be merely proxies for more relevant quantities. For
instance, extreme CAPE (often thought to be conducive to giant
hail) may simply be a proxy for particularly deep convection.
This study finds that maximum potential hail size is more di-
rectly impacted by MPL than CAPE. Steep lapse rates (also a
rule of thumb for large hail environments) may simply serve as a
proxy for strong CAPE and a low FZL. Although steep lapse
rates accompany large hail in the United States (Johnson and
Sugden 2014), comparable lapse rates are less prevalent in other
regions (Taszarek et al. 2021a; Zhou et al. 2021). The FZL itself
may serve more than one purpose; while low FZLs are tradition-
ally thought to reduce the amount of time a hailstone has to
melt, we argue that its role as a proxy for the hail growth zone
may be just as important.

Although emphasis in forecasting is placed on the back-
ground environment, we remind the reader that the character-
istics of the storm itself, and any storm interactions, may also
heavily influence potential hail size. Similarly to the buoyancy
problem, a storm’s propensity to produce large hail is primar-
ily regulated by its structure and intensity, regardless of how
these characteristics were attained.
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