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ABSTRACT. This paper focuses on a 2D magnetohydrodynamic (MHD) system
with only horizontal dissipation in the domain @ = T x R with T = [0, 1] being a
periodic box. The goal here is to understand the stability problem on perturba-
tions near the background magnetic field (1,0). Due to the lack of vertical dissi-
pation, this stability problem is difficult. This paper solves the desired stability
problem by simultaneously exploiting two smoothing and stabilizing mechanisms:
the enhanced dissipation due to the coupling between the velocity and the mag-
netic fields, and the strong Poincaré type inequalities for the oscillation part of the
solution, namely the difference between the solution and its horizontal average. In
addition, the oscillation part of the solution is shown to converge exponentially to
zero in H! ast — co. As a consequence, the solution converges to its horizontal
average asymptotically.

1. INTRODUCTION

Let @ = T x R with T = [0, 1] being a one-dimensional (1D) periodic domain
and R being the real line. Consider the 2D incompressible magnetohydrodynamic
(MHD) equations with horizontal dissipation

ou+u-Vu=-VP+vou+B-VDB, reQ t>0,
OB +u-VB+nB=DB-Vu,

V-u=0, V-B=0,

u(z,0) = ug(x), B(x,0) = By(z),

(1.1)

where u denotes the velocity field, B the magnetic field and P the pressure, and v > 0
and n are the viscosity and the damping coefficients, respectively. Here the velocity
u obeys a degenerate Navier-Stokes equation with only horizontal dissipation v0;;u
and with a Lorentz forcing term. The magnetic field B satisfies the induction
equation with a damping term. The goal of this paper is to understand the stability
and the large-time behavior of perturbations near a background magnetic field.

This study is partially motivated by the stabilizing phenomenon of a background
magnetic field on electrically conducting fluids that has been observed in physical
experiments and numerical simulations (see, e.g., [1,2,6,12-14,24,25]). Since the
dynamics of electrically conducting fluids is governed by the MHD equations (see,
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e.g., [4,39]), the aim here is to establish this remarkable observation as a mathe-
matically rigorous fact on the MHD equations.

We take the background magnetic field to be the unit vector in the x;-direction,
B = (1,0). The corresponding steady-state solution of (1.1) is given by
u® = (0,0), BY=(1,0).
We write (u, b) with b = B— B for the perturbation near (u(®), B®)). Our attention
will be focused on the following new system
u+u-Vu+ VP =voju+b-Vb+ b, x€Q, t>0
ob+u-Vb+nb=1>b-Vu+ Ou,
V-u=V-b=0,
u(z,0) = ug(x), b(x,0) = bo(x).
In comparison with the original system in (1.1), there are two extra terms 0;b
and Oju in (1.2). We aim to achieve a complete understanding on the stability of

solutions to (1.2) in the Sobolev setting. In addition, we also attempt to obtain the
precise large-time behavior of (u,b) and establish the eventual dynamics of (1.2).

(1.2)

Due to the lack of vertical dissipation in (1.2), the resolution of the stability
problem is not direct. If we follow the standard energy method approach, the
difficulty is immediate. The divergence-free conditions V -u =V - b = 0 allow us to
obtain a suitable upper bound on the H'-norm of (u,b), but it does not appear to
be possible to control the H%-norm directly. Even if we completely ignore the terms
related to the magnetic field and simply consider the 2D anisotropic Navier-Stokes
equations

ou+u-Vu+ VP =vou,
direct energy estimates fail to generate a suitable H?-bound. In fact, when we resort
to the corresponding vorticity formulation

Oww +u - Vw = vojw,

the one-directional dissipation is insufficient to bound the nonlinearity directly. In
the estimate of Vw,
1d
2dt
the right-hand side does not admit a suitable upper bound. In fact,

Vw32 + V|1 Vw||7. = —/Vw -Vu - Vwdz,

/Vw -Vu-Vwdr = /81u1(81w)2 dx + /81u281w82w dx

+/32u131w82wdx+/82UQ(32w)2 dz (13)

and the two terms in (1.3) can not be controlled suitably.

One novel idea to overcome this difficulty is to explore the stabilizing effect of the
magnetic field on the fluids as hinted by the aforementioned experimental results.
Mathematically we make full use of the coupling and interaction in the MHD system



MAGNETOHYDRODYNAMIC EQUATIONS 3

in (1.2) to unearth the hidden smoothing and stabilizing properties. To do so, we
first apply the Leray projection P = I—VA~!V- to the velocity equation to eliminate
the pressure,

atu = V@llu + 311) + P(b -Vb—u- V'LL>

By differentiating the linearized system in time

{&u = voju + 01 b,

1.4

and making several substitutions, we can convert (1.4) into a system of wave equa-
tions

{attu + (n+ vd1)owu — (1 +vn)opu =0, (15)

8ttb + (7’] + V@ll)ﬁtb — (1 + V?’])aub = 0.

(1.5) allows us to decouple u and b and exhibits more smoothing and stabilizing
properties than (1.4). In particular, both u and b gain weak horizontal dissipation
as can be seen from the pieces (1+vn)0yu and (1+vn)0dy1b. Unfortunately, this extra
regularization does not appear to help with the deficiency of vertical dissipation in
the velocity equation. As a consequence, this approach fails.

We remark that a previous work of Feng, Hafeez and Wu [23] explored the ex-
tra stabilizing and smoothing of the wave structure, and successfully resolved the
stability problem on the same MHD system near the background magnetic field
B® = (0,1). When the background magnetic field is (0,1), the extra regularity
is in the vertical direction and complements with the horizontal dissipation in the
velocity equation. Therefore, the direction of the background magnetic field plays
a crucial role in the stabilizing phenomenon on electrically conduction fluids.

This paper seeks a different approach to resolve the stability problem concerned
here. The spatial domain here is 2 = T x R and we take full advantage of the ge-
ometry of this domain. The horizontal direction is periodic and we can separate the
zeroth Fourier mode from the non-zero ones. The zeroth Fourier mode corresponds
to the horizontal average. This hints the decomposition of the physical quantities
into the horizontal averages and the corresponding oscillation parts. More precisely,
for a function f that is integrable in x € T, we define

f($2):Af($17$2)d$1, f:f:‘FJ?-

This decomposition is orthogonal in the Sobolev space H*(2) for any integer k > 0
(see Lemma 2.2 in Section 2). More crucially, the oscillation part f obeys a strong
version of the Poincaré type inequality

1 fll2) < CllO1fll 220

This inequality allows us to control some of the nonlinear parts in terms of the
horizontal dissipation. By invoking the decompositions

u=1u+1u b=b+b



4 WEN FENG, FARZANA HAFEEZ, DIPENDRA REGMI, AND JTJAHONG WU

and applying the aforementioned Poincaré inequality together with various anisotropic
inequalities, we are able to successfully bound the nonlinearity and establish the fol-
lowing stability result.

Theorem 1.1. Let n > 0 and v > 0. Consider (1.2) with the initial data (ug,by) €
H3(Q), and V -ug = V - by = 0. Then there exists a constant € = £(v,n) > 0 such
that, if

[uollzs + [1boll s < e,
then (1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
()l + 16(8) 1755 +/0 (I0rulls + [IbllEs) dr < Ce?,

where C' > 0 is independent of € and t.

Theorem 1.1 successfully resolves the stability problem on a partially dissipated
MHD system near a background magnetic field even when the smoothing effect of
the magnetic field is not sufficient to deal with the dissipation deficiency.

Efforts are also devoted to understanding the precise large-time behavior of the
perturbation. We expect the horizontal average (u,b) to behave differently from

the oscillation part (@,b). Intuitively (u,b) corresponds to the zeroth horizontal
Fourier mode and the associated dissipation term vanishes. Thus (i,b) may not
decay in time. In contrast, (u,b) consists of non-zero horizontal Fourier modes and
the horizontal dissipation effectively plays the role of damping. As a consequence,

(@,b) could decay exponentially in time. Our second theorem rigorously confirms
this intuition.

Theorem 1.2. Let ug,by € H*(Q) with V -ug = 0 and V - by = 0. Assume that
llwoll s + ||bol| as < e for sufficiently small e > 0. Let (u,b) be the corresponding so-
lution of (1.2). Then the H* norm of the oscillation part (i, E) decays exponentially
m time, B

@)+ [0 < (luollars + [lboll s )e ™, (1.6)
for some contant Cy > 0 and for all t > 0.

We explain the main lines in the proof of Theorem 1.1. The local well-posedness
of (1.2) in the Sobolev space H*(Q2) can be shown via standard procedures such as
the approach in the book of Majda and Bertozzi [37]. Our attention is focused on
the global bound of (u,b) in H3(2). One of the most suitable tools for this purpose
is the bootstrapping argument [45]. To set up the argument, we first construct
the energy functional. For the MHD system in (1.2), the energy functional E(t)
is naturally given by the H3-norm of (u,b) together with the time integrals from
dissipative and damping terms, namely

t t
B(®) = sup ()l + 160} + 20 [ ovulls dr+20 | bl dr.
<7< 0 0
The main effort is then devoted to proving the energy inequality

E(t) < E(0) + CE2(t). (1.7)
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Once (1.7) is at our disposal, the bootstrapping argument then implies that, if
E(0) := ||(uo, bo) |35 is sufficiently small, say
[(uo, bo) s < €
for some suitable € > 0, then E(¢) remains uniformly bounded for any ¢ > 0,
E(t) < Cée?,
which gives us the desired global bound on [|(u(t),b(t))|[gs. To prove (1.7), we

invoke the orthogonal decompositions u = @ + u and b = b + b, apply the Poincaré
type inequalities and anisotropic upper bounds for triple products. More technical
details are provided in Section 3.

To prove Theorem 1.2, we first take the horizontal average of (1.2) to obtain the
equations of (u, b),

ata+u-Vﬁ+< 0) =b- Vb,
Oap
Ob+u-Vb+nb=0b- V.

(1.8)

We then write the equations of (@, b) by taking the difference of (1.2) and (1.8),

—_—

8{54—16 . VE—F UJQ@QZ_)—F 7’]};— b/-\V/'d— bg@gﬂ - 816 = 0.

The proof of (1.6) is divided into the estimates of ||(u, b)|| 2 and ||(Vu, Vb)|| 2. The
efforts are devoted to bounding the nonlinearity in terms of the horizontal derivatives
of u. Poincaré’s inequality and anisotropic upper bounds for the triple products are
used extensively. After a tedious process of evaluating many terms, we obtain

d, - ~ ~
(Wl + 1Bl + (2 = Cli(w, b)) |01 2

+ (20 = C|(, )| 9)[b]| 1 < 0,
which yields the decay rate in (1.6). A detailed proof is provided in Section 4.

Finally we briefly summarize some of related results to provide a broader view
on the studies of the MHD equations. Fundamental issues on the MHD equa-
tions such as well-posedness and stability problems have attracted a lot of atten-
tion. Substantial progress has recently been made on the well-posedness problem
concerning the MHD equations with various partial or fractional dissipation (see,
e.g., [8-10,16,17,19-22,30,32,35,42,43,46,49,53,55-61]). Since the pioneering work
of Alfvén [2], the stability problem on various MHD systems has recently gained
renewed interests and there are substantial developments. By taking advantage of
the Elsésser variables, several papers have successfully solved the stability problem
on the ideal MHD equations or the fully dissipated MHD equations with identical
(or almost identical) viscosity and magnetic diffusivity (see [3,7,26,47]). The sta-
bility problem on the MHD equations with only kinematic dissipation in R? or R?
have been solved via different approaches [15,27,28,33, 34,40, 41,44, 50,51, 62, 63].



6 WEN FENG, FARZANA HAFEEZ, DIPENDRA REGMI, AND JTJAHONG WU

The same problem in the periodic setting T? has been investigated by [38]. The
MHD equations with only magnetic diffusivity have recently been studied for the
small data global well-posedness near the trivial solution or a background magnetic
field [11,29,48,54,64], although a complete solution on the stability problem near
a background magnetic field is currently lacking. When the velocity equation in-
volves only horizontal or vertical dissipation, the velocity equation itself alone may
not be stable and the stability problem relies on the enhanced dissipation resulting
from the coupling and interaction. Several such MHD systems with degenerate ve-

locity dissipation have been shown to be stable near suitable background magnetic
fields [5,23,31, 36, 52].

The rest of this paper is divided into three sections. Section 2 states several
properties on the aforementioned decomposition and provides several anisotropic
inequalities. Section 3 proves Theorem 1.1 while Section 4 presents the proof of
Theorem 1.2.

2. PRELIMINARIES

This section states several properties on the decomposition defined in the in-
troduction and provides several anisotropic inequalities to be used in the proofs of
Theorems 1.1 and 1.2. Some of the materials presented here can be found in [9, 18].

We start by recalling the definition of the horizontal average and the oscillation
part. Let © =T x R and let f = f(z1,22) with (21, 22) € Q be sufficiently smooth,
say integrable in x; € T. The horizontal average f is given by

f(xs) = /Tf(%,lé) dzx;. (2.1)

We decompose f into f and the oscillation portion ]7,
f=r+r (2:2)
The following lemma is a direct consequence of (2.1) and (2.2).

Lemma 2.1. The average operator and the oscillation operator commute with the
partial derivatives, for 1 =1,2,

af=af. of=af af=0. f=o
As a special consequence, if V - f =0, then
V-f=0, V-f=0.
The second lemma states that the decomposition in (2.2) is orthogonal in any
Sobolev space H*((2).
Lemma 2.2. Let Q = T xR. Let k > 0 be an integer. Let f € H*(Q). Then f and
f are orthogonal in H*(Q), namely

(F s o= [ DF-DFdo =0, ey = 17y + 1
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In particular, || fll e < |fll e and [l < 1F1] -

The oscillation part obeys the following Poincaré type inequalities.

Lemma 2.3. If H@lfHLQ(Q) < 00, then

||fHL2(Q) < CHalfHL?(Q)-

In addition, if H@lfﬂm(g) < 00, then
||f||L°°(Q) < CHalfHHl(Q)-

Proof of Lemma 2.3. Since the horizontal average of fis zero, for any fixed o € R,
there is a € T such that

fla,z2) =0.
Then, for any (z,23) € €,

flay, 20) = / h 0.f(z,15) dz < /T 10.f (2, 22)| dz < |0n, fll 22 (r). (2.3)

Squaring each side of (2.3) and integrating over ) yields the first inequality. The
second inequality is obtained by taking the L>°(2) in (2.3) and using the simple fact
that || f||ze®) < C || f]| 1wy for any 1D function f € H'(R). O

Next we present several anisotropic inequalities. Anisotropic upper bounds for
triple products are frequently used to bound the nonlinear terms when only partial
dissipation is present. In the case when the spatial domain is the whole space R2,
Cao and Wu [9] showed and applied the following inequality

1 1 1 1
Ag@ﬂscwm;wm&mgwmwaww@mgwwmmwy (2.4)
(2.4) is a consequence of the elementary 1D inequality

1 ik
£l < V2N F 12 1122w (2.5)

Another consequence of (2.5) is the following inequality

1 1 1 1
||fHL°°(R2) < CHszz(Rz) ||alf||22(R2)||82f||i2(R2) ||3132f||22(R2)-
When the 1D spatial domain is a bounded domain, say T,

1
1 leemy < C Mz (I llzzn + 1 la2co)

[N

Since the oscillation part fhas mean zero, for ]76 HY(T),

~ ~ 1 ~, 1
| flloe(my < C||f||i2(1r)||(f),||/§2(1r)'

As a consequence of these elementary inequalities, the following two lemmas hold.
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Lemma 2.4. Let Q = T x R. For any f,g,h € L*(Q) with 0,f € L*() and
Dag € L*(2), then

1 1 1 1
/Q Fghl de < OIFIE 1oz + 1103 lee) Hlgl 2 1agll 1
For any f € H?*(Q), we have

[f]zo= (2) < CHfH%,Q(Q)(”fHLz(Q) + HalfHLz(Q))%HanH%?(Q)
% (102 llz2(@) + 19102 | 22y)
After replacing f by the oscillation part, we have the following inequalities.
Lemma 2.5. Let Q = T x R. For any f,g,h € L*(Q) with 0,f € L*(Q) and
Dag € L?(2), then

/ |[Fghl de < C|If 1700017 Nl917: 10291172 121l 2.
Q

For any f € H*(Q), we have

~ ~ 1 ~1 ~ 1 1
||f||L°°(Q) < C||f||22(9)||alf||?,2(9)||82f”?,2(9)||8132f||22(9)-

3. STABILITY
This section is devoted to the proof of Theorem 1.1 on the stability of (1.2).

Proof of Theorem 1.1. The local well-posedness of (1.2) in the Sobolev space H?(Q)
can be shown via standard procedures such as the approach in the book of Majda
and Bertozzi [37]. Our attention is focused on the global bound of (u,b) in H3(Q).

The framework of the proof is the bootstrapping argument. To proceed, we define
the energy functional as

t t
B(®) = sup (Il + [0} + 20 [ ol dr+ 20 [ bl dr. (.)
<7< 0 0
Our main efforts are devoted to proving the following energy inequality
E(t) < E(0) + CE>(t). (3.2)

As we explain later, a direct application of the bootstrapping argument to (3.2)
implies the desired global uniform bound on ||(u, b)||gs.

Attention is first focused on proving (3.1). Due to the equivalence of the inhomo-
geneous norm ||(u,b)| g with the sum of the L% -norm and the homogeneous norm
| (w, )| 73, it suffices to bound the homogeneous norm ||(u,b)]| z5. The uniform L?-
bound is an easy consequence of the system in (1.2) itself. Taking the inner product
of (1.2) with (u, b), we obtain, after integrating by parts and using V-u =V -b = 0,

t t
lu(®)lZ2 + 6172 + 2V/ 10vu]|Zz dr + 2n/ D11z dr = [JuollZ> + [1bol|Z2- (3.3)
0 0
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To estimate the homogeneous norm ||(u, )| ;7s, we apply 92(i = 1,2) to (1.2) and
then dot with (9%u, 9?b) to obtain

| =

2 2 2
- D (10%ulZe + 197Bl172) + Y wllofovullf + Y nllofoll3s
=1

i=1 i=1

1
2

U

- (3.4)
= J+K+L+M+N,

where

2
J = Z/ 200D - Bu+ B2oyu - O2b du,
i=1 79
2
K = —Z/@f(u-Vu)-@fu dx,
i=1 Y
2
L= Z/(@?(b -Vb) — b- VD) - OPu dx,
i=1 v
2
M = —Z/@f’(u-Vb)-@f’b dr,
i=1 v

2
N = Z (O2(b-Vu) —b-Vu) - 97b d.
— Q (2 (2 (2

By integration by parts, J = 0. The estimate of K is long and tedious, and is
provided in the later part of the proof. To bound L, we decompose it into two parts,

2
L=>)" (/Qaf(b-w).a?u dm—/gb-vafb-afu dx)
=1
2 3
pp e / ofb - 27FVb - O} da
1 k=1 &

i

w |

3
=> ¢4 / Ofb - 07FVb - Ofu de + > Cf / b - 93V - Bu dx
=1 Q Q

k=1
= Ll + L27
where CF = ﬁlk), is the binomial coefficient. By Lemma 2.1 and Lemma 2.5,

3
Li=) ¢} /Q b - Vb - 03U dx
k=1

2

~ ~ 1 ~ 1 1 Jo

< D10 Vb= 10702 101010l 2 107 72 19207 -
k=1

~ ~ 1 ~ 1 1 1
+ [|07b]| L2 V0l 2. 101 V0l 2. (|07 | 2. | 0207 | 7.

< |16]|7s]1Ovul s
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We further decompose L, into three terms,

Lg:3/82b-8§Vb-8§udw+3/822b-82Vb-8§udx+/8§b-Vb-8§udx
Q Q Q

= Lo1+ Los+ Las.
By Holder’s inequality and Lemma 2.4,
Ly < 1102b]] 11|03 V0| 2 || 95| .2
< 119ab 52 (1020l 22 + 912b].2) 130 -
X (105022 + 191030 2) |3 Vb ] 12| O .2
S lull s (1o 7s-
Similarly,
Las S || VOll1e|05b]| 2|05l 2
1 1 1
S VOl 721Vl L2 + [[01 V]| £2) 4 (10 V0]| 7
% ((102V8]| 2 + (10102 Vb]| 2) 7| 930 | 2 | e .
< Nl s (1617

By Lemma 2.1, Dsby = —01b; = 0 and Lemma 2.5,

Loy = 3/ 93b - O, Vb - Osu da
Q

=3 ( / O2b1091b - DBu da + / 02b1091b - PBu da + / O2b,02b - Du dx>
Q Q Q

< 1103u 2 | Do1Bl| 2 |01 Dorb| 22 9255 | 2202625, |
OB 2| 0ar B 2 01 DB o 0261 | 02020 |
103l 2 1026 2. 11000265 2. 1030 22 16020 2.
<l 1Bl
Combining the estimates of L; and Lo, we obtain
L S 0vull s 1810 + lull s 18] e

Now we estimate M,

2
Mz—ZA@?(u-Vb)-@f’bdm,
=1

:—/af(u-w).afb dx—/ag(u-vz))-agb dz,
Q Q
= M, + M.

(3.5)
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By Lemma 2.1,
3 ~ o~ ~ o~
M, = —Zc;j/ - P V- 33D dx — / u- Vb b dr
P} Q Q
= M1 + M.

By Lemma 2.5, Holder’s inequality, and Lemma 2.3,
3
~ 1 1 o~ 1 o~ 1
My Y1100l 7 | 0005l 7107 Vbl 210205 VB 2,
k=2

+ (| 00T| oo |0V 2] D30 | 1.2
S 1011 |0l s + 1107 1]
<1011 | vl -

By integration by parts and V - u = 0,
- ~ 5T I [ ~
Mo = —/u-@be-@fb dx = ——/u-V(@fb)Qdm =0.
’ 0 2 Jao
To estimate My, we split it into four terms,

My = — / 95 (u - Vb) - 93b dx,
0

3
= —chf/ Obu - 957FVb - 03b dx—/u~8§Vb-8§b da
1 Q Q
= M1 + Moo+ Mas + My 4.

M4 =0 due to V- u = 0. By Holder’s inequality and Lemma 2.4,
My, = —3/ Oou - O3V - O3b dx
Q
< 1102 o |95 V0] 2| 030] 1.2
1 1 1 1
S 102l 12 (1102ull 12 + [|Ov2ull2) 4|5 ull 2 (95 ull 2 + 10105ull2) 7 [b]|7s
S Nl s (10175
Similarly,
Q
S Vbl [|95ull e[| 950l e
1 1 1
S VOl 72Vl 2 + (01 V0] £2) 5|9V b| 72 (|02 V0| 2
+ 0102 V8]|2) |03 ul| 2 | 95D 1

S Nl 10l s

11
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By Lemma 2.1, Oytis = —01u; and Lemma 2.5,

Myo = —3 / d3u - OoVb - 93b dx
Q

=3 < / O2u10a1b - Db da + / O201001b - O3b da + / 202 - D3b dx)
Q Q Q
S Ml s |6 s -
Combining the estimates for M; and M,, we obtain
M S (|0vul| s b1 7 + Il s 10|75 (3.6)

Now we estimate the term N,

2
N:Z(/Qaf(b-vu)-afbdx—[)b.vafu-afbdx>
=1
2 3
=> > / - 937 Vu - 9% da
Q

i=1 k=1

3 3
=> / ofb - 07 *Vu - 0fb de + > C4 / b - 37 Vu - 930 dx
k=1 Q k=1 &
- N1 -+ NQ.
By Lemma 2.1, Lemma 2.5, Holder’s inequality, and Lemma 2.3,

3
Ny =) ch / b - 3V - 93 dx
k=1 Q

2
; ! b 1651 a5
< > 0%b] 2103 Va3 0007 F V| 2, 1 0Fb] 22 10,0761
k=1
+ [Vl o< [|070]] 2,11 070 | 2
S 01z [0vull s + 00Vl [l 7 S 10l 7ga 11Ol 2.
To bound N, we further decompose it into three terms as
N2:3/82b-8§Vu~8§’b dx+3/822b-82Vu~8§’b d:c+/8§’b~Vu~8§’b dx
Q Q Q
= Ny 1+ Nao + Nos.
By Holder’s inequality and Lemma 2.4,
Noi S 1020|0105 V]| 2| 03| 1.2
1 . 1
< 110200172 (11020l 2 + 110120 £2) 4[| 950 72
% ([103b]1 2 + (101030 12) ¥ 93 V] 2|05 .2

S Nl =101 s
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Similarly,
Nog S [[Vull o< [|050]] 12|93 2
S Va1Vl + 10Vl 2)F 0V
X ([0:Vul| 2 + 010>Vl 12) 95D 7
S Ml s ([0l
By Lemma 2.1, Doby = —01b; = 0 and Lemma 2.5,

Ny = 3/ 93b - 0,Vu - O3b dx
Q

=3 ( / 026,05, - O3 da + / 02610010 - O3b d + / 2by03u
Q Q Q

< Nlull s [[ol 7.
Combining estimates of N; and N,, we have
N < [|0vull s 1Dl + ] s 61|
We now turn to the term K. We split K into two terms,

K:—/(?f’(u'Vu)-af’u dx—/ﬁg’(qu)'@S’uda:,
0 Q
= K + Ko.

By integration by parts, Lemma 2.1, Lemma 2.5 and Lemma 2.3,

K, = —/8f(u-Vu) -0 dx
0
= / 0i(u - Vu) - 0fu dx
0

2
= Z 05/ M - 2 FVu - Otu da
k=0 @

2
=>4 / M- 0¥V - 9 da
k=0 Q

13

- 03b dx)

(3.7)

2
1 ot _ 1 _ . L
<S> 10 e |0 2. | 010wl 2. |07 V| 2.1 0207 Va7

k=1

1 S S S
+ 1077 2 [l 72 | 047l 72 105 V| 72 | 920V 7.

2

1 L _ L _ L
< D lotalelloal ;. ool . 107Vl 7. 110:08 vl .

k=1
1 1 1 1
+ (|01l 2 |0val 22 1012 7110 V] 21| 020 V] 7.
Therefore,

Ky < |00t gs 7] o
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To bound K5, we further decompose it into four terms,

K, = —/ 95 (u - Vu) - dyu dz,
Q

3
= - Z C:f/ Obu - 957 *Vu - O3u dx
k=0 @

= Koy + Ky + Koz + Koy (3.9)
By integration by parts and V - u = 0,

K, :—/u-ﬁg’Vu-ag’u dx = 0.
Q
Next we bound Ks5. By Lemma 2.1 and V - u = 0,

Kyo = —3/082u . 622Vu . 8§u dx
= -3 (/Q agul(?%@lu . 8§u dx + /Qﬁzuﬁgﬁgu . agu da:)
= —3/9821710%81@ o dw — 3 /Q Do 0200 - O3 dx
3 /Q Dyils 020,71 - O d — 3 /Q Dyl 020071 - P d
+3 /Q O\, 03051 - O3 dw + 3 /Q 011 02051 - O3 dx

Q Q

= Koo1+ Koo+ Kooz + Kooy + Koos+ Koo+ Kooz + Koosg.
By integration by parts and Lemma 2.1,

K27271 = —3/ agu_lagalﬁ . agﬂ dx
Q

=3 (/ 0101051 - O3 dx + / ot Oati - 010510 da:) = 0.
0 0
Similarly, Ks95 = 0. By Lemma 2.5 and Lemma 2.3,

K272’2 = —3/ 827183816 . 8317, dx
Q

1 .1 L —_
< 105wl 219571 21101 057 1| 030n | 7. [ 9200n | .

1 L L —_n i
< 05| 121101057 72 101057 110501 .11 020501 .
< lovullis s

Ks24 and K5 g can be bounded similarly as K3 25. By Lemma 2.5 and Lemma 2.3,

K27273 = —3/ 8217183(91& . 8§ﬂ dx
Q
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1 .1 L _n i
S 1105l 2|01t 171101 Ot | 7. 105011 .| 020501 2

1 o x L _n i
< 1105l 12101 02 | 72 1101911 710501 2 1| 0205 01 7
S lovulls [l -

By Lemma 2.5 and Lemma 2.3,
K272,6 = 3/ 811718382@ . Ggﬁ dx
Q

1 PO .1 ~ 1
< (103050 12]| 05| 2, (|01 05 ]| 2, || Oy | 22| 020101 || 2.

1 L . L .1
< (103051 12]| 0105 |2, |01 05| 2, || Ovy | 22 || 020y 2ty || 2.

< lovullis llull -

K2’2,7 == 3/ 81{58382& . 85’6 dz
Q

1 L .1 . L
S N0500ul| 2|05\ 2. (| 01050 22| Ovtin || 72 ]| D201 |
1 L . L .1
< |05021l| 2101050 22| 0105 || 2. || O || 2. | D201 || 2
< [1Ovul s wl gs-

Therefore,
Ksz < [|0vul 3gs|ull s

Now we bound K3 3. By Lemma 2.1 and the divergence free condition,

5

Kys = —3/9322u - Vu - a;”u dx

= -3 (/Q D3u10500u - Oyu da + /{28§u28232u - Osu d:c)

_ 3 /Q ORI OO0 - O dr — 3 /Q BT OO - O
_3 /ﬂ 2T DsOnL - OV d — 3 /Q 200,017 - BT dar
13 /Q D200 T DsoTl - DT d: + 3 /Q 0,0, 010,070 - 0T dr
43 /Q 0501710t - 08T d + 3 /Q Do, 1105071 - 0BT

= Ko31+ Kozo+ Kozs+ Koga+ Kosgs+ Koz + Kozr+ Kosg.

Clearly K33, = 0 and K335 = 0. To bound the remaining terms of K53 we use
Lemma 2.5 and Lemma 2.3,

K27372 = —3/ 83171828117 . 0317 dx
Q

1 L L 1
S 11057 2211051 . |01 05| 72 [| 92001 .| 0501 | 7
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1 1 L i
S 110312210105l 7. 101 05| 7. 02012 7. || 05 01 | 7.
S lovullys lull o

K334 and K37 can be bounded similarly,

K2’373 = —3/ 8%1718281ﬂ : 8§ﬂ dx
Q

1 1 1 U
< ol 21031 . 10,08 . | 22017 £ | O30 .
1 1 PO L
< ol 210,08 112103087 . | oh ) 1| B0
< lovul3s ull e

K27376 = 3/ 8281@7132826 : 8§’ﬂ dx
Q

1 O ., L 1
< 1052 210571 7. 10,05l 7. || 920v a1 .|| 0391 || 7.

1 1 1 1
< 108w |08 £ |90 O3 2 19:0h | 2| B
S N0l ggs ull s
K35 can also be bounded similarly. Hence,
Ka3 S [10vullfps a2

Now we bound the last term K54 in (3.9). By Lemma 2.1 and V- u = 0,

Koy = / O3u - Vu - O3u dx
Q

= — (/ 8§u101u . @gu dx + / 0§u282u . 8§’u dx)
Q Q

= — / 3§’u_181ﬂ . 83% dr — / 8371815- 3§’ﬂ dx
Q Q
- / 03,00 - 03 dow — / 03,00 - 03T da
Q Q
Q Q

+ / 020, 1,051 - 05T da + / 020, 1,051 - O30 da
Q Q

=Koy + Koso+ Kossz+ Kosa+ Kous+ Koupg+ Koar+ Koug.

Again K541 = 0 and K45 = 0. To bound the remaining terms of Ky, we use
Lemma 2.5 and Lemma 2.3,

K2,472 = —/ 83’&_181?’1 : (32327 dx
Q

1 S S L
S 1105 2 (101 7211010 | 72 104771 72 10200 2

1 L L _n i
S 1105 221101 957 71101 05| 7. [|9n | 7. [| 9201 .
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S lovullys lull o

Ky 44 and K347 can be bounded similarly.
K2’473 = —/ 85’1710117 : 8§ﬂ dx
Q

1 1 UM PO
S 1105 210321 17101 05| 7. |90 | 7. [| 0201 7.

1 O 1 O
S 1105 2101051 || 71101 05| 7. |90l 72 [| 9201 .

< Nl0vullzs [l s
K27476 = / 83(911’[182E . 83& dx
Q

< 0wl e85 3. |on 0 . | 950n . 5 0n | .
S 0wl 101037 12 19,087 2 | 980n | 2 |3 0r
< Nl0vullzs [l s
Ky 45 can be bounded similarly. Hence,
Ko S ll0vullgps [l s
Putting together the upper bounds for K, ; through Ky 4, we find
Ky < [10vulls | ull .
Collecting the upper bounds in (3.8) and (3.10) yields
K < |0vull3s|ull .

17

(3.10)

(3.11)

Integrating (3.4) in time and then adding to (3.3), we have, after recalling the

definition of £ in (3.1),

E(t)gE(0)+/t(J+K+L+M+N)dT.

Collecting the upper bounds in (3.5), (3.6), (3.7)and (3.11) leads to the desired

inequality in (3.2),

t
E(t) < E(0) +/0 (1OvullZys l[ullzzs + llOrullz 1Bl 3s + lull mallbllZys) dr

< E(0)+C E2(t).

(3.12)

We apply the bootstrapping argument to (3.12). The initial data is taken to be

sufficiently small, say
(w0, bo) || < €

with e satisfying
1

4e? < 5y = —.
= =00 e

We make the ansatz that, for 0 <¢ <T
E(t) < dp.



18 WEN FENG, FARZANA HAFEEZ, DIPENDRA REGMI, AND JIAHONG WU
Then (3.12) implies
E(t) < 2+ CE*(t) E(t)

1
< 2 _
€ +CQCE(t)

or
1 1
§E(t) <e® or E(t)<2*= 560.

The bootstrapping argument then implies that 7" = oo and E(t) < dp. As a conse-

quence, for any 0 <t < o0,
[(u(t), b(t)) |7 < E(t) < do.
This completes the proof for Theorem 1.1. 0

4. PROOF OF THEOREM 1.2

This section proves Theorem 1.2, which assesses that the oscillation part (w,b)
decays exponentially to zero in the H Lnorm as t — oco. We consider the equa-
tions of (u, b) and apply the properties of the orthogonal decomposition and several
anisotropic inequalities.

Proof of Theorem 1.2. We first write the equation of (u,b). By taking the average
of (1.2), we have

Oy + 1 VT + ( 0_) — -V,
Oop (4.1)
Ob+u-Vb+nb=Db-Va.
Taking the difference of (1.2) and (4.1), we obtain
Ol + U VU + usdoli + VP — vO2U — b+ Vb — badob — Db = 0,
Ob + 1 - Vb + usDsb + mb — b - Vi — bydoti — 017 = 0.

Taking the inner product of (4.2) with (u, b), after integration by parts and divergence-
free conditions, we find

1d, ~ N ~
5 77 [z + [1bll2) + vl|Oyulz2 + nlllIZ2

= — m-ﬁdx—/u282u-ﬂdx—/u-vg-gdx

+/b-v3-adx+/52826-adx—/UQaQETde (43)

(4.2)

= A+ A+ As+ As+ As + Ag + Ar + As.
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By Lemma 2.1,
A1:—/u-Vﬂ-ﬂdaﬂ—/u-Vﬂ-ﬂdac:O.
Similarly, A3 = 0. By Lemma 2.5, Lemma 2.3 and the divergence-free conditions,
Agz—/[{g@guﬂdx
~ 1 11 1
S 102l 2 [|uz 72 |02tz 72 |[al| 22| Oyl 7.
1 SO St 1
S 102l 2| Ovta| 22 | Orvun || 72 |0v ]| o | Oyl 7.

S Nl |0nd] 2.

By Lemma 2.1 and the divergence-free conditions,

P

A4+A7=/b-v'5-adx+ b-Vi-bde
—/b-vE-ader/b-va-de—/b-vZ-adx
—/b.va-'z}dx
=0.
By Lemma 2.5 and Lemma 2.3,

BB 18,8 1 16,3
S 11021 22[|020] 721102020 . [|ull 72| Ov | 72
S |16l z2][b]] 2 (| Ova| 2
S 16l = (1072 + 1017l 72)-
Similarly, by Lemma 2.5, Lemma 2.3 and the divergence-free conditions,
Ag = —/@aQB.de
~ _1 | 1
S 116l 22 1020|172 1102050 72 || 2 [| O1 iz .2
< 1Bl 2 1D ] 22 | Oy ia | 2
S 10l = (1072 + 1017l 72)-
By Lemma 2.4 and Holder’s inequality,
A= [ Bi020B do 5 o B

< 10l (102l = + 119,02 12) ¥ D0z (1.4)
x (11920l 2 + 10103l ) [B]132

< Nl b2
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Collecting the estimates for A; through Ag in (4.3), we obtain

d, - ~ -

—(llzz + [1bl72) + (2 = Cli(w, b)) |01 72

+ (20 = C||(u, b)) |[b] 2 < 0.

According to Theorem 1.1, if € > 0 is sufficiently small and ||uo||gs + [|bol|us < €,

then ||ul|gs + ||b]|gs < Ce and
2w — Ol W)l > v, 20— Cll(w, Bl > 1.
By Lemma 2.3,
[@(#)llzz + 6]z < (lluollzz + l1bollz2)e
where C} = Cy(v,n) > 0.

(4.5)

Next we consider the exponential decay for ||(Va(t), Vb(t))|| 2. Taking the gra-

dient of (4.2) yields
0,V + V(u - V) + V(udat) + VVF — vd>Vai
—V(b- Vb) — V(bydsb) — 8,V = 0,

Vb + V(- Vb) + V(uz0sb) + nVb — V(b - Vi)
—V (byoi) — 0,V = 0.

\

Dotting (4.6) with (Vu, Vb), we have

1d ~ ~ ~ ~
5z IVllzz + Vol r2) + v01VilZe + 0l Vo|z.

— —/V(m)-Vﬁ dx—/V(u2826)~Vﬂ dx—/V(u-v'E).v'de

—~——

+/V(m)-v’5 dx+/V(b262a)-v'5 dz
2:Bl+BQ+Bg+B4+B5+B6+B7+Bg.

By Lemma 2.1, By can be written as

Blz—/V(u.va)~vadx+/V(u~va).Vﬂdx
= —/61u1016 : 81ﬂ dr — /8{&282& : 816 dx

— /82u13117 . 826 dr — /82u282ﬂ . (92?7 dx

=DBi1+ Bia+ B3+ Bya.
By Lemma 2.5 and Lemma 2.3, B;; can be bounded by

1 1 1 1
Biy S ||0vun || 2|01l 22 || 05| 2. |0n ]| 3. 1| 0201 0| 2

(4.6)

(4.7)
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1 1 1 1
S 10| 21073 22|07l 22110191 2| 9201 | 7
S ullas |01 V|7
B, 5 and B, 3 can be bounded similarly and
By, Big < |ullgsl|l0yVal|7-.

For B, 4, using the divergence-free condition of u and by Lemma 2.5, Lemma 2.1
and Lemma 2.3, we obtain

Bl74 = /alul(?gﬂ . 0217 dr = /8117182& . agﬁ dx

1 ~ 1 . 1 _ 1
<0 22 |01 || 21 || 02011 || 2, || o) 2. 1|01 D) 2,
<109 12 |02 || 2. | 8201101 || 2.2 11010070 2, || 91Dl 2,
< Nl gsl|0: V] 2.

Hence, B; is bounded by
By < lullms [0V |72

Similarly, we can bound Bs by Lemma 2.4 and Hélder’s inequality,

Bgz—/V(u-vE)-dem

:—/V(wVZ)'Vfl;da:Jr/V(u‘Vfl;yV’l;dx

= —/Vu V- Vb dz < ||ul|gs || VD)2
In order to bound B,, we rewrite it as

BQ = — / V(Ugag’a) : Vﬁ dx
== —/81u202u : 816 dr — /u281(92u : 61?7 dx

+ /81u15’2a . 826 dr — /u282(92ﬂ : 826 dx

= By1+ Bys+ Bz + Baa.

According to the definition of ,
3272 = 0.

Using Lemma 2.3, Holder’s inequality and proceeding as in (4.4) for ||0sul| e, we
find

BQJ = —/(91?,7282’12 . 81’17 dx

S 102t e || 01|72 S Nl ms |01 V|7
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Similarly, B 3 has the same bound as By ;. By Lemma 2.5 and Lemma 2.3,
BQ74 = —/{172828217/ . (925 dx

S 102050 2] ta | 72102tz | £ 21| 02| 2 (| 01 o] 5
S 1102091 12| 0101103 | 72 [| 0102182 21| 01 O 7 [| 01021 | 7 »
S llullgsl| 0V 7.
Hence, the bound for B, is
By < lullms |0y V| 72
Similarly,
= — /6162825 . 6lﬂ dr — /b261(92l_) . 816 dx

+ /811918217 . (92/'[6/ dr — /bgagagb : (92?7 dx
= Bs51+ Bs s+ Bs 3 + Bs 4.

By the definition of b, Bs, = 0. By Lemma 2.1, Lemma 2.4, Lemma 2.3, Holder’s
inequality and Young’s inequality,

By, = — / O1badob - OV da
< 102D oo ]| 01Dl 2 | 04 .2
_ 1 _ — — 1
< 1199B11 2 ([|02bl| 2 + [101020]]12) [|0200D| 2
% ([|022b|| 2 + |013Bl| 2) 7 [|O1ba| 21101 Dy .2
S bl as IVl 2|00V 2 S 10llas (VB 7 + [0 Va|72).

Similarly, Bs3 obeys the same bound. By Lemma 2.5, Lemma 2.3 and Young’s
inequality,

B5’4 = — /b;agagl_) . 826 dz

< 11 9a0b]| 2 5o . | Baa 22 | 0071 2. | 04D 2

S P S A P G

S blla V0] 210y V| 2 < (1Bl (VB2 + (101 Vadl32).-
Collecting the bounds for Bs i, Bso, Bss and Bs 4,

By S 1161 (V3132 + 0V 72).. (4.8)
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Similarly, Bg and Bg are bounded by
Bg, Bs S ([Bllms + l[ulls) x (Vb7 + |00 Vi2). (4.9)
By Lemma 2.1 and the divergence-free condition V - b = 0,

—_——

B4+B7:/V(6~Vb)~va'da:+ V(b- Vi) - Vb dx

Z/V(b-vg)-Vde+ V(b-Vﬂ)-Vde—/V(F)-Vﬂdx
—/V(m)-v%’dx

:/Vb~VZ.vadx+/Vb~va-v’édx+/b~vv'5-vadx
+/b-vva-v'5dg;

—/Vb-vz-vadH/Vb-va-vde
= By1 + Byp.

We can rewrite By ; as

By, = /6151815' Oyu dx + /3&28{5- o1 dx

+ /8261815~ (92/'[6/ dx + /62[72825' 826 dx
= DBy11+ Ba12+ Bais+ Baya.
By Lemma 2.4, Lemma 2.3, Holder’s inequality and Young’s inequality,
B S 1|00by]| oo [|01D]| 2|01 12
< N10uball 2 (1001l 2 + 11210161 [ £2) 1192014
x ([|020101 |2 + [|010201b1 || 12) 7 || 01| 2
S bl 1000 2 101042l 22 < (Bl (VD172 + 101 V] 32).
By12,Bs13 and By 4 can be bounded similarly as By ; and
Bina: Bixg, Buia S [Bllus (VB3 + 1100 VE]32).
Therefore, By is bounded by
By < |Ibllz= (V032 + 101 V] 32).
Similarly, Bso obeys the same bound as B, ;. Hence,
By + Br < bl (V0132 + (|01 VaLl[3»).
Inserting the estimates for B; through Bs in (4.7),

d ~ ~ -
—(IVElZe + 1VBIIZR) + (20 = Cll(w, b)) 101 V] -
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+ (20 — C||(u, b) || 12) | VD 2 < 0.

Choosing € > 0 sufficiently small and by Theorem 1.1, if ||ug|| s + ||bo||zs < €, then
|w|| s + [|b]| s < Ce and

v —Cl[(w,0)[lgs 2 v, 2n—=Cll(w,b)||ms = 1.
By Lemma 2.3, we obtain the exponential decay result for ||(Vu(t), Vg(t))H L2,

IVa(t)l|z + [IVB(0) 12 < ([Vaollz2 + [ Vol 2)e (4.10)
where C; = Cy(v,n) > 0. Cominbing the estimates in (4.5) and (4.10), we obtain
the desired decay result in Theorem 1.2. O
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