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ABSTRACT. The small data global well-posedness of the 3D incompressible Navier-Stokes
equations in R3 with only one-directional dissipation remains an outstanding open prob-
lem. The dissipation in just one direction, say ∂2

1u is simply insufficient in controlling the
nonlinearity in the whole space R3. The beautiful work of Paicu and Zhang [39] solved
the case when the spatial domain is bounded in the x1-direction by observing a crucial
Poincaré type inequality. Motivated by this Navier-Stokes open problem and by exper-
imental observations on the stabilizing effects of background magnetic fields, this paper
intends to understand the global well-posedness and stability of a special 3D magnetohy-
drodynamic (MHD) system near a background magnetic field. The spatial domain is R3

and the velocity in this MHD system obeys the 3D Navier-Stokes with only one-directional
dissipation. With no Poincaré type inequality, this problem appears to be impossible. By
discovering the mathematical mechanism of the experimentally observed stabilizing effect
and introducing several innovative techniques to deal with the derivative loss difficulties,
we are able to bound the Navier-Stokes nonlinearity and solve the desired global well-
posedness and stability problem.

1. INTRODUCTION

This paper focuses on a special 3D anisotropic magnetohydrodynamic (MHD) system.
The velocity field obeys the 3D Navier-Stokes equation with one-directional dissipation
while the magnetic field satisfies the induction equation with two-directional magnetic dif-
fusion. More precisely, the MHD system concerned here reads

∂tu+ u · ∇u− ∂2
1u+∇P = B · ∇B, x ∈ R3, t > 0,

∂tB + u · ∇B − ∂2
1B − ∂2

2B = B · ∇u,

∇ · u = ∇ · B = 0,

u(x, 0) = u0(x), B(x, 0) = B0(x),

(1.1)

where u = (u1, u2, u3)
T represents the velocity field, P the total pressure and B =

(B1, B2, B3)
T the magnetic field. The MHD equations reflect the basic physics laws gov-

erning the motion of electrically conducting fluids such as plasmas, liquid metals and elec-
trolytes. They are a combination of the Navier-Stokes equation of fluid dynamics and
Maxwell’s equation of electromagnetism (see, e.g., [6, 17, 42]). The MHD system (1.1)
focused here is relevant in the modeling of reconnecting plasmas (see, e.g., [13, 14]). The
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Navier-Stokes equation with anisotropic viscous dissipation arises in several physical cir-
cumstances. It can model the turbulent diffusion of rotating fluids in Ekman layers. More
details on the physical backgrounds of anisotropic fluids can be found in [11, 41].

The goal here is to establish the global well-posedness and stability near a background
magnetic field. More precisely, the background magnetic field refers to the special steady-
state solution (u(0), B(0)), where

u(0) ≡ 0, B(0) ≡ (0, 1, 0) := e2.

Any perturbation (u, b) near (u(0), B(0)) with

b = B − B(0)

is governed by
∂tu+ u · ∇u− ∂2

1u+∇P = b · ∇b+ ∂2b, x ∈ R3, t > 0,

∂tb+ u · ∇b−∆hb = b · ∇u+ ∂2u,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.2)

where, for notational convenience, we have written ∆h = ∂2
1 + ∂2

2 and we shall also write
∇h = (∂1, ∂2). Our motivation for this study comes from two sources. The first is to gain
a better understanding on the well-posedness problem on the 3D Navier-Stokes equation
with dissipation in only one direction. The second is to reveal and rigorously establish
the stabilizing phenomenon exhibited by electrically conducting fluids. Extensive physical
experiments and numerical simulations have been performed to understand the influence of
the magnetic field on the bulk turbulence involving various electrically conducting fluids
such as liquid metals (see, e.g., [2–5,7,15–17,20,21]). These experiments and simulations
have observed a remarkable phenomenon that a background magnetic field can smooth and
stabilize turbulent electrically conducting fluids. We intend to establish these observations
as mathematically rigorous facts on the system (1.2).

Mathematically the problem we are attempting appears to be impossible. The velocity
satisfies the 3D incompressible forced Navier-Stokes equations with dissipation in only one
direction

∂tu+ u · ∇u− ∂2
1u+∇P = b · ∇b+ ∂2b, x ∈ R3, t > 0.

However, when the spatial domain is the whole space R3, the small data global well-
posedness of the 3D Navier-Stokes equations with only one-directional dissipation,

∂tu+ u · ∇u = −∇p+ ∂2
1u, x ∈ R3, t > 0,

∇ · u = 0,

u(x, 0) = u0(x)

(1.3)

remains an outstanding open problem. The difficulty is immediate. The dissipation in one
direction is simply not sufficient in controlling the nonlinearity when the spatial domain is
the whole space R3.

In a beautiful work [39], Paicu and Zhang were able to deal with the case when the
spatial domain is bounded in the x1-direction with Dirichlet type boundary conditions.
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They successfully established the small data global well-posedness by observing a crucial
Poincaré type inequality. This inequality allows one to bound u in terms of ∂1u and thus
leads to the control of the nonlinearity. However, such Poincaré type inequalities are not
valid for the whole space case.

If we increase the dissipation to be in two-directions, say{
∂tu+ u · ∇u = −∇p+ (∂2

1 + ∂2
2)u, x ∈ R3, t > 0,

∇ · u = 0,

then any sufficiently small initial data in a suitable Sobolev or Besov space always leads
to a global (not necessarily stable) solution. There are substantial developments on the 3D
anisotropic Navier-Stokes equations with two-directional dissipation. Significant progress
has been made on the global existence of small solutions and on the regularity criteria on
general large solutions in various Sobolev and Besov settings (see, e.g., [11,28,36,38,39]).

We return to the well-posedness and stability problem proposed here. Clearly, if the
coupling with the magnetic field did not generate extra smoothing and stabilizing effect,
then the problem focused here would be impossible. Fortunately, we discover in this paper
that the magnetic field does help stabilize the conducting fluids, as observed by physical
experiments and numerical simulations. To unearth the stabilization effect, we take advan-
tage of the coupling and intersection in the MHD system to convert (1.2) into the following
wave equations{

∂2
t u− (∂2

1 +∆h)∂tu+ ∂2
1∆hu− ∂2

2u = (∂t −∆h)N1 + ∂2N2,

∂2
t b− (∂2

1 +∆h)∂tb+ ∂2
1∆hb− ∂2

2b = (∂t − ∂2
1)N2 + ∂2N1,

(1.4)

where N1 and N2 are the nonlinear terms

N1 = P(−u · ∇u+ b · ∇b), N2 = −u · ∇b+ b · ∇u

with P = I − ∇∆−1∇· being the Leray projection. (1.4) is derived by taking the time
derivative of (1.2) and making several substitutions. In comparison with (1.2), the wave
structure in (1.4) exhibits much more regularity properties. In particular, the linearized
wave equation of u,

∂2
t u− (∂2

1 +∆h)∂tu+ ∂2
1∆hu− ∂2

2u = 0

reveals the regularization of u in the x2-direction, although the original system (1.2) in-
volves only the dissipation in the x1-direction.

Unfortunately, the extra regularization in the x2-direction is not sufficient to control
the Navier-Stokes nonlinearity. The regularity from the wave structure is in general one-
derivative-order lower than the standard dissipation. More precisely, when we seek so-
lutions in the Sobolev space H4(R3), the dissipation in the x1-direction yields the time
integrability term ∫ t

0

∥∂1u(τ)∥2H4 dτ, (1.5)
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but the extra regularity in the x2-direction due to the background magnetic field and the
coupling can only allow us to bound∫ t

0

∥∂2u(τ)∥2H3 dτ. (1.6)

But (1.5) and (1.6) may not be sufficient to control some of the terms resulting from the
nonlinearity in the estimate of ∥u∥H4 such as∫

R3

∂3u3 ∂
4
3u1 ∂

4
3u1 dx.

Naturally we use the divergence-free condition ∂3u3 = −∂1u1 − ∂2u2 to eliminate the bad
derivative ∂3, but this process generates a new difficult term∫

R3

∂2u2 ∂
4
3u1 ∂

4
3u1 dx,

which can not be bounded in terms of (1.6). If we integrate by parts, we would have the
fifth-order derivatives on the velocity, which can not be controlled. We call this phenome-
non the derivative loss problem. The above analysis reveals that the extra regularity gained
through the background magnetic field and the nonlinear coupling is not sufficient to deal
with the derivative loss problem.

This paper creates several new techniques to combat the derivative loss problem. As a
consequence, we are able to offer suitable upper bounds on the Navier-Stokes nonlinearity
and solve the desired global well-posedness and stability problem. We state our main result
and then describe these techniques.

Theorem 1.1. Consider (1.2) with the initial datum (u0, b0) ∈ H4(R3) and ∇ · u0 =
∇ · b0 = 0, Then there exists a constant ϵ > 0 such that, if

∥u0∥H4 + ∥b0∥H4 ≤ ϵ,

system (1.2) has a unique global classical solution (u, b) satisfying, for any t > 0,

∥u(t)∥2H4 + ∥b(t)∥2H4 +

∫ t

0

(
∥∂1u∥2H4 + ∥∇hb∥2H4 + ∥∂2u∥2H3

)
dτ ≤ ϵ.

We make two remarks. Theorem 1.1 does not solve the small data global well-posedness
problem on the 3D Navier-Stokes equations in (1.3). The original MHD system (1.1) with
B = 0 indeed reduces to the 3D Navier-Stokes equations in (1.3). However, (1.2) governs
the perturbation (u, b) and contains two extra terms ∂2b and ∂2u. Taking b = 0 in (1.2)
yields (1.3) together with ∂2u = 0 (resulting from the equation of b). Therefore (1.2) with
b = 0 reduces to the 2D Navier-Stokes equations depending on the spatial variables x1 and
x3. It is hoped that the new idea and techniques discovered in this paper will shed light on
the open problem on (1.3).

A previous work of Wu and Zhu [51] successfully resolved the small data global well-
posedness and stability problem on the 3D MHD system with horizontal dissipation and
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vertical magnetic diffusion near an equilibrium,
∂tu+ u · ∇u−∆hu+∇P = b · ∇b+ ∂1b, x ∈ R3, t > 0,

∂tb+ u · ∇b− ∂2
3b = b · ∇u+ ∂1u,

∇ · u = ∇ · b = 0.

(1.7)

Although the small data global well-posedness problem on (1.7) is highly nontrivial, it is
clear that the current problem on (1.2) is different and can be even more difficult. One
simple reason is that the equation of u in (1.7) contains dissipation in two directions and
all the nonlinear terms in the estimate of the Sobolev norms involve u as a component.
However, (1.2) has only one-direction velocity dissipation and the velocity nonlinear term
involves only u (no other more regularized components). The methods in [51] are not
sufficient for the problem of this paper.

Since the pioneering work of F. Lin and P. Zhang [35] and F. Lin, L. Xu and P. Zhang
[34], many efforts have now devoted to the small data global well-posedness and stability
problems on partially dissipated MHD systems. MHD systems with various levels of dissi-
pation and magnetic diffusion near several steady-states have been thoroughly investigated
and a rich array of results have been established (see, e.g., [1, 5, 8, 25, 26, 29, 30, 34, 35, 40,
43–45, 47, 49, 50, 55–57]). In addition, global well-posedness on the MHD equations with
general large initial data has also been actively pursued and important progress has been
made (see, e.g., [10, 12, 18, 19, 22–24, 27, 31–33, 48, 52–54]). Needless to say, the refer-
ences listed here represent only a small portion of the very large literature on the global
well-posedness and related problems concerning the MHD equations.

We briefly outline the proof of Theorem 1.1. We have chosen the Sobolev space H4 as
the functional setting for our solutions since H3 does not appear to be regular enough to
accommodate our approach. Since the local well-posedness of (1.2) in H4 follows from
a standard procedure (see, e.g., [37]), the proof focuses on the global H4-bound. The
framework of the proof for the global H4-bound is the bootstrapping argument (see, e.g.,
[46, p.20]). The process starts with the setup of a suitable energy functional. Besides the
standard H4-energy, we also need to include the extra regularization term in (1.6) resulting
from the background magnetic field and the coupling. More precisely, we set

E (t) = E1(t) + E2(t), (1.8)

where

E1(t) = sup
0≤τ≤t

(
∥u∥2H4 + ∥b∥2H4

)
+

∫ t

0

(
∥∂1u∥2H4 + ∥∇hb∥2H4

)
dτ,

E2(t) =

∫ t

0

∥∂2u∥2H3dτ.

Our main efforts are devoted to showing that, for some constant C0 > 0 and for all t > 0,

E (t) ≤ C0 E (0) + C0 E
3
2 (0) + C0 E

3
2 (t) + C0 E 2(t). (1.9)

Then an application of the bootstrapping argument to (1.9) would yield the desired result,
namely, for a sufficiently small ϵ > 0,

∥u0∥H4 + ∥b0∥H4 ≤ ϵ or E (0) ≤ ϵ2
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would imply, for a constant C > 0 and for any t > 0,

E (t) ≤ C ϵ2.

It then yields the global uniform H4-bound on (u, b) and the stability.

The proof of (1.9) is highly nontrivial. It is achieved by establishing the following two
inequalities for positive constants C1 through C8,

E2(t) ≤ C1 E (0) + C2 E1(t) + C3 E
3
2
1 (t) + C4 E

3
2
2 (t), (1.10)

E1(t) ≤ C5 E (0) + C6 E
3
2 (0) + C7 E

3
2 (t) + C8 E 2(t), (1.11)

which clearly lead to (1.9) by adding (1.11) to a suitable multiple of (1.10). Due to the
equivalence of the norms

∥f∥Hk ∼ ∥f∥L2 +
3∑

i=1

∥∂k
i f∥L2 ,

the verification of (1.10) is naturally divided into the estimates of∫ t

0

∥∂2u∥2L2 dτ and
3∑

i=1

∫ t

0

∥∂3
i ∂2u∥2L2 dτ.

One key strategy is to take advantage of the coupling and interaction of the MHD system
in (1.2) to shift the time integrability. More precisely, we replace ∂2u by the evolution of b,

∂2u = ∂tb+ u · ∇b−∆hb− b · ∇u

and convert the time integral of ∥∂2u∥2L2 into time integrals of more regular terms,∫ t

0

∥∂2u∥2L2 dτ =

∫ t

0

∫
R3

(∂tb+ u · ∇b−∆hb− b · ∇u) · ∂2u dx dτ.

We then further shift the time derivative from b to ∂2u and involve the equation of u. This
process generates many more terms, but it replaces those with less time-integrable terms
by more integrable nonlinear terms. More details can be found in Section 2.

It is much more difficult to verify (1.11). Undoubtedly the most difficult term is gener-
ated by the Navier-Stokes nonlinear term. We use the vorticity formulation to take advan-
tage of certain symmetries. Since ∥ω∥L2 = ∥∇u||L2 for the vorticity ω = ∇×u, it suffices
to control ∥ω∥Ḣ3 . One of the wildest terms is given by∫

∂3u3 ∂
3
3ω · ∂3

3ω dx.

Naturally we eliminate the bad derivative ∂3 via the divergence-free condition ∂3u3 =
−∂1u1 − ∂2u2, but this leads to another uncontrolled term∫

∂2u2 ∂
3
3ω · ∂3

3ω dx. (1.12)

As we have commented before, integrating by parts in (1.12) would generate fourth-order
derivatives of the vorticity (or fifith-order derivatives of the velocity) such as ∂2∂3

3ω, which
cannot be controlled by E2. Obtaining a suitable bound on (1.12) appears to be an im-
possible mission. This leads to the derivative loss problem. The main thrust of this paper
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is to introduce several new techniques to unearth the hidden structure in the nonlinearity.
We enhance the nonlinearity through the coupling in the system and induce cancellations
through the construction of artificial symmetries. More precisely, we are able to establish
the desired upper bounds stated in the following proposition. For notational convenience,
we use A ≲ B to mean A ≤ C B for a pure constant C > 0.

Proposition 1.1. Let (u, b) ∈ H4 be a solution of (1.2). Let ω = ∇ × u and H = ∇ × b
be the corresponding vorticity and current density, respectively. Let E (t) be defined as in
(1.8). Let W(t) be the interaction type terms defined as follows,

W ijk(t) =

∫
R3

∂3
3ωi∂2uj∂

3
3ωk dx for i, j, k ∈ {1, 2, 3}.

Then the time integral of W ijk admits the following bound,∫ t

0

W ijk(τ) dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

The proof of this proposition is not trivial. When we just have the 3D Navier-Stokes with
one-directional dissipation, this term cannot be suitably bounded and the small-data global
well-posedness remains an open problem for the 3D Navier-Stokes. The advantage of
working with the MHD system in (1.2) is the coupling and interaction. We take advantage
of this coupling to replace ∂2uj via the equation of b,

W ijk(t) =

∫
R3

∂3
3ωi

[
∂tbj + u · ∇bj −∆hbj − b · ∇uj

]
∂3
3ωk dx

=
d

dt

∫
R3

∂3
3ωibj∂

3
3ωkdx−

∫
R3

bj∂t(∂
3
3ωi∂

3
3ωk)dx

+

∫
R3

∂3
3ωiu · ∇bj∂

3
3ωkdx−

∫
R3

∂3
3ωib · ∇uj∂

3
3ωkdx

−
∫
R3

∂3
3ωi∆hbj∂

3
3ωkdx.

Immediately we encounter the new difficult term

−
∫
R3

bj∂t(∂
3
3ωi∂

3
3ωk)dx,

which is further converted into integrals of many more terms after invoking the evolution
of the vorticity,

−
∫
R3

bj∂t(∂
3
3ωi∂

3
3ωk)dx

=

∫
R3

bj∂
3
3ωi∂

3
3

(
u · ∇ωk − ω · ∇uk − ∂2

1ωk − b · ∇Hk +H · ∇bk − ∂2Hk

)
+ bj ∂

3
3ωk∂

3
3

(
u · ∇ωi − ω · ∇ui − ∂2

1ωi − b · ∇Hi +H · ∇bi − ∂2Hi

)
dx.

Some of the terms above can be paired together to form symmetries to deal with the deriv-
ative loss problem. This process also allows us to convert some of the cubic nonlinearity
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into quartic nonlinearity, which helps improve the time integrability. However, there are
some terms that can not be paired into symmetric structure, for example,∫

R3

bj
[
− ∂3

3ωib · ∇∂3
3Hk − ∂3

3ωkb · ∇∂3
3Hi

]
dx.

Our idea in dealing with such terms is to construct artificial symmetries by adding and sub-
tracting suitable terms. This strategy helps us alleviate the derivative loss problem eventu-
ally. The technical details are very complicated and are left to the proof of Proposition 1.1
in Section 4.

The rest of this paper is divided into four sections. Section 2 proves (1.10), one of the
two key energy inequalities while Section 3 establishes the second key energy inequality,
namely (1.11). Section 4 provides the proof of Proposition 1.1 and deals with some of
the most difficult terms in the Navier-Stokes nonlinearity in Lemma 4.1. The last section,
Section 5, finishes the proof of Theorem 1.1.

2. PROOF OF (1.10)

This section proves (1.10), namely, for four positive constants C1 through C4,

E2 ≤ C1 E (0) + C2 E1(t) + C3 E
3
2
1 (t) + C4 E

3
2
2 (t) for all t > 0. (2.1)

The following lemma provides a powerful tool to control the triple products in terms of
anisotropic upper bounds.

Lemma 2.1. The following inequalities hold when the right-hand sides are all bounded,∫
R3

|fgh| dx ≲ ∥f∥
1
2

L2∥∂1f∥
1
2

L2∥g∥
1
2

L2∥∂2g∥
1
2

L2∥h∥
1
2

L2∥∂3h∥
1
2

L2 ,∫
R3

|fgh| dx ≲ ∥f∥
1
4

L2∥∂if∥
1
4

L2∥∂jf∥
1
4

L2∥∂i∂jf∥
1
4

L2∥g∥
1
2

L2∥∂kg∥
1
2

L2∥h∥L2

≲ ∥f∥
1
2

H1∥∂if∥
1
2

H1∥g∥
1
2

L2∥∂kg∥
1
2

L2∥h∥L2 ,(∫
R3

|fg|2 dx
) 1

2

≲ ∥f∥
1
4

L2∥∂if∥
1
4

L2∥∂jf∥
1
4

L2∥∂i∂jf∥
1
4

L2∥g∥
1
2

L2∥∂kg∥
1
2

L2

≲ ∥f∥
1
2

H1∥∂if∥
1
2

H1∥g∥
1
2

L2∥∂kg∥
1
2

L2 ,∫
R3

|fghv| dx ≲ ∥f∥
1
4

L2∥∂if∥
1
4

L2∥∂jf∥
1
4

L2∥∂i∂jf∥
1
4

L2

· ∥g∥
1
4

L2∥∂ig∥
1
4

L2∥∂jg∥
1
4

L2∥∂i∂ig∥
1
4

L2

· ∥h∥
1
2

L2∥∂kh∥
1
2

L2∥v∥
1
2

L2∥∂kv∥
1
2

L2

≲ ∥f∥
1
2

H1∥∂if∥
1
2

H1∥g∥
1
2

H1∥∂ig∥
1
2

H1∥h∥
1
2

L2∥∂kh∥
1
2

L2∥v∥
1
2

L2∥∂kv∥
1
2

L2 ,

where i, j and k belong to {1, 2, 3} are different numbers.



THE 3D MHD EQUATIONS WITH MIXED DISSIPATION 9

The proof of Lemma 2.1 relies on the following one-dimensional interpolation inequal-
ity, for f ∈ H1(R),

∥f∥L∞(R) ≤
√
2∥f∥

1
2

L2(R)∥f
′∥

1
2

L2(R).

A detailed proof of this lemma can be found in [51]. We remark that similar anisotropic
inequalities are also available for two-dimensional functions (see [9]).

We are now ready to prove (2.1).

Proof of (2.1). Due to the norm equivalence, namely for any integer k > 0,

∥f∥2Hk ∼ ∥f∥2L2 +
3∑

i=1

∥∂k
i f∥2L2 , (2.2)

it suffices to bound ∫ t

0

∥∂2u∥2L2 dτ and
3∑

i=1

∫ t

0

∥∂3
i ∂2u∥2L2 dτ.

Recalling the equations in (1.2),

∂2u = ∂tb+ u · ∇b−∆hb− b · ∇u,

∂tu = −u · ∇u+ ∂2
1u−∇P + b · ∇b+ ∂2b,

(2.3)

we have

∥∂2u∥2L2 =

∫
R3

(∂tb+ u · ∇b−∆hb− b · ∇u) · ∂2u dx

=
d

dt

∫
R3

b · ∂2u dx+

∫
R3

∂2b · ∂tudx

+

∫
R3

(u · ∇b−∆hb− b · ∇u) · ∂2u dx

=
d

dt

∫
R3

b · ∂2u dx

+

∫
R3

∂2b · (∂2b+ b · ∇b−∇P + ∂2
1u− u · ∇u) dx

+

∫
R3

(u · ∇b−∆hb− b · ∇u) · ∂2u dx.

(2.4)

Due to ∇ · b = 0, ∫
R3

∂2b · ∇P dx = 0.

We bound the nonlinear terms. By Sobolev’s inequality and Lemma 2.1,∫
R3

∂2b · (b · ∇b) dx =

∫
R3

(
∂2b · (bh · ∇hb) + ∂2b · (b3∂3b)

)
dx

≲ ∥∇hb∥2L2∥b∥H2 + ∥∂2b∥
1
2

L2∥∂3∂2b∥
1
2

L2∥b3∥
1
2

L2∥∂1b3∥
1
2

L2∥∂3b∥
1
2

L2∥∂2∂3b∥
1
2

L2

≲ ∥b∥H2∥∇hb∥2H1 ,
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R3

∂2b · (u · ∇u) dx =

∫
R3

(
∂2b · (uh · ∇hu) + ∂2b · (u3∂3u)

)
dx

≲ ∥∂2b∥L2∥∇hu∥L2∥u∥H2 + ∥∂2b∥
1
2

L2∥∂3∂2b∥
1
2

L2∥u3∥
1
2

L2∥∂2u3∥
1
2

L2∥∂3u∥
1
2

L2∥∂1∂3u∥
1
2

L2

≲ ∥∂2b∥L2∥∇hu∥L2∥u∥H2 + ∥∂2b∥H1∥∂2u∥
1
2

L2∥∂1u∥
1
2

H1∥u∥H1 ,∫
R3

(u · ∇b) · ∂2u dx

=

∫
R3

(
(uh · ∇hb) · ∂2u+ (u3∂3b) · ∂2u

)
dx

≲ ∥∇hb∥L2∥∂2u∥L2∥u∥H2 + ∥u3∥
1
2

L2∥∂1u3∥
1
2

L2∥∂3b∥
1
2

L2∥∂2∂3b∥
1
2

L2∥∂2u∥
1
2

L2∥∂2∂3u∥
1
2

L2

and ∫
R3

(b · ∇u) · ∂2u dx

=

∫
R3

(bh · ∇hu) · ∂2u+ (b3∂3u) · ∂2udx

≲ ∥b∥H2∥∇hu∥2L2 + ∥b3∥
1
2

L2∥∂2b3∥
1
2

L2∥∂3u∥
1
2

L2∥∂1∂3u∥
1
2

L2∥∂2u∥
1
2

L2∥∂2∂3u∥
1
2

L2 .

Inserting these bounds in (2.4), integrating in time and using the simple bound∫ t

0

d

dτ

∫
R3

b · ∂2u dx dτ ≤ ∥b(t)∥L2∥∂2u(t)∥L2 + ∥b0∥L2∥∂2u0∥L2 ≤ E1(t) + E1(0),

we obtain ∫ t

0

∥∂2u∥2L2 dτ ≲ E1(0) + E1(t) + +E
3
2
1 (t) + E1(t)E

1
2
2 (t)

+ E
1
2
1 (t)E2(t) + E

5
4
1 (t)E

1
4

2 (t)

≲ E1(0) + E1(t) + E
3
2
1 (t) + E

3
2
2 (t).

(2.5)

Here we have used several Hölder’s inequalities such as

sup
0≤τ≤t

∥b(τ)∥H2

∫ t

0

∥∇hb∥2H1 dτ ≤ E
3
2
1 (t),

sup
0≤τ≤t

∥u(τ)∥H2

∫ t

0

∥∂2b∥L2∥∂2u∥L2 dτ ≤ E1(t)E
1
2
2 (t) ≤ E

3
2
1 (t) + E

3
2
2 (t).

We now turn to the bound for the highest-order derivatives. By (2.3),
3∑

i=1

∥∂3
i ∂2u∥2L2 =

3∑
i=1

∫
R3

∂3
i

(
∂tb+ u · ∇b−∆hb− b · ∇u

)
· ∂3

i ∂2udx

=
3∑

i=1

d

dt

∫
R3

∂3
i b · ∂3

i ∂2udx+
3∑

i=1

∫
R3

∂3
i ∂2b · ∂3

i ∂tu dx

+
3∑

i=1

∫
R3

∂3
i

(
u · ∇b−∆hb− b · ∇u

)
· ∂3

i ∂2udx.

(2.6)
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The estimates for the terms with i = 1, 2 (those containing ∂3
1 or ∂3

2 derivatives) are simple.
We focus on the terms with i = 3 (those with the bad derivative ∂3), namely,

d

dt

∫
R3

∂3
3b · ∂3

3∂2udx+

∫
R3

∂3
3∂2b · ∂3

3utdx

+

∫
R3

∂3
3

(
u · ∇b−∆hb− b · ∇u

)
· ∂3

3∂2udx.

(2.7)

The second part of (2.7) can be handled as follows. By Lemma 2.1,∫
R3

∂3
3∂2b · ∂3

3∂tu dx

=

∫
R3

∂3
3∂2b · ∂3

3(∂2b+ b · ∇b−∇P + ∂2
1u− u · ∇u)dx

≲ ∥∂2b∥H3

(
∥∂2b∥H3 + ∥∂1u∥H4

)
+ ∥∂2b∥

1
2

H3∥∂3∂2b∥
1
2

H3

(
∥b∥

1
2

H3∥∂2b∥
1
2

H3∥b∥
1
2

H4∥∂1b∥
1
2

H4

+ ∥u∥
1
2

H3∥∂2u∥
1
2

H3∥u∥
1
2

H4∥∂1u∥
1
2

H4

)
.

The last part in (2.7) can be bounded by∫
R3

∂3
3

(
u · ∇b−∆hb− b · ∇u

)
· ∂3

3∂2udx

≲ ∥∂2u∥H3

(
∥∇hb∥H4 + ∥u∥

1
4

H3∥∂1u∥
1
4

H3∥∂3u∥
1
4

H3∥∂1∂3u∥
1
4

H3∥b∥
1
2

H4∥∂2b∥
1
2

H4

+ ∥b∥
1
4

H3∥∂2b∥
1
4

H3∥∂3b∥
1
4

H3∥∂2∂3b∥
1
4

H3∥u∥
1
2

H4∥∂1u∥
1
2

H4

)
.

The terms with i = 1, 2 in (2.6) are simpler and can be bounded similarly by applying
Lemma 2.1. Inserting the bounds above in (2.6) and integrating in time yields

3∑
i=1

∫ t

0

∥∂3
i ∂2u∥2L2dτ ≲ E1(0) + E1(t) + E

3
2
1 (t) + E

3
2
2 (t). (2.8)

Combining (2.5) and (2.8) gives (2.1). This finishes the proof for (1.10). □

3. PROOF OF (1.11)

This section proves the energy inequality in (1.11).

Proof of (1.11). Due to the norm equivalence (2.2), it suffices to bound

sup
0≤τ≤t

(
∥u∥2L2 + ∥b∥2L2) +

∫ t

0

(
∥∂1u∥2L2 + ∥∇hb∥2L2

)
dτ

and

sup
0≤τ≤t

3∑
i=1

(
∥∂3

i ω∥2L2 + ∥∂3
i H∥2L2

)
+

3∑
i=1

∫ t

0

(
∥∂3

i ∂1ω∥2L2 + ∥∂3
i ∇hH∥2L2

)
dτ,
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where ω = ∇ × u and H = ∇ × b are the vorticity and the current density, respectively.
As aforementioned, ∥ω∥L2 = ∥∇u∥L2 and ∥H∥L2 = ∥∇b∥L2 .

Taking the inner product of (u, b) with the first two equations of (1.2), integrating by
parts and using ∇ · u = ∇ · b = 0, and then integrating in time, we find

∥u∥2L2 + ∥b∥2L2 + 2

∫ t

0

(
∥∂1u∥2L2 + ∥∇hb∥2L2

)
dτ=∥u0∥2L2 + ∥b0∥2L2 . (3.1)

Applying the operator ∇× to (1.2), we obtain the system governing (ω,H),

{
∂tω + u · ∇ω − ω · ∇u− ∂2

1ω = b · ∇H −H · ∇b+ ∂2H,

∂tH +∇× (u · ∇b)−∆hH = ∇× (b · ∇u) + ∂2ω.
(3.2)

Applying ∂3
i with i = 1, 2, 3 to (3.2) and taking the inner product of (∂3

i ω, ∂
3
i H) with the

resulting equations, we have, after integration by parts,

1

2

d

dt

3∑
i=1

[
∥∂3

i ω∥2L2 + ∥∂3
i H∥2L2

]
+

3∑
i=1

[
∥∂3

i ∂1ω∥2L2 + ∥∂3
i ∇hH∥2L2

]
=

3∑
i=1

∫
R3

∂3
i

[
− u · ∇ω + ω · ∇u+ b · ∇H −H · ∇b+ ∂2H

]
· ∂3

i ωdx

+
3∑

i=1

∫
R3

∂3
i

[
−∇× (u · ∇b) +∇× (b · ∇u) + ∂2ω

]
· ∂3

i Hdx

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

(3.3)

For the first term I1, it can be written into three parts,

∫
R3

∂3
1(−u · ∇ω) · ∂3

1ωdx,

∫
R3

∂3
2(−u · ∇ω) · ∂3

2ωdx,

∫
R3

∂3
3(−u · ∇ω) · ∂3

3ωdx.

The first and second parts above behave good and can be bounded easily,

∫ t

0

∫
R3

∂3
1(−u · ∇ω) · ∂3

1ωdx dτ +

∫ t

0

∫
R3

∂3
2(−u · ∇ω) · ∂3

2ωdx dτ

≲ sup
0≤τ≤t

∥u(τ)∥H4

∫ t

0

∥∇hω∥2Ḣ2 dτ ≲ E
3
2 (t).
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We then turn to the hard term
∫
R3

∂3
3(−u · ∇ω) · ∂3

3ωdx in I1. It’s difficult to control since

there is no dissipation in the x3 direction. We further decompose it into three parts,∫
R3

∂3
3(−u · ∇ω) · ∂3

3ωdx

=
3∑

k=1

∫
R3

−Ck
3∂

k
3u · ∇∂3−k

3 ω · ∂3
3ωdx

=−
{ 3∑

k=2

Ck
3

∫
R3

∂k
3uh · ∇h∂

3−k
3 ω · ∂3

3ωdx+ 3

∫
R3

∂3uh · ∇h∂
2
3ω · ∂3

3ωdx
}

−
3∑

k=2

Ck
3

∫
R3

∂k
3u3∂

4−k
3 ω · ∂3

3ωdx− 3

∫
R3

∂3u3∂
3
3ω · ∂3

3ωdx

= I11 + I12 + I13.

By Lemma 2.1,

|I11| ≲
3∑

k=2

∥∂k
3uh∥

1
2

L2∥∂2∂k
3uh∥

1
2

L2∥∇h∂
3−k
3 ω∥

1
2

L2∥∂3∇h∂
3−k
3 ω∥

1
2

L2∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2

+ ∥∂3uh∥
1
4

L2∥∂2∂3uh∥
1
4

L2∥∂3∂3uh∥
1
4

L2∥∂2∂3∂3uh∥
1
4

L2∥∇h∂
2
3ω∥L2∥∂3

3ω∥
1
2

L2∥∂1∂3
3ω∥

1
2

L2 .

Integrating in time and applying Hölder’s inequality yields∫ t

0

|I11|dτ ≲ E
3
2 (t).

Similarly,

I12 =
3∑

k=2

Ck
3

∫
R3

∂k−1
3 ∇h · uh∂

4−k
3 ω · ∂3

3ωdx

≲
3∑

k=2

∥∂k−1
3 ∇h · uh∥

1
2

L2∥∂3∂k−1
3 ∇h · uh∥

1
2

L2

· ∥∂4−k
3 ω∥

1
2

L2∥∂2∂4−k
3 ω∥

1
2

L2∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 .

Therefore, ∫ t

0

|I12|dτ ≲ E
3
2 (t).

By the divergence free condition ∇ · u = 0, we can further split I13 into two parts,

I13 = −
∫
R3

∂1u1∂
3
3ω · ∂3

3ωdx−
∫
R3

∂2u2∂
3
3ω · ∂3

3ωdx = I131 + I132.
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Using integration by parts and Lemma 2.1, we have

∫ t

0

I131 dτ = 2

∫ t

0

∫
R3

u1∂
3
3ω · ∂1∂3

3ωdx

≲
∫ t

0

∥u1∥
1
4

L2∥∂2u1∥
1
4

L2∥∂3u1∥
1
4

L2∥∂2∂3u1∥
1
4

L2

· ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥L2 dτ

≲ E
3
2 (t).

However I132 can not be similarly treated as I131. Integration by parts would generate
∂2∂

3
3ω, which can not be bounded by either E1 or E2. We call this trouble the derivative

loss problem. How to overcome the derivative loss problem is the main challenge of our
proof. By creating several new techniques, we are able to deal with this type of terms. This
is done in Proposition 1.1. Therefore, by Proposition 1.1 we have

∫ t

0

I132 dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

Collecting all the upper bounds for various parts of I1, we obtain

∫ t

0

|I1(τ)|dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t). (3.4)

We turn to the second term I2. Naturally we divide it into the following three parts,∫
R3

∂3
1(ω · ∇u) · ∂3

1ωdx,

∫
R3

∂3
2(ω · ∇u) · ∂3

2ωdx and
∫
R3

∂3
3(ω · ∇u) · ∂3

3ωdx.

The first two parts above can be controlled easily like before,

∫ t

0

∫
R3

∇3
h(ω · ∇u) · ∇3

hω dxdt ≲
∫ t

0

∥u∥H3∥∇hu∥H3∥∇3
hω∥L2 dτ ≲ E

3
2 (t).

The last part is further split into three terms as follows,∫
R3

∂3
3(ω · ∇u) · ∂3

3ωdx =

∫
R3

∂3
3(ω1∂1u) · ∂3

3ωdx+

∫
R3

∂3
3(ω2∂2u) · ∂3

3ωdx

+

∫
R3

∂3
3(ω3∂3u) · ∂3

3ωdx

= I21 + I22 + I23.

(3.5)



THE 3D MHD EQUATIONS WITH MIXED DISSIPATION 15

The estimate for I21 is not difficult. By integration by parts,∫ t

0

I21(τ) dτ =
2∑

k=0

Ck
3

∫ t

0

∫
R3

∂k
3ω1∂1∂

3−k
3 u · ∂3

3ω dxdτ

+

∫ t

0

∫
R3

∂3
3ω1∂1u · ∂3

3ω dxdτ

≲
2∑

k=0

∫ t

0

∥∂k
3ω1∥

1
2

L2∥∂2∂k
3ω1∥

1
2

L2∥∂1∂3−k
3 u∥

1
2

L2∥∂3∂1∂3−k
3 u∥

1
2

L2

· ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 dτ

+

∫ t

0

∥u∥
1
4

L2∥∂2u∥
1
4

L2∥∂3u∥
1
4

L2∥∂2∂3u∥
1
4

L2∥∂1∂3
3ω∥L2

· ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 dτ

≲ E
3
2 (t).

I22 contains a difficult term that has to be dealt with by Proposition 1.1. By Lemma 2.1 and
Proposition 1.1,∫ t

0

I22(τ) dτ

=
2∑

k=0

Ck
3

∫ t

0

∫
R3

∂k
3ω2∂2∂

3−k
3 u · ∂3

3ω dxdτ +

∫ t

0

∫
R3

∂3
3ω2∂2u · ∂3

3ω dxdτ

≲
∫ t

0

∥ω2∥
1
2

H2∥∂2ω∥
1
2

H2∥∂2u∥H3∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 dτ + E
3
2 (0) + E

3
2 (t) + E 2(t)

≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

Now we come to deal with the last part in (3.5), i.e.,

I23 =
3∑

k=1

Ck
3

∫
R3

∂k
3ω3∂

4−k
3 u · ∂3

3ω dx+

∫
R3

ω3∂
4
3u · ∂3

3ω dx = I231 + I232.

Due to the divergence free condition of ω, I231 is easy to control. By ∇ · ω = 0,

I231 =−
2∑

k=1

Ck
3

∫
R3

∂k−1
3 (∂1ω1 + ∂2ω2)∂

4−k
3 u · ∂3

3ω dx

−
∫
R3

∂2
3(∂1ω1 + ∂2ω2)∂3u · ∂3

3ω dx

≲ ∥∇hω∥
1
2

H1∥∂3∇hω∥
1
2

H1∥u∥
1
2

H3∥∂2u∥
1
2

H3∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2

+ ∥∂2
3∇hω∥L2∥∂3u∥

1
4

L2∥∂2∂3u∥
1
4

L2∥∂3∂3u∥
1
4

L2∥∂2∂3∂3u∥
1
4

L2∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 .
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I232 can not be bounded in the similar way. We write ω3 = ∂1u2 − ∂2u1 in I232,∫ t

0

I232(τ) dτ =

∫ t

0

∫
R3

(∂1u2 − ∂2u1)∂
4
3u · ∂3

3ωdxdτ.

The estimate for
∫ t

0

∫
R3

∂1u2∂
4
3u · ∂3

3ωdxdτ is just similar to
∫ t

0

∫
R3

∂3
3ω1∂1u · ∂3

3ωdxdτ

in I21. We can apply integration by parts and Lemma 2.1 to control it by E
3
2 (t). It remains

difficult to deal with
∫ t

0

∫
R3

∂2u1∂
4
3u · ∂3

3ωdxdτ due to the derivative loss problem. We

split this term into three parts again.∫ t

0

∫
R3

∂2u1∂
4
3u · ∂3

3ωdxdτ =

∫ t

0

∫
R3

∂2u1∂
4
3u1∂

3
3ω1dxdτ

+

∫ t

0

∫
R3

∂2u1∂
4
3u2∂

3
3ω2dxdτ

+

∫ t

0

∫
R3

∂2u1∂
4
3u3∂

3
3ω3dxdτ.

(3.6)

The last part
∫ t

0

∫
R3

∂2u1∂
4
3u3∂

3
3ω3dxdτ can be controlled by E

3
2 (t) easily by making use

of the divergence free property of u. The process is simpler than that for I231. Now, we
focus on the first two parts in (3.6). We write them as∫ t

0

∫
R3

∂2u1∂
4
3u1∂

3
3ω1dxdτ +

∫ t

0

∫
R3

∂2u1∂
4
3u2∂

3
3ω2dxdτ

=

∫ t

0

∫
R3

∂2u1∂
3
3

(
∂3u1 − ∂1u3 + ∂1u3

)
∂3
3ω1dxdτ

+

∫ t

0

∫
R3

∂2u1∂
3
3

(
∂3u2 − ∂2u3 + ∂2u3

)
∂3
3ω2dxdτ

=

∫ t

0

∫
R3

∂2u1∂
3
3ω2∂

3
3ω1dx−

∫ t

0

∫
R3

∂2u1∂
3
3ω1∂

3
3ω1dxdτ

+

∫ t

0

∫
R3

∂2u1∂
3
3∂1u3∂

3
3ω1dx+

∫ t

0

∫
R3

∂2u1∂
3
3∂2u3∂

3
3ω1dxdτ.

(3.7)

The first two terms on the right hand side of (3.7) can be handled by Proposition 1.1 while
the rest two terms by Sobolev’s inequality,∫ t

0

∫
R3

∂2u1∂
3
3ω2∂

3
3ω1dx−

∫ t

0

∫
R3

∂2u1∂
3
3ω1∂

3
3ω1dxdτ ≲ E

3
2 (0) + E

3
2 (t) + E 2(t),∫ t

0

∫
R3

∂2u1∂
3
3∂1u3∂

3
3ω1dx+

∫ t

0

∫
R3

∂2u1∂
3
3∂2u3∂

3
3ω1dxdτ ≲ E

3
2 (t).

Taking all the inequalities above into consideration we then obtain∫ t

0

|I2(τ)|dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t). (3.8)
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We shall combine the estimates of I3 and I7 to take advantage of cancellations. Naturally

I3 =
3∑

i=1

∫
R3

∂3
i (b · ∇H) · ∂3

i ωdx is divided into the following three terms,

∫
R3

∂3
1(b · ∇H) · ∂3

1ωdx,

∫
R3

∂3
2(b · ∇H) · ∂3

2ωdx and
∫
R3

∂3
3(b · ∇H) · ∂3

3ωdx.

Each term above can be split into two parts as follows.

I31 + Ĩ31 =
3∑

k=1

Ck
3

∫
R3

∂k
1 b · ∇∂3−k

1 H · ∂3
1ωdx+

∫
R3

b · ∇∂3
1H · ∂3

1ωdx,

I32 + Ĩ32 =
3∑

k=1

Ck
3

∫
R3

∂k
2 b · ∇∂3−k

2 H · ∂3
2ωdx+

∫
R3

b · ∇∂3
2H · ∂3

2ωdx,

I33 + Ĩ33 =
3∑

k=1

Ck
3

∫
R3

∂k
3 b · ∇∂3−k

3 H · ∂3
3ωdx+

∫
R3

b · ∇∂3
3H · ∂3

3ωdx.

I31 and I32 have the good derivatives ∇h and can be bounded directly,

I31 + I32 ≲ ∥∇hb∥H2∥b∥H4∥∇hω∥H2 .

To deal with I33, we also use the divergence free property ∇ · b = 0 to write

I33 =
3∑

k=1

Ck
3

∫
R3

∂k
3 bh · ∇h∂

3−k
3 H · ∂3

3ωdx−
3∑

k=1

Ck
3

∫
R3

∂k−1
3 ∇h · bh∂4−k

3 H · ∂3
3ωdx.

We have converted some of ∂3 into the good derivatives ∇h. By Lemma 2.1,

I33 ≲(∥bh∥
1
2

H3∥∂2bh∥
1
2

H3∥∇hH∥
1
2

H2∥∂3∇hH∥
1
2

H2+∥∇hb∥
1
2

H2∥∂3∇hb∥
1
2

H2∥H∥
1
2

H3∥∂2H∥
1
2

H3)

· ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2 .

The remaining terms Ĩ31, Ĩ32 and Ĩ33 can not be controlled directly, but will be canceled by

the corresponding terms in I7. Now let’s focus on I7 =
3∑

i=1

∫
R3

∂3
i [∇× (b · ∇u)] · ∂3

i Hdx,

we notice that
∇× (b · ∇u) = b · ∇ω +R

where R stands for the vector with its i-th component given by

Ri = σijk∂jb · ∇uk.

Here σijk is the Levi-Cevita symbol,

σijk =

 1, ijk = 123, 231, 312;
−1, ijk = 321, 213, 132;
0, otherwise.

(3.9)
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Following the process for I3, we can split I7 into the following nine parts,

I71 + Ĩ71 +
˜̃I71

=
3∑

k=1

Ck
3

∫
R3

∂k
1 b · ∇∂3−k

1 ω · ∂3
1Hdx+

∫
R3

b · ∇∂3
1ω · ∂3

1Hdx+

∫
R3

∂3
1(R) · ∂3

1Hdx,

I72 + Ĩ72 +
˜̃I72

=
3∑

k=1

Ck
3

∫
R3

∂k
2 b · ∇∂3−k

2 ω · ∂3
2Hdx+

∫
R3

b · ∇∂3
2ω · ∂3

2Hdx+

∫
R3

∂3
2(R) · ∂3

2Hdx,

I73 + Ĩ73 +
˜̃I73

=
3∑

k=1

Ck
3

∫
R3

∂k
3 b · ∇∂3−k

3 ω · ∂3
3Hdx+

∫
R3

b · ∇∂3
3ω · ∂3

3Hdx+

∫
R3

∂3
3(R) · ∂3

3Hdx.

By integration by parts and ∇ · b = 0,

Ĩ31 + Ĩ71 = 0, Ĩ32 + Ĩ72 = 0 and Ĩ33 + Ĩ73 = 0.

I71 and I72 are easy to control while I73 can be written as

I73 =
3∑

k=1

Ck
3

∫
R3

∂k
3 bh · ∇h∂

3−k
3 ω · ∂3

3Hdx−
3∑

k=1

Ck
3

∫
R3

∂k−1
3 ∇h · bh∂4−k

3 ω · ∂3
3Hdx.

Now I71, I72 and I73 all contain good derivatives ∇h and can be handled exactly like I31, I32
and I33. We omit the repeated details. Let’s focus on the remaining terms containing R,
namely ˜̃I71, ˜̃I72 and ˜̃I73. By Hölder’s inequality and Sobolev embedding theorem,

˜̃I71 +
˜̃I72 ≲

(
∥∇hb∥H3∥u∥H4 + ∥∇hu∥H3∥b∥H4

)
∥∇hH∥H3 .

˜̃I73 is more complex and is further split into two parts,

˜̃I73 =
3∑

i=1

∫
R3

∂3
3(σijk∂jbh · ∇huk)∂

3
3Hi dx+

∫
R3

∂3
3(σ3jk∂jb3∂3uk)∂

3
3H3 dx

+
∑
i ̸=3

∫
R3

∂3
3(σijk∂jb3∂3uk)∂

3
3Hi dx = ˜̃I731 +

˜̃I732.

Noticing H3 = ∂1b2 − ∂2b1 and applying Lemma 2.1, we can bound ˜̃I731 by

˜̃I731 ≲∥∇hu∥H3∥bh∥
1
4

H3∥∂2bh∥
1
4

H3∥∂3bh∥
1
4

H3∥∂2∂3bh∥
1
4

H3∥∂3
3H∥

1
2

L2∥∂1∂3
3H∥

1
2

L2

+ ∥∇hu∥
1
2

L2∥∂3∇hu∥
1
2

L2∥bh∥
1
2

H4∥∂2bh∥
1
2

H4∥∂3
3H∥

1
2

L2∥∂1∂3
3H∥

1
2

L2

+ ∥b3∥
1
2

H4∥∂2b3∥
1
2

H4∥u∥
1
2

H4∥∂1u∥
1
2

H4∥∇hb∥
1
2

H3∥∂3∇hb∥
1
2

H3 .
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By the definition of σijk, if i ̸= 3, we will have j = 3 or k = 3. Indeed,

˜̃I732 ≲∥∂3b3∥
1
2

H3∥∂3∂3b3∥
1
2

H3∥u∥
1
2

H4∥∂1u∥
1
2

H4∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥∂3u3∥
1
2

H2∥∂3∂3u3∥
1
2

H2∥b3∥
1
2

H4∥∂1b3∥
1
2

H4∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥∂3u3∥H3∥b3∥
1
4

H1∥∂1b3∥
1
4

H1∥∂3b3∥
1
4

H1∥∂1∂3b3∥
1
4

H1∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2 .

Collecting the upper bounds for I3 and I7 above, we find∫ t

0

|I3(τ) + I7(τ)|dτ ≲ E
3
2 (t). (3.10)

Next we deal with I4, which is naturally divided into the following three terms

−
∫
R3

∂3
1(H · ∇b) · ∂3

1ωdx, −
∫
R3

∂3
2(H · ∇b) · ∂3

2ωdx, −
∫
R3

∂3
3(H · ∇b) · ∂3

3ωdx.

The first two terms already contain the good derivatives ∇h and can be bounded directly.
The third term is further decomposed into three terms

−
∫
R3

∂3
3(H · ∇b) · ∂3

3ωdx =−
∫
R3

∂3
3(H1∂1b) · ∂3

3ωdx−
∫
R3

∂3
3(H2∂2b) · ∂3

3ωdx

−
∫
R3

∂3
3(H3∂3b) · ∂3

3ωdx.

The first two terms above have either ∂1b or ∂2b and can thus be bounded by applying
Lemma 2.1. The third term involves H3 = ∂1b2 − ∂2b1 and thus also contains the good
horizontal derivatives on b. Therefore, all of them admit suitable upper bounds and∫ t

0

|I4(τ)|dτ ≲ E
3
2 (t). (3.11)

I5 and I8 cancel each other by integration by parts,

I5 + I8 =
3∑

i=1

[ ∫
R3

∂3
i ∂2H · ∂3

i ωdx+

∫
R3

∂3
i ∂2ω · ∂3

i Hdx
]
= 0. (3.12)

It remains to deal with I6. As in I7, we can write ∇ × (u · ∇b) = u · ∇H + R̃, where
R̃i = σijk∂ju · ∇bk and σijk is defined in (3.9). Thus,

I6 =−
3∑

k=1

Ck
3

∫
R3

∂k
1u · ∇∂3−k

1 H · ∂3
1Hdx−

∫
R3

∂3
1(R̃) · ∂3

1Hdx

−
3∑

k=1

Ck
3

∫
R3

∂k
2u · ∇∂3−k

2 H · ∂3
2Hdx−

∫
R3

∂3
2(R̃) · ∂3

2Hdx

−
3∑

k=1

Ck
3

∫
R3

∂k
3uh · ∇h∂

3−k
3 H · ∂3

3Hdx−
3∑

k=1

Ck
3

∫
R3

∂k
3u3∂

4−k
3 H · ∂3

3Hdx

−
∫
R3

∂3
3(R̃) · ∂3

3Hdx

= I61 + I62 + I63 + I64.
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By Hölder’s inequality and Sobolev embedding theorem,

I61 + I62 ≲∥∇hu∥H3∥H∥H3∥∇hH∥H3

+
(
∥∇hu∥H3∥b∥H4 + ∥u∥H2∥∇hb∥H3

)
∥∇hH∥H3 .

The estimate for I63 is similar to that for I73,

I63 ≲∥uh∥
1
2

H3∥∂1uh∥
1
2

H3∥∇hH∥
1
2

H2∥∂3∇hH∥
1
2

H2∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥∇h · uh∥
1
2

H2∥∂3∇h · uh∥
1
2

H2∥H∥H3∥∇hH∥H3 .

I64 is bounded similarly as ˜̃I73

I64 ≲ ∥uh∥
1
2

H4∥∂1uh∥
1
2

H4∥∇hb∥
1
2

H3∥∂3∇hb∥
1
2

H3∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥u3∥
1
2

H4∥∂1u3∥
1
2

H4∥b∥
1
2

H4∥∂2b∥
1
2

H4∥∇hb∥
1
2

H3∥∂3∇hb∥
1
2

H3

+ ∥∂3b3∥
1
2

H3∥∂3∂3b3∥
1
2

H3∥u∥
1
2

H4∥∂1u∥
1
2

H4∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥∂3u3∥
1
2

H2∥∂3∂3u3∥
1
2

H2∥b∥
1
2

H4∥∂1b∥
1
2

H4∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

+ ∥∂3u3∥H3∥b∥
1
4

H1∥∂1b∥
1
4

H1∥∂3b∥
1
4

H1∥∂1∂3b∥
1
4

H1∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2 .

Therefore, ∫ t

0

|I6(τ)|dτ ≲ E
3
2 (t). (3.13)

Integrating (3.3) in time on the interval [0, t] and invoking the upper bounds in (3.4), (3.8),
(3.10), (3.11), (3.12) and (3.13), we obtain

sup
0≤τ≤t

(
∥u∥2

Ḣ4 +∥b∥2
Ḣ4

)
+

∫ t

0

(
∥∂1u∥2Ḣ4 +∥∇hb∥2Ḣ4

)
dτ ≲ E (0)+E

3
2 (0)+E

3
2 (t)+E 2(t).

(3.14)
Adding (3.1) and (3.14) yields the desired inequality in (1.11), namely

E1(t) ≲ E (0) + E
3
2 (0) + E

3
2 (t) + E 2(t).

This finishes the proof. □

4. PROOF OF PROPOSITION 1.1

This section is devoted to the proof of Proposition 1.1, which provides suitable upper
bounds for the time integral of the interaction terms. We have used Proposition 1.1 exten-
sively in the crucial energy estimates in the previous sections.

The proof of Proposition 1.1 deals with some of the most difficult terms emanating from
the velocity nonlinearity. We take out two of the wildest terms and deal with them in the
following lemma. We will state and prove this lemma, and then prove Proposition 1.1.

Lemma 4.1. Let (u, b) ∈ H4 be a solution of (1.2). Let ω = ∇× u and H = ∇× b be the
corresponding vorticity and current density, respectively. Let E (t) be defined as in (1.8).
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Then, for all i, j, k ∈ {1, 2, 3},∣∣∣∣∫ t

0

∫
R3

bj∂t(∂
3
3ωi∂

3
3ωk) dxdτ

∣∣∣∣ , ∣∣∣∣∫ t

0

∫
R3

∂2uj∂t(∂
3
3ωi∂

3
3ωk) dxdτ

∣∣∣∣ ≲ E
3
2 (0)+E

3
2 (t)+E 2(t).

Proof of Lemma 4.1. We will deal with the two terms above simultaneously. By the equa-
tion of ω in (3.2),

− ∂t(∂
3
3ωi∂

3
3ωk)

= ∂3
3ωi∂

3
3

(
u · ∇ωk − ω · ∇uk − ∂2

1ωk − b · ∇Hk +H · ∇bk − ∂2Hk

)
+ ∂3

3ωk∂
3
3

(
u · ∇ωi − ω · ∇ui − ∂2

1ωi − b · ∇Hi +H · ∇bi − ∂2Hi

)
.

(4.1)

Multiplying (4.1) by bj or ∂2uj and integrating in space, we can write

−
∫
R3

∂t(∂
3
3ωi∂

3
3ωk)(bj|∂2uj)dx = J1 + J2 + J3 + J4 + J5, (4.2)

where the notation (bj|∂2uj) stands for either bj or ∂2uj and we will use it throughout the
rest of the proof. The explicit expression for J1 ∼ J5 is shown below. We first deal with J1
given by

J1 =

∫
R3

[
∂3
3ωi∂

3
3(u · ∇ωk) + ∂3

3ωk∂
3
3(u · ∇ωi)

]
(bj|∂2uj)dx.

The highest order norms of ω in J1, labeled as J11, can be dealt with using Lemma 2.1,

J11 =

∫
R3

[
∂3
3ωiu · ∇∂3

3ωk + ∂3
3ωku · ∇∂3

3ωi

]
(bj|∂2uj)dx

=

∫
R3

u · ∇
(
∂3
3ωi∂

3
3ωk

)
(bj|∂2uj)dx

=−
∫
R3

∂3
3ωi∂

3
3ωku · ∇(bj|∂2uj)dx

≲ ∥∂1ω∥H3∥ω∥H3∥∂2u∥
1
2

H1∥u∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H2∥(b|∂2u)∥
1
2

H2 .

The remaining parts in J1 can be written as

J12 =
3∑

l=1

Cl
3

∫
R3

[
∂3
3ωi∂

l
3u · ∇∂3−l

3 ωk + ∂3
3ωk∂

l
3u · ∇∂3−l

3 ωi

]
(bj|∂2uj)dx

=
2∑

l=1

Cl
3

∫
R3

[
∂3
3ωi∂

l
3u · ∇∂3−l

3 ωk + ∂3
3ωk∂

l
3u · ∇∂3−l

3 ωi

]
(bj|∂2uj)dx

+

∫
R3

[
∂3
3ωi∂

3
3u · ∇ωk + ∂3

3ωk∂
3
3u · ∇ωi

]
(bj|∂2uj)dx,

which is easily controlled by

∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥u∥
1
2

H4∥∂1u∥
1
2

H4∥u∥
1
2

H3∥∂2u∥
1
2

H3∥(b|∂2u)∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H1 .
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J2 is defined as and bounded by

J2 = −
∫
R3

∂3
3ωi∂

3
3(ω · ∇uk)(bj|∂2uj)dx−

∫
R3

∂3
3ωk∂

3
3(ω · ∇ui)(bj|∂2uj)dx

≲ ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥u∥
1
2

H4∥∂1u∥
1
2

H4∥u∥
1
4

H2∥∂2u∥
1
4

H2∥∂3u∥
1
4

H2∥∂2∂3u∥
1
4

H2

· ∥(b|∂2u)∥
1
4

L2∥∂2(b|∂2u)∥
1
4

L2∥∂3(b|∂2u)∥
1
4

L2∥∂2∂3(b|∂2u)∥
1
4

L2 .

By integration by parts,

J3 =

∫
R3

[
− ∂3

3ωi∂
3
3∂

2
1ωk − ∂3

3ωk∂
3
3∂

2
1ωi

]
(bj|∂2uj) dx

= 2

∫
R3

∂1∂
3
3ωi∂1∂

3
3ωk(bj|∂2uj)dx

+

∫
R3

[
∂3
3ωi∂1∂

3
3ωk + ∂3

3ωk∂1∂
3
3ωi

]
∂1(bj|∂2uj)dx

≲ ∥∂1ω∥2H3∥(b|∂2u)∥H2 + ∥ω∥H3∥∂1ω∥H3∥∂1(b|∂2u)∥H2 .

J4 is given by

J4 =

∫
R3

[
− ∂3

3ωi∂
3
3(b · ∇Hk)− ∂3

3ωk∂
3
3(b · ∇Hi)

]
(bj|∂2uj) dx.

This is a difficult term. First we separate J4 into two parts,

J4 =

∫
R3

[
− ∂3

3ωib · ∇∂3
3Hk − ∂3

3ωkb · ∇∂3
3Hi

]
(bj|∂2uj) dx

+
3∑

l=1

Cl
3

∫
R3

[
− ∂3

3ωi∂
l
3b · ∇∂3−l

3 Hk − ∂3
3ωk∂

l
3b · ∇∂3−l

3 Hi

]
(bj|∂2uj)dx

=J41 + J42.

J42 can be bounded directly. By Lemma 2.1,

|J42|≲∥ω∥
1
2

H3∥∂1ω∥
1
2

H3∥H∥
1
2

H3∥∂1H∥
1
2

H3∥b∥
1
2

H4∥∂2b∥
1
2

H4

· ∥(b|∂2u)∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H1 .
(4.3)

The estimate for J41 is at the core of this section. J1, J2 and J3 are symmetric in the sense
that, when we switch i and k in any one of these terms, they remain the same. As we have
seen in the estimates above, terms with symmetric structure are relatively easy to deal with.
However, J41 is not symmetric and we can no longer make easy cancellations. To overcome
this essential difficulty, we construct some artificial symmetry to take full advantage of the
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cancellations.

J41 =

∫
R3

[
− ∂3

3ωib · ∇∂3
3Hk − ∂3

3ωkb · ∇∂3
3Hi

]
(bj|∂2uj) dx

=

∫
R3

[
∂3
3Hib · ∇∂3

3ωk + ∂3
3Hkb · ∇∂3

3ωi

]
(bj|∂2uj) dx

−
∫
R3

[
b · ∇(∂3

3ωi∂
3
3Hk) + b · ∇(∂3

3ωk∂
3
3Hi)

]
(bj|∂2uj) dx

= J411 + J412.

(4.4)

J412 can be handled through integration by parts and Lemma 2.1,

J412 =

∫
R3

[
∂3
3ωi∂

3
3Hk + ∂3

3ωk∂
3
3Hi

]
b · ∇(bj|∂2uj)dx

≲ ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥∂3
3H∥

1
2

L2∥∂1∂3
3H∥

1
2

L2∥b∥
1
2

H1∥∂2b∥
1
2

H1

· ∥(b|∂2u)∥
1
2

H2∥∂2(b|∂2u)∥
1
2

H2 .

(4.5)

J411 is extremely difficult. As our first step, we invoke the equation of H in (3.2)

∂tHk + u · ∇Hk +
3∑

p=1

∇up × ∂pbk −∆hHk

= b · ∇ωk +
3∑

p=1

∇bp × ∂puk + ∂2ωk.

(4.6)

where we have used the simple identities

∇× (b · ∇u) = b · ∇ω +
3∑

p=1

∇bp × ∂pu,

∇× (u · ∇b) = u · ∇H +
3∑

p=1

∇up × ∂pb.

Applying ∂3
3 to (4.6) then yields

(∂3
3Hk)t + ∂3

3(u · ∇Hk) + ∂3
3(

3∑
p=1

∇up × ∂pbk)− ∂3
3∆hHk

= b · ∇∂3
3ωk +

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωk + ∂3
3(

3∑
p=1

∇bp × ∂puk) + ∂3
3∂2ωk.

(4.7)

Similarly,

(∂3
3Hi)t + ∂3

3(u · ∇Hi) + ∂3
3(

3∑
p=1

∇up × ∂pbi)− ∂3
3∆hHi

= b · ∇∂3
3ωi +

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωi + ∂3
3(

3∑
p=1

∇bp × ∂pui) + ∂3
3∂2ωi.

(4.8)
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Multiplying (4.7) by ∂3
3Hi and (4.8) by ∂3

3Hk , and summing them up, there holds

∂3
3Hib · ∇∂3

3ωk + ∂3
3Hkb · ∇∂3

3ωi

=
(
∂3
3Hi∂

3
3Hk

)
t
+ ∂3

3Hi∂
3
3(u · ∇Hk) + ∂3

3Hk∂
3
3(u · ∇Hi)

+ ∂3
3Hi∂

3
3(

3∑
p=1

∇up × ∂pbk) + ∂3
3Hk∂

3
3(

3∑
p=1

∇up × ∂pbi)

− ∂3
3Hi∂

3
3(

3∑
p=1

∇bp × ∂puk)− ∂3
3Hk∂

3
3(

3∑
p=1

∇bp × ∂pui)

− ∂3
3Hi

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωk − ∂3
3Hk

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωi

− ∂3
3Hi∂

3
3∆hHk − ∂3

3Hk∂
3
3∆hHi − ∂3

3Hi∂
3
3∂2ωk − ∂3

3Hk∂
3
3∂2ωi.

(4.9)

We can then replace the nonlinear terms in J411 by the right hand side of (4.9). This
complicated substitution generates many more terms, but this important process converts
some of seemingly impossible terms into other terms that can be bounded suitably. This is
what we would call artificial cancellation through substitutions. Next we give the estimate
for the terms corresponding to the right hand side of (4.9). The first term we come across
is

K1 =

∫
R3

(
∂3
3Hi∂

3
3Hk

)
t
(bj|∂2uj) dx.

Using integration by parts and invoking the equation of b in (1.2), we can rewrite the term
containing bj as follows,

K1 =
d

dt

∫
R3

(
∂3
3Hi∂

3
3Hk

)
bj dx−

∫
R3

(
∂3
3Hi∂

3
3Hk

)
∂tbj dx

=
d

dt

∫
R3

(
∂3
3Hi∂

3
3Hk

)
bj dx

−
∫
R3

(
∂3
3Hi∂

3
3Hk

)
(−u · ∇bj +∆hbj + b · ∇uj + ∂2uj) dx.

By Lemma 2.1, the last line in the equality above can be bounded by

∥∂3
3H∥L2∥∂1∂3

3H∥L2∥u∥
1
2

H2∥∂2u∥
1
2

H2∥b∥
1
2

H2∥∂2b∥
1
2

H2

+ ∥∂3
3H∥

1
2

L2∥∂1∂3
3H∥

1
2

L2∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2

×
(
∥∆hb∥

1
2

L2∥∂3∆hb∥
1
2

L2 + ∥∂2u∥
1
2

L2∥∂3∂2u∥
1
2

L2

)
.

The estimate for the term containing ∂2uj is similar. We move on to the second part

K2 =

∫
R3

[
∂3
3Hi∂

3
3(u · ∇Hk) + ∂3

3Hk∂
3
3(u · ∇Hi)

]
(bj|∂2uj) dx.
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It can be handled similarly as J11. Due to its symmetric property,∫
R3

[
∂3
3Hiu · ∇∂3

3Hk + ∂3
3Hku · ∇∂3

3Hi

]
(bj|∂2uj)dx

=

∫
R3

u · ∇
(
∂3
3Hi∂

3
3Hk

)
(bj|∂2uj)dx

=−
∫
R3

∂3
3Hi∂

3
3Hku · ∇(bj|∂2uj)dx

≲ ∥∂1H∥H3∥H∥H3∥∂2u∥
1
2

H1∥u∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H2∥(b|∂2u)∥
1
2

H2

and
3∑

l=1

Cl
3

∫
R3

[
∂3
3Hi∂

l
3u · ∇∂3−l

3 Hk + ∂3
3Hk∂

l
3u · ∇∂3−l

3 Hi

]
(bj|∂2uj)dx

≲ ∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2∥H∥
1
2

H3∥∂2H∥
1
2

H3∥u∥
1
2

H4∥∂1u∥
1
2

H4∥(b|∂2u)∥
1
2

H1∥∂1(b|∂2u)∥
1
2

H1 .

The next term K3 contains six parts of (4.9) and is defined as follows.

K3 =

∫
R3

(
∂3
3Hi∂

3
3(

3∑
p=1

∇up × ∂pbk) + ∂3
3Hk∂

3
3(

3∑
p=1

∇up × ∂pbi)

− ∂3
3Hi∂

3
3(

3∑
p=1

∇bp × ∂puk)− ∂3
3Hk∂

3
3(

3∑
p=1

∇bp × ∂pui)

− ∂3
3Hi

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωk − ∂3
3Hk

3∑
l=1

Cl
3∂

l
3b · ∇∂3−l

3 ωi

)
· (bj|∂2uj) dx.

By Lemma 2.1, it’s easy to derive

K3 ≲ ∥H∥
1
2

H3∥∂1H∥
1
2

H3

(
∥u∥

1
2

H4∥∂1u∥
1
2

H4∥b∥
1
2

H3∥∂2b∥
1
2

H3

+ ∥b∥
1
2

H4∥∂1b∥
1
2

H4∥u∥
1
2

H3∥∂2u∥
1
2

H3

)
· ∥(b|∂2u)∥

1
2

H1∥∂2(b|∂2u)∥
1
2

H1 .

The last four parts of (4.9) are included in K4,

K4=

∫
R3

[
− ∂3

3Hi∂
3
3∆hHk − ∂3

3Hk∂
3
3∆hHi

]
(bj|∂2uj)dx

+

∫
R3

[
− ∂3

3Hi∂
3
3∂2ωk − ∂3

3Hk∂
3
3∂2ωi

]
(bj|∂2uj)dx

≲ ∥∇hH∥2H3∥(b|∂2u)∥H2 + ∥H∥H3∥∇hH∥H3∥∇h(b|∂2u)∥H2

+ ∥∂2∂3
3H∥L2∥∂3

3ω∥
1
2

L2∥∂1∂3
3ω∥

1
2

L2∥(b|∂2u)∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H1

+ ∥∂3
3H∥

1
2

L2∥∂2∂3
3H∥

1
2

L2∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥∂2(b|∂2u)∥
1
2

L2∥∂3∂2(b|∂2u)∥
1
2

L2 .

We have estimated all the terms corresponding to the right hand side of (4.9) and thus
obtained a suitable upper bound for J411 in (4.4). Integrating the upper bounds on K1
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through K4 in time yields∫ t

0

|J411|dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

Together with the estimate (4.5) for J412, we conclude that∫ t

0

|J41|dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

J42 has been estimated before in (4.3). Thus,∫ t

0

|J4|dτ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

We deal with the last term,

J5 =

∫
R3

[
∂3
3ωi∂

3
3(H · ∇bk − ∂2Hk) + ∂3

3ωk∂
3
3(H · ∇bi − ∂2Hi)

]
(bj|∂2uj) dx.

By Lemma 2.1,

J5 ≲∥ω∥
1
2

H3∥∂1ω∥
1
2

H3∥b∥
1
2

H4∥∂1b∥
1
2

H4∥b∥
1
2

H3∥∂2b∥
1
2

H3∥(b|∂2u)∥
1
2

H1∥∂2(b|∂2u)∥
1
2

H1

+ ∥∂3
3ω∥

1
2

L2∥∂1∂3
3ω∥

1
2

L2∥∂3
3∂2H∥L2∥(b|∂2u)∥

1
2

H1∥∂2(b|∂2u)∥
1
2

H1 .

Integrating in time yields ∫ t

0

|J5|dτ ≲ E
3
2 (t) + E 2(t).

Integrating (4.2) in time over [0, t] and combining all the bounds for J1 through J5, we are
led to the conclusion of Lemma 4.1. □

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1. Recall that the goal here is to bound the interaction terms W(t)
defined by

W ijk(t) ≜
∫
R3

∂3
3ωi∂2uj∂

3
3ωk dx, i, j, k ∈ {1, 2, 3}.

We replace ∂2uj by the equation of bj in (1.2), there is

W ijk(t) =

∫
R3

∂3
3ωi

[
∂tbj + u · ∇bj −∆hbj − b · ∇uj

]
∂3
3ωk dx

=
d

dt

∫
R3

∂3
3ωibj∂

3
3ωkdx−

∫
R3

bj∂t(∂
3
3ωi∂

3
3ωk)dx

+

∫
R3

∂3
3ωiu · ∇bj∂

3
3ωkdx−

∫
R3

∂3
3ωib · ∇uj∂

3
3ωkdx

−
∫
R3

∂3
3ωi∆hbj∂

3
3ωkdx

= W ijk
1 +W ijk

2 +W ijk
3 +W ijk

4 +W ijk
5 .
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By Hölder’s inequality, ∫ t

0

W ijk
1 (τ) dτ ≲ E

3
2 (0) + E

3
2 (t).

W ijk
2 is an extremely difficult term. Fortunately, we have bounded it in Lemma 4.1,∣∣∣∣∫ t

0

W ijk
2 (τ)dτ

∣∣∣∣ ≲ E
3
2 (0) + E

3
2 (t) + E 2(t).

By Lemma 2.1,

W ijk
3 ≲ ∥∂3

3ωi∥
1
2

L2∥∂1∂3
3ωi∥

1
2

L2∥∂3
3ωk∥

1
2

L2∥∂1∂3
3ωk∥

1
2

L2

· ∥u∥
1
2

H1∥∂2u∥
1
2

H1∥∇bj∥
1
2

H1∥∂2∇bj∥
1
2

H1

and

W ijk
4 ≲ ∥∂3

3ωi∥
1
2

L2∥∂1∂3
3ωi∥

1
2

L2∥∂3
3ωk∥

1
2

L2∥∂1∂3
3ωk∥

1
2

L2

· ∥b∥
1
2

H1∥∂2b∥
1
2

H1∥∇uj∥
1
2

H1∥∂2∇uj∥
1
2

H1 .

Integrating in time yields∫ t

0

|W ijk
3 (τ)|dτ,

∫ t

0

|W ijk
4 (τ)|dτ ≲ E 2(t).

We divide W ijk
5 into two parts,

W ijk
5 =

∫
R3

∂1bj∂1(∂
3
3ωi∂

3
3ωk)dx−

∫
R3

∂2
2bj∂

3
3ωi∂

3
3ωkdx

= W ijk
51 +W ijk

52 .

The estimate for W ijk
51 is easy,

W ijk
51 ≲ ∥∂1b∥H2∥∂1ω∥H3∥ω∥H3 .

For W ijk
52 , we replace ∂2bj via the equation of uj in (1.2),

W ijk
52 = −

∫
R3

∂2
(
∂tuj + u · ∇uj − ∂2

1uj − b · ∇bj + ∂jP
)
∂3
3ωi∂

3
3ωkdx.

By Lemma 2.1 and Sobolev’s inequality,

−
∫
R3

∂2
(
u · ∇uj − ∂2

1uj − b · ∇bj +∇jP
)
∂3
3ωi∂

3
3ωkdx

≲ ∥∂1u∥H4∥∂1ω∥H3∥ω∥H3 + ∥∂3
3ω∥L2∥∂1∂3

3ω∥L2

(
∥u∥H3∥∂2u∥H3 + ∥b∥H3∥∂2b∥H3

)
+ ∥∂2∇P∥

1
2

H1∥∂2∂2∇P∥
1
2

H1∥∂3
3ω∥

3
2

L2∥∂1∂3
3ω∥

1
2

L2 .

Taking the divergence of the velocity equation in (1.2) yields a representation of the pres-
sure P ,

P =
3∑

i,j=1

(−∆)−1∂i∂j(uiuj − bibj).
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Using the fact that Riesz operators are bounded on Lq for 1 < q < ∞ and the third
inequality in Lemma 2.1, we have

∥∂2P∥L2 ≲
∑
v=u,b

∥∂2(v ⊗ v)∥L2 ≲
∑
v=u,b

∥∂2v∥
1
2

L2∥∂1∂2v∥
1
2

L2∥v∥
1
2

H1∥∂2v∥
1
2

H1 ,

∥∂2
2P∥L2 ≲

∑
v=u,b

∥∂2
2(v ⊗ v)∥L2 ≲

∑
v=u,b

(
∥∂2v∥2L4 + ∥∂2

2v∥
1
2

L2∥∂1∂2
2v∥

1
2

L2∥v∥
1
2

H1∥∂2v∥
1
2

H1

)
.

Hence,

−
∫
R3

∂2
(
u · ∇uj − ∂2

1uj − b · ∇bj +∇jP
)
∂3
3ωi∂

3
3ωkdx

≲ ∥∂1u∥H4∥∂1ω∥H3∥ω∥H3 + ∥∂3
3ω∥L2∥∂1∂3

3ω∥L2

(
∥u∥H3∥∂2u∥H3 + ∥b∥H3∥∂2b∥H3

)
+

∑
v=u,b

(
∥∂2v∥

1
2

H2∥∂1∂2v∥
1
2

H2∥v∥
1
2

H3∥∂2v∥
1
2

H3

) 1
2

·
(
∥∂2v∥2H3 + ∥∂2

2v∥
1
2

H2∥∂1∂2
2v∥

1
2

H2∥v∥
1
2

H3∥∂2v∥
1
2

H3

) 1
2∥∂3

3ω∥
3
2

L2∥∂1∂3
3ω∥

1
2

L2 .

This implies that we only have one term left in the estimate for W ijk
52 , namely

−
∫
R3

∂2∂tuj ∂
3
3ωi∂

3
3ωkdx.

We shift the time derivative via the equation

−
∫
R3

∂2∂tuj∂
3
3ωi∂

3
3ωkdx = − d

dt

∫
R3

∂2uj∂
3
3ωi∂

3
3ωkdx+

∫
R3

∂2uj∂t(∂
3
3ωi∂

3
3ωk)dx.

The last term above is a difficult term and is bounded via Lemma 4.1. Integrating in time
and invoking the upper bounds, we find∫ t

0

|W ijk
5 (τ)|dτ ≲ E

3
2 (0) + E

3
2 (t) + E 2(t).

This completes the proof of Proposition 1.1. □

5. PROOF OF THEOREM 1.1

This section completes the proof of Theorem 1.1, which is achieved by applying the
bootstrapping argument to the energy inequalities obtained in the previous sections.

Proof of Theorem 1.1. As aforementioned in the introduction, the local well-posedness of
(1.2) in H4 follows from a standard procedure (see, e.g., [37]) and our attention is exclu-
sively focused on the global bound of H4-norms. This is accomplished by the bootstrapping
argument. The key components are the two energy inequalities established previously in
Sections 2 and 3,

E2(t) ≤ C1 E (0) + C2 E1(t) + C3 E
3
2
1 (t) + C4 E

3
2
2 (t), (5.1)

E1(t) ≤ C5 E (0) + C6 E
3
2 (0) + C7 E

3
2 (t) + C8 E 2(t), (5.2)
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where E = E1 + E2. Adding (5.2) to 1/(2C2) of (5.1) yields, for a constant C0 > 0 and for
any t > 0,

E (t) ≤ C0 E (0) + C0 E
3
2 (0) + C0 E

3
2 (t) + C0 E 2(t). (5.3)

Without loss of generality, we assume C0 ≥ 1. Applying a bootstrapping argument to (5.3)
then implies that, if ∥(u0, b0)∥H4 is sufficiently small, say

E (0) ≤ 1

128C3
0

or ∥(u0, b0)∥H4 ≤ ϵ :=
1√

128C3
0

, (5.4)

then, for any t > 0,

E (t) ≤ 1

32C2
0

, especially ∥(u(t), b(t))∥H4 ≤ 2
√

C0 ϵ.

In fact, if we make the ansatz that

E (t) ≤ 1

16C2
0

(5.5)

and insert (5.5) in (5.3), we obtain

E (t) ≤ C0 E (0) + C0 E
3
2 (0) +

1

2
E (t),

which, together with (5.4), implies

E (t) ≤ 1

32C2
0

. (5.6)

The bootstrapping argument then implies that (5.6) actually holds for all t > 0. This
completes the proof of Theorem 1.1. □
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