STABILIZING EFFECT OF THE MAGNETIC FIELD AND
LARGE-TIME BEHAVIOR OF 2D INCOMPRESSIBLE MHD SYSTEM
WITH VERTICAL DISSIPATION

WEN FENG!, FARZANA HAFEEZ? AND JIAHONG WU?

ABSTRACT. The stabilizing and damping phenomenon of a background magnetic field on
electrically conducting fluids has been observed in various physical experiments and nu-
merical simulations. This paper establishes this observation as mathematically rigorous
decay results on a 2D magnetohydrodynamic (MHD) system with only partial dissipation.
Without the magnetic field, the fluid velocity obeys a 2D anisotropic Navier-Stokes equa-
tion and is not known to be stable in the Sobolev setting H? due to the potential double
exponential growth of its H2-norm in time. However, when coupled with the magnetic field
in the MHD system concerned here, we show that the H2-norm of any perturbation near
a background magnetic field actually decays algebraically in time. This result demon-
strates that the magnetic field indeed stabilizes and damps the electrically conducting
fluids. Mathematically this result along with its proof offers a new and effective approach
to the large-time behavior on partially dissipated systems of partial differential equations
(PDEs). Existing methods are mostly designed for systems with full dissipation and do
not apply when the dissipation is anisotropic.

1. INTRODUCTION

This paper intends to understand the stability problem and especially the precise large-
time behavior on the perturbations near a background magnetic field governed by the
incompressible magnetohydrodynakic (MHD) system. This study is partially motivated by
a remarkable stabilizing phenomenon exhibited by electrically conducting fluids. Extensive
physical experiments and numerical simulations have performed to understand the influence
of the magnetic field on the bulk turbulence involving various electrically conducting fluids
such as liquid metals. These experiments and simulations have observed a remarkable phe-
nomenon that a background magnetic field can smooth and stabilize turbulent electrically
conducting fluids (see, e.g., [1,2,6,11-13,21,22]).

We focus on a very special 2D incompressible MHD system with anisotropic dissipation,

ou+u-Vu+ VP =vopu+ B-VB,
OB +u-VB+nB=B-Vu, (1.1)
V-u=V-B=0,

where u represents the velocity field, P the total pressure and B the magnetic field, and v
and 7 denote the viscosity and the magnetic damping coefficients, respectively. The MHD
systems, the center piece of the magnetohydrodynamics initiated by H. Alfvén [2], models
electrically conducting fluid such as plasmas, liquid metals and electrolytes, and have a
very wide range of applications in astrophysics, geophysics, cosmology and engineering (see,
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e.g., [4,13,35]). The MHD equations are also mathematically important. They not only
share many crucial features with the Euler or the Navier-Stokes equations, but also exhibit
many more fascinating characteristics such as various wave phenomena that the Euler or
the Navier-Stokes equations lack.

Clearly, (1.1) admits a special class of steady-state solutions represented by the back-
ground magnetic field. Attention is focused on the steady-state solution
u® = (0,0), BO(z)=e, =(1,0).
The perturbation (u,b) around this steady solution with b = B — e; obeys

Ou+u-Vu+ VP =vdypu+b-Vb+ 0b,
Ob+u-Vb+nb=>b-Vu+ 0Lu,
V-u=V-b=0,

u(x,0) = up(z), b(x,0) = bo(x).

(1.2)

The system (1.2) differs from the original system (1.1) by two extra terms, d1b and 0u.
As we shall see later, these two terms generated due to the background magnetic field play
an important role in the stability properties of the perturbation as well as in the large-time
behavior. These terms reflect the influence of the background magnetic field on the behavior
of the fluids.

Our goal has been to understand the stability problem and the large-time behavior of
solutions to (1.2). Due to the lack of the horizontal dissipation, these problems are not
trivial. even when the magnetic field is identically zero, b = 0, the velocity u satisfies the
2D anisotropic Navier-Stokes equation

Ou+u-Vu=—-VP+vipu, xcR2t>0,
(1.3)
V-u=0
or, in terms of the vorticity w = V X u,
0w +u-Vw =1v0pw, zcR%t>0,
a1 . (1.4)
u=V A" 'w = (—62,81)A w.

The stability problem on (1.4) in the Sobolev setting H? remains an open problem in the
whole space case, although this problem in some other domains such as R x T has been
resolved [17]. In the case of the whole space domain, the dissipation in one direction is
insufficient to control the nonlinearity when we estimate the H?-norm of u or the H'-norm
of w. In fact, in the estimate of ||Vw|| 2,

d
CIV)3 + 210V = 2/% V- Vs,
the nonlinear part contains four component terms

Hard := — Vw - -Vu-Vwdzx
RQ

:_/ 81u1 (81w)2d1'—/ 61u281w82wdx
R2 R2

- / 82U1 810.) 62&) dr — / 82U2 (620))2 dzx (1.5)
R2 R2
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and the first two terms in (1.5) do not admit any time-integrable upper bound. As a
consequence, the best upper bound for the gradient of the vorticity |Vw(¢)||re with 1 <
q < oo is double exponentially in time,

IVw(t)||ze < ([Vw(0)]|za) (1.6)

Indeed in the case of the 2D Euler equation in a unit disk, Kiselev and Sverak were able
to construct an explicit vorticity solution whose gradient grows double exponentially [28].
Furthermore, classical approaches on the MHD well-posedness problem treat the magnetic
field related terms as bad terms. As a consequence, the stability problem and large-time
behavior concerned here in the classical framework appear to be hopeless.

Cllw(0) | oot

The novel idea here is to treat the magnetic field related terms as good terms and to
explore the smoothing and stabilizing effects of the magnetic field through coupling and
interaction. In a previous work [20], the authors were successful in implementing this
strategy to establish the stability of solutions to (1.2). For the sake of convenience of later
references, we reproduce Theorem 1.3 from [20] here.

Theorem 1.1 (Theorem 1.3, [20]). Let v > 0 and n > 0. Consider (1.2) with the initial
data (ug,by) € H*(R?), and V-ug = V-by = 0. Then there exists a constant € = £(v,1) > 0
such that, if

[[woll 2 + llboll 2 < e,
then (1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,

t
()72 + 160772 +/0 (lo1ullz + 102ull 7 + Il 72) dr < C€?

for some universal constant C' > 0.

The goal of this paper is to give a precise account on the large-time behavior of these
stable solutions. Clearly we need to continue to pursue the stabilizing and damping effect
of the magnetic field. To do so, we combine the equations of v and b to derive an equivalent
system of wave equations to reveal the stabilizing mechanism. We start by separating the
linear terms in (1.2) from the nonlinear ones. Applying the Helmholtz-Leray projection
operator

P:=1-VA'V.
to the velocity equation in (1.2), we eliminate the pressure to obtain
Oyu = vOsou + Ohb + Ny, Ny =P(—u-Vu+b-Vb). (1.7)

By separating the linear terms from the nonlinear ones in (1.2), the equation of b can be
written as
0tb = —mb + O1u + Na, No=—u-Vb+b-Vu.
Thus, (1.2) can be written as
Oru = vogou + 01b + Ny,
0ib = —nb + O1u + No,

(1.8)
V-u=V-b=0,
u(z,0) = ug(z), b(x,0) = bo(z).
Differentiating (1.8) in time and making several substitutions, we find
{&ttu — (v0a2 — n)Opu — (O11u + Nrdxgu) = Na, (1.9)
Oub — (V022 — n)Otb — (0110 + Nroagb) = Ny,
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where N3 and Ny are given by
N3 = (0y +n)N1 + 01 Na, Ny = (0 — vOa2) N2 + 01 N1.

Surprisingly, both u and b are found to satisfy nonhomogeneous wave equations with exactly
the same linear parts. Clearly, (1.9) exhibits much more regularization than its original
counterpart in (1.2). The stabilizing and damping properties of (1.9) is a consequence of
the background magnetic field and interactions within the MHD system. By exploiting
these properties, we are able to establish the following theorem assessing the large-time
behavior of the solutions of (1.2).

Theorem 1.2. Letv > 0 andn > 0. Assume (ug,by) € H>NL' satisfies V-ug = V-by = 0,
|(wo, bo)|| g2 < 6 for sufficiently small § > 0. Let (u,b) be the corresponding solution
obtained in Theorem 1.1, then, for a pure constant ¢ > 0,

1(u(t), b(0)] 12 < e5(1 +1)2, (1.10)
1(Bru(t), dib(t)) || 2 < e8(1+1)73,
||(D2u(t), D2b(t))|| 12 < ed(1 + t)‘l. (1.11)

In contrast to the potential double exponential growth rate in (1.6), Theorem 1.2 asserts
that the solution of (1.2) actually decay algebraically in time. This result rigorously confirms
the experimentally observed stabilizing and damping effect of the background magnetic
field. The decay rates in (1.10) and (1.11) are the same as those for the fully dissipative
heat equation, and reveal the stabilizing and damping effect of the magnetic field.

Theorem 1.2 is also mathematically important. It establishes the precise large-time be-
havior of a partially dissipated system. Many powerful classical methods designed for the
large-time behavior of fully dissipated systems such as Schonbek’s Fourier splitting scheme
( [38-40]) may not apply to partially dissipated systems. The approach presented in this
paper serves as a new method that work for some partially dissipated systems of partial
differential equations.

Due to its physical applications and mathematical significance, the stability and large-
time behavior problems on the MHD equations near a background magnetic field have
recently attracted considerable interests. The stability problem on either the ideal MHD
system or the fully dissipated MHD system with identical viscosity and resistivity has
been thoroughly investigated and significant results have been obtained [2,3,7,23]. The
requirement that the viscosity coefficient be the same as the resistivity coefficient comes from
the use of the Elsésser variables. [44] allows these two coefficients to be slightly different.
The paper of Lin, Xu and Zhang [31] initiated the study on the stability problem of the
2D MHD system with only velocity dissipation. By using the Lagrangian approach and
controlling all quantities in terms of the trajectory, they were able to establish the desired
stability. The work of Ren, Xiang, Wu and Zhang [36] examined the stability and the large-
time behavior simultaneously of the 2D MHD system without resistivity in an anisotropic
Besov setting. The approach in [36] is Eulerian and establishes extensive anisotropic energy
estimates. Instead of the velocity dissipation, Wu, Wu and Xu studied the stability of
the 2D MHD system with only velocity damping and without resistivity [48]. Their paper
exploits the wave structure of the system. More recent studies on the MHD stability problem
focuses on the anisotropic MHD systems. The paper of Boardman, Lin and Wu [5] deals
with the stability problem on the 2D MHD system with the fluid vorticity satisfying an
Euler-like equation. Wu and Zhu established the stability of the 3D anisotropic MHD
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system with velocity dissipation in two directions and the magnetic diffusion in only one
direction [49]. We remark that there are substantial recent developments on the well-
posedness and stability problems on the MHD systems and many other important results are
also available (see, e.g., [8-10,14-16,18,19,24-27,29,30,32-34,37,41,43,46,47,49-53,55-59]).
This list is by no means exhaustive.

We explain the main idea in the proof of Theorem 1.2. Clearly Theorem 1.2 can not be
established via direct energy methods. Instead the approach here is to represent (1.2) in an
integral form and then apply the bootstrapping argument. To convert (1.2) into an integral
form, we first take the Fourier transform of (1.8) to obtain

{ata = —vei+ig b+ N,

> e~ (1.12)
Otb = —mb + i&1u + No.

(1.12) can be written as a 2D system associated with a matrix A,
ay m N
n(1)=2(3)+(%)
A= _VE% 251 )
ZST

G- (B) s [ (M) o

At

where

By Duhamel’s principle,

The fundamental solution matrix e** can be made more explicit via the eigenvalues and
eigenvectors of A. In fact, if A\; and Ay are the roots of the characteristic polynomial
associated with A,

N4+ vE)A+E& +vngs =0

or
v v VT () + VT
1 5 ) 2 5
with
T = (n+v&3)” — 4(&F +vnéd),
then et can be written explicitly as
eAt = I:\a I//(E
Ky, Kg |’
where
- At Aot by At A Aot
e e e e
K= n 1 2 7
)\1 — )\2 )\1 - )\2
At Aot
—~ eMt — e
K
2 Z€1 )\1 — )\2 )
I/(\a B Aet2t — \pett et _ ot
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Thus we have converted (1.2) into the integral form

e~ e~ A~ t/\ —~ —~ e~
) = Kaiig + Koy + / Kilt— P)Ni(r) + Kot — ) Na(r) dr,
Ty T R (1.14)
b(t) = Koug + Ksbg + / Ko(t — 7)N1(7) + K3(t — 7)Na(T) dr.
0

More technical details are provided in Proposition 2.1.

The next step is to extract the desired large-time decay estimates from the integral
representation in (1.14). We use the bootstrapping argument (see, e.g., [42, p.21]). As a
preparation, we first derive suitable upper bounds for the kernel functions. Clearly the
kernel functions are anisotropic and frequency dependent. By dividing the frequency space
R? into suitable subsets, we are able to obtain definite upper bounds for the kernel functions
in each subset. The details are given in Proposition 2.2. To implement the bootstrapping
argument, we make the ansatz

N

[[(u(®), b(t))]| 22 < E6(1 + 1)~ 2,
(), 01b())[[ 2 < ed(1 +1)72,
(1), 02b(1)) |l 2 < (L +1) 7,

where ¢ will be specified later. We show through the integral representation of u and b in
(1.14) that

(1.15)

N

I

Oru(t)
[(D2u(?)

N[

(), b))l > <
1(Ovu(t), 01b(t))ll 12 <

S1+1)2,

ol

S(1+1t) 2, (1.16)

M DN N DN o0

1(02u(?), 92b(t)) |2 < 56(1 +6)7

with the coefficients being half of the corresponding ones in (1.15). Then the bootstrapping
argument implies that (1.16) holds for all 1 < ¢ < oo. The process of establishing upper
bounds in (1.16) is very long and tedious, and the details are presented in three subsections
in Section 3. We just want to mention some of the technical points. Due to the higher decay
rate for the vertical derivative than the horizontal one, efforts have been made throughout
to replace the horizontal derivatives by the vertical ones. One way to do so is to make use
of the divergence-free condition, V- u = V - b = 0. Another helpful way is to invoke the
anisotropic type inequalities such as

1 1 1 1
HfHLOO(R?) < C”f”}}(Rz)Half||i2(R2)||82f”}i2(R2)Hal2f||22(R2)~

These type of technicalities are used throughout the proof such as in (3.30) and many other
places. The proof also employs many other helpful strategies such as dividing the time
integral involving the nonlinear terms into two parts such as

t ——
/O|]K1(t—7')u~Vu]L2(Al)dT

t/2 R o t R o
:/0 ||K1(t—7’)u~vu||L2(A1)dT+/t/2||K1(t—T)u-VU|L2(A1)dT.
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This division would help distinguish different properties of the integrand in different time
intervals. The decay of the first piece relies on the kernel function while the decay of the
second piece comes from the nonlinear term. We leave more technical details to Section 3.

The rest of this paper is divided into two main sections. Section 2 provides the details
in the derivation of the integral representation (1.14). In addition, this section divides
the frequency space R? into suitable subdomains and establishes explicit upper bounds for
the kernel functions in each subdomain. Section 3 presents the proof of Theorem 1.2 by
applying the bootstrapping argument to (1.14). This is a very long and tedious process.
For the sake of clarity, we divide this section into three subsections with each devoted to
one of the inequalities in (1.16).

2. THE INTEGRAL REPRESENTATION AND BOUNDS FOR THE KERNELS

This section details the derivation of the integral representation and establishes upper
bounds for the kernel functions involved in the integral representation. These upper bounds
will be used in the proof of Theorem 1.2. Proposition 2.1 and its proof are devoted to the
integral representation while Proposition 2.2 focuses on the upper bounds for the kernel
functions.

Proposition 2.1. Let v > 0 and n > 0. Assume (u,b) is a solution of (1.2). Then (u,b)
satisfies

t
a(t):KlﬂE+K2b0+/ Kl(t—T)Nl(T)—f—KQ(t—T)NQ(T) dT,
0 (2.1)
o~ ——~ e~ A t/\ —~ e~ —~
b(t) = Kotiy + Kby + / Kot — )Ny (1) + Ka(t — 7)No(r) dr,
0

where the kernel functions IA(l through IA(g are given by

At Aot At Aot

— eMt —e ettt — dge

K e = G G
1 77)\1_>\2 + N = NGy + Ga,

At Aot

Ky =i&——— =15 G,
2 = 1§ M — A 1§1G1

- )\16)\2t _ )\2e>\1t e/\1t _ e>\2t

K3 = — = —nG1 + Gs.
3 = 77)\1_)\2 nGi1 + G3

with A1 and Ao being the roots of

N4+ vE)A+E& +vngs =0

or
—(n+v&) - VT —(n+v&) + VT
a= TV VT SOV (e - (e + o))
and G1, G2 and G3 given by
e/\lt _ e)\gt _ )\16)\1t _ )\26)\2t _ )\16)\215 _ )\26/\1t

Gl =——, G2

A=y D VI Ve R

AL — A2
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In the case when A\ = Ao or I' =0, the formulas of the kernel functions IAQ through IA(3 are
replaced by the corresponding limiting formulas

Ky =n lim Gi+ lim Gy=nte + (14 Nt)eM,

2—))\1 2—})\1
I?\Q = iflte)‘lt, (2'2)
Ky = —nt e 4 (1 — A\t)eM,

Proof. As explained in the introduction, any solution (u,b) of (1.2) would solve (1.13),

namely
(10)-(2) o frr ()
with

ST/
The characteristic polynomial of A is
N+ (1 + vEA + €7 + gl =0

and thus the eigenvalues of A are

(ntve) VT v + VT
2 ’ 2 ’

The eigenvectors corresponding to A; and Ao are given by

W _(ntM @ _ [ ntA
! ‘( i€ ) ’ ‘( i& )

respectively. Therefore,

(@) ( M O @)
A= (v v ) < 0 Ay > (v v ) .
QAL _ 1 n+A n+ A eMt 0 i€ —(n+Xa)
i&1( A1 — A2) 1€y 131 0 et —i&1 n+ A\

_( Ki K
=2 2)

A= — I = (n+v&)* — A& + vng3),

where
f(\ - €>\1t _ e)\zt N )\1€>\1t _ )\26/\215
LR VW N
At Aot
—~ eMt — ¢
Ky =i ——m——,
2 =161 N A
- )\1€>\2t _ )\2€>\1t €>\1t _ 6)\215
K3 = —
i M=o TN
To simplify the notation, we define
A1t Aot A1t Aot Aot A1t
eMt —e AreMt — doge et — dqge
Gy = Gy = 1 2 ! 2

M=y D YD VO A VI W
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and write

QAL _ I:{\\l f:f\g _( G2+nG1 &Gy (2.4)
Ky K3 iflGl G3_77G1 . '

Inserting (2.4) in (2.3) yields (2.1). In the case when \; = A9, the associated eigenvector of

Ais
(1 _ n—+ A1
! < i&

and the general solution of O,V = AV is given by
ap v eMt 4 gy (v(l) t+o)eMt,
where a; and ao are to be determined by the initial data, and o solves
(A= MIo =oW.

After some simple computation, we find

- (3)

We determine a1 and as by the initial data uy and 30. This process leads to the kernel
functions in (2.2) when A; = Ag. This completes the proof of Proposition 2.1. O

The next proposition provides upper bounds for the kernel functions K 1 through 1?3.
It is clear that the kernel functions depend on the Fourier frequency and are anisotropic.
Consequently we need to divide the frequency space R? into suitable subsets so that the
behavior of these kernel functions are definite. Our decomposition will be based on the
second eigenvalue,

2
(n+y§2)+ﬁ’ F:(n+y§%)2—4(§%+7ﬂ7£§)-

A natural choice is to separate the domain where Ay behaves like —%(n—k v€3) from the rest.
In particular, this occurs if

Ay = —

1 3
VT < §(n+V§§) or wnés+¢& > T vé3)?.

This explains the decomposition in the following proposition.

Proposition 2.2. Let v > 0 and n > 0. We decompose R? into two subsets A1 and A

with
3
A ={E R, G + & > 1o+ v83)%),
3
Ay = {E €2, &G + & < 151+ v853)")

Ay is further divided into As1 and Aso with
Ay ={£eR? €€ Ay, v <1}, 25)
Agpy ={{ € R?, £ € Ay, vE >}, '

Then
(1) For any & € Ay, there is co > 0 and C > 0 such that

\[/(\1\, \f/(\z\, \f(\g\ < C e~ Cco(1+&3)t
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(2) For any & € Agy, there is cog > 0 and C > 0 such that
‘f{\l" |f(\2|7 |f(\3| <C (6—60(1+§§)t + e—c0|§\2t) )

(8) For any & € Agy, there is cog > 0 and C > 0 such that
52
K|, |Kal, |Ks| < © <e—co<1+£%>t +e‘°‘°“+sé>t> .

Proof of Proposition 2.2. We start with the case when £ € A;. For any £ € Ay,

D= (g4 v8) — 4 + &) < (0 + v — Sn+vEd)” = 1+ vE})2

Therefore, either VT is pure imaginary or VI < %(n + v€2). Hence, the real parts R(\1)
and R(A2) are bounded by
1 2 1 2
R(A1) < —5(77—1"/52)7 R(A2) < —1(77—1‘1/52)-
To bound I/(\l, I/(\g and I/(\g, we realize that they all involve only A1, A2 and G1. In fact, since
G9 and G3 can be written as

)\16)\1t _ )\le)\zt + )\le)Qt _ )\26)\2t

— — Azt
Go N e + \Gq
_ Aot Aot At
Gy = (A1 — Ag2)e™" + Ag(e e™?) _ Mt Gy,
A1 — A9
we have
K= 4 MG +0Gr, Ko =i61Gy, Kz = et — MGy — Gy (2.6)

When I" > 0, both A; and Ay are real. Then the mean-value theorem implies that there is
% < a < 1 such that

e)qt _ 6)\2t 5
— =t *a(n+l’§2)t.
Gy Ny e
When I' = 0, A\; = A2 and (2.2) implies that G is replaced by
G1 =t €>\1t.

When I' < 0, both A; and Ay are complex and

5

Gy = —e—3tnvepe ST

5

Therefore we always have
G| < tem1(mtvedt,

We can check that A\; and Ay admit the following upper bound,
A1l [Ae| <+ vés.

In fact, if \q is real, then

|A1] <

n+vés  n+vE
T+

3
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If A1 is complex-valued, then

A < \/07 +vE3)?

It is then clear that A\, always satisfies

M| <+ vés.

1 2\2
J214(77+V§2) \25(77+V£§)

A similar argument leads to the bound |A\2| < 1 + v€5. Then the upper bound K, follows
easily from the definition of Ky and the upper bound above for A;. Using the simple fact
that pefclp < () for any p > 0 and C7 > 0 and suitable Cy > 0, we have, for ¢y > 0 and
C >0,

K| <[]+ NG|+ |G| < e i 4oy + vg)te (TR < CemeoltHeD!
’I/(\?)’ < |6)\2t‘ + |)\2G1| +77|G1‘ < efi(nJru&g)t + 2(?7+ Vgg)te—i(mugg)t < Cefco(lJr&g)t'

To bound I/{\g, we divide the consideration into two cases:

[S1 [S1
—— <1 and > 1.
M [VT|
When \le‘l < 1, we write, due to A\ — Ay = —VT,
|K ’ ‘51’ (‘ /\1t’ + |€)\2t‘) < e—%(n—i-r/{%)t _i_e—i(ﬁ-i-l/fg)t < Ce—i(l—&-g%)t.
= < <

[VT|

When "jlll > 1, then

[+ v€3)* — 4(vned + €Dl < &

which is equivalent to

0< (n+v&3)”* —A(wng +&) < & (2.7)
or

0 < 4(vng + &) — (n+v&)* <& (2.8)
Clearly, (2.7) implies

—(n+v€3)? < —A(vné3 +€7) < —4¢f
while (2.8) yields

—(n+vE)? < —4(wn&s + &) + & < -3¢7.
In either case, we have, for ¢ > 0
—(n+v&3) < —clél.

Therefore,

‘KQ‘ < ’§1|t€—a(n+u§2 |§1‘t6 5 77+V£2)t —2 (n4ved)t

< !€1|t6756|£1|t675(’7+”£2) < Ce ¢ (1)t for co>0and C > 0.
We now turn to the case when £ € As. For € € Ao,

1
A1 < —5(77 + vE€3).
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By I = (n+v&3)* — 4(vné&3 + &) < (n+v&3)?,
—(+v&) + VT _ (=(n+vE) + VD) (=(n+v&3) — VT)

Ay =

2 ~2((n+ &) + V) 29
_2mg 4 _ 2+ vngi+ &
—(n+vE2+VT) ~ 2+ véd) n+véd

Since T = (1 + v€3)* — 4(vné3 + &%) > (n + v€3)* -
VT > 3(n + v€3). Tt follows that

=~

(n +v€5)? > (0 + v€3)?, we obtain

At Dot _ vngs+ed
|Gy| = € ﬁe ’ < +2 2 <e—§(n+u£§)t +e v t) ) (2.10)
nTvrey
Furthermore, for £ € Ay, we have
3 |€1] V3
2 2 (4 e2)2 < V2

and thus

- _vngate]
|K2| < |51HG1| <C <€—§(n+y€§)t +e nt+ved t) .

In addition, by (2.6) and the bound |[\{| <7 + vE€3,

vned+¢2 2 vned4e?

— - t +v | > —Ualy

K| <e " 4+ 41 % e~ 2(mv&t | o ntve
n+ V€2

) _wnedted,
<O €*§(W+V§§)t Te n+ved .

|I/(E| admits the same upper bound. By further using the definitions of Ag; and Ay in (2.5),
we obtain the desired upper bounds. This completes the proof of Proposition 2.2. (]

3. PROOF OF THEOREM 1.2

This section is devoted to the proof of Theorem 1.2. The framework of the proof is the
bootstrapping argument. The proof involves the estimates of many terms and is a long
and tedious process. It will be divided into three subsections after we present several tool
lemmas.

We need several basic tool lemmas. The first one provides the LP — L? estimate for a
general fractional Laplacian heat operator e”*A”. The fractional Laplacian operator A* with
a € R is defined via the Fourier transform

Aef(€) = €l ().
The proof of this LP — L? estimate can be found in many references (see, e.g., [45]).

Lemma 3.1. Leta >0, >0 and 1 <p < q<oo. There is a constant C > 0 such that
fort >0,
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The next lemma presents an 1D Sobolev inequality involving fractional derivatives. This
1D inequality is at the core of many higher dimensional anisotropic Sobolev inequalities.
The proof of this lemma can be found in [54].

Lemma 3.2. Assume that f is in LY(R),

1—1
1fllza) < ClIFlL

where2§q§ooand%(%—%)§l.

L(1_1

2 q

1
(7_7 <
l2 9

1) s
A ]l

Anisotropic Sobolev inequalities have become a necessary tool in the study of anisotropic
equations. The next lemma states a 2D anisotropic inequality, which can be seen as a
consequence of the previous lemma.

Lemma 3.3. The following estimates hold when the right-hand sides are all bounded.
1 1 1 1
[l @) < Ol Eae 100l g 1921 gy 1912 1 o gy

For the convenience of later reference, we also provide two standard inequalities. The first
one is a Sobolev inequality while the second one is a calculus inequality on the fractional
derivative of a product.

Lemma 3.4. Assume that f € LY(R?) with 2 < q < co. Then

2 1—2
[flle < CUFIEIVFIlLe "
Lemma 3.5. For any s > 0, then for all f,g € H° N L>, and we have the estimates

IA*(f9)lle < C([[A°fl[zor llgllLes + [ fllos |A°gl[Loa)
= p%) + p%;' and p,pa,p3 € (1,00). In particular,

IA*(fo)llL> < C (A fllz2llglizee + 1 F I 1A%l 22) -

1_1 1
wherep— 1+p2

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We prove Theorem 1.2 by the bootstrapping argument. We make
the ansatz, for 1 <t < T,

[NIES

([ (w(t), b(t) |2 < E6(1+1)"2,
(), 00b(t)) || 12 < E6(1 + )72, (3.1)
(t), 02b(t)) || 2 < @61 +1) 7"

where ¢ will be specified later. We show through the integral representation of u and b in
(1.14) that

N

1(Dru
(92w

)

)
)

SIS

[ (®), b))l 22 <

1(Oru(t), O1b(t)) 12 <

S(1+1)2,

SIS

5(1+1)73, (3.2)

M DN DN N

|(Dau(t), D2b(t)) |2 < 55(1 +o)L

Since the coefficients in (3.2) are just half of those in (3.1), the bootstrapping argument
then implies (3.2) holds for all 1 < < oco.
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The main efforts are devoted to the inequalities in (3.2). This process involves the
estimates of many terms and is very long. For the sake of clarity, we divide the rest of
this section into three subsections with each subsection devoted to one of the inequalities
in (3.2).

3.1. Estimates of ||(u(t),b(t))| z2. This subsection proves the first inequality in (3.2). To
estimate [|(u(t), b(t))| £2(r2), we estimate it in the three subdomains Ay, Ag1 and Agg defined
in Proposition 2.2. By (1.14),

—~ —~ o~ t —_—~ —~
1)l 24y < 1K1 (B)uoll2ar) + [H2(8)boll L2 (ay) +/0 [ K1 (¢ = 7)N1u(7) 2204, dT

+ [ WRatt =) Ral s o
=1+ I+ I3+ 1.
By Part (1) in Proposition 2.2,
I = || Ky (0] r2a,) < Clle 09 )| 24,
< O™ |G| amey < C(1+ )73 fuo|l 2, (3.3)
where we have used e~! < C(1 + t)_% for t > 0. Similarly,
I = | Ka()boll 24,y < C(1+1) 72 [boll 2. (3.4)

Noticing that Nj = (I — %)(—ﬁu + b/%) and using the boundedness of the Riesz

transform on L?, we have
t
I = /O IRt — ) Ni () 22y dr

t —_ —_— —~— —
<C [ (IR Sullzqy + 1R Vhlyaga,)) dr
=131+ I39.

I5 1 is further decomposed into two parts,

t/2 —
Ly <C / 1B (t — )i Vau(r) | g2y dr
0
t

+C / 1K1 (¢ — ) - Vu(r)| p2ay) dr
t/2

=1311+I371,2.

By Proposition 2.2, Hélder’s inequality and Ladyzhenskaya’s inequality,

t/2 t/2
31y < c/ e - V() || 2 dr < cecoé/ lw||pa ||Vl s dr
0 0
. t/2
< Ce B / el 21V a2 | A 2
0

L2 L2

C t/2 1.1 1 1
< oeSt/ (@14 7)) (@(1+ ) 5)(co)s dr
0
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e t/2
< 053/252e—§t/ (1+7) dr < 02525 (1 4 1)/*
0

< CEAPS2 1 +)7V2,
where we have used the ansatz in (3.1) and the fact that ||ul|g2 < ¢d. In addition, in the

cot
last step, we have used e~ s < C(14t)73/% for C > 0. We estimate I51 o.
p

t —_—
I312=C ) [ K1 (t = 7)u- Vu(T)| 24, dr
t/2

t —_—
<C [ (e Dy Vu(E, 1) || p2gayy dr
t/2
t —
<C [ et 0Ny Tu(E, 1) 12y dT (3.5)
t/2
t 1 1 3
<C [ et — ) al|u(r)]|2, |V 2, dr
t/2
t
<C [ et (¢t —7)T122(1+ 1) 171 dr < C&25% (1 + )7L,
t/2

¢
where we have used / et (¢ — T)_i dr = C for C > 0 in the last inequality of (3.5),
t/2

and invoked the following estimate in the fourth inequality of (3.5),
—cof2(t—7) T o —cof2(t—7) T o
e GTulE, T Ex g = e TulE Dl g 3

= / / eS8y (e, 7)|? dey déy

< [ [le e g Vute, )y des
= [ [e-nte i) T 0l aa
== [ e Vule Dl de

<CO(t=7)7|u-Vulfy 1z

< Ot =) 2 |llullsz, [ Vulliz 172
< Ot =) 2 [lullfs, g 1VullZ2
<Ot —71)” %||uuL2|raluuLzHVu||L2

Similarly,
Isn < C(E+&/2)82(1+ 1) 2.

Therefore, for a constant C > 0,
I3 < C( + &/2)82(1 + 1) e. (3.6)
By invoking N in (1.7) and going through a very similar process, we have

L<C@+&%1+1) 2, (3.7)
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Combining (3.3), (3.4), (3.6) and (3.7) yields

()| 2(ay) < CL+ )72 (Juollz2 + bollz2) + CE62(1 + )73,

We now turn to ||(u(t), b(t))||12(4,,)- By (1.14),
G| 2 a0y < 1K )T 22(40) + 1 E2()D0ll L2 (401

t —~ e~
T /0 IR2(t = 1) (7)]| 2y dr

+ [ WRatt = )Rt
=1+ o+ J3+ Js.
By Part (2) in Proposition 2.2 and Lemma 3.1,
Tt = IR 24y < Cllem TN 124y + Clle P15 12 4
< C'ffcot||7vL0HL2 (®2) + O[> u0||L2(R2)
< O(1+1)72 Juo| 2 ®2) +Ct™ 3
< O+ HJugll2ns.

||U0HL1 (R2)

where we have used e~! < C(1 + t)*% for t > 0. Similarly,

1
Jp < C(1+1)"2]|boll L2
By Proposition 2.2,

5= [ IR =Rl dr
<€ [ 04 DNl e dr
+0 [ e a0 DGR €l o
+0 [ eSO €l o

t —_—
+C [ e P T 7 2qee) o
0
= J31+ J32+ J33+ J34.
By (3.6), for C' > 0,

Taa+ sz < C@ + )8 (1+1)72.
We further decompose J3 3 as

t P
Jos = C / le=<ol€ =) |0 (€, 7)| 2(aey dr
0

t/2 -
e / e ol =71 a6, 7 o) dr
0

t —
+C [ (e P T, 7) | o ey dr
t/2

21)

(3.8)
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= J331+ J332.

By Lemma 3.1, and the ansatz (3.1),

t/2 5 o
hmzc/ e~ e\ T @ al(€, )12 dr
0

t/2
< C’(t/2)_1/ lu® ul|p dr
0
t/2
<cet [ fulfaar
0

t/2 )
< Ct—l/ (&5(1 4+ 7)72)%dr

0
< CEt (1 +t/2) < Clo)&s*t= 117,

where we have used ¢t~ In(1 +¢/2) < C(o) for o > 0 and for all £ > 1. By Lemma 3.1, the
ansatz (3.1) and Hoélder’s inequality,

t —_—
D M T (XS
t/2
t

<C | (-7 20Dy V|| dr
t/2

t
_1
< C//Z(t—T) 2u(m)l[ 2 [VelT)l 2 dr
t

t
<C|[| (t-r)2e(1+7)2e5(1+7)"2 dr

t/2
t
< 05252/ (t— 7')_%(1 + 1) dr
t/2
t
< 06252(1+t/2)_1/ (t— )4 dr
t)2

< 05252(1 + t)_l(t/2)1/2
< CP52(1+1)2.

J3.4 admits the same upper bound as J3 3,

N

J34 < C(0)@E8* 17 4+ OF5* (1 +t) 2.

J4 admits the same bound as J3. By taking o sufficiently small, say o < %, we have

~ _1 ~ ~ _1
@) z2(az) < CL+ )72 (luoll 2 + Ibollrenpt) + C@E + &)1 +1)72. (3.9)
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We estimate [|u]|12(4,,)- By (1.14),
[ 12(a20) < 1K1 (U0l L2(a25) + K1 (E)b0l| L2 A00)

t e~
T /0 1ot — )N () 2204y A7

t
+ [ 1Rt = )W) gz
= M + Mo + Ms + My.
By Part (3) in Proposition 2.2,

My = || K1 (t)uol| 2 (40)

2

co(1+h)__
< Ofjecoli+ED)t Wllze(ag) +lle % WllL2(an)
c(1+ )
< Clle= MG gy + e &l p2me)

< Ceug|| g2 < C(1+ )77 ||ug|| -
Similarly,
My < C(1+1)"2 o]l 2.
By Proposition 2.2,

t —~ e~
M3:/0 1Bt = 7YV (7) | 2 ge) 7
t —co(1 — —
<C / (oot ) 4 DO s dr
0
t
< 0/ e ) (lu - V() || 2 + ||b- Vb(T) || 12) dr
0

t/2
< c/ =0 (|l - Vul| g2 + |[b - Vb|2) dr
0

t
+C e—co(t=7) (lu- Vullpz + ||b- Vb||12) dr = Msq + M.
£/2
We set
M3z = Ms311+ M31.
For 2 < ¢ < 0o and ¢ satisfying % + % = %, we have, by Lemma 3.4,
2 2 2 2

2 1—-2 1—
lullpe < Cllullp=IVal " [[Vullpe < OVl " |Au 7. (3.10)

and thus

W 42 W 2
Msq, < Cezt/ |- Vullp2me) dr < Ce2t/ lullpa ||Vl e dr
0 0

_eo, t/2 2 (1,2
<Ce 2 ; HUHLQHVUHL2 HAUHL2dT

. t/2
< Ce 2t / (@51 4+ 7)) 1(as(1 + r)~2)20-2/D (c5)2/9 dr
0
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@ t/2
< Ce_2t62_2/q52/ (14 7)) Vadr < 0&2/982(1 4 1)~ 1/2,
0
where we have used (1 + t)%ef%ot < C(14t)~/2. Similarly, M3 5 obeys the same bound,
M371 < C52_2/q(52(1 + t)_1/2.

M3 5 is naturally divided into two parts,
t
M3’2 S C/ e_co(t_T) (HU . VUHLQ + Hb . VbHL2) dr = M372’1 + M3’272.
t/2
By Hélder’s inequality and (3.10),

t
A@gls<7/;e—%“ﬂ°wmﬂHMHVuvnuda
t/2

! —co(t—7) 2 2(17%) %
30/;e° lulfa [Vl * A 2adr
t/2
t
<C [ e ot(Es(1+ )7V a(Es(1 + 7)) 202D (e6)2/0 dr
t/2

t
< 052_2/‘]52(1 + t/2)_1+1/q/ e~c0t=7) qr
t/2

< CEHag(1 4 t/2)" e,
By taking g = 3, we obtain
Msoy < CE36%(1 +1)72/3,
M3 29 admits the same bound,
Mz < CE82(1+ )12 4 C&B362(1 +1)723.
Similarly, M4 obeys the same upper bound. Therefore,
(82 (4) < C(1+ )72 (ol g2 + b0l z2)
+OFPP(1+ )72 4 0382 (1 + )23, (3.11)
By (3.8), (3.9) and (3.11),

_1
[u(®)lL2 < C1(1 +8)2||(uo, bo) [ 1L
F Co@202(1 + )72 + C38%/252(1 + )72 + Cud/352(1 + t)~2/3. (3.12)
Therefore, if we choose ¢ and § satisfying

1 1
C3626 < —
3C20 S 327

(ST

SL+1)72 + —5(1+8)"2 + 156(1 )
0 6 (3.13)
S(1+1t) 2.

|
B~ ool o
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Similarly, ||b||z2 obeys the same bound. Therefore,
¢ _1
1Cu(), b2 < 50(1+)72.

This completes the proof of the first inequality in (3.2).

3.2. Estimates of |[(Oau(t),020(t))||z2. The goal of this subsection is to prove the third
inequality in (3.2), namely

I(@2u(t), Dab()2 < 561+ )",
Applying 05 to (1.14),

82u(t) = K162u0 + K282b0 + / Kl(t — T)agNl(T) =+ Kg(t — 7')82]\72(7') dr
0 (3.14)

—~ —~ —_~ t ——~ —— —~ —_—

agb(t) = K90sug + K302by + / Kg(t — 7)62]\71(7) + Kg(t — 7)821\72(7) dr.
0

We estimate [[0zullp2(a,), 192l 12(ay,) and [ 3zullp2(a,,). We start with [ 3zullp2(a,)- By
(3.14),
[920(t) | 2ar) < 1K1 (8)02u0]| 2y + 1K (6)D2boll 2 ay)
b [ I BNl dr
+ [ It~ MR, dr
= O1O+ O2 + O3 + Oy4.
By Proposition 2.2,
O1 < [lem M+ Dug | p2(az) < = Dauo| 2 < CO(L+ 1),
where we have used (1 + t)e~? < C. Similarly,
Oy < C5(141)7 1.
Os is naturally decomposed into two parts,
t - t -
O3 < /0 K1 (t = 7)02(u - Vu)(T)|l 204y d7+/0 1K1 (t = 7)0a(b - VO)(T)| L2(ay) dT
=031 + O32.

We further write

t/2 _ t I
O3, :/ [ K1 (t — 7)02(u - Vu)(T)| 1204, dT+// | K1 (t — 7)02(u - Vu)(T)|[L2(a,) dT
0 t/2

=031, + 03,12
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By Ladyzhenskaya’s inequality, Proposition 2.2 and Lemma 3.3,

t/2
03,11 < / ey (u - V)| g2 dr
0

o t)2
< 62%/0 (102wl pa [Vl s + l[ul| e |02V ul| L2) dr

ey [P 4 3 : LA g (315)
< Cem Bt | 0aul s | Aullza [ Vull + [l 2 |19rull 2 1wl 2| Aullt dr

3

. t/2 .
< Ceé’t/ F(1+7) 162+ &1(1+71)726% dr
0

< CE(1+t) ' +Ceis®(1+1)7",

where we used e_%ot(l +1)7 < C(y) for any v > 0. To bound O3 2, we write the norm in
O3.1 2 from the frequency space to be in the physical space, and then use Holder’s inequality,
Lemma 3.1 and Lemma 3.2 to obtain

t — —
Os15 = / e=e0t=7) | =0, (V)| 12 dr
t/2

t
< / e—co(t—T)) HHA2€—00A§(t—T)(u . VU)HLZ dr
t/2 w2 llL,
t
<C | et -1 ||lu- Vul| L dr
t/2 w2 0ILZ,
t
<c [ et |ulge (Vulle || . dr (3.16)
12 =2 =iz,

t
<C | et — ) T ullpz e || Vull 2 dr
£/2 EP I

t 1 1
<C [ et — 1) || L 100wl 2| Vul| 2 dr
t/2

<CESP1 417

t
where we have used / et (¢ — 7')_% dr < oo. Since O3 admits the same bound as

t/2
03,1,
O3 < CE6(1+ )1 + CE16%(1 + ) + C&26%(1 + 1)~

04 obeys the same bound as Os. Therefore,

102u(t)|| 2,y < CO(1+8)~" + CE82(1+£)~' + CE162(1 + 1)~
+C&E%(1+1)~ L. (3.17)
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Next we bound H@HL2(A21). By (3.14),
|02 ()] L2 (A01) < (1 (E)D2u0 | L2 (a90) + 1H2()O2bo | L2 (401)

t —
+ / 1B (t = )38 (7) | 2agy dr

+ [ Watt = BN
=P+ P+ P3+ Py.
By Part (2) in Proposition 2.2 and Lemma 3.1,
Py = || K1 (8)32uo| 2 (a0
< Clle™ 0D Gaug | 124, + Clle 0 Fug| 20,0
< C)le= 00+ Gpug|| 124y + CllEe™ 1 GG 12y
< Ce™ | Fpuo| 2(z2) + Clle™ 0 Auol| 2z
<C(+ trlHaWOHLZ(R% + Ct’lHUOHLl(R%
< O +t) Muolgpp: < C5(1+1)7L

(3.18)

where we have used e=“! < C(1 +¢)~! for ¢ > 0. Similarly,
Py < C(1+t) Yol grrnp: < C6(1+1)7L.

We rewrite P3 as
t
Py :/ 1R (t = 7)FNG(7) | 24y 7
0
t
<c / e+ 5 (0 V)| o ey dr
0
t , o
+C / e+ 550 VB | 2ae dr
0
t
+c/ el =73 (V)| o ey dr
0

t
+C / e 0l -0 F, VD)2 ey dr
0
=P31+ P50+ P33+ P3g.
P31 can be bounded similarly as Os,
Py1 < Ced®(1+t) L+ Ce182(1+1) L + C22(1+ 1)L, (3.19)

P35 admits the same bound as the one for P3 1. To bound P33, we divide it into two parts,
t/2 o
P33 =C / ey (u - Vu)|| p2(re) dr
0

t —— T ——

+ c//2 le= P8, (u - V)| 22y dr
t

= P331+ P330.
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By Lemma 3.1 and Hoélder’s inequality,

t/2 ) I
P33, <C / [e=0léF =) gy (v - V)| 22y dT
0

t/2 ,
<c / l[€x€]e ) [T | gy dr
0
t/2 ) /\
= C/ 11€2e= P 0@ ||| o ey dr
0
t/2 , L, 2
< c/ (t— ) 3wl dr < C(t/2)_2/ lullZ2 dr
0 0

t/2

< (Jt—%/ (@1 +7)3)? dr < C25% 3 In(1 4 1/2)
0

<CESs*(1+t)7h

where we have used 2 In(1 +¢/2) < C for all t > 1. By Lemma 3.1, Lemma 3.4 and
Holder’s inequality,

t
Pyzo <O [ (e lPED8,(u - V)| 22y dr
t/2

t ——
<0 [ igle o DBl e dr
t/2

t 2/1

<O (-7 D) ue )| Ledr
/2
3 1
< C’/ (t —7) || Oaul| p2||w|| zrdT (1<g<2, r>2)
t/2
t 1 2 1—2
<c /W(t—ﬂ Howullllall fo I Vall 5 dr
t

<c | (t-r) @1 +7)" @1 +7)7F) dr
t/2
t

< 05252(1+t)3/ (t—7)"7 dr

t/2
< CRP(1+1)7 371 < CBRR( 1) 7 0 <OE(1+ 1)L,

Therefore,
Pyy < CESP(1 417 (3.20)

Similarly, P; 4 obeys the same bound. By (3.19) and (3.20),
Py < Ce62(1+1)"  + Ce16(1 + )L + 02621 + )7L, (3.21)

Furthermore, P; admits the same bound as Ps in (3.21). By collecting all the bounds for
Py, Py, Py and Py from (3.18) to (3.21), we obtain

102u(t)|| 2 (ay) < CS(L+ )" + CE6* (1 + 1)~ + CE16* (1 + 1)~ + CR6*(1 + 1)L, (3.22)
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Next we estimate ”@HLQ(A22). By (3.14),
[O2u(t)][ £2(a00) < 1K1 (E)O2uol 12(As0) + [ K2(t)O2b0l| 12 (40

t ——
+ /0 1IR3 (t — 73N ()| 2 )

t ——
+ /O | Ralt — 73 Na ()| 2y I

=01+ Q2+ @3+ Qu.
By Part (3) in Proposition 2.2,

Q1 = | K1 (1)dsu0]l 12 4nn)

2
(1+é)

- by, — —co t —
< C|em 00T gug|| 12y, + Ile O2uol| £2(Ag)

o (3.23)
< Olle*o 0+ D G | gy + e "% Gyl e
< Ce | Oqugl| 2 < C(1 4 ) |Oouol| 2 < CS(1 +1)~ 1
Similarly, Q2 admits the same bound, namely,
Q2 < C(L+1) Y obol|p2 < CS(1+1)~ " (3.24)

The bounds in Proposition 2.2 are not sufficient for estimating ()3 and @4, so we drive some
alternative upper bounds. Recall that

3
Az = {E € R?, g + &1 < {5 (n+v€)*, v >},

and G2 and G3 can be rewritten as

o )\2€>‘2t — )\16)‘1t . /\2(€>‘2t — 6)‘1t) + ()\2 — )\1)6)‘1t

G, = — =Mt 4 MG

2 X — A X2 — A ¢ At

G3 _ )\26)\1t — )\16>‘2t _ /\1 (eAlt — 6)‘2t) + ()\2 — /\1)€>‘1t _ €>‘1t _ )\1G1.
)\2 — )\1 )\2 - )\1

Furthermore, by the statement of Proposition 2.1,
K1 = M 4 0Gh + G, Ky = i6,G1, K3 =Mt — X\ Gy — G
By (2.9) and (2.10), we obtain the new upper bounds for K1 and I/{\Q,

2 2
_ B +¢
Kl <e 60(1+§%)t+C VT’&Z 1 + G
|| < (777+V€% |Gl
2 2 7Vn§2+§2
< emeotrepn 20 2 <Vn€2 +§1 +77> T A (3.25)
n+vé; n+vé;
oneeel
5| < ’251152 (e—émus%)t 4o 8 t) . (3.26)
n+vé;

To bound ()3, we first decompose it as

t —
Qs :/0 [ K1 (t = 7)02N1(7) || 12 (Ag0) AT
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=A|mm—ﬂ@mmmmmm+1gmm—ﬂ@mmmmmm

= Q3,1 + Q32

Invoking the upper bounds in Part (3) in Proposition 2.2 and further dividing @3 1 into four
parts, we can show via similar techniques as for O3 ;1 in (3.15) that

v
szleM@—ﬂ®MﬁmegW
£/2 , -
<C / e~ 04D V)| 2 ey dir
0

t/2 o
LC / e+ 550 VB | 2ae dr
0

*C/WH%“”§“ﬂiﬁ77ﬂ d
e 2 u - u T
0 ? L2 @) (3.27)

V2 et )
+ C/ ||€ £ 82(b : Vb)”L2(R2) dr
0
t/2
: C/ e~ ((|0a(u - V)| 2 + [|02(b - V)| 2) dT
0

o [t2
< Ce_'?t/o 102(w - Vu)[L2 + [|02(b - VD) |[L2)dr

< Ce2(1+1t) "+ Ceis2(1+1) L

To bound @32, we use the new bounds in (3.25) and (3.26). By Holder’s inequality and
(3.25),

t - _
Qs2 < C/ He—co(1+£§)(t—7),32(u V)|l 2 + ‘|e_00(1+§§)(t_7—)‘82(b V)| 2 dT
t/2

t

2 2 . -
Lo (Vﬂfﬁﬁ N 1) o—co(14E)(t-7) (@2@ V)| + |52(b- V)| ) dr

(n+ v€3)?

1 (g +¢ L L Y
+7])€ n+vEs Oo(u - Vu +8 b-Vb
172 ||+ vE3 ( n+ vE3 (‘ 2( )+ 102( )|)
= Q321+ @322 + @323

We rewrite (32,1 into two parts,

t/2
t

L2

+C dr

L2

t ———
Q321 =C [ e M5,y - V)| 2 dr
t/2

t
+C [ e E=7)15,(b - Vb)||| 2 dr
t/2

= Q32,11+ Q32,12
Following similar estimates as those for O3 2 in (3.16), we have

Q3211 < CE8*(1+1)7L
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Clearly, (32,12 admits the same bound,

Q321 < CE5F(1+1)7L (3.28)
For € € Ass, we have (Zfiz_gﬁ < %. By (3.28),
t V77§2 + €2 Lie2 I
Q322 <C <21 + 1) e 0HE)ET)195 (u - V)| dr
t/2 (n+ Vg%)z L2
t 2, ¢2 -
+C (lmg? +2§12 + 1) e—0(+E)(E=7)15,(b - Vo) || dr
t/2 (77 + V§2) L2
t
<C [ |e U5,y V)| 2 dr
t/2
t — —
+C [ et ET)5,(b . Vb 2 dr
t/2
< CQs21 < CEF*(1+1t)7"
Q32,3 can be further rewritten as
t 1 W’gz 1 g2 _ vngdte? (—r)
Q323=C N P ( » j Vf%l + 77) e e |02(u - Vu)| dr
L2
t 2 2 _wnedret
+C/ +1 & (Vng—i +§§1 “7) S AR Dl
t/2 || T VS \ 1TV 12
= Q3231+ Q3232
We first estimate 3231,
t ’5‘2 —co |§\22 (t—7) ———
<C — e T4 Oo(u - Vu dr
Q=€) o ap Patee Tl
t —c ‘§|2 t—7) ———
+ C’/ N 5 0@( )u -Vu dr
t/2 1+ 52 2

=(@323,1,1 + Q32312

The process of controlling ()3 23.1,1 is tedious, so we first estimate (J323,12. By Lemma 3.3,

ama<c [ |-t T
323,12 < ———(t—T7 —7) 2e 2 u-Vu T
t/2 |[v/1+ & 12
t S Y ()
<o @-nte TR dr
£/2

t
<C | (t—7)2e TED |y V| dr
t/2
t 1 <o
<C [ (t—7)"2e T || Vaul| 2 dr
t/2
¢ 1 < 1 1 1 1
<C /2(t —7r)"2e” 2 D | 01wl L l|0aul| L | V| 2 ]| Aul E, dr
t
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t
<C [ (t-7) e @1+ 7))
t/2

<CESP1+t/2)7 <01 +t) 7,

3
2

@5(1 + 7)Y (c)idr

t

where we have used the facts that / (t— 7)7%6770(“7) dr < oo and ye~ 27" < C or more
t/2

explicitly

_ e (t—T)%e
V1+&

As (3.1) indicates, the decay rates associated with the horizontal and the vertical derivatives
are different. To bound @32 3.1,1 properly, we need to distinguish the horizontal derivative
from the vertical one. By V - u = 0, we write

O (u . Vu) = 010 (uul) + Op0b (UUQ)

and divide @32,3,1,1 into two parts,

t |§‘2 —co 1|§‘22 t-717) —m———
Q32311 <C ) mtﬁ 42 |0102(uuy) + 0202 (uug)l||  dr
t/2 5 12
T
<C ——e & |01 02 (uuy )| dr
t/2 (]' + 55)2 L2
t 2 g2
—co 5 (t—7) ——m—
* C/m (1|f|€2)2 TG 00 (uwp)|| dr
2 L2
=(3231,1,1 +@Q3231,12-
Since ¢ € Aga, we have [£]? < C(1 + £3)?. By Lemma 3.5 and Lemma 3.3,
! |¢J? >U< €] >2_G
< t—T
Q323111 < /t/z <1+§%( ) T+
S e
x\flyl_g(t —7) % 't% |02 (uuy)| dr
L2
t ~2 a4y
<cto) [ e-mtaree gt o
t/2 12
¢ . -
< C(0) /t/Q(t—T)_Je_f(t_T) AT @), dr
t o S0 (4 g g 1—2¢
< C(o) /t/z(t—T) e )| 2, | Vul| | Aull , ° [|92ull 2 dr
t Cj
+C(0) /m(t ) e O Oy 74 01 Ogul| 5

1 1 1 1
X [|Ooull {2 O ull folull fo || Aull % dT

20
3

< C(o0) /tt (t—7) e T @51+ 7)72) 5 (00) " Fes(1+ 1) dr
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t

+C(0) / (t— 1) T (@1 + 7)) TH(CE) T (@(1 + 1) 72)2 dr
t/2

()& T2 (1 + )78 4+ C(o)@ 162 (1 + 1)z

Cc

(0)E26%(1+ )",

IN

c
C

IN

t C;
where we have set 0 = 2, and used / (t — T)_”e_fo(t_T) dr < oo, and
t/2

2 o _co &P
<l (t—7)> e 21 < o). (3.20)

€|
irg =f) <1+£%

In addition, we have used the following upper bound on [|A{~7(da(uuy))| in the fourth
inequality above, by Lemma 3.5,
1AL (D2 (wur)) 22 < |AT77 (Dawur)| 2 + |AT™7 (udpuur) | 2
< Cll02ull 2l s ||z + ClIAT"Oul| 2 [Jua|

+ Cll 02| 2| A7 ull oo + CIAT™ D | 2 ul| oo (3.30)
o g 1—20
< Cllull 2 VullZ2 1 Aull . * 102ull 2
1 1 1 1
+ C102ull 7 10102ull 27 1 Bull 2 | Orull fa llull {2 | Al £

Similarly, by (3.29),

Q323112 </t ( |§’2 (t_T)>J< ’5‘ )2_0
ST Jyp ||\ 1+ €3 (14&3)
—co |6‘22 (t—7) ————
X|G| Tt —T) % 1 |02 (uus)| dr
L2
t B . _7T0(1+%)(t_7)/\
<o) [ Je-nrtare S gam| o
t/2 Lo
t
< C(o) / (t =)0 P A7 @a(uwn))|| , dr
t/2 L2
K —o —O(t—1 % 3 1-%
<C(o) // (t—71)%e 4l Nl 2|Vl 21| Aull 5 * ||0oul| 2 dr
t/2
t C
+Clo) // (t — 7)o F ) Byu)| %, || BaB5u] 57
t/2

1 1 1 1
X | Oqul| o [|Ovull pollull 2 | Aull dr
< C(0)é282(1+ )71,
where we have set o = 2, and used (3.30) and the following estimate

_ z a 1— 22
14577 (D2 (uu2)) || 2 < Cllull Fa 1 Vull fa | Aul 2 * (| zul| 22

1 1 1 1
+ Cl02ul 72 110202ull 27 102ull 2 | O 2 |[ull | Al 7.
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Therefore,
Q3231 < CE2(1+1)" 4+ C(0)c20%(1 + 1)L,

Similarly, 32,32 admits the same bound. Collecting the bounds for @321, @322 and @323
yields

Q32 < CPF(1+1)7 +C(0)e202(1+1)7". (3.31)
Combining the estimates for Q31 and Q32 in (3.27) and (3.31) respectively, we obtain

Qs < (6461 +&+62)082(1+1) L. (3.32)
Next we bound Q4. By (3.26), we rewrite (4 as

t —
Q4=/0 | K2 (t — 7)02N2(7)| 204, dT

- /0 " Ralt = DA 1 + // 1Ko (t = )0 No(r)| 2 age) I
= Q4,1 + Qa2
By Part (3) in Proposition 2.2 and by (3.27), Q4,1 obeys the same bound as @3 1, namely,
Qu1 < Ces2(1+t) 1+ Ceis2(1+1) L (3.33)

Since the bound for K3 in (3.26) is not the same as the bound for K; in (3.25), we need to
estimate (Y42 differently from Q3.

Y 2 — . AT o
<C S e=eo(+E)E=) (19, (u - VB)| + |Fa(b - Vau dr
Qesc | |a (19 0+ 3ol )|
t &1 _””55+§%(_7) _ [
+C/ ntves Oz (u - Vb)| + |02(b - Vu dr
e (1950 + 16 T |
= Q421 + Qa2

Since £ € Aga, |£]? < C (1 + £3)2. By the same process as in (3.16),
t —
Quo1 <C [ e M5, (4 - Vb)| 12 dr

t/2

t
+C [ e ET5,(b - V)| 2 dr
t/2

<CEPA4+t)7h
We further decompose (04,22 into two parts,

t

_lm&%-k&% _
\51\26 e (¢

1+&3

dr
L2

T) —————
Qa2 <C |02 (u - V)|

t/2
vneg+ed
S A

t
e /
t/2 1+ 52
= Q2,21+ Qa222.

dr
LQ

T) ———
02(b - Vu)|
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As before, we write dz(u-Vb) = 0102(buy) + 0202(buz) and thus decompose Q4,221 into two
parts,

el
’£1| (& OH"S%(t )‘6182(()1“)—}—8282(()1@)’

Qu221 <C dr
2 ||1+& 2
t —c de? t—7) —————
< C/ ’5”26 Oiieg )\ala2<bu1)\ dr
t/2 + fg 72
t/2 2 12
= Q12211+ Q12212
The first part Q42211 can be bounded by
2 e ) ¢l
Y _1lto (t—
Q42211 < ( <l ) &' 0t =) e 148 ‘62(57“)‘ dr
L2
Ly _ gy S p—
& —-T) Ze £ |02(bur) ||| dr

L2

e [,
o [ - |,
LK

(t—71)"
_ < g g 1—29
(=) e (=)l S Vul Bl Aull 2 10282 dr

# o) [t r) F e o 00 .
2

1 1 1
x ||<91UH,§2HUIIEQHAUII,§2 dr

t _1l4o 1—2¢
+C(o) //Q(t—T) et — 1) bl Vbl | Al 2 (1Bl p= dr
t

t
#00) [ 1= e om0
t/2
1 1 1 1
X [|02b|| £ 1010112 [|B]] 2 (| AD] > dT
t < o ol
< C(a)/ (t— 1) B2 R s(1+ 1) H (o) F a1+ 1) dr
t/2
t C;
+C0) [ (- e P4 e @ hl ar
t/2
< C(0)ET 621 +4) 175 4+ o) 162 (1 +¢) 72

<CEs(1+1)7Y
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t
where we set 0 = 3, and have used t— )R gr < oo and
4 t/2
2 HTG e lg? T
(1@52 (t—T)> e 8" < 0o
2

In addition, we have also used the following upper bound on ||A177(da(buy))|, by Lemma
3.5,

IAT77 (@2(bua)) [ p2 < A7 (Bbua)l| 2 + [1AT™7 (bO2un) | 2
< Cl02bl| 2| Ay~ ual| oo + Cll Ay~ ab| 2 [Jua| oo
+ Ol 0zunl| 2| Ay~ blloe + ClI AT o || 2 [b| o

1—

20
2 0 11020l L2

< Cllul| o lIVull 22 || Aul|
1 1 1 1
+ C||92b(|72 (10102012 1 02ul| 2 | Ovel] follull Fol| Aul|}
a s 1—20
+ C[[bl[ L2 [IVO]| 22 [|Ab][ 12 * [|O2ur]| 2
1 1 1 1
+ C|0qua |72 1101 02w [ 57 (|02 ]l 12 10161 1 1Bl 12 1| AD | 7.
Similarly,
3
Qu2212 < CE26%(1+1)7 1
Since Q4,222 obeys the same bound as (4,221, we find

Qa22 < Co)e26*(1+1) L.

Therefore,
Quo < CESP(1+4) + Ce25%(1+ 1)\ (3.34)
Putting (3.33) and (3.34) together yields
Qi< (E+éi+2+e)08%1+1) L (3.35)
Combining (3.23), (3.24), (3.32) and (3.35), we have
102u(t) || 2(Age) < CS(L+ )" + (@ + &7 + &2)C82 (1 + )" (3.36)

Collecting the estimates in (3.17), (3.22) and (3.36), we find
190u(t)|| 2 < CLo(1+ )L 4+ 6Co02(1 + 1)1 + (61 + & + 2)C362(1 + 1)L

If we choose ¢ and § satisfying

: 1
Oy < g 026 < . (61 + & 4+ 62)Cs0 <
then we obtain

c -1 c —1 c -1

< =4(1 —o(1 —o(1
|02u(t)|| 2 < 85( +t) "+ 166( +t) "+ 165( +1)

¢ -1
=—-o(l+¢) .

S5+

The same upper bound holds for ||02b||r2. Thus we have obtained
c _

1(@2u(t), Dab(®)) |2 < 56(1+1) "

This completes the proof of the third inequality in (3.2).
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3.3. Estimates of ||(01u(t),01b(t))| 2. This subsection establishes the second inequality
in (3.2), namely

[(Oru(t), 01b(1))| 12 < 55(1 +1)7z.
Applying 0; to (1.14) yields

61u(t) = K181u0 + K261b0 + / Kl(t — 7)81N1(7-) + Kg(t — T)alNg(T) dr
0 (3.37)

81b(7f) = K901ug + K301by + / KQ(t — T)alNl(T) + Kg(t — T)alNQ(T) dr.
0

To estimate ||01ul|2(2), we estimate ||51\UHL2(A1)7 ||@||L2(A21) and ||517L||L2(A22). We start
with H5'1UHL2(A1). By (3.37),
[O1u() |l z2(a,) < [1E1(#)01uol| L2,y + [[EK2(8)01boll L2 a,)
t —_ —_—
+/ [ K1 (t — 7)O1N1(T) | L2, dT
0
t —_ —_—
+/ [ K2(t — )01 Na(T) |l 24, dT
0
= Hy+ Hy + Hs + Hy.

By Proposition 2.2,

N

H,y < [|em 0D g | 22y < e Druoll < CO(1L+1) 77,

where we have used (1 + t)e~ ! < C. By the same technique, Hy obeys the same bound,
namely,

Hy < C8(1+1) 2.

Hj3 can be decomposed into two parts,
t — —— T ——
Hy < / I3t — )01 (u - V) (7| 2ay) dr
0

t — T ——
+ /0 [ K1 (t —71)01(b- Vb)(T)|L2(a,) dT
= H371 + H372.

We further divide H3; into two parts,
t2 _
Moy = [ 1R - D3 VOl dr
0

t ——— T ——

+ //2 | K1(t —7)01(u- vu)(T)HL2(A1) dr
¢

= H3z11+ H319.
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By Ladyzhenskaya’s inequality, Proposition 2.2 and Lemma 3.3,
t/2

H3z11 < / e 0y (u- V)| dr
0

e t/2
<o B /0 (0vul |l 1 + lall s 18 Vel 2)

Cey (P4 ! 1 ] Lianns o (338)
< Cem 3" | lovul falAull 2V ull s + llul 22 9l |9zull o | Al dr

3

o, [t/ - -
<Ce_2t/ cl4+71)"26°+ci(1+71)"28% dr
0
< Ce2(1+1)"2 +Ce10%(1+1)2,

where we have used ef%ot(l +1t)7 < C(v) < oo for v > 0. We write the norm in H3 ;2 from
frequency space to physical space, by Holder’s inequality, Lemma 3.1 and Lemma 3.2,

t ————
Hyo = / e=0t=) =07 G Ty - V)| g2 dr
12

dr
L2 L

t
</ e=e0t=m) HHew/\g(t’T)al(u'V“)HLQ
12 -

t
<C e—co(t=7) (t— T)ii dr

t/2

01 (u- ), |

L2

r1

t
<o [ e e-n ([1ow- Vulsy, + a0l |
/2 #2 2

, ) dr
L2,
L, (3.39)

) dr
L%l
t

<C [ e =) (J0rullps, p [ Vullpe + ul iz, 1 |1 Aul 12 ) dr
t/2 B | 2T
¢ 1 1 1
<C [ e @) ol Fl|Au] 2, | Vul edr
t/2
t 1 1 1
+C [ e () a2, vl | Aull 2 dr
t/2

<CE2(1+1)2 +Ced>(1+1) 2

t
<o [ ek (1ol 19l
t/2 2 2

+ {2, N0l e,

t
where we used / et (4 — T)*i dr < co. Since H32 admits the same bound as H3 1,
t/2
Hy < Cas%(1+1t)"2 + Caid>(1+1) 2.

H, obeys the same bound as Hs, hence,

101u(t) ]| 12y < CO(1+1)72 + CE6*(1 + 1) 72 + CE16%(1 +1) 2. (3.40)
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Now we estimate H@HLQ(AZI). By (3.37),
[O1u(t)][ 22040y < 1K 1()O1uol| £2( a5,y + [[K2()01bol| 12 (401)

t —_—
+/0 HKl(t—7)81N1(7-)HL2(A21) dr

t —_—
+ [ 1Rt = )3 )
= L1+ Lo+ L3 + Ly.
By Part (2) in Proposition 2.2 and Lemma 3.1,
Ly = [|[K1(t)Oruoll 2 (401)
< CHefco(lJrgg)tal/Eo”B(Agl) + Cueicom%a/la()HL?(Am)
< C||6_CO(1+§%)t81/7~70”L2(A21) + CH@_COK'%@HL?(AM)
_ ~ _ 2
<Ce COtHalu()HLQ(RQ) + Clle col\ tAu()HLz(Rz)
< C(1+ )Y Oruol r2re) + Ct~uoll 11 (2
< C(1+ ) Yuol grnp: < C5(1+1)72.
where we have used e~¢! < C(1 +t)~! for ¢ > 0. Similarly,
Ly < C(1+t) Y bollgrmps < C5(1+1)z.
We divide L3 into four parts,

L= [ IR~ DB iy o
<C /O e DG V) o
+C /0 e DG ey dr
+0 [ e S N Ve d

! —_—  ———
+ C’/ H6700|§|2(t77)81(b . Vb)HL?(Rz) dr
0
- L3’1 + L3,2 + L3,3 + L374.
Clearly, L3 1 can be bounded similarly as H3, namely,
Ls1 < Cés*(1+ t)*% + 05252(1 n t)*%,

L3 2 admits the same bound as L3 ;. L33 is decomposed into two parts,
t/2 o
L33 =0 / e, (u - Vu)|| po(re) dr
0

t ——— e ——

e //2 e ol 5, (a0 | o ey dr
t

= L3331+ L332

(3.41)
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By Lemma 3.1 and Hoélder’s inequality,

t/2 ) S
L33, <C / e~ lfFE=7) 5, (v - V)| 22y dT
0

t/2 ,
<C [ egle e O NTET ague dr
0
t/2 ) /\
= C/ I1€12e= @] || 2 re) dr
0
t/2 \ Y
< c/ (=) S u@ulp dr < C(t/2)_2/ lull2s dr
0 0
3 t/2 1 3 1
<Ct 2 / (@5(1+7)72)% dr < CE&*t 2 1In(1+1/2) < CE5*(1 +1t) 2.
0

where we have used 2 In(1 +1¢/2) < C for all t > 1. By Lemma 3.1, Lemma 3.4 and
Hoélder’s inequality,

t ——— T —
L <C / He_60|§|2(t_7)8l(u-VU)HLQ(RQ) dr
t/2

t ———
< C/ I[1€]e= P E) (u @ u)|| 2 dr
t/2
t

_1_2(1_1)
<C (t—7) 2 2% 27|01 (u @ u)| padT
t/2

t
< c/ (=) Sl el rdr  (1<q<2, r>2)
t/2
¢ 1 2 1_2
< C/t/2(t —7) a||Orullpal|ull [ I Vull . " dr
t

<C [ (t—r) (@1 +7)"3) (@61 +7)73) dr
/2
t
< C&282(1 +t)—1/ (t—7) % dr
t/2

< CR2(1 4+ 1)1 < CR2(1 4+ 1)1 < CES(1+1)73.
Therefore,
Lys < CE5%(1+1) 2. (3.42)
Similarly, Lz 4 obeys the same bound. By (3.41) and (3.42),
Ly < Ce8(1+4)"7 + CEid2(1+1)"% + CF26%(1 + ) 2. (3.43)

L4 admits the same bound as L3 in (3.43). By collecting all the bounds for Ly, Lo, L3 and
L4, we obtain

=

1010(t) L2 gy) < CS(1L+18)72 +CE62(1+) 73 + Cei6>(1+1)% + CE5%(1+1) 2. (3.44)
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Next we estimate ||O1ul|z2(4,,)- By (3.14),

[01u(t) || £2(A) < 11 (8) 010l 22 (a50) + [[EK2()0100|| £2(As)

t —
+AHKﬁ—ﬂamwmmMﬂm

t ——
+AH%@—ﬂ@MUWmMﬂM
=571+ 55 + S3+ S4.

By Part (3) in Proposition 2.2,

S1 = | K1 (8010 12(an)

5%)

1 2L
o +£%

_ 2\ —C t ——
< CH@ Co(l+§2)t81uo||L2(A22) + ||€ 81u0||L2(A22)

- (3.45)
)

14+2L
0( +£g

< Clle 0D D] ey + e & Duoll e
< Cem 9o 2 < C(1L+1)72 Do 2 < CO(1+1) 2.
Similarly, Sy admits the same bound, namely,
So < C(1+1)"2||81bol| 2 < CS(1+1t)"z. (3.46)
We decompose S3 into two parts,

t —_—
53:/ 1R (= 7N (7) | 24y T
0

t

:/o [ K1 (t — 7)O1N1(T)| £2(As) dT+/2HKl(t_T)alNl(T)”L?(Azz) dr

%
= 531+ 53,.

To bound S3 1, we first apply Part (3) in Proposition 2.2 to decompose it into four terms
/2 -
S :/ VR (= 1) NG (7) | 24y 7
0
t/2 , S
<c / e 0D, (o V)| 2 e dr
0
t/2 ) o
e / e+ G0 VB | 2ge dr

0

t/2 —c 1+£ t—T) ——m——
+ c/ le ™ T V| e e dr
0

V2 (4 () e
+C/ ”6 &2 81(17 Vb)HL?(R?) dr.
0
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Then we use the same techniques as in the estimates of H3 1 in (3.38) to obtain

t/2
S31<C / e (101 (u - V) || 2 + (|81 (b - Vb)||2) dr
0

ca, [U2 3.47
< Ce B! / (91w - V)l + [83(b- Vbl 2)dr (3.47)
0

SIS

< Ce(1+1t)72 + Ce16(1+1) 2.
Now we use the new bounds in (3.25) and (3.26) to estimate S32. By Holder’s inequality
and (3.25),

t - _
Ss2 < C / e~ AFE 1, (w - V)| 2 + [le DD, (b - VO)||| 12 dr
t/2

El [ vnés + & . B
+C’/ (21 + 1> e~ 00+ (19, (u - V)| + |91(b - Vb dr
M I\erreie (1ot vl + @i 901 )|
t 1 2 | ¢2 gt o
+C/ : (uﬂfz +§1 +77) e A )<\81(u-Vu)|+\31(b'Vb)!> dr
t/2 |+ 23 n+ v L2
= 8321+ 5322+ 5323.
We further rewrite S3 21 into two parts,
t — T —
S301=C [ [e 0+ D=5, (u - Va)|| L2 dr
t/2
t ———
+C/ |e=00+EET5 (b - Vb)||| 12 dr
t/2
= 532,11 + 532,12
By the same estimates as for Hz 12 in (3.39),
5372,171 < 05%52(1 + t)_% + 0552(1 + t)_%
Clearly, S3 12 admits the same bound, namely,
S301 < CE16%(1+1)72 + Ce6%(1+ 1) 2. (3.48)
Since £ € Az, we have % < %. By (3.48),
S399 < C : <m7§%—i—§% + 1) efco(l+£§)(t77)‘m| dr
T S I\ (0 + vE3)? L2
¢ 2 ¢2 o
+C < vné; +2£12 + 1) 6—60(1+§§)(t—7—)|81 (b . Vb)| dr
t/2 11\ (0 + &3) 12
t ——
<C [ |G (u - Va)|| L2 dr
t/2
t —— T ———
+C [ (e MG (b Vb)|| 2 dr
t/2

<CS391 < CE162(1+1)"2 + Cas2(1 + ) 2.
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Furthermore, S3 23 can be rewritten as

¢ 1 2 | ¢2 LS A
S323=C 2 (Vn£2 . 51 + ’7) e d T Etv)l| dr
t/2 n+ vé; n+vé; L2
t 2, ¢2 _wnedret
e L <”’7§2 & +n> e E Do) dr
t/2 n+vé; n+vé; L2

= 53231+ 53232
S32.3.1 is naturally divided into two parts,

2
t ’6‘2 e_CO €] (t—

T) ———
|01 (u - V)|

S39231 < C 143 dr
t/2 (1 + g%)? L2
t le|2
1C / E s AT o [
12 || 1463 12

= 532311+ 532312
The process of estimating 5323 1,1 is tedious, so we first estimate S32312. By Lemma 3.3,

t ‘€| 1 —co €2 (t—7) ——o

1 _1 c 2
S392312 < C (t—1)2(t —7) 2e 1T u-Vu dr
! e
<C (t—7) 2e & lu- Vu| 2 dr
t/2

t C,
<C | (t-7)2e Ty Va2 dr
t/2
t 1 cg
<C [ (t-7)2e ||| Vul| 2 dr
t/2
t L1 e 1 1 1 1
<C ) (t—71) 2e 4 [ul| {2 101wl F 2 [|O2ull o [[ V| 2| Aul| 7 dT
t/2
t C,
<C [ (t—7)2e TED(@E@(1+7)72)
t/2

< OFEP(1+t/2)7 <1 +1)

3
2

@1+ 7)) (c)idr

=

t
1 c
where we have used 76_0072 < (C and / (t— 7-)*56*?0(’5*7) dr < oo. To estimate 532311,
t/2

/
we first write 01 (u - Vu) = 0102(uuz) + 0101 (uuy),

siasnr <0 [ | HE o oitge g
3,2,31,1 < ——s 102 (uus 101 (uuq T
t/2 (1 + 53)2 L2
! [ L T p———
< C 5.5 € 1183 |8182(UU2)| dr
t/2 (1 =+ 5%)2 1.2
! [ e T p———
e / 8 ng ) gl ar
t/2 (1 + 53)2 L2
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=5323,1,1,1 +953231,1,2-

Since & € Agg, |€|? < C(1 +¢2)%. By Lemma 3.5 and Lemma 3.3,

e >< €| >2‘”
Soasai < (iTg") (are
£

- a0l —
) Gt —1) % 8 |G(uug)||  dr
L2
t 2-0o —<0(1 ﬁ —_T) —
SC(O‘)/ < ’5‘ 2) |£1|1_U(t—7')_ae 7 ( +§%)(t )|82(UU2)’ dr
12 [[\1+& L2
t ~ s -r) ———
<o) [ e-niare T gty o
t/2 12
t
< C(o) / (t =)0 P | AT @p(wnn))|| , dr
t/2 L2
¢ o _c0p_ z z 1-22
< C(o) // (t—7) "% LD )| 5 |Vl 2 [ Aull 2 * [|02ull 2 dr
t/2
t [&f
+ Clo) // (t = 1)~ O | yu) 72 0100 57
t/2
1 1 1 1
X Ha2u||32”alu”i2|’UH22HAUHE2 dr
t
SC(U)/ (t—7) e TED(@E(1+7)72)F(C8) - Fes(1+7) " dr
t/2
t C
+o(a)/ (t—7) e T (@S (1+ 7)) T (C8) 170 (65(1 + 7)"2)2 dr
t/2

t

where we have set o = 2, and used / (t— T)*”ef%o(t”) dr < 00, (3.29) and the following
t/2
inequality from (3.30),

. g g 1—29
1177 @2 (uu2)) |2 < Cllull F2 I Vull f2 | Aull 12 [102ull 2

1 1 1 1
+ C102ull 7 10102ull 27 |1 Baull 2 1 Ovull fa llull 2 | Aul -

(1‘32&% €= ”)U (i ’f’@)?_a
3

¢ €12 —7) —
X|£1‘1_U(t—’7')_ae 01+§§(t )|81(UU1)‘

Similarly, by (3.29),

t
5323112 < /
12

dr

L2
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¢ 2o co . &2
o o M+ H)(T)
< C(o) t/2 <1|Jf|§2> Gt —T) % T O1(uw)l|| dr
2 L2

t ot o —%(l-‘r%)(t—ﬂ') I
<c) [ |a-nlare T8 gt ar

t/2 2

t . [
<o) [ (= ne B A @), ar

t/2 L2

t o g 20

o —0 (g g g 1-22

< C(o) //Q(t—T) ™ | 22 | Vull | Aull 2 |0rul g2 dr

t

t
+0() [ 6= D ol onorol
t/2
1 1 1 1
X (|Ogull g lOvull o [lull 72 [ Aul 72 dr
< C(0)é26%(1+1) "2,
where we have set o0 = %, and used the inequality below following from (3.30),

_ z a 1—22
1AT= (D1 (uun)) || 2 < Cllull Fa 1 Vull fa | Aul , * |01l 22

1 1 1 )
+ Cllorullf 0101l 57 Nogul vl ullull | Au .
Therefore,
S3231 < Ce5*(1+ t)*% + 5352(1 I t)*%,
Similarly, S32 32 admits the same bound. Collecting the bounds for S32 1, 5322 and S5 3
yields

S < CE10%(1 4+ )72 + CE262(1 + )72 + C(0)é26%(1 + 1) 2. (3.49)
Combining the estimates for S3; and S32 in (3.47) and (3.49) respectively, we have
Sy < (6461 + 3 +62)C82(1+1) 2, (3.50)
Next we estimate S4. We first divide Sy into two parts according to (3.26),

t —_—
54:/ | Kot — 7)1 Na(7) | 24y 7
0

= [ IR DO i+ [ 1= N i
t
= 5'4’1 + S472.
By Part (3) in Proposition 2.2 and by (3.47), S4,1 obeys the same bound as S3 1, namely,
Su1 < CEs2(1+1)"2 + CEag> (1 + 1) 2. (3.51)

Since the bound for K3 in (3.26) is not the same as the bound for K; in (3.25), we need to
estimate Sy 9 differently from Ss .

el D) (15 (a V)| + [0 (b V)
Sy2 < C St () =) (15, (u - Vb)| + |B1(b - Vi dr
wsof i (15050 + 365 ) |
t _wned+ed t—7) y——— 0 o~
of Jal Y () + meva) | ar
t/2 |1 +& L




2D INCOMPRESSIBLE MHD SYSTEM

= S42.1 + S422.

Since £ € Ago, < C. By the same process as in (3.39), we write

52
(1+€2)2
t ———
Sio1 <C [ |l 0T G (0. Vb)|| 2 dr
t/2

t
+C [ e ET5 (b V)| 2 dr
t/2
~3 29 2 1
< CEA(141)"2 + Ced(14+1)7 2.

We rewrite Sy 22 as

el S e
Sip2<C e e |01(u-VO)|||  dr
1< 2
t/2 |1+ & 2
¢ _wmggte
+C/ Kl e T g vyl ar
t/2 1+ 52 12

= 54221+ S1222.
To bound S4221, we write 81 (u - Vb) = 0102(bug) + 0101 (buy),

&2
—r)
Syp21 < C 1 “ig |8182(bu2) + 0101 (buy)| dr
1+ 52 L2
C / SIS T oon (o)l dr
~ 102 2
2 || 1+& L2
t €2
4 c/ &l g gamanl|  dr
t/2 1+ 52 12

= 542211+ 542212
The first piece is bounded by

t
S4p211 < /
t/2

2 N et —co L8 (tmr)
< |£| 2(t-7’)> |£1|1—o(t_7)—%6 01+§%(t )‘82(19712)‘ dr

1+§2 L2
- Cen ~RO+E )
<o) [ larru-n-2e P gmn)| a
t/2 L2
' o1 INECIE NS
<Clo) [ (= e AT Galbua)) |, dr
t/2 L2
t
o+l - 1-22
<0l [ (0= e Rl Vw10
t
t
+00) [ = o ool
t/2

1 1 1 1
X ||Oaul| 22 | Ovull pollull pol| Aull 7 dr

t
+00) [ =y R I E A0 F 0l b
t
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—|—C( ! R - g L .o 1—0
o) [ (t—7)" 2 e T 0us| 72|01 02uzll
/2
1 1 1 1
X [|020] 7210100 72 10l 2 | QD] £ dr

¢ < a a
<o) [ (= e @4 ) F (o) Fasu ) ar
t/2

t . 5
+Co) [ (t-n) e P4 e @ h ar
t/2

< C(0)ET 621 +4)7175 4+ Clo)@ 162 (1 +¢) 72

< Ce6%(1+1) 2,

t
where we have set o = 2, and used / (t— T)*JTHe*TO(t*T) dr < oo, and
t/2
o+l 2
2 2 _c0 l&° .
(15'52 <t—7>) e HE T < oo,
2

In addition, we have used the following estimate above, due to Lemma 3.5,
IAT™7 (D2 (buz)) 2 < 1A777 (Dabuz) | L2 + [|AT™7 (bD2u2) | 2
< C||02b]| 2| Ay~ 2| o + C|AT72b]| 2 | uz | oo
+ O 0aua| 2| AT7b]| oe + Ol A7~ Bpua | p2|b] £

5 wallh, laal s %
< COllull L1Vl 22| Aul[ > * []020]] 2

1 1 1 1
+ C|020]| 72101026 127 10| £ [Ora] £ [l £ | A £
1—20

+ Clbll 22 IVl £ Abl 2 ® (|02l 2

1 1 1 1
+ C||02us |72 118105us]| 7 [|02bl| 2 101Dl 2 10| £ | AD | £
Similarly,
S42212 < 05%52(1 + t)fé.

Since S4222 obeys the same bound as S422 1, we obtain

Sa22 < 0(0)6%52(1 + t)*%.
Therefore,
Sia < CEPF2(1+1)"2 + Ce26%(1+1)"2 + CE1d2(1+ 1) 2. (3.52)
Collecting (3.51) and (3.52) yields
Sy < (64 +e1 4+62)08%(1+1) 2. (3.53)
Combining (3.45), (3.46), (3.50) and (3.53), we obtain
101u(t)]| 2 any) < CO(1+ )77 + (E+ &1 + & +2)C6* (1 +1) 72 (3.54)
Putting (3.40), (3.44) and (3.54) together leads to

3 .3
1

|O1u(t)|| e < C1O(1+1)72 + 6Co6%(1+1) 72 + (61 + & + 62)C02(1+ 1) 2.
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If we choose ¢ and § satisfying

c 1 3 9 .3 c
< = < — < —
01_8, 025_ 16 (64 +c +62)035_ 16
then we obtain
c c ¢
loru(t)ll 2 < 781+ )77 + QO+ 281+ £)"3
c 1
= =5(1+1¢) 2.
SO0+ )

A similar bound holds for ||01b|z2. Therefore,

1(@vu(t), D1b(®)) |2 < §6<1 Lo

This completes the proof of the second inequality in (3.2). O
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