NONLINEAR STABILITY FOR THE 2D INCOMPRESSIBLE MHD
SYSTEM WITH FRACTIONAL DISSIPATION IN THE HORIZONTAL
DIRECTION
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ABSTRACT. This paper focuses on a 2D magnetohydrodynamic (MHD) system with frac-
tional horizontal dissipation in the domain Q@ = T x R with T = [0, 1] being a periodic
box. The goal here is to understand the stability problem on perturbations near any fixed
magnetic field A = (A1, A2), where A1, A2 € R. Due to the lack of vertical dissipation,
this stability problem is difficult. This paper solves the desired stability problem by simul-
taneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation
due to the coupling between the velocity and the magnetic fields, and the strong Poincaré
type inequalities for the oscillation part of the solution, namely the difference between
the solution and its horizontal average. In addition, the oscillation part of the solution is
shown to converge exponentially to zero in H? as t — co. As a consequence, the solution
converges to its horizontal average asymptotically.

1. INTRODUCTION

Let © = T xR with T = [0, 1] being a one-dimensional (1D) periodic domain and R being
the real line. Consider the 2D incompressible magnetohydrodynamic (MHD) equations with
horizontal fractional dissipation

ou+u-Vu+ VP +vA2% = B-VB,
#B+u-VB+nA*B=B-Vu, (1.1)[E:MD1]
V-u=V-B=0,

where a > 0 and 8 > 0. Here u represents the velocity field, P the total pressure and B
the magnetic field, and v and 1 denote the viscosity and the magnetic damping coefficients,
respectively. The fractional partial operator A?® is defined by the Fourier transform

A f(€) = £ ().
In particular, A?® with o = 0 becomes the identity operator.

(1.1) admits a special class of steady-state solutions represented by the background mag-
netic field. Attention is focused on the steady-state solution

u® =(0,0), BO(zx)=A=(4,4,),
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where A; and Ay are arbitrarily fixed real numbers. The perturbation (u,b) around this
steady solution with b = B — A obeys

Ou+u-Vu+VP+vA2u=0b-Vb+ A- Vb,
Ob+u-Vb+nAPb=1b-Vu+ A-Vu,
V-u=V-b=0,

u(z,0) = up(z), b(z,0) = bo(x).

(1.2) [2: M2

The corresponding vorticity w = V X u and the current density j = V x b satisfy

Ow+u-Vw+vAw=10-Vj+ A-Vj,

Oj+u-Vi+nA?Pj=b - Vo+Q+A-Vw
with

Q = 281[)1(82’11,1 + 81U2) — 2011 (82[)1 + 61b2).

We first remark that the coupling and interaction in the MHD system (1.2) leads to
the smoothing and stabilizing in the direction of the background magnetic field A. This is
reflected in the wave equations derived from (1.2) via the following simple process. Applying
the Helmholtz-Leray projection operator

P:=1-VA'V.
to the velocity equation in (1.2), we eliminate the pressure to obtain
ou+vA*u—A-Vb=N;, Ny =P(—u-Vu+b-Vb). (1.3)[ueq]

By separating the linear terms from the nonlinear ones in (1.2), the equation of b can be
written as

Ob+ AT~ A-Vu=No,  No=—u-Vb+b-Vu. (1.4) [beq|

Thus, (1.2) can be written as

Opu + vA¥u — A-Vb = Ny,
8tb+77A§ﬁb*AVU:N2,
V-u=V-b=0.

Differentiating (1.3) and (1.4) in time and making several substitutions, we find

a 2 ap?
{8ttu + (VAR + AP — (A V)?u — qrATA ) = N, (1.5)

Aub + (VA2 + nA2)oub — ((A - V)2b — quA2A2Ph) = Ny,
where N3 and Ny are given by
N3 = (0 + nA2PYNy + (A - V) Ny, Ny = (0, + vVA2*)Ny + (A - V)Ny.

Both u and b are found to satisfy nonhomogeneous wave type equations with exactly the
same linear parts. Moreover, (1.5) exhibits much more regularization than its original
counterpart in (1.2). In particular, the terms (A-V)?u and (A-V)?2b generate the smoothing
and stability in the direction of A. Together with the fractional horizontal dissipation in
(1.2), this allows us to control the nonlinearity. This explains the mechanism of the stability
for this anisotropically dissipated MHD system. We remark that the stabilizing effect of the
magnetic field on electrically conducting fluids have been observed in physical experiments
and numerical simulations (see, e.g., [1-3,12-14,27,28]).
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In order to understand the desired stability, we need to distinguish the horizontal zeroth
Fourier mode and the rest of the horizontal modes. The spatial domain here is 2 =T x R
and we take full advantage of the geometry of this domain. The horizontal direction is
periodic and we can separate the zeroth Fourier mode from the non-zero ones. The zeroth
Fourier mode corresponds to the horizontal average. This hints the decomposition of the
physical quantities into the horizontal averages and the corresponding oscillation parts.
More precisely, for a function f that is integrable in x € T, we define

f(x2):/1rf(x1»332)d$1; f=F+r

This decomposition is orthogonal in the Sobolev space H*(Q) for any integer k& > 0 (see
Lemma 2.3 in Section 2). More crucially, we prove in this paper that the oscillation part f
obeys very general strong Poincaré type inequalities, for any o > 0,

11220 < C AT Fll 20y
and, for any v > 0,
[ fllLee@) < CIAL Fllr (o)

Detailed statements and proofs can be found in Lemma 2.1 in the subsequent section.
These inequalities allow us to control some of the nonlinear parts in terms of the horizontal
dissipation. By invoking the decompositions

u=a+u b=b+b

and applying the aforementioned Poincaré inequalities together with various anisotropic
inequalities, we are able to successfully bound the nonlinearity and establish the following
stability result.

Theorem 1.1. Letn, v > 0, « > 0 and > 0. Consider (1.2) with the initial data
(ug,bo) € H3(Q), and V -ug = V - bg = 0. Then, there exists a constant g := go(v,n) > 0
such that if € < eg and

[uoll s + [lboll s < e,

then the global classical solution (u,b) € C(0,00; H?) satisfying, for any t > 0,
t
)1 + IO + [ (1Al + 1AJbIEs) dr < €22

for some universal constant.

We remark that the existence of solution (u,b) in Theorem 1.1 can be established follow-
ing a standard procedure. The first step is to establish the local-in-time existence via an
approximation procedure and local energy estimates. This step doesn’t require any dissipa-
tion and works even for inviscid equations. One can mimic the details on the local existence
proof on solutions to the Navier-Stokes and the Euler equations (see Chatper 3 of [44]). The
second step is to establish the global existence of solutions by combining the local existence
result with the global a priori bound obtained in the proof of Theorem 1.1.

Besides the stability, we can also show that the oscillation part actually decays exponen-
tially to zero.
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(exp_decay) Theorem 1.2. Let ug, by € H3(Q) with V- ug =0 and V - by = 0. Assume that ||Juo|| s +
1boll s < € for sufficiently small € > 0. Let (u,b) be the corresponding solution of (1.2).

Then the H? norm of the oscillation part (u,b) decays exponentially in time,

(@)1 + 1602 < Cllwollaz + [1bollz2)e ™, (1.6)[dec]
for some constant C > 0 and for all t > 0.

Due to physical applications and mathematical importance, global regularity and stabil-
ity problems on the MHD equations with partial dissipation has attracted wide attention
and there have been substantial recent developments. The pioneering work of Duvaut
and Lions [21] established the local existence of classical solutions to the MHD equations
with full dissipation while Sermange and Temam [49] obtained the global existence of weak
solutions. The situation when the MHD equations involve only partial or fractional dissi-
pation is more subtle. The global existence and regularity has been obtained for the 2D
MHD equations with various partial dissipation in many different functional settings (see,
e.g., [8-10,20, 22,23, 34, 37, 38,58,64]). The global regularity problem on the MHD equa-
tions with fractional dissipation was investigated in [16,17,65-67]. Studies on the stability
problem concerning the MHD equations near a background magnetic field or other steady
state solutions have flourished, and significant progress has been made for many partially
dissipated MHD systems (see, e.g., [4-7,11,15,24-26,29-31,33,35,36,39,41,42,46-48,50,53,
55-57,60,63,68-70]). Considerable efforts have also been devoted to the MHD boundary
layer problem (see, e.g., [43]) and the compressible MHD systems (see, e.g., [32,59,61]). The
stability and large-time behavior problem on the 2D anisotropic Navier-Stokes equations
with dissipation in only one direction in the domain T x R was first successfully solved
in [18]. A systematic method with all necessary techniques were developed in [18] to tackle
such problems. This approach was then used to establish the stability and exponential
results on the 2D Boussinesq as well as the 3D Boussinesq equations [19,62]. This ap-
proach was also efficient in dealing with the stability problems on the 2D MHD equations
when the dissipation and the magnetic diffusion are in the same one direction [45,52]. In
addition, [40] considered the stability of the 2D MHD system with partial mixed velocity
dissipation and horizontal magnetic diffusion. In comparison with [45], [52] and [40], the
main contributions of this paper are that it allows any fractional horizontal dissipation and
the background can be any fixed 2D vector. New tools are developed in this paper to han-
dle this very general type of fractional horizontal dissipation. In particular, sharp strong
Poincaré type inequalities for the oscillation part are derived (Lemma 2.1).

We use the bootstrapping argument (see, e.g., [54]) to prove the nonlinear stability in
Theorem 1.1. We first define a suitable energy functional

t t
E(t) = (lu(®)ls + 6 177) +2V/0 HA?u(T)H?{sdTJr%/O 1AYB(7) |32

sup
0<r<t
Here FE(t) represents the standard energy consisting of the H3-norm of (u,b) and the as-

sociated time integrals parts in v and b. Our main efforts are devoted to proving that, for
any t > 0,

E(t) < E(0) + CE(t)%2. (1.7) [bootstrap]

Once we have (1.7), the bootstrapping argument implies that if

luollzrs + llboll s <& or  E(0) <2,
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then there exists a constant C' > 0 such that
E(t)<Ce?, Vt>o.

The main efforts are devoted to proving (1.7). The proof makes use of the aforemen-
tioned orthogonal decomposition and Poincaré type inequalities derived in this paper. The
exponential decay result is shown by making use of the evolution equations of the oscillation
part of the stable solution.

The rest of this paper is divided into three sections. The second section serves as a
preparation for the proof of Theorem 1.1. It provides properties related to the decomposition
and triple product estimates for the domain 2. We also derive the sharp strong Poincaré
type inequalities for the oscillation part. The third section is devoted to the proof of
Theorem 1.1 while the Section 4 proves Theorem 1.2.

2. PRELIMINARIES
(pre) This section states several properties on the decomposition defined in the introduction
and provides several anisotropic inequalities to be used in the proofs of Theorems 1.1. Some
of the materials presented here can be found in [9,18,19]. But the result and the proof of

Lemma 2.1 are new.

We recall the definition of the horizontal average and the oscillation part. Let 2 = T x R
and let f = f(x1,22) with (z1,22) € Q be sufficiently smooth, say integrable in z; € T.
The horizontal average f is given by

flag) = /Tf(xl,xz) dz. (2.1)[E:fbar]|

We decompose f into f and the oscillation portion f,
f=F+T (2:2)

The oscillation part obeys the following Poincaré type inequalities. This lemma signifi-
cantly sharps the corresponding ones in [19]. We no longer require ¢ = v = 1. The proof
presented here is completely different and new.

(E:plestima¥pP) [ ornma 2.1. Let Q = T x R and let f be defined as above. Then, for any o > 0,
1 fllz2) < NAT fllz2(0)-
For any v > 0,

1z < CIALF I o),
where

N|=

C=va|l 3 KPP0+ 2] <

kE€Z,k#0
Proof of Lemma 2.1. These inequalities can be shown by the Fourier transform.

Aoy = 3 [ \FkmPans 32 [ 71Fen) Py = 17 o,

kEZ, k0 k€T, k40
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o~

where f(k,n) is the Fourier transform of f,

Flhkem) = /R /T f(@,y) R ddy. (2.3)[22]

By the definition of the Fourier transform,

o< 3 / Pk, m)ldn
keZk#0 " R

_ _1 1, ~
L v/<1+k?+n?> SRP(L 4+ 2 4+ o) 8 [Tk m)ldn
kEZ,k+#0 R

_ 1
< 2 M W(/leLkﬂwy?dn)

kEZ,k£0

[ SIS

1
~ 2
([P ) Pk Pn)
R
The first integral can be computed as follows. By setting n = (1 + k:Q)%f ,
1 1 1 1
———dp=(1+k" —z/d =m(l+k*) 2.
/Rl+k2+n2 = ) R1+§2€ m )

Therefore,

1
e <va 3 K0+ 8) ( / \k|2”(1+k2+772)|f(k,77)!2d77>
kEZ,k#0 R

2

<va| S KPa+rY) e

kE€Z,k£0

(NI

< | >0 [ IEPQ+E 4+ 0?) | F(k,n)|%dn
kez,k+0 Y R

=C HA'lyﬂ|H1(Q)a
where, for v > 0,

D=

C=va|l 3 KPP0+ 2] <

kE€Z,k#0
This completes the proof of Lemma 2.1. O

The following lemma is a direct consequence of (2.1) and (2.2).

(E:decomp) Lemma 2.2. The average operator and the oscillation operator commute with the partial
derivatives, fori=1,2,

817 = W? alf: 5;}7 81? = 07 f = 07

As a special consequence, if V - f =0, then

V-f=0, V-f=0.
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The second lemma states that the decomposition in (2.2) is orthogonal in any homo-
geneous Sobolev space H*(Q). Here H¥(Q) is defined as follows. For any s € R, the
homogeneous Sobolev space H* () consists of square integrable functions on €2 such that

£ 1 sy = (Z/R(’fu?f)slf(k,n)?dn) < o0,
kEZ

where f(k,n) denotes the Fourier transform of f defined in (2.3). More details on the proof
of the following lemma can be found in [19].

{oT) Lemma 2.3. Let Q=T x R. Let k > 0 be an integer. Let f € H*(Q). Then f and f are
orthogonal in H*(Q), namely

F D= [ DD Fde =0 Wl = 1Ty + 1
I particutar, [Tl < | fll e and |7l < 161

Next we present several anisotropic inequalities. Anisotropic upper bounds for triple
products are frequently used to bound the nonlinear terms when only partial dissipation is
present. In the case when the spatial domain is the whole space R?, Cao and Wu [9] showed
and applied the following inequality

’/szgh

In fact, (2.4) is a consequence of the elementary 1D inequality

1 1
1F 1l ooy < V2IF 2y 11172 gy- (2.5)[33]
Another consequence of (2.5) is the following inequality
1 1 1 1
”f”LOO(W) < C||f||iz(ﬂg2) ||31f||i2(]g2)||82fH£2(R2) ||8182fH£2(R2)‘
When the 1D spatial domain is a bounded domain, say T,
1
1Al ooy < CUFNZ 20y (L z2ery + 1 22 cm)
Since the oscillation part fvhas mean zero, for fe HY(T),

~ ~ 1 ~ 1

As a consequence of these elementary inequalities, the following two lemmas hold. Complete
proofs of the following two lemmas can be found in [18,19].

(E:triplel) Lemma 2.4. Let Q =T x R. For any f,g,h € L*(Q) with d1f € L*(Q) and 829 € L*(Q),
then

1 1 1 1
< C11F 12 191 Fagge 191 Faey 1020 s oy Il 2oy (24) (e8]

N

1 11 1
/Q |fghl dz < C|f[I72(1fll2 + 101 fllz2) 219l ;2 10291l 72 [l 2
For any f € H*(Q), we have
1 1 1
[fllzo () < ClF 20y If IlL2e) + 191 22¢0)) 1021172
1
x (102f1 2y + 110102 | L2()) -

After replacing f by the oscillation part, we have the following inequalities.
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(E:triple2) L emma 2.5. Let Q =T x R. For any f,g,h € L2(Q) with 01 f € L*(Q) and Oq2g € L?(9),
then

- 1 L1 1 1
/Qlfghl do < C|fl7: 101 f NI gl 22 10291 E2 Il 2
For any f € H*(Q), we have

~ ~ 1 ~ 1 ~ 1 ~ 1
1l < CIT oy 101l gy 102 Fl 19102 71 -
Finally, we present a bound for triple products that repeatedly appear in the proof of
Theorem 1.1.
(refs)

Lemma 2.6. Let f, g, h be of sufficient reqularity. Then, for any o1, o2, o3 > 0, there
exists a universal (in terms of f,g,h) constant C > 0, such that

NE

c};/ ONf- 03 Vg 93hda
Q
1

IN T

C(HflleIIA?QIIHsHA?hHHS + 9l s l|AT Pl s [ AT || s

Il AT a0 1AT g 5.
Proof of Lemma 2.6. We write

f=F+f 9=9+3 h=h+h
and use the simple fact that the integral of any triple product with two averages is zero,
namely

/ O5F - 037 Fvg - 03hdx =0,
Q

we obtain

3
chf/ agf-ag—kvg-aghdx_ZCg/ O5F-837FVg - 03hdx
k=1 Q k=1 @

3

3
+ZC§/ O f - 037G - 93h da
k=1 f
3 ~
+ZC§/ o5 f - 037kvg - 03h du
k=1 Q

3
e / o8 f - 037kvg - 93h da. (2.6)3ut]
k=1 Q

The first term can be explicitly written as

Sk

357 3§_kV§. 83%(13: :3/ 82? . a%vg. agﬁdl, n 3/ 8%7 V- 3§de
k=1 Q O o

+/ BF-Vg-03hda.
Q
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By Lemma 2.1 and Sobolev’s inequality,
| 227 935 o3h do < 071 1932 105

< C|If s A5V g2 [|AT* O3h] .2
< C[f s AT gl s [[AT? Bl -

Similarly,
/Q O3F - 0,VG - 08T d < (03T 12 1 02VF 1o 03H] 12
< O fllus 1ALV g1 A 0T 12
< Ol 1Al s 1A B0
and

/Q 8T - VG- 0h dx < 05T |12 VGl 030 1o
< C | flles AT V| g1 || AT O3R| 12
< O llas 1Al s IAT B .

We thus have shown that the first term on the right-hand side of (2.6) satisfies the desired
bound. The other three terms can be bounded very similarly and we omit the details. This
completes the proof of Lemma 2.6. U

3. PROOF OF THEOREM 1.1
This section proves Theorem 1.1. Our main efforts are devoted to establishing (1.7).

Due to the equivalence of the norm ||(u,b)|| gz with the norm ||(u,b)||z2 + [|(u,b)]| 5, it

suffices to estimate the L? and homogeneous H*-bound of (u,b). By multiplying (1.2) by
(u,b) and integrating over €2, we have, after integrating by parts and using the divergence
free condition,

t t
lu(®)1Z2 + [1B(E) 172 +2V/0 1A 7 dT+2?7/O IATB]172 dr = lluol72 + 1boll72.

To estimate the homogeneous norm ||(u, b)]| ;;s, we apply 93(i = 1,2) to (1.2) and then
multiply by (Bf’u, af’b) and integrate the resulting equation to obtain

2 2 2
1d
> (103l 2s + 102]122) + >~ vl o ATullZ. + > nl|oPATb|?
2 dt “ 1(” zu”L2 + “ ) HL2) + - VH (3 1““[/2 + gl 77” ) 1 HLQ (31) EQ:JKLMN

=J+K+L+M+N,

where

2
J=Y" [ 0}owb- 0}u+ 0}oru- O}b du,
P Q 2 K2 K2 K2

2
K:—Z/QBE’(U'VU)-O?U dx,
i=1
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2
L= Z/(a?(b-vz)) —b-VOPb) - d3u du,
i=1 7%
2
M = —Z/ 2 (u - Vb) - b d,
i=1 79

2
N=>"[(8}b-Vu)—b-V}u)-0}b da.
pot Q (] (2 K2

By integration by parts, J = 0. For the term K, we split K into two terms,
K = —/ A3 (u - Vu) - Ou dr — / 93(u - Vu) - O3u d,
Q Q

=K + Ks.
We first estimate K.

Klz—/ai’(u~Vu)‘8fu dx
Q

3
:—ZCéf/@fu-aiq’_kVu-Gi’u dx—/u-@f’Vu-afu dz
Q Q

k=1
= K1+ K,
where C§ = ﬁlk), is the binomial coefficient. By Holder’s inequality, Lemma 2.1 and

Lemma 2.5,
K1 = 3/981ﬁ -0V - 03 dx + 3/Qafa -0V - 03 dx +/Qa{'a- Vu - 03 da
< C|0niil| o |07 V| 2| 077 2
+ 03| 12| 01 V| V2 010y Vil Vo2 07| 12 | 03 0m | 2
+ OVl = |03 3 2
< Cllull s | Al 35

By integration by parts and the divergence-free condition,

1
Klgz—/u-af’Vu-ﬁfu dmz—/u-V(@%u)Q dz = 0.
’ Q 2 Ja
It follows that

K1 < Cllullgs |ATul|3s. (3.2)[Kibound

To bound K,, we further decompose it into four terms,

Ky = —/ O3(u - Vu) - Ou dx
Q

3
= — ZC’;“/ O - 937 FVu - d3u dx
k=0 &
=Ko+ Koo+ Ko3+ Koy.

Due to integration by parts and divergence condition,

Ky1 = / u- 03V - O3u dx = 0.
Q
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K39 can be split into four terms by divergence-free condition of u,

Ki9 = 3/9821; . 8§Vu . 8§’u dx
= 3/9821118381111831“ dz + 3/982u18§81u28§’u2 dz
+ 3/982U28§’u18§’u1 dz +3/ﬂ@gm8§’uzag’u2 dx
= 3/{282u16§81u18§u1 dr — 3/9621118%8111282281111 dx

— 3/ 81U16§U18§U1 dr — 3/ 81’1118%31’&18%61’&1 dzr
Q Q
=Koo1+ Koo+ Koo3+ Koo

Using 01u1 = O1u1 and writing uy = 41 + 41, we have

K2’271 = 3/ 82U182281U18§’U1 dx
Q

= 3/ 82&1822816183121 dzx
Q

+ 3/ Oatiq 8%81&16%@1 dx + 3/ Oatiq 82281?7183171 dzx,
Q Q
where we have used the fact that
/ Oaliq 8%6@183@1 dxr = 0.
Q

By Holder’s inequality and Lemma 2.1, for any a > 0,
K1 < C |0yt oo 05011 || 2 050 || 2 + C [|02ts || oo 103010 || 22 1|05 | 2
+ C |0yt || oo [|030111 || 2 (|05 || 2
< C 1010t |3 lull s + C llull s | AT D501t || L2 |AT O30 || 2

< Cllull s | Al 7.

(3.3) [K221bound]

By Holder’s inequality and Lemma 2.4,
K272’2+K2,274 = —3/ 62u16§61uQ6§61u1 dr — 3/ 81u18§81u18§81u1 dx
Q Q
< C|Ogun || o< (|05 0vus|| 121|105 01ur || 12 + C|Oru || Loo |05 01ua [| L2 (|05 Orua || 2
< Cl|ATull3s [l gs-

Similarly, by w1 = w1 + u; and Lemma 2.1, for any « > 0,
K93 = —3/ alulag’ulag’ul dx
Q

=3 [ ovi(@81)? de 6 [ omiobi ofun da (3.4) [K223boun]
Q Q

< Cllont|ze 11038 || p2llull s < ClATullFps s,

Thus,
Koo < Cllull || Aful s
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By the divergence-free condition Osus = —dyuq, by Lemma 2.1 and Lemma 2.5,

K3z = —3/982211 - RVu - d3u dx
= —3/9822u18281u18§’u1 dr — 3/9022u18201u263u2 dzx
- 3/983@8282u183u1 dzr — 3/98221428221@85’112 dz
= —3/{2822u18281u18§’u1 dx +3/Q(922u1(9281u26§81u1 da
+3 /Q DpO1u13u1D3uy dx + 3 /Q o011 000 U1 050111 d
=3 /Q 03110901 up0301u1 dx + 3 /Q DoO1u1 Do O1u1 05011y dx

= 3/ 8§u18281ﬁ28§81u1 dxr + 3/ 82816182011718331111 dx
Q Q

~ 111/2 ~ 111/2 1/2 1/2
< C||030rur || 12 || Da0nTia || 17 |93 Dotia |} | Oun || 1 |05 |
~ n1/2 ~ 11/2 ~ 11/2 ~ 1/2
+ C|0301u1 |2 || 0o0n 0 || 5 10200 ||} | enin || 7| 0300 | s
< Clful| s || ASul| 2.
By divergence free condition of u, K34 can be decomposed into four terms,

Koy = —/Qagu - Vu - 03u dx
= —/Qﬁg’ulalulagul dx — /Qagulalugﬁg’m dx
— /Qag’magulag’ul dx — /Qﬁg’uzazuzagw dx
- /Q O Dy Dy da + /Q OOy usd2Dru dae

+/ 82281u182u18§’u1 dx +/ 8%81U181U182281u1 dx
Q Q
=Kou1+Koso+ Kosz+ Kogy.
Since Ko41 = %K2,273 and Ko 43 = %KQ’QJ, by (3.3) and (3.4), we obtain
Kau1 + Kouz < Cl|ASul|7sul gs-
By Lemma 2.1, Lemma 2.4 and Hoélder’s inequality,
K27472 + K2’474 = / 8§u181628§81u1 dl‘+/ 3%(91’[1,1812“822812“ dx
Q Q
< C|9501ua || 2|01tz | o< 105us || 2 + Cl|Orus || o< |05 01ur |75
< Cl|ASul| gal|0F 2| o 1wl g5 + Cllul s |05 01ua |72
< Cllull s || AT ull s

Then we have
Koy < CHUHH?’HA?“H%IB
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Collecting the bounds for Ky 1, K22, K23, K24 and K, estimates in (3.2), we obtain

K < Clull s [ AT ul . (3.5) [Kbound]

To bound L, we decompose it as

(/ D2 (b-Vb) - diu da:—/b Vb - dPu da:)
Q

3

Z /8]“ (93 kb 83u dz

1 k=1

ck /Glb IRV - Fu da:+ZC3/82 b- 937 Vb - d3u da
1 k=1
1+ Lo.

Il
Mw HMN 1M

I
S

By Holder’s inequality, Lemma 2.1, Lemma 2.2, Lemma 2.5 and Young’s inequality,

Li=3 E)J-@?V@-aiﬂdaﬂr?,/8%5-81V5-8§adx+ &b - Vb - 0t d
JQ Q JQ

< 1|00 < 102V 12103 2
+ C||0% 121020 211035 210, VB 2 0,0, V| L2 (3.6)[Libound)

+ C|[Vb] o |07l 2|07l .2
< C[bl| 3 [ ATBl| s | AT s < b s (AT ullF2 + [ATBIIZo)-

Lo can be split into three terms.

Lo :3/ Db - 93Vb - su dar+3/ d3b - B2 Vb - O3u da:—i—/ d3b- Vb - diu dx
Q Q Q
=DLo1+ Lao+ Las.

By Lemma 2.2 and the divergence-free conditions of u and b,
Loy = 3/9825 - 03Vb - Ou dx
= 3/9826183611) - O3 dx + 3/9821)28317 - O3u dx
= 3/(282b182261b B da — 3/9815185’() - B da
=3 /Q Dob10201b1 03wy dx — 3 /Q Dob1 02010203011, dx

— 3/ 815163[)18:23711 dr + 3/ 81518%31[)183311“ dx
Q Q

=Lo11+ Lono+ Lo13+ Lojg.
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By Holder’s inequality, u =@+ u and b = b+ 5, Lemma 2.1 and Lemma 2.4,
L2’171 + L27173 = 3/ 82b18§81518§’u1 dr — 3/ 815183[)18%101 dx
Q Q
=3 / Db 020101831 dz + 3 / Oob1930,01031, dx:
Q Q

+ 3/ 823183815185’171 dr — 3/ 8151335183&1 dx
. v (3.7) [L218bound|
— 3/ 816185’5185’% dr — 3/ 81191836185’@1 dzx
Q Q
< C| 03011l 2 | ASDFunll 2 1B s + Clluel s [ AT B[
+ C[b] s [ AT b || s | AS v | g
< C(llull s + 10l gra ) (AT ullZs + | ATB]5).

By Holder’s inequality, Lemma 2.1, Lemma 2.4 and Young’s inequality,
Loio+ Loia= —3/ 8251(9%815233817“ dx + 3/ 31518%81618%81% dx
Q Q

< C|| b || [|0301bo| 12 || 0301 un || 12 + C| D11 || o< (| 03011 || 12|03 01 || 2
< C|b]| 31| 01| g2 || Ol g2

< Clbll s (AT ullFya + 147D 7).

(3.8) [L214bound]
Then we have
Loy < C(lullgs + 18]) (AT ulZa + ] %0). (3.9) [L2tbound]
By Lemma 2.5, Young’s inequality and the divergence-free conditions of u and b,
Lys = 3/ 93b - 9,Vb - Osu dx
Q
= 3/ 8226182(91b18§’u1 dx + 3/ 8%6132816233712 dx
Q Q
+3 / D3byd3b195uy dx + 3 / D3ba03b903uy dx
Q Q
= 3/ 822b18281b18§u1 dr — 3/ 8§b18281b28§81u1 dx
Q Q
- 3/ 82811718313183161 dx — 3/ 3231613281b182281u1 dx (3'10)
Q Q

= —3/ 8%()1828{528%81161 dr — 3/ 8281618281518381u1 dx
Q Q

< C||030vur | 12]|0201b2 | 17|07 Daba | 15710361 || 157|051 |1
+ C|| 0301w || 12]| 0200 b || 1|07 Dot | 147 || 0201 b || 4571|0301 b || 1
< C|0vu 21016 22 1[B| 175

< C|lbll s (1A ul s + [1ATD] F70)-
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The last equality is due to the cancellation of the first and the third term. Similarly, by
divergence-free condition of w and b, we can split Lg 3 into four terms.

Loz = /Q d3b- Vb - d3u dx
= /Q D3b101b103u1 dx + /Q D3b101b203usy dx
+ /Q D3bydaby O3y dx + /Q D3byDabod3uy dx
- /Q 9301016103y da — /Q 93b101b20201u1 dx

— / 8%811)182()1831“ dr — / 8%61&)131[718%612“ dzx
Q Q
= L2331+ Laso+ Lazs+ Lasa
Since L2’1,3 = —3L2,371, L271’1 = 3L2,373, L271,4 = —3L2’3,4, by (37) and (3.8), we obtain,
Lasi+ Lags+ Laga < C(llull s + [0l ) (1AS w3 + ||Afb||%{3)
For L339, by Lemma 2.1, Holder’s inequality and Young’s inequality,
L27372 = —/ 8351815282261'&1 dx S CH@gbluLQ”a%alulHL2Halgg“Loo
Q

< O]l s ||0re 12 10Ba i1 < 11l gzs | AT s | ATD g9
< Ol10]| s (| ASul|2ps + |ATB] %)

Hence
Los < O([[ullgs + 1]l ) (1AFu]| % + | ATD]|%s). (3.11)[L23bound]
By (3.6), (3.9), (3.10) and (3.11),
L < C(|lullgs + 6]l =) (1AL ul 25 + [|ATD]|%s). (3.12) [Lbound]

Now we estimate M,
2
M = —Z/ O (u-Vb) - 03b du,
=179

:/a§(u-Vb).a§b dx/ag(u-vz))-agb dz,
Q Q
= My + Ms.
We can rewrite
3
Mlz—ZC!;/a{fu-af—’fvz)-afbda;—/u.ai’vz;-afbdx
Q Q

k=1
= M1+ M.

By Lemma 2.2, Lemma 2.1, Lemma 2.5, Holder’s inequality and Young’s inequality,
My, = 3/ 1w - OPVb - &b d:cS/ - 0,Vb- &b d:c/ Fu-Vb- &b dx
Q Q Q

- o _ _
< C||0vul| |03V 12| 930]| 12 + C|lO30] 12 |03 17 D3|} 01 Vb 17| 9201 Vb 1’
+ C|03ul) 12036 12| VD] £
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< CJlowb] w2 Ovull 2Bl s < Clbll s (IATul3s + ATB]Gs).
By integration by parts and the divergence-free condition M2 = 0,
1
Mo = —/ w- O3V 93 dr = —2/ u-V(93b)? dx = 0.
Q Q

To estimate Mo, we split it into four terms,

My = —/ d3(u - Vb) - O3b d,
Q

3
= —Zqif/ Obu - 937FVb - a3b dx—/ w-93Vh - 93b dx
k=1 Q &
= M271 + M272 + M2,3 + M2,4.
M3 4 =0 due to V-u = 0. We decompose My ;1 into four parts,
My = —3/ Dou - 05Vh - 3b da
Q
= —3/ 62U18%81[)18§b1 dr — 3/ 82’&1(9%61[)26%52 dx
Q Q
— 3/ 82U262282618§b1 dr — 3/ OQUQangagbg dx
Q Q
= —3/ 82u18§81b18§’b1 da:+3/ 82u18%815232281b1 dx
Q Q

+ 3/ 81u18§"b16§bl dx —|—3/ 31u18%31b182281b1 dx
Q Q
=M1+ My12+ Ma13+ Moy
Byu=u+uandb= b+ b and Lemma 2.1,

M27171 = —3/ 82ﬂ182281518§61 dr — 3/ 82618%813182361 dx
Q Q

— 0207 237
3 /Q D011 02015, 05D, da (3.13) W21 1bound]
< C||0301b1 | 1210361  p2]|O2ur || Lo + C||0501b1 | 2| O3b1 || 12 || O2tin || oo
< O(l[ull s + 1l gz ) (|AS ]| 25 + [[ATB] 20).
By Holder’s inequality and Lemma 2.4,
M2,1,2 + M27174 = 3/ 82U162281b28§5'1[)1 dzr + 3/ 81u183816182261b1 dx
Q Q
< |0 | o< 930162 | 1211830161 | 2 + CllOyu | o< 93016y 2, (3+14) M214b0und]
< Cllullgs01b]132 < Cllullgs [ ATB] 35
As in (3.13),
M271,3 = 3/ alulﬁg’bl@%bl dr
Q

< C(lull s + 1bl]13) (1A ul Gy + [ATBIIZs).
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Thus, by the bounds of M1 1, M2 12, Ma13 and M 14,
Ma,1 < Cl(u, ) |13 (1ATB] 3 + 14T ] F70)-
We rewrite M 2 by using divergence free condition of v and b,
Mo =3 /Q d3u - DV - D3b dx
=3 /Q D3u10201b193by dx — 3 /Q 03110201 b203by dx
-3 /Q D3ug05b105by dx — 3 /Q D3u05bo05by dx
= —3/98§u1825'1b18§b1 dz + 3/98%@418281628%8161 da
+3 /Q DoO1u102b193by dx + 3 /Q Do01u10201b10301by dx

=Msp1+ Mooo+ Maoz+ Mao .

By Lemma 2.5,
M2,2,2 + M272,4 = 3/ 8§u18281528§81b1 dx + 3/ 82811“826131322011)1 dx

< C|0301b1 1210201 bal 57110207 ba 2 05w |15° 05 | (3.15) [M228bound]
+ C 03000 2110200 bu| 2710207 | 27| 021 |2 95 Drn |
< Cloblellul gs < Clulls | ATbI -

By integration by parts twice, Lemma 2.5, Holder’s inequality, Lemma 2.1 and Young’s
inequality,
M2’2,1 = —3/ (9%1118281518351 dx = —3/ 8%171028131831)1 dr — 3/ 6%7182015163[)1 dzx
Q Q Q
= 3/ 8%&162815163191 dr + 3/ 8%11,7132518381()1 dx
Q Q

= -3 / 93U1020,b193b, dx — 3 / 31021 0301b1 dx — 3 / O3uT02b,0201by da
Q Q

< |03bal| 2 10F T || 52101031 || 271101 02bu | 2 91031 | 12

+ C|0abr || o< || 051 || 12| 0301 b1 || 2

+ C|0301b1 | 2110301 || 221101030 || 22 | 03w | 2 | 93|
< 10361l 21101931 | 2|01 Daba | 191931 |

+ C|0102b1 || 71 9371|2110 Db | 2 + C1|OF Db | 21010301 | 12| O3 | 2 D |
< CJ AT gra | AT Bl s [0 223 + 'l gz | A7 Bl s

< Oy b) | g5 (|| A2 2ps + || AT D))
(3.16) [M221bound|
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and

M2’273 = 3/ 8281u18§b18§b1 dx
Q
= 3/ 8231’1718%5183()1 d$+3/ 6281171522563171 dx
Q Q
=3 / o001 03b103b1 dz — 3 / Doli103b10301by dx
Q Q

=3 / 200110301031 dx + 3 / 031103b10301by dx + 3 / Doy 03b10301by dx

1/2 1/2 1/2
< C|05b1| 12| 0301|152 1010361 || 17| 020v i | s | 93010 ||
1/2 1/2 1/2 1/2
+ C|| 03001 || 12| 03T |17 |01 0% |1 103 || 34 195 ||
+ C||02i1 || o || O3b1 || 12 ]| 050161 || 2
< C|b g3 1|0103b1| 12|81 2 + C|1b]| 2 | 0103701 | 121 s
+ C|0102u1 || g1 ||b] g2 1|01 6] 2
< C|[bl| s | ALl s | ATl s < Clbl s (ATl 25 + [|ATD]|%0).
It follows that
Mys < Ol (u, b) || gs (|ATB] % + [[ATul|%s)-
M> 3 admits the same bound as the one for Lo 3, by (3.11),
Moz < C|[bl| s (|| AT 2s + [|ATB]10).
Combining the estimates for M; and M, we obtain
M < O\ (u,b) || s (|AS w25 + | ATB]%). (3.17) [Mbound]
Now we estimate the term N,

N:E</a3b Vu) - 63bd:c—/b Vodu 63bd:n)

2 3
:ZZ /afb.af—’fvu.afb dz
i=1 k=1
3
=S ¥ /811) BV - albdx+203/62b I3 Vu - 93b dx
k=1 k=1
= Ny + Ns.

By Holder’s inequality, Lemma 2.2, Lemma 2.4, Lemma 2.5 and Young’s inequality,
Ny = 3/98@-3%%-3{’1) da;+3/QafE-alvu-a§’5 dx+/ﬂaf’b.vu-a{*b dx
< C||0rbl| o< |07 V]| 2| 07D .2
+ C05b 21030 7 1OTBI| 52 10 Vull 20201 V|17 + C[ V| o< 0503
< C|0b 2| 0rull g2 1Bl g5 + Cll 010|772 |ull s
< Cl(u, b) s (IATBNI s + Al 3s).
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To bound Ny, we split it into three terms,

Ny :3/ Dob - 93V - O3b dx+3/ 93b - DVu - D3b da:+/ d3b - Vu - 93b dx
Q Q Q
= Na 1+ Noo+ Nas.
By Holder’s inequality and Lemma 2.4,

N2,1 = 3/ 82b . 8§Vu . 8%5 dx
Q

= 3/ 82b18§81u . 331) dr + 3/ 82b28%82u . 8§’b dx
Q Q
=No11+ Noio.
By the divergence-free condition V - b = 0,

N271’1 = 3/ 82b18%81u . (93[) dx
Q
= 3/ 82b18§81u18§’b1 dx + 3/ 821)16%61’&20362 dzx
Q Q

= 3/ azaagalulagbl dx + 3/ 82518%8111183()1 dr — 3/ 82b18%31u232281b1 dx
Q Q Q
=No111+No112+ No1i3.

IR 5Lyt sLyty

By Lemma 2.1, Lemma 2.4, Holder’s inequality and Young’s inequality,
N2717172 + N2717173 = 3/ 82};18%8111,183()1 dr — 3/ 82[)18226111282281131 dx
Q Q

< C||92b1 || 10|03 01 || 12]|D3D1 || 2 + C|Dabi || o< | 03D ua | 12| 0301D1 | 2
< C10180b1 || | ASul| s 1] 115 + Cl 91Dl g | AL ]| s |B]| s
< Ob s (| ASull2ps + [ ATD]1%5).

By integration by parts twice, Lemma 2.2, Lemma 2.1, Lemma 2.5, anisotropic Hélder’s

inequality and Young’s inequality,

sLyty

Ng 1.1.1 = 3/ 825822811718351 dx
Q

=3 / Db 02011, 03by dx
Q

< (|02by || o< [|0301@1 || 12 (|03 b1 || 2

< O|b]l o | AS 1031 || 12 || AL 95b1 | 2

< Ol1bll s (|ASul| % + A7) %)
Hence

No11 < Ofbllgs (| ASul%s + | ATD]|%s).
Similarly,

No12 = —3/ 81510332u - 03b dx
Q

< Ol b)ll s (1A ull s + [ATBIIZs ).
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Combining the estimates for N 11 and Na 12 leads to
Ny < CJl(u, b) g (1A 3y + [|ATB]375)-

We rewrite N o,

Noo = 3/ 93b - 05Vu - O3b dx
Q

= 3/ D3b10x01u - O3b dx + 3/ D3bod3u - O3b dx
Q Q
= Noo1+ Nago.

We decompose Na 21 into three terms by Lemma 2.2,

N2,271 = 3/ 8%616281u . 83[) dx
Q
= 3/ 8§b18281u18§’b1 dz + 3/ 8%()162611@83()2 dx
Q Q

=3 / 03b109011, 03by dx + 3 / 93b192001103b1 dz — 3 / D3b10901Up D301 by dx
Q Q Q

= No211+Nogi2+ Nooigs.

By applying integration by parts twice, Holder’s inequality, Lemma 2.1, Lemma 2.4, Lemma
2.5

N2,27171 = 3/ 822582816185%1 dr = —3/ 8%582ﬁ1638161 dx
Q Q

=3 / D3b190110301by dx + 3 / 03b1 02097110301 by da
Q Q

< C||92ti1 || oo ||03b1 || 12]|0501b1 || 2
+ C|01030:1 || 2 103022 10103 5 1030 11,57 103 1
< C|01 D | g1 [1Bl] g3 | AT B 113 + C 1Bl g5 0103l 2| AT Bl s
< Cbll = (AT ull3s + [ATB]1s)-
By Lemma 2.1, Lemma 2.5 and Young’s inequality,
Noo12= 3/ 33510281610§’b1 dx

< C||03by || 12 || 02011 || 15710301 |12 931 ]| 15 101 301 |1

< C[b]| 73|01l 1721|0193 | 2

< C|bll s | ATB]| s | Orell 2 < CllblL s (1ATul| 25 + [ ATB]I0).
Similarly,

N2,271’3 = —3/ 62213162811728%81()1 dx

< C||0301b1 || 12 || Doz | 17 || 0203 Tia |1 | 031 |1 10501 |1
< C|bll s | MDD s | Orell > < CllblL s (1ATul 25 + [ ATB]|0).

Thus we obtain
Nog1 < C|Ibllgrs (1ASull 2 + [ATB] %)
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By divergence free condition,

Noso=—3 / 020101030, - B3b dw = —3 / 9201610311 93b1 d — 3 / 920161 03u903by dx
Q Q Q

= —3/ 6261516311,18361 dr — 3/ 8281518281’&18381[71 dx
Q Q

=No291+ Noooo

We can see that Nogo1 = Mago1, Nogoa = —Ms o4, by the estimates of My 7 in (3.16)
and Mz 24 in (3.15), we have

Naoa < Cll(u, b)ll s (|ASullFs + [ATD]13s).
Further, combining the estimates of N2 1 and N2 o,
Naa < C|l(u, ) g (IASullFs + [ATBI[5)-

We can rewrite Na 3,

Noz = / d3b - Vu - 93b dx
Q
= / 8§’b181u18§b1 + 6§b181u28§’b2 + 6362(927“831)1 + 8§’b282uz8§b2 dx
Q

= / 8§’b181u18§’bl - 831)181628%811)1 - a%alblagulaglh - 8%81b181u18§81b1 dx
Q
= No31+ Noga+ Nogsz+ Nozy.
Byu=u-+uand b= b+ b and Lemma 2.1,

N273,1 = / 6§b101ﬂ18§’b1 dr = 2/ 85’518122165’51 dx + / 6331611710331 dzx
Q Q Q

< Ol (2, b) a2 (AT BllZys + 1Al o).
By Holder’s inequality, Lemma 2.1 and Young’s inequality,

N2,372 = —/ 85’()181’2[28%81()1 dl‘ S C||81ﬂ2\|Loo|]8§b1||L2||8§81b1HL2
Q

< C| 0%l 1010 ] 2 1Bl g5 < ClIASwll s l| ATD] gy [[B]] g
< O[bll s (I1A7Bl[Fa + AT ull30).
We can see that )
§M2,1,1, Nasq=—
By using the estimates in (3.13) and (3.14),

Nogaa + Noga < Cll(u,0)|| s (|A7D]| %5 + AT w|%s).

1

No33 = 3

M2’1’4.

It follows that
Nog < C|(u,b)l| s (1ATB] s + [ ATul).
Collecting the bounds from N3 1, N2 2, No3 and Ny, we obtain
N < CJl(u, b) | s (IATB]1 s + [ AT ullFs). (3.18) Nbound|
Combining the bounds in (3.5),(3.12), (3.17) and (3.18) above leads to
J+ K+ L+ M+ N < C||(w,b)l| s (1A7B] 375 + A ull3s).
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Inserting the upper bound for J + K + L + M + N in (3.1), Integrating in time, we get
t t
1w, 0) 15 +2V/0 HA‘f‘U(T)qusdTJr?n/O IAYB(7) [ Fadr
t
< o, D) o + € D (UATBs + 0 )

t
< o, D) s + € s . B)lrs | UATBI + o )

< E(0) + CE(t)2.

Thus this completes the proof of (1.7). As a preparation for the application of the boot-
strapping argument, we briefly explain why [|u(t)| s and ||b(t)|| s are continuous functions
of t. The desired continuity can be shown by following a procedure outlined in Chapter
3 of [44]. Onme starts with the weak continuity, u,b € Cy(0,00; H®) and then show the
continuity at ¢ = ¢y by obtaining bounds for ||u(t)| s and [|b(t)| s in terms of ||u(to)]| g3,
[b(to) |22 and [£ — to].

Then an application of the bootstrapping argument to (1.7) leads to the desired upper
bound in Theorem 1.1. We set

€2 = L

01602
Assume 0 < ¢ < gg and the initial data (ug,bg) satisfies

E(0) = ||(ug,bo) |55 < €. (3.19) [eObound]

To apply the bootstrapping argument, we make the ansatz that, for ¢ > 0,

E(t) < 462, (3.20) ansatz
It then follows from (1.7) that

1
E(t) < E(0)+2Ce E(t) < E(0) +2Ceo E(t) = E(0) + 3 E(t) or E(t)<2E(0).

By (3.19), for all ¢t > 0,

E(t) < 2¢°,

which is just half of the bound in the ansatz (3.20). The bootstrapping argument then
asserts that this bound actually holds for all ¢ > 0. It is worth commenting that even
though FE(t) only involves the L? norms of 8 (i = 1,2) derivatives of u, b, A{u, Af b, the
boundedness of the L? norms of any other derivatives of order three follows via interpolation
inequalities. For example,

1. . 2
|0103ullzz < Sll0Fullis + Sll03ullZ.

Thus, we obtain the desired global uniform bound on ||(u(t),b(t))|| 3. This completes the
proof of Theorem 1.1.

4. PROOF OF THEOREM 1.2

(deca) This section proves Theorem 1.2, which assesses that the oscillation part (17,5) decays

exponentially to zero in the H?-norm as t — oo. We consider the equations of (u,b) and
apply the properties of the orthogonal decomposition and several anisotropic inequalities.
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Proof of Theorem 1.2. We first write the equation of (%, b). By taking the average of (1.2),
we have

. 0 . —
O +u-Vu+ =vA’*a+b-Vb+ A- Vb,
t 8215) : (4.1) [£:MiDbar]

8t5+u-vg:nA?%—l—b-Vﬂ—i—A-Vu,

where we have invoked the fact usdouw = 0. The divergence-free condition 01ty + Oriz = 0
and the fact that wy is only a function of xo yield that us is a constant. It must be zero
due to uz € L?(2). Since 0o is a function of x5 alone,

I = / ug O dx1 = 0ol /’LLQd$1 = Ohuug = 0.
JT JT

Taking the difference of (1.2) and (4.1), we obtain

P
—_—~—

TtV I+ VP — vAZT — b Vb — bodeb — A- Vb =
Ot VOt Vp v = b VO = be0b Z VO =0 ) mias)
Ob + 1w - Vb + ugdob — nAT'b — b - Vi — badoti — A - Vu = 0.

Taking the inner product of (4.2) with (u, b), after integration by parts and divergence-free
conditions, we find

1d ~ o ~
5 g (Il1Z2 + [BI72) + v ASE] . + nll AYD|E
:—/u-Vﬁ‘ﬂdx—/ugagu-ﬁdx—/u'V’l;‘fl;dx
Q Q Q
+/b-v5.adx+/b2025-ada:—/U2a25-5d:c (4.3) [E:R1R8]
Q Q Q
+ ﬁgd$+/b282ﬂgd$
Q Q

== R1+ Ros+ Rs + Ry + Rs + Rg + R7 + Rs.

By Lemma 2.2 and divergence free condition of u,
R1:—/u'Vﬂ-ﬂdCE—l—/u-Vﬁ'ﬂd:ﬁ:O.
Q Q
By Lemma 2.1 and Lemma 2.4,
Ry = —/ oot - T de < || O] oo | ATl 2 | ALT] 12
Q

< Cllull s || AT 7.

Similar to R, we also have R3 = 0. By Lemma 2.2 and the divergence-free conditions,

R4+R7=/b.v5-adx+/b-va.bdx
Q Q

:/b-vé-adwr/b-va@d:c—/b-vZ-adx—/b-va-de:o.
Q Q Q Q

By Holder’s inequality, Lemma 2.1, Lemma 2.4 and Young’s inequality,
R5 = / 52825- u dr
Q

< C|0B] oo bl 2 [l 12 < C1DB] oo |ATD 2| AT .2
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< OBl (IA7BIIZ2 + 1A T 72)-
Similarly,
Ro = [ 00255 do < Clbln (AT + 477122,
Q
Ry < Cl[u] | ATB -
Inserting the estimates for R; through Rg in (4.3), we obtain
d - B -
@(HUH%Z) + [1Bl172) + (20 = Cl(w, )| ) 1A 2 + (20 = C| (1w, b) | 7) | ATB] 2 < 0.

According to Theorem 1.1, if e > 0 is sufficiently small and ||ugl| g3 + ||bol| g3 < &, then
|lu|| g3 + 1|b]| s < Ce and

v —Cll(w,b)|lgs = v, 2n—=Cll(uw,b)[lgs = 7.
Thus we have
d . ~ _ ~
S alZe + D7) + v ASE] 7> + 9l A7B] 72 < 0.
By Lemma 2.1,
[l < A2, (Bl < IATD] L2,

we obtain by Gronwall’s Lemma,

la(®)|| 2 + ”g(t)”L2 < C(|luollz2 + ||b()”L2)6701t, (4.4)[L2estimatestilde]

where C; = Cy(v,n) > 0. _
Next we consider the exponential decay for ||(Vu(t), Vb(t))||z2. Taking the gradient of
(4.2) yields

OV + V(u - Vid) + V(ugdoit) + VV — 020V

e TVE VB - V(D) ~ V(A4 VE) =0, (45) [£:HiDariids)
Vb + V(u - Vb) + V(ugdab) — nd2’Vb — V(b - Vi)

—V(byde) — V(A - Vu) = 0.

Multiplying (4.5) with (Vu, Vb), we have
1d
2 di
= —/ V(u- Vi) - Vi d:L‘—/V(uzagﬁ)-Vﬂ dx—/V(u-vB)-Vde
Q Q Q

+ / V(b-Vb)- Vi d+ / V (badob) - VU dx — / V(u2dsb) - Vb da (4.6)[E:s1s8]
Q QO Q

(IVal72 + IVB]72) + VATVl + AT VD] 72

+/ V(b-Va) - Bda;+/V(b262u)-v'5 dz
Q Q
=51+ 52+ 53+ 54+ S5+ S + 57+ Ss.

By Lemma 2.1, Lemma 2.2, Lemma 2.4 and divergence free condition of w,

Slz—/V(u-Vﬂ)‘Vﬂdx
Q
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:—/V(u-Vﬁ)-Vﬁdm+/V(u-Vﬂ)-Vﬁdw
Q Q

- —/ Vu - Vi - Vi do < Ol g | AV 2.
Q

Similarly,

53:—/V(u-v3)-v5d:c
Q

:—/V(u-v'z?)-vgda;+/V(u-v'z?)-v’z}dx
Q Q

_ —/ Vu- Vb Vb de < Cllullgs | AP V2.
Q
In order to bound S5, we rewrite it as

Sy = / V(UQagﬂ) -Vu dx
Q

= —/ VugOou - Vu dx — / us Voot - Vu dx
Q Q
=521+ S2.9.
Similarly to the method estimating Sy,
52’1 = —/ VugOoti - Vu dx = —/ Vua Ot - VU dx
Q Q
< Cllull s ATV 75
By Lemma 2.1,
52’2 = / ws Voot - Vu dx < CHaQHL%HanfL”LZ”V%ZHLQ
Q
< Ol AT U |1 [Vt 2| V][ 2 < C([[ATU2| 22 + [AT VU2 | 22) [V 02t 2 | V][ 12
< C(|MAT | L2 + [|AT V]| 12)[| V02l 12 | ATVl 2 < Cllul gs]| ATV 75

Thus, we have

Sz < Cllul g | AT V|72
By Lemma 2.2, Lemma 2.1, Lemma 2.4, the divergence-free condition V-b = 0, and Young’s
inequality,

s4+57:/V(b-vZ)-vadx+/V(b~va)-v6dx
Q Q
:/V(b-v’z})-vadH/V(b-va)-v’z}dx—/V(b-v’z})-vadx
Q Q Q
—/V(b.va)-v}}dm
Q
_/Vb-v’z;-vadwr/Vb-va-vzder/b-v?"E-vadx
Q Q Q
+/b-v2a-v5dx
Q

:/Vb-VE-Vﬂdx+/Vb'Vﬂ-ngx
Q Q
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< O1b]| s || AV L2 [ AT VB 2 < Clbl| s (| AV @22 + || AT VB[22,

S5 is bounded by

Sy = / V(bgagg) -Vu dx = / ngagi) -Vu dx + anQVB -Vu dx
Q Q
< COlbll s (JASVE| 22 + | AT VD|22).
Similarly, Sg and Sg are bounded by
Se < C||bl| s (| AT V@22 + || A]VD|[22),
Ss < Cllu gsl| A V2.

Inserting the estimates for S; through Ss in (4.6) gives

d ~ e
S (IValZ2 +[1VBlIZ2) + (20 = Ol (u, b)l| o) [ AT Va5
+ (20 = C||(u, b) || g3) || A} V]| L2 < 0.

Choosing ¢ > 0 sufficiently small and by Theorem 1.1, if ||ug||gs + [|bo|lgz < €, then
ltullgs + bl 2 < Ce amd

2v=Cll(u,b)lgrs = v, 2n=C|(u,b)]|gs = n.
Thus we could have
d _ ~ _ ~
S UValZe +[1V0]72) + VATV L2 + 0l A VD] 22 < 0.
By Lemma 2.1,
Ve < |AFVE 2, [IVB]lz2 < [|AYVD] g,
we obtain by Gronwall’s Lemma,

IVa(t)llz2 + [VB(0) 22 < O Vuoll 2 + [ Vhol 2)e™ %, (4.7)[B1t11de]

where Cy = Ca(v,n) > 0.
Then we consider the exponential decay for [[(Au(t), Ab(t))||z2. Due to the standard
Hessian-Laplace inequality (see, e.g., [51])

IV2fllze < CIASI L2,

it suffices to estimate ||(Au, Ab)|/z2. Taking the divergence of (4.5) yields

—_~—

AT+ Alu - Vi) + Aupdeit) + AVH — v AT

—_~—

AT ZALT Al 7 AV =0 (45)
WD+ A - V0) + Aluzdeb) — 102 Al — A(b - Vi)

—A(bydo) — A(A-Vu) = 0.
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Multiplying (4.8) with (A%, Ab), we have
1d
2dt

—/A(m)-Aﬂ dx—/A(uzagu)-Afl d;c—/A(u.v’zS).A’de
Q Q Q

+ / A(b-Vb) - At d+ / A(badsb) - ATt d — / A(udsd) - Ab da (4.9)[E:T1T8]
Q 9)

Q

— (AT + |AB]172) + v AT AT + nl| Ay AB|IZ

+/ A(b- Vi) - Ab dx+/A(b282a)-A?5 dz
Q Q
=T+ To+T5+Ty+T5+ T+ T7 +Tk.

We can rewrite 17 as

A(u -Vu) - Au dx
/Au Vu) - Audx—i—/Au Vu) - Au dx
/Au Vi - Ade—Q/VU-V2ﬂ'Aﬂd$—/u-VAﬂ-Aﬂd:L‘
Q Q

——/Au'Vﬂ-Aﬂdaz—2/VU-V2ﬂ-Aﬂd:c
Q Q

=Ti1+Tp.
By Lemma 2.1,

Ty = —/ Au- Vi - AU dz < C|lul| gs||AFAU3.,
Q

Ty = —2 / Vu - V20 AT dr < Offul|gs | AGAT]2.
Q

Similarly, T3 can be split into two terms,

—/A(U~V5)'Agdw
Q

——/A(u-VZ)-AEda:+/V(u-VE)-vde
Q Q
—/AU-VZ~AZCZ:U—2/VU'VQZ'Agda?—/U'VAZ'AEdl’
Q Q Q

—/AU-VZ-Agdx—Q/Vu'VQE-Ade
Q Q

=1T31+T339.

By Lemma 2.1,
Ty < C|lull s || A Ab| 2.

To bound 15, we rewrite it as

—/ A(’LLQ@Q@) - Au dx
Q

—/ AugOoti - A dx — 2/ Vus Vi - Au dx — / us O Al - Au dx
Q Q Q
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=To1 +To2+To3.
By Lemma 2.1,

Tyt = _/ Ausdoti - AT da < Clul s | AFAT 22,
Q
T272 = —2/ VﬂgaQVﬂ . Aﬂ dx§ CHVEQHL“HOQV?—LHLZHAﬁHLz S C||uHH3HA?AﬁH%2,
Q

Ty = —/ Upds At - AU dz< Ot p |02 At 12| At 2 < Cllul| s | AT AT
Q

So it follows that
Ty < Cllull s | AT A7
We combine Ty and T7,

—~——

T4+T7:/A(b-Vb)-Aﬂdm+/A(m)-A5dx
Q Q
:/A(b-VE)-Aﬂder/A(b-Vﬂ)-Agdx—/A(b-Vg)-AiZd:c
Q Q Q
—/A(b-va)-Ade
Q
:/Ab-VZ-Aad;p+2/Vb-v2Z-Aadx+/b-VAZ-Aadx
Q Q Q
+/Ab-Vﬂ-Agdx+2/Vb-vzﬂ-Ade+/b-VAﬂ-Agdx
Q Q Q
:/Ab.VE-Aada;Jrz/Vb-v2'6-Aada;+/Ab.va.A'5dx
Q Q Q

+2/ Vb- V2 - Ab dx
Q

= T4,1 + T472 + T473 + T4,4.
By Lemma 2.1,

Tux < Cllbll s (| AFAT 72 + AT AB][32).
Similarly,
Tug < C|lbll s (|AFAT 2 + || AT AB]I72),
Tyo+ Tia = 2/ Vb-vz'B-Aaderz/ Vb - V2 - Ab dx
Q Q

< Clbl s (AT AUI72 + (AT AD]I72).
Combining the estimates of Ty 1, Ty 2, T4 3 and Ty 4, we have
Ty + Tr < C[|b s (AT AT 2, + | AT AD|[2.).

To bound T, we write

T5 = / A(bg@gg) - Au dx
Q

= / Abgagl_) - A dx + 2/ ng@gVB - AU dx + / bgagAB -Au dzx
Q Q Q
= T571 + T572 + T573.
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By Lemma 2.1,
Ts1 = / Abydob - AT dx = / AbyOob - AT dx
Q Q

< CJbllgs (AT AT 72 + A AB]72),

T5’2 == 2/ VZQGQVZ_) - A dr
Q

< Colls (AT AT 72 + AT A 72),

Tsz = — /Q byBaAb - AT da
< CIol (AT AT + A AF2)

Thus, we obtain

Ts = [ Aadah) - A do < CJblns (AT AT + A/ AF ).
Similarly, T and Ty are bounded by

To = — /Q A(ugdob) - Ab dw < C|Ib] s (|AF AT + | AT AD72)

Ty = /QA(bgagu) - b dir < CJull s | AP AB|2.
Plugging the estimates for 77 through Tg in (4.9),

L8732 + 18B3) + (20— O, ) )| AT A

+ (20 — O (u, b) || g=) || AT Ab] 12 < 0.

Choosing ¢ > 0 sufficiently small and by Theorem 1.1, if ||ug||gs + ||bol|lgs < &, then
[ullgs + ||bllgs < Ce and

2v = C[(u,0)||gs > v, 20— C|(u,b)|l gz > .
Then we obtain
d - ~ oA~ ~
%(HAuH%z +[|AB][22) + VAT AT, + 0l AT AD|| 2 < 0.
By Lemma 2.1,
AT 2 < |AFAT] 2, [|AD] 2 < [|ATAD] f,
we obtain by Gronwall’s Lemma,

JAE(E) 12 + (25O 22 < ClAugl| 2 + | Abo]l 2)e 5", (4.10)[H2si1de

where C3 = C3(v,n) > 0. Combining the estimates in (4.4), (4.7) and (4.10), we obtain the
desired decay result (1.6) in Theorem 1.2. O
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