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Abstract. This paper focuses on a 2D magnetohydrodynamic (MHD) system with frac-
tional horizontal dissipation in the domain Ω = T × R with T = [0, 1] being a periodic
box. The goal here is to understand the stability problem on perturbations near any fixed
magnetic field A = (A1, A2), where A1, A2 ∈ R. Due to the lack of vertical dissipation,
this stability problem is difficult. This paper solves the desired stability problem by simul-
taneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation
due to the coupling between the velocity and the magnetic fields, and the strong Poincaré
type inequalities for the oscillation part of the solution, namely the difference between
the solution and its horizontal average. In addition, the oscillation part of the solution is
shown to converge exponentially to zero in H2 as t → ∞. As a consequence, the solution
converges to its horizontal average asymptotically.

1. Introduction

Let Ω = T×R with T = [0, 1] being a one-dimensional (1D) periodic domain and R being
the real line. Consider the 2D incompressible magnetohydrodynamic (MHD) equations with
horizontal fractional dissipation

∂tu+ u · ∇u+∇P + νΛ2α
1 u = B · ∇B,

∂tB + u · ∇B + ηΛ2β
1 B = B · ∇u,

∇ · u = ∇ ·B = 0,

(1.1) E:MHD1

where α ≥ 0 and β ≥ 0. Here u represents the velocity field, P the total pressure and B
the magnetic field, and ν and η denote the viscosity and the magnetic damping coefficients,
respectively. The fractional partial operator Λ2α

1 is defined by the Fourier transform

Λ̂2α
1 f(ξ) = ξ2α1 f̂(ξ).

In particular, Λ2α
1 with α = 0 becomes the identity operator.

(1.1) admits a special class of steady-state solutions represented by the background mag-
netic field. Attention is focused on the steady-state solution

u(0) = (0, 0), B(0)(x) = A = (A1, A2),
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where A1 and A2 are arbitrarily fixed real numbers. The perturbation (u, b) around this
steady solution with b = B −A obeys

∂tu+ u · ∇u+∇P + νΛ2α
1 u = b · ∇b+A · ∇b,

∂tb+ u · ∇b+ ηΛ2β
1 b = b · ∇u+A · ∇u,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.2) E:MHD2

The corresponding vorticity ω = ∇× u and the current density j = ∇× b satisfy{
∂tω + u · ∇ω + νΛ2α

1 ω = b · ∇j +A · ∇j,

∂tj + u · ∇j + ηΛ2β
1 j = b · ∇ω +Q+A · ∇ω

with

Q = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).

We first remark that the coupling and interaction in the MHD system (1.2) leads to
the smoothing and stabilizing in the direction of the background magnetic field A. This is
reflected in the wave equations derived from (1.2) via the following simple process. Applying
the Helmholtz-Leray projection operator

P := I −∇∆−1∇·

to the velocity equation in (1.2), we eliminate the pressure to obtain

∂tu+ νΛ2α
1 u−A · ∇b = N1, N1 = P(−u · ∇u+ b · ∇b). (1.3) ueq

By separating the linear terms from the nonlinear ones in (1.2), the equation of b can be
written as

∂tb+ ηΛ2β
1 b−A · ∇u = N2, N2 = −u · ∇b+ b · ∇u. (1.4) beq

Thus, (1.2) can be written as
∂tu+ νΛ2α

1 u−A · ∇b = N1,

∂tb+ ηΛ2β
1 b−A · ∇u = N2,

∇ · u = ∇ · b = 0.

Differentiating (1.3) and (1.4) in time and making several substitutions, we find{
∂ttu+ (νΛ2α

1 + ηΛ2β
1 )∂tu− ((A · ∇)2u− ηνΛ2α

1 Λ2β
1 u) = N3,

∂ttb+ (νΛ2α
1 + ηΛ2β

1 )∂tb− ((A · ∇)2b− ηνΛ2α
1 Λ2β

1 b) = N4,
(1.5) wave

where N3 and N4 are given by

N3 = (∂t + ηΛ2β
1 )N1 + (A · ∇)N2, N4 = (∂t + νΛ2α

1 )N2 + (A · ∇)N1.

Both u and b are found to satisfy nonhomogeneous wave type equations with exactly the
same linear parts. Moreover, (1.5) exhibits much more regularization than its original
counterpart in (1.2). In particular, the terms (A ·∇)2u and (A ·∇)2b generate the smoothing
and stability in the direction of A. Together with the fractional horizontal dissipation in
(1.2), this allows us to control the nonlinearity. This explains the mechanism of the stability
for this anisotropically dissipated MHD system. We remark that the stabilizing effect of the
magnetic field on electrically conducting fluids have been observed in physical experiments
and numerical simulations (see, e.g., [1–3,12–14,27,28]).
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In order to understand the desired stability, we need to distinguish the horizontal zeroth
Fourier mode and the rest of the horizontal modes. The spatial domain here is Ω = T× R
and we take full advantage of the geometry of this domain. The horizontal direction is
periodic and we can separate the zeroth Fourier mode from the non-zero ones. The zeroth
Fourier mode corresponds to the horizontal average. This hints the decomposition of the
physical quantities into the horizontal averages and the corresponding oscillation parts.
More precisely, for a function f that is integrable in x ∈ T, we define

f̄(x2) =

∫
T
f(x1, x2) dx1, f = f̄ + f̃ .

This decomposition is orthogonal in the Sobolev space Hk(Ω) for any integer k ≥ 0 (see

Lemma 2.3 in Section 2). More crucially, we prove in this paper that the oscillation part f̃
obeys very general strong Poincaré type inequalities, for any σ ≥ 0,

∥f̃∥L2(Ω) ≤ C ∥Λσ
1 f̃∥L2(Ω)

and, for any γ > 0,

∥f̃∥L∞(Ω) ≤ C ∥Λγ
1 f̃∥H1(Ω).

Detailed statements and proofs can be found in Lemma 2.1 in the subsequent section.
These inequalities allow us to control some of the nonlinear parts in terms of the horizontal
dissipation. By invoking the decompositions

u = ū+ ũ, b = b̄+ b̃

and applying the aforementioned Poincaré inequalities together with various anisotropic
inequalities, we are able to successfully bound the nonlinearity and establish the following
stability result.

⟨nonlinearstability⟩
Theorem 1.1. Let η, ν > 0, α > 0 and β > 0. Consider (1.2) with the initial data
(u0, b0) ∈ H3(Ω), and ∇ · u0 = ∇ · b0 = 0. Then, there exists a constant ε0 := ε0(ν, η) > 0
such that if ε ≤ ε0 and

∥u0∥H3 + ∥b0∥H3 ≤ ε,

then the global classical solution (u, b) ∈ C(0,∞;H3) satisfying, for any t > 0,

∥u(t)∥2H3 + ∥b(t)∥2H3 +

∫ t

0

(
∥Λα

1u∥2H3 + ∥Λβ
1 b∥

2
H3

)
dτ ≤ C ε2

for some universal constant.

We remark that the existence of solution (u, b) in Theorem 1.1 can be established follow-
ing a standard procedure. The first step is to establish the local-in-time existence via an
approximation procedure and local energy estimates. This step doesn’t require any dissipa-
tion and works even for inviscid equations. One can mimic the details on the local existence
proof on solutions to the Navier-Stokes and the Euler equations (see Chatper 3 of [44]). The
second step is to establish the global existence of solutions by combining the local existence
result with the global a priori bound obtained in the proof of Theorem 1.1.

Besides the stability, we can also show that the oscillation part actually decays exponen-
tially to zero.
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⟨exp_decay⟩Theorem 1.2. Let u0, b0 ∈ H3(Ω) with ∇ · u0 = 0 and ∇ · b0 = 0. Assume that ∥u0∥H3 +
∥b0∥H3 ≤ ε for sufficiently small ε > 0. Let (u, b) be the corresponding solution of (1.2).

Then the H2 norm of the oscillation part (ũ, b̃) decays exponentially in time,

∥ũ(t)∥H2 + ∥b̃(t)∥H2 ≤ C(∥u0∥H2 + ∥b0∥H2)e−Ct, (1.6) dec

for some constant C > 0 and for all t > 0.

Due to physical applications and mathematical importance, global regularity and stabil-
ity problems on the MHD equations with partial dissipation has attracted wide attention
and there have been substantial recent developments. The pioneering work of Duvaut
and Lions [21] established the local existence of classical solutions to the MHD equations
with full dissipation while Sermange and Temam [49] obtained the global existence of weak
solutions. The situation when the MHD equations involve only partial or fractional dissi-
pation is more subtle. The global existence and regularity has been obtained for the 2D
MHD equations with various partial dissipation in many different functional settings (see,
e.g., [8–10, 20, 22, 23, 34, 37, 38, 58, 64]). The global regularity problem on the MHD equa-
tions with fractional dissipation was investigated in [16,17,65–67]. Studies on the stability
problem concerning the MHD equations near a background magnetic field or other steady
state solutions have flourished, and significant progress has been made for many partially
dissipated MHD systems (see, e.g., [4–7,11,15,24–26,29–31,33,35,36,39,41,42,46–48,50,53,
55–57, 60, 63, 68–70]). Considerable efforts have also been devoted to the MHD boundary
layer problem (see, e.g., [43]) and the compressible MHD systems (see, e.g., [32,59,61]). The
stability and large-time behavior problem on the 2D anisotropic Navier-Stokes equations
with dissipation in only one direction in the domain T × R was first successfully solved
in [18]. A systematic method with all necessary techniques were developed in [18] to tackle
such problems. This approach was then used to establish the stability and exponential
results on the 2D Boussinesq as well as the 3D Boussinesq equations [19, 62]. This ap-
proach was also efficient in dealing with the stability problems on the 2D MHD equations
when the dissipation and the magnetic diffusion are in the same one direction [45, 52]. In
addition, [40] considered the stability of the 2D MHD system with partial mixed velocity
dissipation and horizontal magnetic diffusion. In comparison with [45], [52] and [40], the
main contributions of this paper are that it allows any fractional horizontal dissipation and
the background can be any fixed 2D vector. New tools are developed in this paper to han-
dle this very general type of fractional horizontal dissipation. In particular, sharp strong
Poincaré type inequalities for the oscillation part are derived (Lemma 2.1).

We use the bootstrapping argument (see, e.g., [54]) to prove the nonlinear stability in
Theorem 1.1. We first define a suitable energy functional

E(t) := sup
0≤τ≤t

(∥u(t)∥2H3 + ∥b(t)∥2H3) + 2ν

∫ t

0
∥Λα

1u(τ)∥2H3dτ + 2η

∫ t

0
∥Λβ

1 b(τ)∥
2
H3dτ.

Here E(t) represents the standard energy consisting of the H3-norm of (u, b) and the as-
sociated time integrals parts in u and b. Our main efforts are devoted to proving that, for
any t > 0,

E(t) ≤ E(0) + CE(t)3/2. (1.7) bootstrap

Once we have (1.7), the bootstrapping argument implies that if

∥u0∥H3 + ∥b0∥H3 ≤ ε or E(0) ≤ ε2,
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then there exists a constant C > 0 such that

E(t) ≤ Cε2, ∀ t ≥ 0.

The main efforts are devoted to proving (1.7). The proof makes use of the aforemen-
tioned orthogonal decomposition and Poincaré type inequalities derived in this paper. The
exponential decay result is shown by making use of the evolution equations of the oscillation
part of the stable solution.

The rest of this paper is divided into three sections. The second section serves as a
preparation for the proof of Theorem 1.1. It provides properties related to the decomposition
and triple product estimates for the domain Ω. We also derive the sharp strong Poincaré
type inequalities for the oscillation part. The third section is devoted to the proof of
Theorem 1.1 while the Section 4 proves Theorem 1.2.

2. Preliminaries
⟨pre⟩

This section states several properties on the decomposition defined in the introduction
and provides several anisotropic inequalities to be used in the proofs of Theorems 1.1. Some
of the materials presented here can be found in [9, 18, 19]. But the result and the proof of
Lemma 2.1 are new.

We recall the definition of the horizontal average and the oscillation part. Let Ω = T×R
and let f = f(x1, x2) with (x1, x2) ∈ Ω be sufficiently smooth, say integrable in x1 ∈ T.
The horizontal average f is given by

f(x2) =

∫
T
f(x1, x2) dx1. (2.1) E:fbar

We decompose f into f and the oscillation portion f̃ ,

f = f + f̃ . (2.2) decomp

The oscillation part obeys the following Poincaré type inequalities. This lemma signifi-
cantly sharps the corresponding ones in [19]. We no longer require σ = γ = 1. The proof
presented here is completely different and new.

⟨pp⟩⟨E:p1estimates⟩Lemma 2.1. Let Ω = T× R and let f̃ be defined as above. Then, for any σ ≥ 0,

∥f̃∥L2(Ω) ≤ ∥Λσ
1 f̃∥L2(Ω).

For any γ > 0,

∥f̃∥L∞(Ω) ≤ C∥Λγ
1 f̃∥H1(Ω),

where

C :=
√
π

 ∑
k∈Z,k ̸=0

|k|−2γ(1 + k2)−
1
2

 1
2

< ∞.

Proof of Lemma 2.1. These inequalities can be shown by the Fourier transform.

∥f̃∥2L2(Ω) =
∑

k∈Z,k ̸=0

∫
R
|f̂(k, η)|2dη ≤

∑
k∈Z,k ̸=0

∫
R
|k|σ|f̂(k, η)|2dη = ∥Λσ

1 f̃∥2L2(Ω),
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where f̂(k, η) is the Fourier transform of f ,

f̂(k, η) =

∫
R

∫
T
f(x, y) eikx+iηy dxdy. (2.3) ff

By the definition of the Fourier transform,

∥f̃∥L∞(Ω) ≤
∑

k∈Z,k ̸=0

∫
R
|f̂(k, η)|dη

=
∑

k∈Z,k ̸=0

|k|−γ

∫
R
(1 + k2 + η2)−

1
2 |k|γ(1 + k2 + η2)

1
2 |f̂(k, η)|dη

≤
∑

k∈Z,k ̸=0

|k|−γ

(∫
R

1

1 + k2 + η2
dη

) 1
2

×
(∫

R
|k|2γ(1 + k2 + η2) |f̂(k, η)|2dη

) 1
2

.

The first integral can be computed as follows. By setting η = (1 + k2)
1
2 ξ,∫

R

1

1 + k2 + η2
dη = (1 + k2)−

1
2

∫
R

1

1 + ξ2
dξ = π(1 + k2)−

1
2 .

Therefore,

∥f̃∥L∞(Ω) ≤
√
π
∑

k∈Z,k ̸=0

|k|−γ(1 + k2)−
1
4

(∫
R
|k|2γ(1 + k2 + η2) |f̂(k, η)|2dη

) 1
2

≤
√
π

 ∑
k∈Z,k ̸=0

|k|−2γ(1 + k2)−
1
2

 1
2

×

 ∑
k∈Z,k ̸=0

∫
R
|k|2γ(1 + k2 + η2) |f̂(k, η)|2dη

 1
2

= C ∥Λγ
1 f̃∥H1(Ω),

where, for γ > 0,

C :=
√
π

 ∑
k∈Z,k ̸=0

|k|−2γ(1 + k2)−
1
2

 1
2

< ∞.

This completes the proof of Lemma 2.1. □

The following lemma is a direct consequence of (2.1) and (2.2).

⟨E:decomp⟩Lemma 2.2. The average operator and the oscillation operator commute with the partial
derivatives, for i = 1, 2,

∂if = ∂if, ∂if̃ = ∂̃if, ∂1f = 0, f̃ = 0,

As a special consequence, if ∇ · f = 0, then

∇ · f = 0, ∇ · f̃ = 0.
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The second lemma states that the decomposition in (2.2) is orthogonal in any homo-

geneous Sobolev space Ḣk(Ω). Here Ḣk(Ω) is defined as follows. For any s ∈ R, the

homogeneous Sobolev space Ḣk(Ω) consists of square integrable functions on Ω such that

∥f∥Ḣs(Ω) =

(∑
k∈Z

∫
R
(k2 + η2)s |f̂(k, η)|2dη

) 1
2

< ∞,

where f̂(k, η) denotes the Fourier transform of f defined in (2.3). More details on the proof
of the following lemma can be found in [19].

⟨or⟩Lemma 2.3. Let Ω = T× R. Let k ≥ 0 be an integer. Let f ∈ Ḣk(Ω). Then f and f̃ are

orthogonal in Ḣk(Ω), namely

(f, f̃)Ḣk :=

∫
Ω
Dkf ·Dkf̃ dx = 0. ∥f∥2

Ḣk(Ω)
= ∥f∥2

Ḣk(Ω)
+ ∥f̃∥2

Ḣk(Ω)

In particular, ∥f∥Ḣk ≤ ∥f∥Ḣk and ∥f̃∥Ḣk ≤ ∥f∥Ḣk .

Next we present several anisotropic inequalities. Anisotropic upper bounds for triple
products are frequently used to bound the nonlinear terms when only partial dissipation is
present. In the case when the spatial domain is the whole space R2, Cao and Wu [9] showed
and applied the following inequality∣∣∣∣∫

R2

f g h

∣∣∣∣ ≤ C ∥f∥
1
2

L2(R2)
∥∂1f∥

1
2

L2(R2)
∥g∥

1
2

L2(R2)
∥∂2g∥

1
2

L2(R2)
∥h∥L2(R2). (2.4) oo

In fact, (2.4) is a consequence of the elementary 1D inequality

∥f∥L∞(R) ≤
√
2∥f∥

1
2

L2(R) ∥f
′∥

1
2

L2(R). (2.5) jj

Another consequence of (2.5) is the following inequality

∥f∥L∞(R2) ≤ C∥f∥
1
4

L2(R2)
∥∂1f∥

1
4

L2(R2)
∥∂2f∥

1
4

L2(R2)
∥∂1∂2f∥

1
4

L2(R2)
.

When the 1D spatial domain is a bounded domain, say T,

∥f∥L∞(T) ≤ C ∥f∥
1
2

L2(T)
(
∥f∥L2(T) + ∥f ′∥L2(T)

) 1
2 .

Since the oscillation part f̃ has mean zero, for f̃ ∈ H1(T),

∥f̃∥L∞(T) ≤ C∥f̃∥
1
2

L2(T)∥(f̃)
′∥

1
2

L2(T).

As a consequence of these elementary inequalities, the following two lemmas hold. Complete
proofs of the following two lemmas can be found in [18,19].

⟨E:triple1⟩Lemma 2.4. Let Ω = T× R. For any f, g, h ∈ L2(Ω) with ∂1f ∈ L2(Ω) and ∂2g ∈ L2(Ω),
then ∫

Ω
|fgh| dx ≤ C∥f∥

1
2

L2(∥f∥L2 + ∥∂1f∥L2)
1
2 ∥g∥

1
2

L2∥∂2g∥
1
2

L2∥h∥L2 .

For any f ∈ H2(Ω), we have

∥f∥L∞(Ω) ≤ C∥f∥
1
4

L2(Ω)
(∥f∥L2(Ω) + ∥∂1f∥L2(Ω))

1
4 ∥∂2f∥

1
4

L2(Ω)

× (∥∂2f∥L2(Ω) + ∥∂1∂2f∥L2(Ω))
1
4 .

After replacing f by the oscillation part, we have the following inequalities.
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⟨E:triple2⟩Lemma 2.5. Let Ω = T× R. For any f, g, h ∈ L2(Ω) with ∂1f ∈ L2(Ω) and ∂2g ∈ L2(Ω),
then ∫

Ω
|f̃gh| dx ≤ C∥f̃∥

1
2

L2∥∂1f̃∥
1
2

L2∥g∥
1
2

L2∥∂2g∥
1
2

L2∥h∥L2 .

For any f ∈ H2(Ω), we have

∥f̃∥L∞(Ω) ≤ C∥f̃∥
1
4

L2(Ω)
∥∂1f̃∥

1
4

L2(Ω)
∥∂2f̃∥

1
4

L2(Ω)
∥∂1∂2f̃∥

1
4

L2(Ω)
.

Finally, we present a bound for triple products that repeatedly appear in the proof of
Theorem 1.1.

⟨refs⟩
Lemma 2.6. Let f , g, h be of sufficient regularity. Then, for any σ1, σ2, σ3 > 0, there
exists a universal (in terms of f, g, h) constant C > 0, such that

3∑
k=1

Ck
3

∫
Ω
∂k
2f · ∂3−k

2 ∇g · ∂3
2h dx

≤ C
(
∥f∥H3∥Λσ2

1 g∥H3∥Λσ3
1 h∥H3 + ∥g∥H3∥Λσ1

1 h∥H3∥Λσ3
1 h∥H3

+ ∥h∥H3∥Λσ1
1 f∥H3∥Λσ2

1 g∥H3

)
.

Proof of Lemma 2.6. We write

f = f + f̃ , g = g + g̃, h = h+ h̃

and use the simple fact that the integral of any triple product with two averages is zero,
namely ∫

Ω
∂k
2f · ∂3−k

2 ∇g · ∂3
2 h̃ dx = 0,

we obtain

3∑
k=1

Ck
3

∫
Ω
∂k
2f · ∂3−k

2 ∇g · ∂3
2h dx =

3∑
k=1

Ck
3

∫
Ω
∂k
2f · ∂3−k

2 ∇g̃ · ∂3
2 h̃ dx

+

3∑
k=1

Ck
3

∫
Ω
∂k
2 f̃ · ∂3−k

2 ∇g · ∂3
2 h̃ dx

+
3∑

k=1

Ck
3

∫
Ω
∂k
2 f̃ · ∂3−k

2 ∇g̃ · ∂3
2h dx

+

3∑
k=1

Ck
3

∫
Ω
∂k
2 f̃ · ∂3−k

2 ∇g̃ · ∂3
2 h̃ dx. (2.6) ju1

The first term can be explicitly written as

3∑
k=1

Ck
3

∫
Ω
∂k
2f · ∂3−k

2 ∇g̃ · ∂3
2 h̃ dx =3

∫
Ω
∂2f · ∂2

2∇g̃ · ∂3
2 h̃ dx+ 3

∫
Ω
∂2
2f · ∂2∇g̃ · ∂3

2 h̃ dx

+

∫
Ω
∂3
2f · ∇g̃ · ∂3

2 h̃ dx.
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By Lemma 2.1 and Sobolev’s inequality,∫
Ω
∂2f · ∂2

2∇g̃ · ∂3
2 h̃ dx ≤ ∥∂2f∥L∞ ∥∂2

2∇g̃∥L2 ∥∂3
2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 ∂2

2∇g̃∥L2 ∥Λσ3
1 ∂3

2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 g∥H3∥Λσ3

1 h∥H3 .

Similarly, ∫
Ω
∂2
2f · ∂2∇g̃ · ∂3

2 h̃ dx ≤ ∥∂2
2f∥L2 ∥∂2∇g̃∥L∞ ∥∂3

2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 ∂2∇g̃∥H1 ∥Λσ3

1 ∂3
2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 g∥H3∥Λσ3

1 h∥H3

and ∫
Ω
∂3
2f · ∇g̃ · ∂3

2 h̃ dx ≤ ∥∂3
2f∥L2 ∥∇g̃∥L∞ ∥∂3

2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 ∇g̃∥H1 ∥Λσ3

1 ∂3
2 h̃∥L2

≤ C ∥f∥H3 ∥Λσ2
1 g∥H3∥Λσ3

1 h∥H3 .

We thus have shown that the first term on the right-hand side of (2.6) satisfies the desired
bound. The other three terms can be bounded very similarly and we omit the details. This
completes the proof of Lemma 2.6. □

3. Proof of Theorem 1.1

This section proves Theorem 1.1. Our main efforts are devoted to establishing (1.7).

Due to the equivalence of the norm ∥(u, b)∥H3 with the norm ∥(u, b)∥L2 + ∥(u, b)∥Ḣ3 , it

suffices to estimate the L2 and homogeneous Ḣ3-bound of (u, b). By multiplying (1.2) by
(u, b) and integrating over Ω, we have, after integrating by parts and using the divergence
free condition,

∥u(t)∥2L2 + ∥b(t)∥2L2 + 2ν

∫ t

0
∥Λα

1u∥2L2 dτ + 2η

∫ t

0
∥Λβ

1 b∥
2
L2 dτ = ∥u0∥2L2 + ∥b0∥2L2 .

To estimate the homogeneous norm ∥(u, b)∥Ḣ3 , we apply ∂3
i (i = 1, 2) to (1.2) and then

multiply by (∂3
i u, ∂

3
i b) and integrate the resulting equation to obtain

1

2

d

dt

2∑
i=1

(∥∂3
i u∥2L2 + ∥∂3

i b∥2L2) +
2∑

i=1

ν∥∂3
i Λ

α
1u∥2L2 +

2∑
i=1

η∥∂3
i Λ

β
1 b∥

2
L2

:= J +K + L+M +N,

(3.1) EQ:JKLMN

where

J =
2∑

i=1

∫
Ω
∂3
i ∂1b · ∂3

i u+ ∂3
i ∂1u · ∂3

i b dx,

K = −
2∑

i=1

∫
Ω
∂3
i (u · ∇u) · ∂3

i u dx,
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L =

2∑
i=1

∫
Ω
(∂3

i (b · ∇b)− b · ∇∂3
i b) · ∂3

i u dx,

M = −
2∑

i=1

∫
Ω
∂3
i (u · ∇b) · ∂3

i b dx,

N =
2∑

i=1

∫
Ω
(∂3

i (b · ∇u)− b · ∇∂3
i u) · ∂3

i b dx.

By integration by parts, J = 0. For the term K, we split K into two terms,

K = −
∫
Ω
∂3
1(u · ∇u) · ∂3

1u dx−
∫
Ω
∂3
2(u · ∇u) · ∂3

2u dx,

= K1 +K2.

We first estimate K1.

K1 = −
∫
Ω
∂3
1(u · ∇u) · ∂3

1u dx

= −
3∑

k=1

Ck
3

∫
Ω
∂k
1u · ∂3−k

1 ∇u · ∂3
1u dx−

∫
Ω
u · ∂3

1∇u · ∂3
1u dx

= K1,1 +K1,2,

where Ck
3 = 3!

k!(3−k)! is the binomial coefficient. By Hölder’s inequality, Lemma 2.1 and

Lemma 2.5,

K1,1 = 3

∫
Ω
∂1ũ · ∂2

1∇ũ · ∂3
1 ũ dx+ 3

∫
Ω
∂2
1 ũ · ∂1∇ũ · ∂3

1 ũ dx+

∫
Ω
∂3
1 ũ · ∇u · ∂3

1 ũ dx

≤ C∥∂1ũ∥L∞∥∂2
1∇ũ∥L2∥∂3

1 ũ∥L2

+ C∥∂3
1 ũ∥L2∥∂1∇ũ∥1/2

L2 ∥∂1∂1∇ũ∥1/2
L2 ∥∂2

1 ũ∥
1/2
L2 ∥∂2

1∂2ũ∥
1/2
L2

+ C∥∇u∥L∞∥∂3
1 ũ∥2L2

≤ C∥u∥H3∥Λα
1u∥2H3 .

By integration by parts and the divergence-free condition,

K1,2 = −
∫
Ω
u · ∂3

1∇u · ∂3
1u dx = −1

2

∫
Ω
u · ∇(∂3

1u)
2 dx = 0.

It follows that
K1 ≤ C∥u∥H3∥Λα

1u∥2H3 . (3.2) K1bound

To bound K2, we further decompose it into four terms,

K2 = −
∫
Ω
∂3
2(u · ∇u) · ∂3

2u dx

= −
3∑

k=0

Ck
3

∫
Ω
∂k
2u · ∂3−k

2 ∇u · ∂3
2u dx

= K2,1 +K2,2 +K2,3 +K2,4.

Due to integration by parts and divergence condition,

K2,1 =

∫
Ω
u · ∂3

2∇u · ∂3
2u dx = 0.
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K2,2 can be split into four terms by divergence-free condition of u,

K2,2 = 3

∫
Ω
∂2u · ∂2

2∇u · ∂3
2u dx

= 3

∫
Ω
∂2u1∂

2
2∂1u1∂

3
2u1 dx+ 3

∫
Ω
∂2u1∂

2
2∂1u2∂

3
2u2 dx

+ 3

∫
Ω
∂2u2∂

3
2u1∂

3
2u1 dx+ 3

∫
Ω
∂2u2∂

3
2u2∂

3
2u2 dx

= 3

∫
Ω
∂2u1∂

2
2∂1u1∂

3
2u1 dx− 3

∫
Ω
∂2u1∂

2
2∂1u2∂

2
2∂1u1 dx

− 3

∫
Ω
∂1u1∂

3
2u1∂

3
2u1 dx− 3

∫
Ω
∂1u1∂

2
2∂1u1∂

2
2∂1u1 dx

= K2,2,1 +K2,2,2 +K2,2,3 +K2,2,4.

Using ∂1u1 = ∂1ũ1 and writing u1 = ū1 + ũ1, we have

K2,2,1 = 3

∫
Ω
∂2u1∂

2
2∂1u1∂

3
2u1 dx

= 3

∫
Ω
∂2ũ1∂

2
2∂1ũ1∂

3
2 ũ1 dx

+ 3

∫
Ω
∂2ũ1 ∂

2
2∂1ũ1∂

3
2 ū1 dx+ 3

∫
Ω
∂2ū1 ∂

2
2∂1ũ1∂

3
2 ũ1 dx,

where we have used the fact that∫
Ω
∂2ū1 ∂

2
2∂1ũ1∂

3
2 ū1 dx = 0.

By Hölder’s inequality and Lemma 2.1, for any α > 0,

K2,2,1 ≤ C ∥∂2ũ1∥L∞ ∥∂2
2∂1ũ1∥L2 ∥∂3

2 ũ1∥L2 + C ∥∂2ũ1∥L∞ ∥∂2
2∂1ũ1∥L2 ∥∂3

2 ū1∥L2

+ C ∥∂2ū1∥L∞ ∥∂2
2∂1ũ1∥L2 ∥∂3

2 ũ1∥L2

≤ C ∥∂1∂2ũ1∥2H1∥u∥H3 + C ∥u∥H3∥Λα
1∂

2
2∂1ũ1∥L2 ∥Λα

1∂
3
2 ũ1∥L2

≤ C ∥u∥H3∥Λα
1u∥2H3 .

(3.3) K221bound

By Hölder’s inequality and Lemma 2.4,

K2,2,2+K2,2,4 = −3

∫
Ω
∂2u1∂

2
2∂1u2∂

2
2∂1u1 dx− 3

∫
Ω
∂1u1∂

2
2∂1u1∂

2
2∂1u1 dx

≤ C∥∂2u1∥L∞∥∂2
2∂1u2∥L2∥∂2

2∂1u1∥L2 + C∥∂1u1∥L∞∥∂2
2∂1u1∥L2∥∂2

2∂1u1∥L2

≤ C∥Λα
1u∥2H3∥u∥H3 .

Similarly, by u1 = ū1 + ũ1 and Lemma 2.1, for any α > 0,

K2,2,3 = −3

∫
Ω
∂1u1∂

3
2u1∂

3
2u1 dx

= −3

∫
Ω
∂1ũ1(∂

3
2 ũ1)

2 dx− 6

∫
Ω
∂1ũ1∂

3
2 ũ1 ∂

3
2 ū1 dx

≤ C ∥∂1ũ1∥L∞ ∥∂3
2 ũ1∥L2∥u∥H3 ≤ C∥Λα

1u∥2H3∥u∥H3 ,

(3.4) K223bound

Thus,

K2,2 ≤ C∥u∥H3∥Λα
1u∥2H3 .
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By the divergence-free condition ∂2u2 = −∂1u1, by Lemma 2.1 and Lemma 2.5,

K2,3 = −3

∫
Ω
∂2
2u · ∂2∇u · ∂3

2u dx

= −3

∫
Ω
∂2
2u1∂2∂1u1∂

3
2u1 dx− 3

∫
Ω
∂2
2u1∂2∂1u2∂

3
2u2 dx

− 3

∫
Ω
∂2
2u2∂2∂2u1∂

3
2u1 dx− 3

∫
Ω
∂2
2u2∂

2
2u2∂

3
2u2 dx

= −3

∫
Ω
∂2
2u1∂2∂1u1∂

3
2u1 dx+ 3

∫
Ω
∂2
2u1∂2∂1u2∂

2
2∂1u1 dx

+ 3

∫
Ω
∂2∂1u1∂

2
2u1∂

3
2u1 dx+ 3

∫
Ω
∂2∂1u1∂2∂1u1∂

2
2∂1u1 dx

= 3

∫
Ω
∂2
2u1∂2∂1u2∂

2
2∂1u1 dx+ 3

∫
Ω
∂2∂1u1∂2∂1u1∂

2
2∂1u1 dx

= 3

∫
Ω
∂2
2u1∂2∂1ũ2∂

2
2∂1u1 dx+ 3

∫
Ω
∂2∂1ũ1∂2∂1ũ1∂

2
2∂1u1 dx

≤ C∥∂2
2∂1u1∥L2∥∂2∂1ũ2∥1/2L2 ∥∂2

1∂2ũ2∥
1/2
L2 ∥∂2

2u1∥
1/2
L2 ∥∂3

2u1∥
1/2
L2

+ C∥∂2
2∂1u1∥L2∥∂2∂1ũ1∥1/2L2 ∥∂2

1∂2ũ1∥
1/2
L2 ∥∂2∂1ũ1∥

1/2
L2 ∥∂2

2∂1ũ1∥
1/2
L2

≤ C∥u∥H3∥Λα
1u∥2H3 .

By divergence free condition of u, K2,4 can be decomposed into four terms,

K2,4 = −
∫
Ω
∂3
2u · ∇u · ∂3

2u dx

= −
∫
Ω
∂3
2u1∂1u1∂

3
2u1 dx−

∫
Ω
∂3
2u1∂1u2∂

3
2u2 dx

−
∫
Ω
∂3
2u2∂2u1∂

3
2u1 dx−

∫
Ω
∂3
2u2∂2u2∂

3
2u2 dx

= −
∫
Ω
∂3
2u1∂1u1∂

3
2u1 dx+

∫
Ω
∂3
2u1∂1u2∂

2
2∂1u1 dx

+

∫
Ω
∂2
2∂1u1∂2u1∂

3
2u1 dx+

∫
Ω
∂2
2∂1u1∂1u1∂

2
2∂1u1 dx

= K2,4,1 +K2,4,2 +K2,4,3 +K2,4,4.

Since K2,4,1 =
1
3K2,2,3 and K2,4,3 =

1
3K2,2,1, by (3.3) and (3.4), we obtain

K2,4,1 +K2,4,3 ≤ C∥Λα
1u∥2H3∥u∥H3 .

By Lemma 2.1, Lemma 2.4 and Hölder’s inequality,

K2,4,2 +K2,4,4 =

∫
Ω
∂3
2u1∂1ũ2∂

2
2∂1u1 dx+

∫
Ω
∂2
2∂1u1∂1u1∂

2
2∂1u1 dx

≤ C∥∂2
2∂1u1∥L2∥∂1ũ2∥L∞∥∂3

2u1∥L2 + C∥∂1u1∥L∞∥∂2
2∂1u1∥2L2

≤ C∥Λα
1u∥H3∥∂2

1 ũ2∥H1∥u∥H3 + C∥u∥H3∥∂2
2∂1u1∥2L2

≤ C∥u∥H3∥Λα
1u∥2H3 .

Then we have

K2,4 ≤ C∥u∥H3∥Λα
1u∥2H3 .
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Collecting the bounds for K2,1, K2,2, K2,3, K2,4 and K1 estimates in (3.2), we obtain

K ≤ C∥u∥H3∥Λα
1u∥2H3 . (3.5) Kbound

To bound L, we decompose it as

L =
2∑

i=1

(∫
Ω
∂3
i (b · ∇b) · ∂3

i u dx−
∫
Ω
b · ∇∂3

i b · ∂3
i u dx

)

=
2∑

i=1

3∑
k=1

Ck
3

∫
Ω
∂k
i b · ∂3−k

i ∇b · ∂3
i u dx

=

3∑
k=1

Ck
3

∫
Ω
∂k
1 b · ∂3−k

1 ∇b · ∂3
1u dx+

3∑
k=1

Ck
3

∫
Ω
∂k
2 b · ∂3−k

2 ∇b · ∂3
2u dx

= L1 + L2.

By Hölder’s inequality, Lemma 2.1, Lemma 2.2, Lemma 2.5 and Young’s inequality,

L1 = 3

∫
Ω
∂1b̃ · ∂2

1∇b̃ · ∂3
1 ũ dx+ 3

∫
Ω
∂2
1 b̃ · ∂1∇b̃ · ∂3

1 ũ dx+

∫
Ω
∂3
1 b̃ · ∇b · ∂3

1 ũ dx

≤ C∥∂1b̃∥L∞∥∂2
1∇b̃∥L2∥∂3

1 ũ∥L2

+ C∥∂3
1 ũ∥L2∥∂2

1 b̃∥
1/2
L2 ∥∂3

1 b̃∥
1/2
L2 ∥∂1∇b̃∥1/2

L2 ∥∂1∂2∇b̃∥1/2
L2

+ C∥∇b∥L∞∥∂3
1 b̃∥L2∥∂3

1 ũ∥L2

≤ C∥b∥H3∥Λβ
1 b̃∥H3∥Λα

1 ũ∥H3 ≤ C∥b∥H3(∥Λα
1u∥2H2 + ∥Λβ

1 b∥
2
H3).

(3.6) L1bound

L2 can be split into three terms.

L2 = 3

∫
Ω
∂2b · ∂2

2∇b · ∂3
2u dx+ 3

∫
Ω
∂2
2b · ∂2∇b · ∂3

2u dx+

∫
Ω
∂3
2b · ∇b · ∂3

2u dx

= L2,1 + L2,2 + L2,3.

By Lemma 2.2 and the divergence-free conditions of u and b,

L2,1 = 3

∫
Ω
∂2b · ∂2

2∇b · ∂3
2u dx

= 3

∫
Ω
∂2b1∂

2
2∂1b · ∂3

2u dx+ 3

∫
Ω
∂2b2∂

3
2b · ∂3

2u dx

= 3

∫
Ω
∂2b1∂

2
2∂1b · ∂3

2u dx− 3

∫
Ω
∂1b̃1∂

3
2b · ∂3

2u dx

= 3

∫
Ω
∂2b1∂

2
2∂1b1∂

3
2u1 dx− 3

∫
Ω
∂2b1∂

2
2∂1b2∂

2
2∂1u1 dx

− 3

∫
Ω
∂1b̃1∂

3
2b1∂

3
2u1 dx+ 3

∫
Ω
∂1b̃1∂

2
2∂1b1∂

2
2∂1u1 dx

= L2,1,1 + L2,1,2 + L2,1,3 + L2,1,4.
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By Hölder’s inequality, u = ū+ ũ and b = b̄+ b̃, Lemma 2.1 and Lemma 2.4,

L2,1,1 + L2,1,3 = 3

∫
Ω
∂2b1∂

2
2∂1b̃1∂

3
2u1 dx− 3

∫
Ω
∂1b̃1∂

3
2b1∂

3
2u1 dx

= 3

∫
Ω
∂2b̃1∂

2
2∂1b̃1∂

3
2 ũ1 dx+ 3

∫
Ω
∂2b̄1∂

2
2∂1b̃1∂

3
2 ũ1 dx

+ 3

∫
Ω
∂2b̃1∂

2
2∂1b̃1∂

3
2 ū1 dx− 3

∫
Ω
∂1b̃1∂

3
2 b̃1∂

3
2 ũ1 dx

− 3

∫
Ω
∂1b̃1∂

3
2 b̄1∂

3
2 ũ1 dx− 3

∫
Ω
∂1b̃1∂

3
2 b̃1∂

3
2 ū1 dx

≤ C∥∂2
2∂1b1∥L2∥Λα

1∂
3
2u1∥L2∥b∥H3 + C∥u∥H3∥Λβ

1 b1∥
2
H3

+ C∥b∥H3∥Λβ
1 b1∥H3∥Λα

1u1∥H3

≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

(3.7) L213bound

By Hölder’s inequality, Lemma 2.1, Lemma 2.4 and Young’s inequality,

L2,1,2 + L2,1,4 = −3

∫
Ω
∂2b1∂

2
2∂1b2∂

2
2∂1u1 dx+ 3

∫
Ω
∂1b̃1∂

2
2∂1b1∂

2
2∂1u1 dx

≤ C∥∂2b1∥L∞∥∂2
2∂1b2∥L2∥∂2

2∂1u1∥L2 + C∥∂1b̃1∥L∞∥∂2
2∂1b1∥L2∥∂2

2∂1u1∥L2

≤ C∥b∥H3∥∂1b∥H2∥∂1u∥H2

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

(3.8) L214bound

Then we have

L2,1 ≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3). (3.9) L21bound

By Lemma 2.5, Young’s inequality and the divergence-free conditions of u and b,

L2,2 = 3

∫
Ω
∂2
2b · ∂2∇b · ∂3

2u dx

= 3

∫
Ω
∂2
2b1∂2∂1b1∂

3
2u1 dx+ 3

∫
Ω
∂2
2b1∂2∂1b2∂

3
2u2 dx

+ 3

∫
Ω
∂2
2b2∂

2
2b1∂

3
2u1 dx+ 3

∫
Ω
∂2
2b2∂

2
2b2∂

3
2u2 dx

= 3

∫
Ω
∂2
2b1∂2∂1b1∂

3
2u1 dx− 3

∫
Ω
∂2
2b1∂2∂1b2∂

2
2∂1u1 dx

− 3

∫
Ω
∂2∂1b1∂

2
2b1∂

3
2u1 dx− 3

∫
Ω
∂2∂1b1∂2∂1b1∂

2
2∂1u1 dx

= −3

∫
Ω
∂2
2b1∂2∂1b̃2∂

2
2∂1u1 dx− 3

∫
Ω
∂2∂1b1∂2∂1b̃1∂

2
2∂1u1 dx

≤ C∥∂2
2∂1u1∥L2∥∂2∂1b̃2∥1/2L2 ∥∂2

1∂2b̃2∥
1/2
L2 ∥∂2

2b1∥
1/2
L2 ∥∂3

2b1∥
1/2
L2

+ C∥∂2
2∂1u1∥L2∥∂2∂1b̃1∥1/2L2 ∥∂2

1∂2b̃1∥
1/2
L2 ∥∂2∂1b1∥

1/2
L2 ∥∂2

2∂1b1∥
1/2
L2

≤ C∥∂1u∥H2∥∂1b∥H2∥b∥H3

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

(3.10) L22bound
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The last equality is due to the cancellation of the first and the third term. Similarly, by
divergence-free condition of u and b, we can split L2,3 into four terms.

L2,3 =

∫
Ω
∂3
2b · ∇b · ∂3

2u dx

=

∫
Ω
∂3
2b1∂1b1∂

3
2u1 dx+

∫
Ω
∂3
2b1∂1b2∂

3
2u2 dx

+

∫
Ω
∂3
2b2∂2b1∂

3
2u1 dx+

∫
Ω
∂3
2b2∂2b2∂

3
2u2 dx

=

∫
Ω
∂3
2b1∂1b̃1∂

3
2u1 dx−

∫
Ω
∂3
2b1∂1b̃2∂

2
2∂1u1 dx

−
∫
Ω
∂2
2∂1b1∂2b1∂

3
2u1 dx−

∫
Ω
∂2
2∂1b1∂1b1∂

2
2∂1u1 dx

= L2,3,1 + L2,3,2 + L2,3,3 + L2,3,4

Since L2,1,3 = −3L2,3,1, L2,1,1 = 3L2,3,3, L2,1,4 = −3L2,3,4, by (3.7) and (3.8), we obtain,

L2,3,1 + L2,3,3 + L2,3,4 ≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

For L2,3,2, by Lemma 2.1, Hölder’s inequality and Young’s inequality,

L2,3,2 = −
∫
Ω
∂3
2b1∂1b̃2∂

2
2∂1u1 dx ≤ C∥∂3

2b1∥L2∥∂2
2∂1u1∥L2∥∂1b̃2∥L∞

≤ C∥b∥H3∥∂1u∥H2∥∂2
1 b̃2∥H1 ≤ C∥b∥H3∥Λα

1u∥H3∥Λβ
1 b∥H3

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

Hence
L2,3 ≤ C(∥u∥H3 + ∥b∥H3)(∥Λα

1u∥2H3 + ∥Λβ
1 b∥

2
H3). (3.11) L23bound

By (3.6), (3.9), (3.10) and (3.11),

L ≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3). (3.12) Lbound

Now we estimate M ,

M = −
2∑

i=1

∫
Ω
∂3
i (u · ∇b) · ∂3

i b dx,

= −
∫
Ω
∂3
1(u · ∇b) · ∂3

1b dx−
∫
Ω
∂3
2(u · ∇b) · ∂3

2b dx,

= M1 +M2.

We can rewrite

M1 = −
3∑

k=1

Ck
3

∫
Ω
∂k
1u · ∂3−k

1 ∇b · ∂3
1b dx−

∫
Ω
u · ∂3

1∇b · ∂3
1b dx

= M1,1 +M1,2.

By Lemma 2.2, Lemma 2.1, Lemma 2.5, Hölder’s inequality and Young’s inequality,

M1,1 = −3

∫
Ω
∂1u · ∂2

1∇b · ∂3
1b dx−3

∫
Ω
∂2
1 ũ · ∂1∇b̃ · ∂3

1 b̃ dx−
∫
Ω
∂3
1u · ∇b · ∂3

1b dx

≤ C∥∂1u∥L∞∥∂2
1∇b∥L2∥∂3

1b∥L2 + C∥∂3
1 b̃∥L2∥∂2

1 ũ∥
1/2
L2 ∥∂3

1 ũ∥
1/2
L2 ∥∂1∇b̃∥1/2

L2 ∥∂2∂1∇b̃∥1/2
L2

+ C∥∂3
1u∥L2∥∂3

1b∥L2∥∇b∥L∞
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≤ C∥∂1b∥H2∥∂1u∥H2∥b∥H3 ≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

By integration by parts and the divergence-free condition M1,2 = 0,

M1,2 = −
∫
Ω
u · ∂3

1∇b · ∂3
1b dx = −1

2

∫
Ω
u · ∇(∂3

1b)
2 dx = 0.

To estimate M2, we split it into four terms,

M2 = −
∫
Ω
∂3
2(u · ∇b) · ∂3

2b dx,

= −
3∑

k=1

Ck
3

∫
Ω
∂k
2u · ∂3−k

2 ∇b · ∂3
2b dx−

∫
Ω
u · ∂3

2∇b · ∂3
2b dx

= M2,1 +M2,2 +M2,3 +M2,4.

M2,4 = 0 due to ∇ · u = 0. We decompose M2,1 into four parts,

M2,1 = −3

∫
Ω
∂2u · ∂2

2∇b · ∂3
2b dx

= −3

∫
Ω
∂2u1∂

2
2∂1b1∂

3
2b1 dx− 3

∫
Ω
∂2u1∂

2
2∂1b2∂

3
2b2 dx

− 3

∫
Ω
∂2u2∂

2
2∂2b1∂

3
2b1 dx− 3

∫
Ω
∂2u2∂

3
2b2∂

3
2b2 dx

= −3

∫
Ω
∂2u1∂

2
2∂1b1∂

3
2b1 dx+ 3

∫
Ω
∂2u1∂

2
2∂1b2∂

2
2∂1b1 dx

+ 3

∫
Ω
∂1u1∂

3
2b1∂

3
2b1 dx+ 3

∫
Ω
∂1u1∂

2
2∂1b1∂

2
2∂1b1 dx

= M2,1,1 +M2,1,2 +M2,1,3 +M2,1,4.

By u = ū+ ũ and b = b̄+ b̃ and Lemma 2.1,

M2,1,1 = −3

∫
Ω
∂2ũ1∂

2
2∂1b̃1∂

3
2 b̃1 dx− 3

∫
Ω
∂2ũ1∂

2
2∂1b̃1∂

3
2 b̄1 dx

− 3

∫
Ω
∂2ū1∂

2
2∂1b̃1∂

3
2 b̃1 dx

≤ C∥∂2
2∂1b̃1∥L2∥∂3

2 b̃1∥L2∥∂2u1∥L∞ + C∥∂2
2∂1b̃1∥L2∥∂3

2b1∥L2∥∂2ũ1∥L∞

≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

(3.13) M211bound

By Hölder’s inequality and Lemma 2.4,

M2,1,2 +M2,1,4 = 3

∫
Ω
∂2u1∂

2
2∂1b2∂

2
2∂1b1 dx+ 3

∫
Ω
∂1u1∂

2
2∂1b1∂

2
2∂1b1 dx

≤ C∥∂2u1∥L∞∥∂2
2∂1b2∥L2∥∂2

2∂1b1∥L2 + C∥∂1u1∥L∞∥∂2
2∂1b1∥2L2

≤ C∥u∥H3∥∂1b∥2H2 ≤ C∥u∥H3∥Λβ
1 b∥

2
H3 .

(3.14) M214bound

As in (3.13),

M2,1,3 = 3

∫
Ω
∂1u1∂

3
2b1∂

3
2b1 dx

≤ C(∥u∥H3 + ∥b∥H3)(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).
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Thus, by the bounds of M2,1,1, M2,1,2, M2,1,3 and M2,1,4,

M2,1 ≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).

We rewrite M2,2 by using divergence free condition of u and b,

M2,2 = −3

∫
Ω
∂2
2u · ∂2∇b · ∂3

2b dx

= −3

∫
Ω
∂2
2u1∂2∂1b1∂

3
2b1 dx− 3

∫
Ω
∂2
2u1∂2∂1b2∂

3
2b2 dx

− 3

∫
Ω
∂2
2u2∂

2
2b1∂

3
2b1 dx− 3

∫
Ω
∂2
2u2∂

2
2b2∂

3
2b2 dx

= −3

∫
Ω
∂2
2u1∂2∂1b1∂

3
2b1 dx+ 3

∫
Ω
∂2
2u1∂2∂1b2∂

2
2∂1b1 dx

+ 3

∫
Ω
∂2∂1u1∂

2
2b1∂

3
2b1 dx+ 3

∫
Ω
∂2∂1u1∂2∂1b1∂

2
2∂1b1 dx

= M2,2,1 +M2,2,2 +M2,2,3 +M2,2,4.

By Lemma 2.5,

M2,2,2 +M2,2,4 = 3

∫
Ω
∂2
2u1∂2∂1b̃2∂

2
2∂1b1 dx+ 3

∫
Ω
∂2∂1u1∂2∂1b̃1∂

2
2∂1b1 dx

≤ C∥∂2
2∂1b1∥L2∥∂2∂1b̃2∥1/2L2 ∥∂2∂2

1 b̃2∥
1/2
L2 ∥∂2

2u1∥
1/2
L2 ∥∂3

2u1∥
1/2
L2

+ C∥∂2
2∂1b1∥L2∥∂2∂1b̃1∥1/2L2 ∥∂2∂2

1 b̃1∥
1/2
L2 ∥∂2∂1u1∥

1/2
L2 ∥∂2

2∂1u1∥
1/2
L2

≤ C∥∂1b∥2H2∥u∥H3 ≤ C∥u∥H3∥Λβ
1 b∥

2
H3 .

(3.15) M224bound

By integration by parts twice, Lemma 2.5, Hölder’s inequality, Lemma 2.1 and Young’s
inequality,

M2,2,1 = −3

∫
Ω
∂2
2u1∂2∂1b̃1∂

3
2b1 dx = −3

∫
Ω
∂2
2 ũ1∂2∂1b̃1∂

3
2b1 dx− 3

∫
Ω
∂2
2u1∂2∂1b̃1∂

3
2b1 dx

= −3

∫
Ω
∂2
2 ũ1∂2∂1b̃1∂

3
2b1 dx+ 3

∫
Ω
∂2
2u1∂2b̃1∂

3
2∂1b1 dx

= −3

∫
Ω
∂2
2 ũ1∂2∂1b̃1∂

3
2b1 dx− 3

∫
Ω
∂3
2u1∂2b̃1∂

2
2∂1b1 dx− 3

∫
Ω
∂2
2u1∂

2
2 b̃1∂

2
2∂1b1 dx

≤ ∥∂3
2b1∥L2∥∂2

2 ũ1∥
1/2
L2 ∥∂1∂2

2 ũ1∥
1/2
L2 ∥∂1∂2b̃1∥

1/2
L2 ∥∂1∂2

2 b̃1∥
1/2
L2

+ C∥∂2b̃1∥L∞∥∂3
2u1∥L2∥∂2

2∂1b1∥L2

+ C∥∂2
2∂1b1∥L2∥∂2

2 b̃1∥
1/2
L2 ∥∂1∂2

2 b̃1∥
1/2
L2 ∥∂2

2u1∥
1/2
L2 ∥∂3

2u1∥
1/2
L2

≤ ∥∂3
2b1∥L2∥∂1∂2

2 ũ1∥L2∥∂1∂2b̃1∥1/2L2 ∥∂1∂2
2 b̃1∥

1/2
L2

+ C∥∂1∂2b̃1∥H1∥∂3
2u1∥L2∥∂2

2∂1b1∥L2 + C∥∂2
2∂1b1∥L2∥∂1∂2

2 b̃1∥L2∥∂2
2u1∥

1/2
L2 ∥∂3

2u1∥
1/2
L2

≤ C∥Λα
1u∥H3∥Λβ

1 b∥H3∥b∥H3 + C∥u∥H3∥Λβ
1 b∥

2
H3

≤ C∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3)

(3.16) M221bound
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and

M2,2,3 = 3

∫
Ω
∂2∂1u1∂

2
2b1∂

3
2b1 dx

= 3

∫
Ω
∂2∂1ũ1∂

2
2 b̃1∂

3
2b1 dx+ 3

∫
Ω
∂2∂1ũ1∂

2
2b1∂

3
2b1 dx

= 3

∫
Ω
∂2∂1ũ1∂

2
2 b̃1∂

3
2b1 dx− 3

∫
Ω
∂2ũ1∂

2
2b1∂

3
2∂1b1 dx

= 3

∫
Ω
∂2∂1ũ1∂

2
2 b̃1∂

3
2b1 dx+ 3

∫
Ω
∂2
2 ũ1∂

2
2b1∂

2
2∂1b1 dx+ 3

∫
Ω
∂2ũ1∂

3
2b1∂

2
2∂1b1 dx

≤ C∥∂3
2b1∥L2∥∂2

2 b̃1∥
1/2
L2 ∥∂1∂2

2 b̃1∥
1/2
L2 ∥∂2∂1ũ1∥

1/2
L2 ∥∂2

2∂1ũ1∥
1/2
L2

+ C∥∂2
2∂1b1∥L2∥∂2

2 ũ1∥
1/2
L2 ∥∂1∂2

2 ũ1∥
1/2
L2 ∥∂2

2b1∥
1/2
L2 ∥∂3

2b1∥
1/2
L2

+ C∥∂2ũ1∥L∞∥∂3
2b1∥L2∥∂2

2∂1b1∥L2

≤ C∥b∥H3∥∂1∂2
2 b̃1∥L2∥∂1u∥H2 + C∥∂1b∥H2∥∂1∂2

2 ũ1∥L2∥b∥H3

+ C∥∂1∂2ũ1∥H1∥b∥H3∥∂1b∥H2

≤ C∥b∥H3∥Λβ
1 b∥H3∥Λα

1u∥H3 ≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

It follows that

M2,2 ≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).

M2,3 admits the same bound as the one for L2,3, by (3.11),

M2,3 ≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

Combining the estimates for M1 and M2, we obtain

M ≤ C∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3). (3.17) Mbound

Now we estimate the term N,

N =
2∑

i=1

(∫
Ω
∂3
i (b · ∇u) · ∂3

i b dx−
∫
Ω
b · ∇∂3

i u · ∂3
i b dx

)

=
2∑

i=1

3∑
k=1

Ck
3

∫
Ω
∂k
i b · ∂3−k

i ∇u · ∂3
i b dx

=

3∑
k=1

Ck
3

∫
Ω
∂k
1 b · ∂3−k

1 ∇u · ∂3
1b dx+

3∑
k=1

Ck
3

∫
Ω
∂k
2 b · ∂3−k

2 ∇u · ∂3
2b dx

= N1 +N2.

By Hölder’s inequality, Lemma 2.2, Lemma 2.4, Lemma 2.5 and Young’s inequality,

N1 = 3

∫
Ω
∂1b̃ · ∂2

1∇u · ∂3
1b dx+ 3

∫
Ω
∂2
1 b̃ · ∂1∇u · ∂3

1 b̃ dx+

∫
Ω
∂3
1b · ∇u · ∂3

1b dx

≤ C∥∂1b̃∥L∞∥∂2
1∇u∥L2∥∂3

1b∥L2

+ C∥∂3
1 b̃∥L2∥∂2

1 b̃∥
1/2
L2 ∥∂3

1 b̃∥
1/2
L2 ∥∂1∇u∥1/2

L2 ∥∂2∂1∇u∥1/2
L2 + C∥∇u∥L∞∥∂3

1b∥2L2

≤ C∥∂1b∥H2∥∂1u∥H2∥b∥H3 + C∥∂1b∥2H2∥u∥H3

≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).
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To bound N2, we split it into three terms,

N2 = 3

∫
Ω
∂2b · ∂2

2∇u · ∂3
2b dx+ 3

∫
Ω
∂2
2b · ∂2∇u · ∂3

2b dx+

∫
Ω
∂3
2b · ∇u · ∂3

2b dx

= N2,1 +N2,2 +N2,3.

By Hölder’s inequality and Lemma 2.4,

N2,1 = 3

∫
Ω
∂2b · ∂2

2∇u · ∂3
2b dx

= 3

∫
Ω
∂2b1∂

2
2∂1u · ∂3

2b dx+ 3

∫
Ω
∂2b2∂

2
2∂2u · ∂3

2b dx

= N2,1,1 +N2,1,2.

By the divergence-free condition ∇ · b = 0,

N2,1,1 = 3

∫
Ω
∂2b1∂

2
2∂1u · ∂3

2b dx

= 3

∫
Ω
∂2b1∂

2
2∂1u1∂

3
2b1 dx+ 3

∫
Ω
∂2b1∂

2
2∂1u2∂

3
2b2 dx

= 3

∫
Ω
∂2b1∂

2
2∂1u1∂

3
2b1 dx+ 3

∫
Ω
∂2b̃1∂

2
2∂1u1∂

3
2b1 dx− 3

∫
Ω
∂2b1∂

2
2∂1u2∂

2
2∂1b1 dx

= N2,1,1,1 +N2,1,1,2 +N2,1,1,3.

By Lemma 2.1, Lemma 2.4, Hölder’s inequality and Young’s inequality,

N2,1,1,2 +N2,1,1,3 = 3

∫
Ω
∂2b̃1∂

2
2∂1u1∂

3
2b1 dx− 3

∫
Ω
∂2b1∂

2
2∂1u2∂

2
2∂1b1 dx

≤ C∥∂2b̃1∥L∞∥∂2
2∂1u1∥L2∥∂3

2b1∥L2 + C∥∂2b1∥L∞∥∂2
2∂1u2∥L2∥∂2

2∂1b1∥L2

≤ C∥∂1∂2b̃1∥H1∥Λα
1u∥H3∥b∥H3 + C∥∂1b∥H2∥Λα

1u∥H3∥b∥H3

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

By integration by parts twice, Lemma 2.2, Lemma 2.1, Lemma 2.5, anisotropic Hölder’s
inequality and Young’s inequality,

N2,1,1,1 = 3

∫
Ω
∂2b1∂

2
2∂1ũ1∂

3
2b1 dx

= 3

∫
Ω
∂2b1∂

2
2∂1ũ1∂

3
2 b̃1 dx

≤ ∥∂2b1∥L∞ ∥∂2
2∂1ũ1∥L2∥∂3

2 b̃1∥L2

≤ C∥b∥H3 ∥Λα
1∂1∂

2
2 ũ1∥L2∥Λβ

1∂
3
2 b̃1∥L2

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

Hence

N2,1,1 ≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

Similarly,

N2,1,2 = −3

∫
Ω
∂1b̃1∂

2
2∂2u · ∂3

2b dx

≤ C ∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).
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Combining the estimates for N2,1,1 and N2,1,2 leads to

N2,1 ≤ C∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

We rewrite N2,2,

N2,2 = 3

∫
Ω
∂2
2b · ∂2∇u · ∂3

2b dx

= 3

∫
Ω
∂2
2b1∂2∂1u · ∂3

2b dx+ 3

∫
Ω
∂2
2b2∂

2
2u · ∂3

2b dx

= N2,2,1 +N2,2,2.

We decompose N2,2,1 into three terms by Lemma 2.2,

N2,2,1 = 3

∫
Ω
∂2
2b1∂2∂1u · ∂3

2b dx

= 3

∫
Ω
∂2
2b1∂2∂1u1∂

3
2b1 dx+ 3

∫
Ω
∂2
2b1∂2∂1u2∂

3
2b2 dx

= 3

∫
Ω
∂2
2b1∂2∂1ũ1∂

3
2b1 dx+ 3

∫
Ω
∂2
2 b̃1∂2∂1ũ1∂

3
2b1 dx− 3

∫
Ω
∂2
2b1∂2∂1ũ2∂

2
2∂1b1 dx

= N2,2,1,1 +N2,2,1,2 +N2,2,1,3.

By applying integration by parts twice, Hölder’s inequality, Lemma 2.1, Lemma 2.4, Lemma
2.5

N2,2,1,1 = 3

∫
Ω
∂2
2b1∂2∂1ũ1∂

3
2b1 dx = −3

∫
Ω
∂2
2b1∂2ũ1∂

3
2∂1b1 dx

= 3

∫
Ω
∂3
2b1∂2ũ1∂

2
2∂1b1 dx+ 3

∫
Ω
∂2
2b1∂2∂2ũ1∂

2
2∂1b1 dx

≤ C∥∂2ũ1∥L∞∥∂3
2b1∥L2∥∂2

2∂1b1∥L2

+ C∥∂1∂2
2b1∥L2∥∂2

2 ũ∥
1/2
L2 ∥∂1∂2

2 ũ∥
1/2
L2 ∥∂2

2b1∥
1/2
L2 ∥∂3

2b1∥
1/2
L2

≤ C∥∂1∂2ũ1∥H1∥b∥H3∥Λβ
1 b∥H3 + C∥b∥H3∥∂1∂2

2 ũ∥L2∥Λβ
1 b∥H3

≤ C∥b∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

By Lemma 2.1, Lemma 2.5 and Young’s inequality,

N2,2,1,2 = 3

∫
Ω
∂2
2 b̃1∂2∂1ũ1∂

3
2b1 dx

≤ C∥∂3
2b1∥L2∥∂2∂1ũ1∥1/2L2 ∥∂2

2∂1ũ1∥
1/2
L2 ∥∂2

2 b̃1∥
1/2
L2 ∥∂1∂2

2 b̃1∥
1/2
L2

≤ C∥b∥H3∥∂1u∥H2∥∂1∂2
2 b̃1∥L2

≤ C∥b∥H3∥Λβ
1 b∥H3∥∂1u∥H2 ≤ C∥b∥H3(∥Λα

1u∥2H3 + ∥Λβ
1 b∥

2
H3).

Similarly,

N2,2,1,3 = −3

∫
Ω
∂2
2b1∂2∂1ũ2∂

2
2∂1b1 dx

≤ C∥∂2
2∂1b1∥L2∥∂2∂1ũ2∥1/2L2 ∥∂2∂2

1 ũ2∥
1/2
L2 ∥∂2

2b1∥
1/2
L2 ∥∂3

2b1∥
1/2
L2

≤ C∥b∥H3∥Λβ
1 b∥H3∥∂1u∥H2 ≤ C∥b∥H3(∥Λα

1u∥2H3 + ∥Λβ
1 b∥

2
H3).

Thus we obtain
N2,2,1 ≤ C∥b∥H3(∥Λα

1u∥2H3 + ∥Λβ
1 b∥

2
H3).
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By divergence free condition,

N2,2,2 = −3

∫
Ω
∂2∂1b̃1∂

2
2u · ∂3

2b dx = −3

∫
Ω
∂2∂1b̃1∂

2
2u1∂

3
2b1 dx− 3

∫
Ω
∂2∂1b̃1∂

2
2u2∂

3
2b2 dx

= −3

∫
Ω
∂2∂1b̃1∂

2
2u1∂

3
2b1 dx− 3

∫
Ω
∂2∂1b̃1∂2∂1u1∂

2
2∂1b1 dx

= N2,2,2,1 +N2,2,2,2

We can see that N2,2,2,1 = M2,2,1, N2,2,2,2 = −M2,2,4, by the estimates of M2,2,1 in (3.16)
and M2,2,4 in (3.15), we have

N2,2,2 ≤ C∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

Further, combining the estimates of N2,2,1 and N2,2,2,

N2,2 ≤ C∥(u, b)∥H3(∥Λα
1u∥2H3 + ∥Λβ

1 b∥
2
H3).

We can rewrite N2,3,

N2,3 =

∫
Ω
∂3
2b · ∇u · ∂3

2b dx

=

∫
Ω
∂3
2b1∂1u1∂

3
2b1 + ∂3

2b1∂1u2∂
3
2b2 + ∂3

2b2∂2u1∂
3
2b1 + ∂3

2b2∂2u2∂
3
2b2 dx

=

∫
Ω
∂3
2b1∂1u1∂

3
2b1 − ∂3

2b1∂1ũ2∂
2
2∂1b1 − ∂2

2∂1b1∂2u1∂
3
2b1 − ∂2

2∂1b1∂1u1∂
2
2∂1b1 dx

= N2,3,1 +N2,3,2 +N2,3,3 +N2,3,4.

By u = ū+ ũ and b = b̄+ b̃ and Lemma 2.1,

N2,3,1 =

∫
Ω
∂3
2b1∂1ũ1∂

3
2b1 dx = 2

∫
Ω
∂3
2 b̃1∂1ũ1∂

3
2b1 dx+

∫
Ω
∂3
2 b̃1∂1ũ1∂

3
2 b̃1 dx

≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).

By Hölder’s inequality, Lemma 2.1 and Young’s inequality,

N2,3,2 = −
∫
Ω
∂3
2b1∂1ũ2∂

2
2∂1b1 dx ≤ C∥∂1ũ2∥L∞∥∂3

2b1∥L2∥∂2
2∂1b1∥L2

≤ C∥∂2
1 ũ2∥H1∥∂1b∥H2∥b∥H3 ≤ C∥Λα

1u∥H3∥Λβ
1 b∥H3∥b∥H3

≤ C∥b∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).

We can see that

N2,3,3 =
1

3
M2,1,1, N2,3,4 = −1

3
M2,1,4.

By using the estimates in (3.13) and (3.14),

N2,3,3 +N2,3,4 ≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).

It follows that
N2,3 ≤ C∥(u, b)∥H3(∥Λβ

1 b∥
2
H3 + ∥Λα

1u∥2H3).

Collecting the bounds from N2,1, N2,2, N2,3 and N1, we obtain

N ≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3). (3.18) Nbound

Combining the bounds in (3.5),(3.12), (3.17) and (3.18) above leads to

J +K + L+M +N ≤ C∥(u, b)∥H3(∥Λβ
1 b∥

2
H3 + ∥Λα

1u∥2H3).
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Inserting the upper bound for J +K + L+M +N in (3.1), Integrating in time, we get

∥(u, b)∥2H3 + 2ν

∫ t

0
∥Λα

1u(τ)∥2H3dτ + 2η

∫ t

0
∥Λβ

1 b(τ)∥
2
H3dτ

≤ ∥(u0, b0)∥2H3 + C

∫ t

0
∥(u, b)∥H3(∥Λβ

1 b∥
2
H3 + ∥∂α

1 u∥2H3) dτ

≤ ∥(u0, b0)∥2H3 + C sup
0≤τ≤t

∥(u, b)∥H3

∫ t

0
(∥Λβ

1 b∥
2
H3 + ∥∂α

1 u∥2H3) dτ

≤ E(0) + CE(t)
3
2 .

Thus this completes the proof of (1.7). As a preparation for the application of the boot-
strapping argument, we briefly explain why ∥u(t)∥H3 and ∥b(t)∥H3 are continuous functions
of t. The desired continuity can be shown by following a procedure outlined in Chapter
3 of [44]. One starts with the weak continuity, u, b ∈ CW (0,∞;H3) and then show the
continuity at t = t0 by obtaining bounds for ∥u(t)∥H3 and ∥b(t)∥H3 in terms of ∥u(t0)∥H3 ,
∥b(t0)∥H3 and |t− t0|.

Then an application of the bootstrapping argument to (1.7) leads to the desired upper
bound in Theorem 1.1. We set

ε20 :=
1

16C2
.

Assume 0 < ε ≤ ε0 and the initial data (u0, b0) satisfies

E(0) = ∥(u0, b0)∥2H3 < ε2. (3.19) e0bound

To apply the bootstrapping argument, we make the ansatz that, for t > 0,

E(t) ≤ 4ε2. (3.20) ansatz

It then follows from (1.7) that

E(t) ≤ E(0) + 2CεE(t) ≤ E(0) + 2Cε0E(t) = E(0) +
1

2
E(t) or E(t) ≤ 2E(0).

By (3.19), for all t > 0,

E(t) ≤ 2ε2,

which is just half of the bound in the ansatz (3.20). The bootstrapping argument then
asserts that this bound actually holds for all t > 0. It is worth commenting that even

though E(t) only involves the L2 norms of ∂3
i (i = 1, 2) derivatives of u, b,Λα

1u,Λ
β
1 b, the

boundedness of the L2 norms of any other derivatives of order three follows via interpolation
inequalities. For example,

∥∂1∂2
2u∥2L2 ≤ 1

3
∥∂3

1u∥2L2 +
2

3
∥∂3

2u∥2L2 .

Thus, we obtain the desired global uniform bound on ∥(u(t), b(t))∥H3 . This completes the
proof of Theorem 1.1.

4. Proof of Theorem 1.2
⟨deca⟩

This section proves Theorem 1.2, which assesses that the oscillation part (ũ, b̃) decays

exponentially to zero in the H2-norm as t → ∞. We consider the equations of (ũ, b̃) and
apply the properties of the orthogonal decomposition and several anisotropic inequalities.
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Proof of Theorem 1.2. We first write the equation of (ū, b̄). By taking the average of (1.2),
we have ∂tū+ u · ∇ũ+

(
0

∂2p̄

)
= νΛ2α

1 ū+ b · ∇b̃+A · ∇b,

∂tb̄+ u · ∇b̃ = ηΛ2β
1 b̄+ b · ∇ũ+A · ∇u,

(4.1) E:MHDbar

where we have invoked the fact u2∂2u = 0. The divergence-free condition ∂1u1 + ∂2u2 = 0
and the fact that u1 is only a function of x2 yield that u2 is a constant. It must be zero
due to u2 ∈ L2(Ω). Since ∂2u is a function of x2 alone,

u2∂2u =

∫
T
u2∂2u dx1 = ∂2u

∫
T
u2dx1 = ∂2uu2 = 0.

Taking the difference of (1.2) and (4.1), we obtain∂tũ+ ũ · ∇ũ+ u2∂2ū+∇p̃− νΛ2α
1 ũ− b̃ · ∇b̃− b2∂2b̄− Ã · ∇b = 0,

∂tb̃+ ũ · ∇b̃+ u2∂2b̄− ηΛ2β
1 b̃− b̃ · ∇ũ− b2∂2ū− Ã · ∇u = 0.

(4.2) E:MHDtilde

Taking the inner product of (4.2) with (ũ, b̃), after integration by parts and divergence-free
conditions, we find

1

2

d

dt
(∥ũ∥2L2 + ∥b̃∥2L2) + ν∥Λα

1 ũ∥2L2 + η∥Λβ
1 b̃∥

2
L2

= −
∫
Ω
ũ · ∇ũ · ũ dx−

∫
Ω
u2∂2ū · ũ dx−

∫
Ω
ũ · ∇b̃ · b̃ dx

+

∫
Ω
b̃ · ∇b̃ · ũ dx+

∫
Ω
b2∂2b̄ · ũ dx−

∫
Ω
u2∂2b̄ · b̃ dx

+

∫
Ω
b̃ · ∇ũ · b̃ dx+

∫
Ω
b2∂2ū · b̃ dx

:= R1 +R2 +R3 +R4 +R5 +R6 +R7 +R8.

(4.3) E:R1R8

By Lemma 2.2 and divergence free condition of u,

R1 = −
∫
Ω
u · ∇ũ · ũ dx+

∫
Ω
u · ∇ũ · ũ dx = 0.

By Lemma 2.1 and Lemma 2.4,

R2 = −
∫
Ω
ũ2∂2ū · ũ dx ≤ ∥∂2ū∥L∞∥Λα

1 ũ2∥L2∥Λα
1 ũ∥L2

≤ C∥u∥H3∥Λα
1 ũ∥2L2 .

Similar to R1, we also have R3 = 0. By Lemma 2.2 and the divergence-free conditions,

R4 +R7 =

∫
Ω
b̃ · ∇b̃ · ũ dx+

∫
Ω
b̃ · ∇ũ · b̃ dx

=

∫
Ω
b · ∇b̃ · ũ dx+

∫
Ω
b · ∇ũ · b̃ dx−

∫
Ω
b · ∇b̃ · ũ dx−

∫
Ω
b · ∇ũ · b̃ dx = 0.

By Hölder’s inequality, Lemma 2.1, Lemma 2.4 and Young’s inequality,

R5 =

∫
Ω
b̃2∂2b̄ · ũ dx

≤ C∥∂2b̄∥L∞∥b̃2∥L2∥ũ∥L2 ≤ C∥∂2b̄∥L∞∥Λβ
1 b̃∥L2∥Λα

1 ũ∥L2
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≤ C∥b∥H3(∥Λβ
1 b̃∥

2
L2 + ∥Λα

1 ũ∥2L2).

Similarly,

R6 = −
∫
Ω
ũ2∂2b̄ · b̃ dx ≤ C∥b∥H3(∥Λβ

1 b̃∥
2
L2 + ∥Λα

1 ũ∥2L2),

R8 ≤ C∥u∥H3∥Λβ
1 b̃∥

2
L2 .

Inserting the estimates for R1 through R8 in (4.3), we obtain

d

dt
(∥ũ∥2L2 + ∥b̃∥2L2) + (2ν − C∥(u, b)∥H3)∥Λα

1 ũ∥2L2 + (2η − C∥(u, b)∥H3)∥Λβ
1 b̃∥L2 ≤ 0.

According to Theorem 1.1, if ε > 0 is sufficiently small and ∥u0∥H3 + ∥b0∥H3 ≤ ε, then
∥u∥H3 + ∥b∥H3 ≤ Cε and

2ν − C∥(u, b)∥H3 ≥ ν, 2η − C∥(u, b)∥H3 ≥ η.

Thus we have

d

dt
(∥ũ∥2L2 + ∥b̃∥2L2) + ν∥Λα

1 ũ∥2L2 + η∥Λβ
1 b̃∥

2
L2 ≤ 0.

By Lemma 2.1,

∥ũ∥L2 ≤ ∥Λα
1 ũ∥L2 , ∥b̃∥L2 ≤ ∥Λβ

1 b̃∥L2 ,

we obtain by Gronwall’s Lemma,

∥ũ(t)∥L2 + ∥b̃(t)∥L2 ≤ C(∥u0∥L2 + ∥b0∥L2)e−C1t, (4.4) L2estimatestilde

where C1 = C1(ν, η) > 0.

Next we consider the exponential decay for ∥(∇ũ(t),∇b̃(t))∥L2 . Taking the gradient of
(4.2) yields

∂t∇ũ+∇(ũ · ∇ũ) +∇(u2∂2ū) +∇∇p̃− ν∂2α
1 ∇ũ

−∇(b̃ · ∇b̃)−∇(b2∂2b̄)−∇(Ã · ∇b) = 0,

∂t∇b̃+∇(ũ · ∇b̃) +∇(u2∂2b̄)− η∂2β
1 ∇b̃−∇(b̃ · ∇ũ)

−∇(b2∂2ū)−∇(Ã · ∇u) = 0.

(4.5) E:MHDnatilde

Multiplying (4.5) with (∇ũ,∇b̃), we have

1

2

d

dt
(∥∇ũ∥2L2 + ∥∇b̃∥2L2) + ν∥Λα

1∇ũ∥2L2 + η∥Λβ
1∇b̃∥2L2

= −
∫
Ω
∇(ũ · ∇ũ) · ∇ũ dx−

∫
Ω
∇(u2∂2ū) · ∇ũ dx−

∫
Ω
∇(ũ · ∇b̃) · ∇b̃ dx

+

∫
Ω
∇(b̃ · ∇b̃) · ∇ũ d+

∫
Ω
∇(b2∂2b̄) · ∇ũ dx−

∫
Ω
∇(u2∂2b̄) · ∇b̃ dx

+

∫
Ω
∇(b̃ · ∇ũ) · ∇b̃ dx+

∫
Ω
∇(b2∂2ū) · ∇b̃ dx

:= S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8.

(4.6) E:S1S8

By Lemma 2.1, Lemma 2.2, Lemma 2.4 and divergence free condition of u,

S1 = −
∫
Ω
∇(ũ · ∇ũ) · ∇ũ dx
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= −
∫
Ω
∇(u · ∇ũ) · ∇ũ dx+

∫
Ω
∇(u · ∇ũ) · ∇ũ dx

= −
∫
Ω
∇u · ∇ũ · ∇ũ dx ≤ C∥u∥H3∥Λα

1∇ũ∥2L2 .

Similarly,

S3 = −
∫
Ω
∇(ũ · ∇b̃) · ∇b̃ dx

= −
∫
Ω
∇(u · ∇b̃) · ∇b̃ dx+

∫
Ω
∇(u · ∇b̃) · ∇b̃ dx

= −
∫
Ω
∇u · ∇b̃ · ∇b̃ dx ≤ C∥u∥H3∥Λβ

1∇b̃∥2L2 .

In order to bound S2, we rewrite it as

S2 = −
∫
Ω
∇(u2∂2ū) · ∇ũ dx

= −
∫
Ω
∇u2∂2ū · ∇ũ dx−

∫
Ω
u2∇∂2ū · ∇ũ dx

= S2,1 + S2,2.

Similarly to the method estimating S1,

S2,1 = −
∫
Ω
∇u2∂2ū · ∇ũ dx = −

∫
Ω
∇ũ2∂2ū · ∇ũ dx

≤ C∥u∥H3∥Λα
1∇ũ∥2L2 .

By Lemma 2.1,

S2,2 = −
∫
Ω
ũ2∇∂2ū · ∇ũ dx ≤ C∥ũ2∥L∞∥∇∂2ū∥L2∥∇ũ∥L2

≤ C∥Λα
1 ũ2∥H1∥∇∂2ū∥L2∥∇ũ∥L2 ≤ C(∥Λα

1 ũ2∥L2 + ∥Λα
1∇ũ2∥L2)∥∇∂2ū∥L2∥∇ũ∥L2

≤ C(∥Λ1Λ
α
1 ũ2∥L2 + ∥Λα

1∇ũ2∥L2)∥∇∂2ū∥L2∥Λα
1∇ũ∥L2 ≤ C∥u∥H3∥Λα

1∇ũ∥2L2 .

Thus, we have
S2 ≤ C∥u∥H3∥Λα

1∇ũ∥2L2 .

By Lemma 2.2, Lemma 2.1, Lemma 2.4, the divergence-free condition ∇·b = 0, and Young’s
inequality,

S4 + S7 =

∫
Ω
∇(b̃ · ∇b̃) · ∇ũ dx+

∫
Ω
∇(b̃ · ∇ũ) · ∇b̃ dx

=

∫
Ω
∇(b · ∇b̃) · ∇ũ dx+

∫
Ω
∇(b · ∇ũ) · ∇b̃ dx−

∫
Ω
∇(b · ∇b̃) · ∇ũ dx

−
∫
Ω
∇(b · ∇ũ) · ∇b̃ dx

=

∫
Ω
∇b · ∇b̃ · ∇ũ dx+

∫
Ω
∇b · ∇ũ · ∇b̃ dx+

∫
Ω
b · ∇2b̃ · ∇ũ dx

+

∫
Ω
b · ∇2ũ · ∇b̃ dx

=

∫
Ω
∇b · ∇b̃ · ∇ũ dx+

∫
Ω
∇b · ∇ũ · ∇b̃ dx
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≤ C∥b∥H3∥Λα
1∇ũ∥L2∥Λβ

1∇b̃∥L2 ≤ C∥b∥H3(∥Λα
1∇ũ∥2L2 + ∥Λβ

1∇b̃∥2L2),

S5 is bounded by

S5 =

∫
Ω
∇(b2∂2b̄) · ∇ũ dx =

∫
Ω
∇b2∂2b̄ · ∇ũ dx+ b2∂2∇b̄ · ∇ũ dx

≤ C∥b∥H3(∥Λα
1∇ũ∥2L2 + ∥Λβ

1∇b̃∥2L2).

Similarly, S6 and S8 are bounded by

S6 ≤ C∥b∥H3(∥Λα
1∇ũ∥2L2 + ∥Λβ

1∇b̃∥2L2),

S8 ≤ C∥u∥H3∥Λβ
1∇b̃∥2L2 .

Inserting the estimates for S1 through S8 in (4.6) gives

d

dt
(∥∇ũ∥2L2 + ∥∇b̃∥2L2) + (2ν − C∥(u, b)∥H3)∥Λα

1∇ũ∥2L2

+ (2η − C∥(u, b)∥H3)∥Λβ
1∇b̃∥L2 ≤ 0.

Choosing ε > 0 sufficiently small and by Theorem 1.1, if ∥u0∥H3 + ∥b0∥H3 ≤ ε, then
∥u∥H3 + ∥b∥H3 ≤ Cε and

2ν − C∥(u, b)∥H3 ≥ ν, 2η − C∥(u, b)∥H3 ≥ η.

Thus we could have

d

dt
(∥∇ũ∥2L2 + ∥∇b̃∥2L2) + ν∥Λα

1∇ũ∥2L2 + η∥Λβ
1∇b̃∥L2 ≤ 0.

By Lemma 2.1,

∥∇ũ∥L2 ≤ ∥Λα
1∇ũ∥L2 , ∥∇b̃∥L2 ≤ ∥Λβ

1∇b̃∥L2 ,

we obtain by Gronwall’s Lemma,

∥∇ũ(t)∥L2 + ∥∇b̃(t)∥L2 ≤ C(∥∇u0∥L2 + ∥∇b0∥L2)e−C2t, (4.7) H1tilde

where C2 = C2(ν, η) > 0.

Then we consider the exponential decay for ∥(∆ũ(t),∆b̃(t))∥L2 . Due to the standard
Hessian-Laplace inequality (see, e.g., [51])

∥∇2f∥L2 ≤ C ∥∆f∥L2 ,

it suffices to estimate ∥(∆u,∆b)∥L2 . Taking the divergence of (4.5) yields
∂t∆ũ+∆(ũ · ∇ũ) + ∆(u2∂2ū) + ∆∇p̃− ν∂2α

1 ∆ũ

−∆(b̃ · ∇b̃)−∆(b2∂2b̄)−∆(Ã · ∇b) = 0,

∂t∆b̃+∆(ũ · ∇b̃) + ∆(u2∂2b̄)− η∂2β
1 ∆b̃−∆(b̃ · ∇ũ)

−∆(b2∂2ū)−∆(Ã · ∇u) = 0.

(4.8) E:MHDdetilde
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Multiplying (4.8) with (∆ũ,∆b̃), we have

1

2

d

dt
(∥∆ũ∥2L2 + ∥∆b̃∥2L2) + ν∥Λα

1∆ũ∥2L2 + η∥Λβ
1∆b̃∥2L2

= −
∫
Ω
∆(ũ · ∇ũ) ·∆ũ dx−

∫
Ω
∆(u2∂2ū) ·∆ũ dx−

∫
Ω
∆(ũ · ∇b̃) ·∆b̃ dx

+

∫
Ω
∆(b̃ · ∇b̃) ·∆ũ d+

∫
Ω
∆(b2∂2b̄) ·∆ũ dx−

∫
Ω
∆(u2∂2b̄) ·∆b̃ dx

+

∫
Ω
∆(b̃ · ∇ũ) ·∆b̃ dx+

∫
Ω
∆(b2∂2ū) ·∆b̃ dx

:= T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

(4.9) E:T1T8

We can rewrite T1 as

T1 = −
∫
Ω
∆(ũ · ∇ũ) ·∆ũ dx

= −
∫
Ω
∆(u · ∇ũ) ·∆ũ dx+

∫
Ω
∆(u · ∇ũ) ·∆ũ dx

= −
∫
Ω
∆u · ∇ũ ·∆ũ dx− 2

∫
Ω
∇u · ∇2ũ ·∆ũ dx−

∫
Ω
u · ∇∆ũ ·∆ũ dx

= −
∫
Ω
∆u · ∇ũ ·∆ũ dx− 2

∫
Ω
∇u · ∇2ũ ·∆ũ dx

= T1,1 + T1,2.

By Lemma 2.1,

T1,1 = −
∫
Ω
∆u · ∇ũ ·∆ũ dx ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 ,

T1,2 = −2

∫
Ω
∇u · ∇2ũ ·∆ũ dx ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 .

Similarly, T3 can be split into two terms,

T3 = −
∫
Ω
∆(ũ · ∇b̃) ·∆b̃ dx

= −
∫
Ω
∆(u · ∇b̃) ·∆b̃ dx+

∫
Ω
∇(u · ∇b̃) · ∇b̃ dx

= −
∫
Ω
∆u · ∇b̃ ·∆b̃ dx− 2

∫
Ω
∇u · ∇2b̃ ·∆b̃ dx−

∫
Ω
u · ∇∆b̃ ·∆b̃ dx

= −
∫
Ω
∆u · ∇b̃ ·∆b̃ dx− 2

∫
Ω
∇u · ∇2b̃ ·∆b̃ dx

= T3,1 + T3,2.

By Lemma 2.1,

T3 ≤ C∥u∥H3∥Λβ
1∆b̃∥2L2 .

To bound T2, we rewrite it as

T2 = −
∫
Ω
∆(u2∂2ū) ·∆ũ dx

= −
∫
Ω
∆u2∂2ū ·∆ũ dx− 2

∫
Ω
∇u2∂2∇ū ·∆ũ dx−

∫
Ω
u2∂2∆ū ·∆ũ dx
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= T2,1 + T2,2 + T2,3.

By Lemma 2.1,

T2,1 = −
∫
Ω
∆u2∂2ū ·∆ũ dx ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 ,

T2,2 = −2

∫
Ω
∇ũ2∂2∇ū ·∆ũ dx≤ C∥∇ũ2∥L∞∥∂2∇ū∥L2∥∆ũ∥L2 ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 ,

T2,3 = −
∫
Ω
ũ2∂2∆ū ·∆ũ dx≤ C∥ũ2∥L∞∥∂2∆ū∥L2∥∆ũ∥L2 ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 .

So it follows that
T2 ≤ C∥u∥H3∥Λα

1∆ũ∥2L2 .

We combine T4 and T7,

T4 + T7 =

∫
Ω
∆(b̃ · ∇b̃) ·∆ũ dx+

∫
Ω
∆(b̃ ·∆ũ) ·∆b̃ dx

=

∫
Ω
∆(b · ∇b̃) ·∆ũ dx+

∫
Ω
∆(b · ∇ũ) ·∆b̃ dx−

∫
Ω
∆(b · ∇b̃) ·∆ũ dx

−
∫
Ω
∆(b · ∇ũ) ·∆b̃ dx

=

∫
Ω
∆b · ∇b̃ ·∆ũ dx+ 2

∫
Ω
∇b · ∇2b̃ ·∆ũ dx+

∫
Ω
b · ∇∆b̃ ·∆ũ dx

+

∫
Ω
∆b · ∇ũ ·∆b̃ dx+ 2

∫
Ω
∇b · ∇2ũ ·∆b̃ dx+

∫
Ω
b · ∇∆ũ ·∆b̃ dx

=

∫
Ω
∆b · ∇b̃ ·∆ũ dx+ 2

∫
Ω
∇b · ∇2b̃ ·∆ũ dx+

∫
Ω
∆b · ∇ũ ·∆b̃ dx

+ 2

∫
Ω
∇b · ∇2ũ ·∆b̃ dx

= T4,1 + T4,2 + T4,3 + T4,4.

By Lemma 2.1,

T4,1 ≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2).

Similarly,

T4,3 ≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2),

T4,2 + T4,4 = 2

∫
Ω
∇b · ∇2b̃ ·∆ũ dx+ 2

∫
Ω
∇b · ∇2ũ ·∆b̃ dx

≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2).

Combining the estimates of T4,1, T4,2, T4,3 and T4,4, we have

T4 + T7 ≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2).

To bound T5, we write

T5 =

∫
Ω
∆(b2∂2b̄) ·∆ũ dx

=

∫
Ω
∆b2∂2b̄ ·∆ũ dx+ 2

∫
Ω
∇b2∂2∇b̄ ·∆ũ dx+

∫
Ω
b2∂2∆b̄ ·∆ũ dx

= T5,1 + T5,2 + T5,3.
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By Lemma 2.1,

T5,1 =

∫
Ω
∆b2∂2b̄ ·∆ũ dx =

∫
Ω
∆b̃2∂2b̄ ·∆ũ dx

≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2),

T5,2 = 2

∫
Ω
∇b̃2∂2∇b̄ ·∆ũ dx

≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2),

T5,3 = −
∫
Ω
b̃2∂2∆b̄ ·∆ũ dx

≤ C∥b∥H3(∥Λα
1∆ũ∥2L2 + ∥Λβ

1∆b̃∥2L2).

Thus, we obtain

T5 = −
∫
Ω
∆(b2∂2b̄) ·∆ũ dx ≤ C∥b∥H3(∥Λα

1∆ũ∥2L2 + ∥Λβ
1∆b̃∥2L2).

Similarly, T6 and T8 are bounded by

T6 = −
∫
Ω
∆(u2∂2b̄) ·∆b̃ dx ≤ C∥b∥H3(∥Λα

1∆ũ∥2L2 + ∥Λβ
1∆b̃∥2L2)

T8 =

∫
Ω
∆(b2∂2ū) ·∆b̃ dx ≤ C∥u∥H3∥Λβ

1∆b̃∥2L2 .

Plugging the estimates for T1 through T8 in (4.9),

d

dt
(∥∆ũ∥2L2 + ∥∆b̃∥2L2) + (2ν − C∥(u, b)∥H3)∥Λα

1∆ũ∥2L2

+ (2η − C∥(u, b)∥H3)∥Λβ
1∆b̃∥L2 ≤ 0.

Choosing ε > 0 sufficiently small and by Theorem 1.1, if ∥u0∥H3 + ∥b0∥H3 ≤ ε, then
∥u∥H3 + ∥b∥H3 ≤ Cε and

2ν − C∥(u, b)∥H3 ≥ ν, 2η − C∥(u, b)∥H3 ≥ η.

Then we obtain

d

dt
(∥∆ũ∥2L2 + ∥∆b̃∥2L2) + ν∥Λα

1∆ũ∥2L2 + η∥Λβ
1∆b̃∥L2 ≤ 0.

By Lemma 2.1,

∥∆ũ∥L2 ≤ ∥Λα
1∆ũ∥L2 , ∥∆b̃∥L2 ≤ ∥Λβ

1∆b̃∥L2 ,

we obtain by Gronwall’s Lemma,

∥∆ũ(t)∥L2 + ∥∆b̃(t)∥L2 ≤ C(∥∆u0∥L2 + ∥∆b0∥L2)e−C3t, (4.10) H2tilde

where C3 = C3(ν, η) > 0. Combining the estimates in (4.4), (4.7) and (4.10), we obtain the
desired decay result (1.6) in Theorem 1.2. □
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