GLOBAL WELL-POSEDNESS OF THE 2D MHD EQUATIONS OF
DAMPED WAVE TYPE IN SOBOLEV SPACE

RUIHONG JI', JIAHONG WU? AND XIAOJING XU?

ABSTRACT. The magnetohydrodynamic system of damped wave type (abbreviated as
MHD-wave system) is formally derived from Maxwell’s equations of electromagnetism
by keeping the usually ignored small term involving the product of permittivity and
magnetic permeability. When this term is ignored in the context of non-relativistic
charged fluid, one obtains the standard MHD system. This extra term in the MHD-
wave system assumes the form ~v0,b with v > 0 being a small constant and b the
magnetic field. Mathematically this term makes the global well-posedness problem
much more challenging than the corresponding MHD system. Even the global existence
and regularity problem for the 2D MHD-wave system appears to be open. This paper
solves the global well-posedness problem in a critical Sobolev setting when ~ and the
size of the initial data satisfy a suitable constraint. In addition, the solution of the
MHD-wave system is shown to converge to that of the corresponding MHD system
with an explicit rate. The energy method does not work here and this paper presents
a new approach.

1. INTRODUCTION

This paper focuses on the magnetohydrodynamic system of the damped wave type
(or simply MHD-wave system),

8tu+u-Vu+V(p—|—%):VAu—l—b-Vb, reR? t>0,

V-ou=V-b=0,
uw(z,0) = up(x), b(z,0)="0bo(z), (0:b)(x,0)=ap(x).

(1.1)

where u denotes the velocity field, b the magnetic field and p the pressure, and ~v > 0,
v > 0 and n > 0 are real parameters. The goal of this paper is to solve the global
existence and regularity problem of the 2D MHD-wave system when + and the size of
the initial data satisfy a suitable constraint. The spatial domain is taken to be the whole
space R?. In contrast to the standard 2D MHD equations, the equation of b in (1.1) is
hyperbolic and the extra term vd;b is mathematically a bad term in the sense of energy
estimates. As a consequence, the approach of establishing global bounds on solutions
of (1.1) via energy estimates does not work. This paper presents a new strategy to
understand the global regularity problem on (1.1).
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The MHD-wave system can be formally derived from the coupled Maxwell-Ohm
equations

V xb—eudE = uj,

Ob=-V X FE,
Vt~b=0 (1.2)
%j:E—Fqu,

where E denotes the electric field, j the current density, € the permittivity, ;1 the mag-
netic permeability and o the electrical conductivity. When the process is not relativistic,
e is small. The formal derivation (1.1) from (1.2) is actually quite simple.

ob = —VXE:—VX(lj—qu)
o
= _iVxbeJrEantEJer(uxb)
oW o

1
= ——Vxbe—Eattb+Vx(uxb)
oW o

By the identities
VXV xb=V(V-b)— Ab,
Vx((uxb)=b-Vut+u(V-b)—u-Vb—>bV-u),

we obtain .
COub+ b — —Ab+u-Vb=b-Vu.
o ol
Letting
€ 1
— =7 —— =10
o o

yields (1.1). In particular, when we set ¢ = 0, we obtain the standard incompressible
MHD equations.

The incompressible MHD system is given by

du+u-Vu+Vp+L) = vAu+b-Vh, xR t>0,
8ib+u-Vb=nAb+b-Vu, (1.3)
V-u=V-b=0,

which differs from (1.1) only in the term y9yb. The MHD system is the primary model for
electrically conducting fluids and has been studied rather extensively (see, e.g., [2,9,28]).
In particular, the 2D MHD equation have been shown to be globally well-posedness
[30]. There have been substantial recent developments on various fundamental issues
concerning the MHD systems (see, e.g., [1,3-8,10-25,27,29,31-42]).

Rigorous mathematical studies on the MHD-wave equations are more recent. Impor-
tant results such as the small data global well-posedness of the MHD-wave equations in
Fourier-Sobolev spaces have been obtained ( [26]). But many fundamental issues remain
open. One natural question is whether or not general large solutions to the 2D MHD-
wave equations are always global in time. This is not a trivial problem. Due to the
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presence of the extra term v0yub in the MHD-wave equations, the approach of the energy
method no longer works for the MHD-wave equations. The 2D MHD equations in (1.3)
is globally well-posed in any space H*(IR?) for any k > 0. This is a direct consequence
of the global a priori bound

t t
1 B)(8) 2 + v / IVullZ dr +1 / IVb(r)| Py dr < C (10, bo) e
0 0

obeyed by any solution (u,b) of (1.3).

However, it does not appear to be possible to obtain any global H*-bound with k > 0
for the solutions of (1.1). In fact, we do not even know whether the L?*-norm of (u,b) is
bounded for all time. If we perform the standard energy estimate, we would obtain

1d

7/ b+ Oubda + 5 —||(u,b)|72 + V[ VullZ: + 0] VD]|7. = 0. (1.4)
R2 2dt

Here we have used V - u = V - b = 0 to eliminate the nonlinear terms. Naturally one
attempts to deal with the bad term

’)// b- @tb dx
R2

by combining with the estimate of ||9;b||7.. Taking the L*-inner product of the b-equation
with 0;b yields

| =

- (V1902 + nll VEIIZ2) + 9.0
—(Dyb,u - Vb) + (Db, b Vu), (1.5)

DO | —
IS

where (f, g) denotes the L*inner product. Multiplying (1.5) by 2y and adding to (1.4)
yield

1d
5 77 (ullze + 1BllZ2 + 2v(b, 0ib) + 29°[10:b 1172 + 29[| VEIIZ2)

+ v Vullz: +nlVOlIZ: + 7 [19:b1Z-
= —2v(0b, u - Vb) + 27(0;b, b - Vu).

In order to obtain suitable upper bounds for the two terms on the right-hand side, we
need higher derivatives. Therefore, direct energy estimates do not lead to the desired
global bounds even for the L2-norm of the solution to (1.1).

The new idea of this paper is to examine the difference between the solution of the
MHD-wave equations in (1.1) and that of the MHD equations in (1.3). The goal is to
show this difference is globally bounded for sufficiently small v > 0. Since the solution of
the 2D MHD equations is known to be global in time, the global bound on the difference
leads to the global bound on the solution of the MHD-wave equation. This global bound
allows us to establish the following global existence and regularity result.

Theorem 1.1. Consider the 2D MHD-wave system (1.1) with v >0, v >0 and n > 0.
Assume the initial data (ug, by, ag) € L*(R?) x H'(R?) x L*(R?), and V -uy =V - by =
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V -ag = 0. Assume that, for a suitable constant Cy > 0 and o > 0,

v H(won) (luollzz + l[boll s + llaollz2) < Co, (1.6)

where % < s <1 and H(v,n) is an explicit function of v and n (their representations
can be found in Section 6). Then (1.1) with any v < vy has a unique global solution
(uy, by) satisfying, for any 2 < g < oo and % <s<l,

u, € C(0,00; L*) N L0, oo; Hg);

b, € C(0,00; H*) N L*(0, 00; HT') N L(0, o0; Hg)
In addition, as v — 0, (u,,b,) converges to the corresponding solution (u,b) of the 2D
MHD system (1.3) with an explicit rate, for any 0 < T < oo,

s_1
(g =y =0 Lo gy < C sy llwollz2, bolles Nlaoll2) 7275

To prove Theorem 1.1, the approach of energy estimates would not work, as explained
before. Instead, we make use of integral representations of the MHD system and MHD-
wave system. To avoid notational confusion, we use (u,,b,) for the solution of the
MHD-wave system (1.1) and (u,b) for that of the MHD system (1.3). To develop an
integral representation for the MHD-wave system, we first solve a general damped wave
equation and then represent the solution (u.,b,) as

t
u, = e"uy— / /IIAPY - (uy, @ uy)(s) ds
0

t
+/ /EIAPY - (b, @ b,)(s) ds,
0
1

by = (Ky + 5K{)bo + K (7 ao)

- [ K= T 9 = T, 0w ))(5) s

where P = I — VA~'V. denotes the projection operator onto divergence-free vector
fields, and K] and K7 are the solution operators of the linear damped wave equation

Y0ub + 0;b = nAD, b(z,0) =bo(z), (0b)(x,0) = ao(z).
More precisely, the kernel functions K and K7 are given by
1 e)\+t _ 6)\_t

YA — A

—_~ 1 —_~
Kov _ §(e>\+t + 6)\_7&)7 Klv _

with A4 being the roots of
TN+ A+ n[E]P =0

or
—1 £ /1 —4vynl¢l?

2y
The integral representation of the MHD equations (1.3) is clearly given by

A =

t
u(t) = ey — / "IAPY L (u @ u)(s) ds
0
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t
+ / e/IAPY - (b @ b)(s) ds,
0
t
b(t) = ™ by — / eM=9AY . (u @ b)(s) ds
0

¢
+/ "M - (b @ u)(s) ds.
0

Then the difference (u, — u, b, — b) satisfies
t
Uy — U= — / "UIAPY - ((uy — u) ® uy)(s) ds
0

B /t e/ (t=9)Apyy . (u® (u, —u))(s)ds

0

t
n / t=IAPY . (b, — b) ® b, )(s) ds
0

N /t RICOINV (b® (b, —b))(s) ds, (1.7)

by —b= (K] + %Kﬁ — e"™by + K] (v ao)

+ /;(Kf(t L) = PEIANY . (b u) — V- (u@ b)) ds

b [ KL= (T 5 (0 = )+ (- (0= D) ) ds

- K= )V (1= 0,) ©8) + V- (uy @ (b by))) ds. (18)

For any initial data uy € L*(R?), by € H'(R?) and ay € L*(R?), we evaluate the
difference (u, — u, b, — b) in the functional setting

X = L0, T; H2(R?)),

where T > 0 and H* denotes the standard homogeneous Sobolev space. To facilitate
the estimates, we first derive suitable upper bounds for K] and K7 in the frequency
space. K and K have different behaviors at different frequencies. K and K] at
high frequencies exhibit damping effects while they share similar behavior with the heat
operator at lower frequencies. Explicit upper bounds on K and K] are presented in
Lemma 3.1.

Another crucial ingredient in the estimate of (u, — u, b, — b) is the fact that e”*, K]

and K7 are bounded operators on L%(0, T} HH%) for any 2 < ¢ < oo and s € R. More
precisely, we have

1
HeytAU0|’Lp((),T;HS+%) S EHUM

Hs»
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1 1
K5 vol| 2 < O flvoll gopgens + Cn v f[voll e

Lo F)

1K vl <Cn |

Lp(O,T ) =

Detailed proof of these inequalities are provided in Section 4.

The representation of b, — b involves the difference between the solution of the heat
equation and that of the linear damped wave equation. We are able to show that this
difference in L4(0,T; Hz (R%)) admits an upper bound depending linearly on 41 and ~.
More precisely, we have

1 _1
- < CA|boll grangz + O 2y llagl| 2
LA(0,T;H?2)

1
‘(KS + §KI’ — e"At)bo + K (v ap)

This estimate is a consequence of a crucial lemma obtained in Section 5.

With these preparations at our disposal, we then estimate the difference (u, —u, b, —b)
in L*(0, T; H2(R?)). After lengthy and tedious estimates, we obtain, for 1 < s < 1 (close

to 1),

1 _1
1 < Cyillboll ginge + C 027 llaol| L2

||(u7 —u, by — b)||L4TH?

1 _1
Oyl i 180 + 0l 3 100 god)

,3§

s_1
Oy a2 (L 1 1Bl g g s

+ ||“||L2TH1 ||b||L%HlﬂL%°H25*1>
_3 _3
+C (v 1+n 4)(Hu”L4H% + ||b||L4H%)||(u7 —u,by — b>||L4TH%

+C W 47| (uy — u,by — b)) (1.9)

L3, B2’
The upper bound in (1.9) consists of four main parts. The first part C~i||bo|| 1.2 +
C'n 27| ag|| 2 involves the initial data (b, ao) and has a factor vi. The second part,
consisting of the next two terms in (1.9), depends on the solution (u,b) of the MHD
equation and has factors 44 and 427 with 0 < s < 1 (close to 1). The solution (u, b)
can be bounded uniformly in terms of the initial norm ||ug||z2 + [|bo|/ 1. The third part

is linear in terms of ||(uy — u, b, — )||L4H1 and will be absorbed by the term on the
left-hand side of (1.9). The fourth part in (1.9) is quadratic in ||(u, — u, by — )HL‘*TH%'

To eliminate the upper bound in (1.9) that is linear in ||(u, — u, b, — b)”L‘*TH%’ we
apply a basic fact from real analysis to obtain that there are 77 > 0 and 75 > 0 such
that ||(u, )], T for any p > 0 and ||u||L4 Toooifid) T 6], ociith) BT€ small. In
particular,

3 3 ]_
€+ (lu .

H ”L4 ,D,O"FT H% + Hb||L4(p,p+Tl;H%)) S 27

—_

_3 3
C(v=s 4 4)(||u ll oy corrry T 10 iy s dy) < 5
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(1.9) is then reduced to
H(u'Y -, b’}’ - b)||L4(0,T1;H%)
< C177G(v,n)(luollz2 + boll e + llaoll 2)

_3 _3
O Dl — b DI,

A bootstrapping argument then yields the desired bound for [|(u, —u, b, =b)| , 0TI
s4 1
Repeating this process on a finite number of time intervals [T1, 27T4], [2T3,3T3], - - -, and
[T, 00) leads to the global bound on (0,00). As a special consequence, we obtain the
global bound for |[|(u., b) as well as the desired convergence rate in Theorem

1.1.

||L4(o,oo;H%)

As explained in Section 7, the proof for the uniqueness part in Theorem 1.1 does not
follow from the energy method. Instead, the proof makes use of the integral representa-
tion for (u.,b,). We find that the difference between any two solutions in L*(0, T; H 2)
can be bounded in terms of the initial difference, which, especially, implies the desired
uniqueness.

The rest of this paper is divided into seven sections. Section 2 solves a general linear
damped wave equation and derives the integral representation of (1.1). Section 3 bounds
the kernel functions representing the solution of the linear damped wave equation in the
frequency space. Section 4 shows that the heat operator as well as the solution operators

of the damped wave equation are bounded on the space-time space LP(0, T H H%) for
any 2 < p < oo and s € R, and explicit upper bounds are presented. Section 5
estimates the difference between solutions to the heat equation and the solution of the
linear damped wave equation. Section 6 establishes the existence part of Theorem 1.1.
Section 7 proves the uniqueness part of Theorem 1.1 via the integral representation in
the functional setting L*(0, T} H %). Section 8 asserts the higher regularity of b, of the
solution (u.,b,) to (1.1).

2. INTEGRAL REPRESENTATION

This section first derives the solution formula for a general damped linear nonhomo-

geneous wave equation and then applies this formula to obtain an integral representation
of (1.1).

Proposition 2.1. Assume P and @ are Fourier multiplier operators. Consider the
wnitial-value problem for the linear non-homogeneous wave equation

(2.1)

(Ou + P(D)0, + Q(D))u=f, zeR:t>0,
w(0) =ug, (Qu)(0)=w;, z€R%

Then the solution of (2.1) is given by

u(t) = Ky (D, t)uy + Ko(D, t)ug + /Ot Ky(D,t —71)f(r)dr,
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where K1 and Ky are Fourier multiplier operators given by

A (D)t _ A (D)t (D)D)t _

MR
Here the symbols Ay (i§) are the roots of
N+ PEEON+Q(i€) =0

or

Proof. The associated characteristic polynomial is
N+ P&+ Q(i€) = 0,

whose roots are given by

Then the wave equation in (2.1) with f = 0 can be decomposed as
(O = A (D)9 — A-(D))u = 0.
To solve (2.2), we can rewrite it as a system of equations in two different ways

{(at ~ A (D))u=F, {(at ~ A (D)u=G,
(0r = A (D)) F' =0, (0 —A_(D)) G =0.

It then follows from the first equations of these systems in (2.3) that
F(0) =u; — A_(D)ug, G(0) =uy — A (D)ug
The second equations in (2.3) yield
F(t) = eMD1R(0), G(t) = e~ P1G(0)

and
(D) = A_(D)u=F -G
As a consequence of (2.4), (2.5) and (2.6),
u = (A (D) = A (D)) (MHPNE(0) — e P1G(0))
B >\+(D) /\ (D)t )\+(D)€/\ (D)t __ )\_(D)e +(D)t
(2 N 7 R W) w2

= Kl(D, t)u1 + KQ(D, t)uo
By the Duhamel principle,

(O + P(D)0: + Q(D))u = f
is solved by

u(t) = Ki(D, t)yuy + Ko(D, t)ug + /0 t K\(D,t —7)f(r)dr.

This completes the proof of Proposition 2.1.
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Next we apply the solution formula in Proposition 2.1 to solve the equation of b to
provide an integral representation of (1.1).

Proposition 2.2. (1.1) can be converted into the following integral representation
( t
u(t) = " uy — / e/ IAPY - (u @ u)(s) ds
0
t
+/ e/t=IAPY . (b @ b)(s) ds,
0 (2.7)

1
b(t) = (Kg + 5 K{)bo + K] (7 ao)

\

. 2
_/0 Ki(t—s)(V-(u®b)— V- (b u)(s)ds.

where P = I — VA~V denotes the projection operator onto divergence-free vector fields,
and the kernel functions K| and K are given by

~ 1 N 1 Mt _ et Mgt _ At
2 T AT A 1 — dynl¢]

with
—14 /1 —dyn|¢
Ay = .
2y

Proof. We rewrite the equation of b as
b(x,0) = bo(x), Ob(x,0) = ag(x).

The characteristic equation is

(2.8)

1
A2+ A+ el =0
Y Y

and its two roots are

=1 E /1 —Aym|)?

A
+ 2
Applying Proposition 2.1 to (2.8) yields

—

t
b(t) = K (&, t)do + Ka(&, )by + / K (&t — T)%(b Vu—u-Vb)dr,  (2.9)
0

where

6)\+t _ 6)\_t ~ >\+6)\_t _ )\_6)\+t
K=

We rewrite the kernel functions to get more concise forms. Clearly
1
Ap— A= SV LUl

Apt 6)\_t Y

(& ~ ~
= K (vao)

V1- 4777|§|2<7a0)

Then
l?l (57 t>aO -
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where we have written

1 6)\+t o 6)\_t 6)\+t o 6)\_t

K] = = (2.10)

Y A=A T Al

Similarly,
. 1 _— N _
Ki(&t—7)=(b-Vu—u-Vb)=K]/({t—7)(0b-Vu—u-Vb).
Y

It is easy to check that
)\+6>\,t — A_eMt

[?2(£7t> = )\+ . )\7

1~
= K|+ =K/

2
where

Ky == (M) (2.11)

N | —

Thus (2.9) becomes
~ N 1~ ~ ~ o —
b(t) = Kj + §K17)bo + K7 (vag) + / Kl t—7)b-Vu—u-Vb)dr (2.12)
0

with K and K7 given in (2.11) and (2.10), respectively.

Applying the projection operator P = I — VA~V to the velocity equation in (1.1) to
eliminate the pressure and then representing the resulting equation in the heat operator
yields

t
u(t) =e""Puy — / e/ tIAPY - (u @ u)(s) ds
0

t
+ / /IIAPY . (b @ D)(s) ds. (2.13)
0

Combining (2.13) and (2.12) yields (2.7). This completes the proof of Proposition 2.2.
U

3. UPPER BOUNDS ON THE KERNELS

This section presents upper bounds on the symbols of the operators K] and K. Low

and high frequencies of KJ(,t) and K7 (&, t) behave differently and obey different upper
bounds. The main upper bounds are presented in the following lemma.

Lemma 3.1. Let
=11 —Ayn|)?

A
+ 2
and At _ At Apt _ At
}?gzl(e)‘#’t_i_e)‘*t)’ _[?:,l},:le""—e_ _ €+—6_ ‘
2 AT A T =gl
Define

51:{£€Rd2 4’}/77|§|2>—}, SQZRd\Sl.
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(1) For & € Sy,

1 1
Red_ < ——, Redp < ——
€ = 2[}/7 EAL = 477

K3 (€. 0], |K](€.1)] < Ce s, (3.1)
Alternatively, for & € Sy,
K€1) < Cy iyt e esit, (3.2)

or more generally, for any 0 <6 <1,
K 0] < Cryin il e
(2) For & € Sy,
3 2n|€1?

4y’ T 141 4A|E? T

and
[KJ(E,1)] < C (e + 7P,
R7(6,0)] < C (e 4 e7mlel),
Trivially, for £ € Sy and any 0 <0 <1,
IK7(€,8)] < Cry g2 |¢| P e it + Ce el
We remark that the alternative upper bound for K | is a sharper estimate and allows
us to gain one derivative. This fact is very useful in the proof of our main results.

Proof. For £ € S}, ReA_ < —% follows directly from the definition of A_. Using the
fact that, for & € Sy,

1
Re /1 —4yn|¢? < 3
we have
-1 1—4 2 1
Ren, — —1F i€ <L
4y
Then

Kg(e.t)] < Ce .
To prove the bound for | K7 (€, )], we consider two cases
3
(@) dyml€* > 1, (b) 7 <dml¢f < 1.
In the first case (a), \/1 — 4yn|£|? is imaginary and
K{(&,t) =

V1= 4ynl¢f?

_ Ly 2sinty/Aynl¢* -1
Y

V1 —4dyn[gf?

_ 1y
< 2te 27
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_ 1y
<Crye ¥,

where we have used |sin 3| < || for any § € R. In the second case (b), we use the
mean-value theorem to obtain, for A_ < ¢ < A4,

KJ(6,t) =2te® < C”ye*%t.

To obtain the alternative estimate (3.2), we consider two cases:
dylél > 2, Z < dynlef < 2.
When 4vn|¢[? > 2, the quantity /1 — 4yn|¢]? is imaginary and
SmWW\
‘\/4777|€|2 - 1‘

<Oy E e,

2
t

1

Rl =e®

where we have used the fact that
1 1

VAml§)R -1 2

For 2 < 4vn|¢|? < 2, we have

and
Rl n|scest <clg "y i ie st
Interpolating the bounds in (3.1) and (3.2), we have, for any 6 € [0, 1],

‘f(?(élt)‘ < Cripsje Tl emst

We now prove (2). For £ € S, or 4yn|¢|* < 3, we have

1
V1 _4777|§|2 > 5

Clearly, A\_ < —%.

1 1 4 2
A== (1= VI TaleE) - iuid

291+ /T 4yfeP
< —nl¢f.

Then,
K€1), K€ D] < C (e + eI,
This completes the proof of Lemma 3.1. 0
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. 2
4. HEAT AND WAVE OPERATORS ON L9(0,T; H*"4)

This section intends to understand the behavior of the operators e’>!, K and K7
when they act on functions in the space H* for any s € R. Maximal regularity results are
established. These bounds constitute some of the essential ingredients when we estimate
the solution expressed in the integral representation.

The first proposition provides bounds for the heat operator on Sobolev spaces.

Proposition 4.1. Let v > 0, s € R and vy € H°. Let T > 0 and f € L*(0,T; H*™1).
Then, for any 2 < p < oo,

VtA
UO||LP(0,T;HS+%) = 9

¢
/ e”(t_T)Af(T) dr
0

e

T ||UOHH57
Up

1

, < sy

LP(0,T;H° T 5) vt
In addition,

t
"y, / /A () dr € C([0,T); H?).
0

Proof. We start with the two special cases p = 2 and p = oo. The general case 2 < p < o0
can be shown via interpolation. When p = 2,

— 2\~
e voll 27 s7e1) = / e 2 G degt
R

/ |€|2 (s+1) |U |2/ —2Vt|§\2dtd€

= ZV/ |£]7HD72 | d = —HUOH2 .
or
“eytA'UOHLQ(O,T;HSH) < WHUOHHS-

When p = oo,

vt|¢|?

e volloeoziarny = sup e Dl < llvoll e
0<t<T

By the interpolation inequality,

2
vtA Vo || Loop(

VtAUO ||LP(O7T;HS 2

2
1 » _2
= (WHUOHHS) (lvoll 7)™

1
= (2v)i7r [[voll -

le < 02 e

L2(0,T;Hs+1) 0,T;H*)

This establishes the first inequality. To prove the second one, we start with the case
when p = 2. By Young’s inequality for the time convolution,

¢
‘/ e”(t*T)Af(T) dr
0

L2(0,T;Hs+1)
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t
< / eI e Fe 1) dr
0 L%(R?) L2(0,T)
t
_ /e_y(t—7)|£2|§|8+1f(§,7) dr
0 L2(0,T) L2(R2)
—ut|€)? s 7
1 s >
< =L A Demon
v[¢| L2(R2)

1
= ;HfHL?(O,T;HS*l)'

= = |Jier 17 o)

L2(R2)

For p = oo, by Minkowski’s inequality and Young’s inequality,

IN

IN

IN

t
/ e”(t_T)Af(T) dr
0

Lo°(0,T;H*)
t

e IR g (e ) dr

S—

L2(R2)

Lo>=(0,T)

/ IR e, ) dr
0

Lo (O,T) L2 (Rg)

_utlel? S| F
e |20 [6117E. )20

L?(R?)

1 ~
W IE1°NLF (&5 )l 220,m)

1

(20)1/2

L2(R2)
1

1€l 1 F (& Bllezoar|

It then follows from an interpolation inequality that

t
/ e”(t_T)Af(T) dr
0

. 2
Le(0,T;HTP)

1 VA =5
< ;Hf“m(o,T;Hs—l) W"fHLQ(O,T;HS—l)
1

- 93~ I/%+% ”fHL?(O,T;Hs—l)-

l=
S =

The continuity in time

t
By / DA f(2) dr € (0, T; HY).
0

L2(R?) - WHfHL?(O,T;Hsfw.

follows from the dominated convergence theorem. This completes the proof of Proposi-

tion 4.1.

O
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The next two propositions assess the bounds when the operators K] and K| act on
Sobolev functions. In addition, the maximal regularity estimates are also obtained

Proposition 4.2. Let v > 0,7 >0 and s € R
(1) There is a constant C > 0 such that, for any vy € H® 0 H*H,

A w (1l + 7 ol )
1 1
< Cy ool gongzess + C v (4.1)
(2) There is a constant C > 0 such that, for cmy vy € H*,
1K w0l gz, <O (12)

(4.2) implies that K shares the same upper bound as a heat operator, and the bound
is even independent of ~!

Proof. We start with the two special cases. For p = oo, by Lemma 3.1

VG voll e oiziiey = |11 KTl 2oy

L°°(0,T)
< |[11€l K @l saqsny + M€l Ko ol 12cse

< C gl ool 2@y =

L*(0,T)

For p = 2,
VK300l 071001, = / / 1 K02 de dit
T
[ [ e Ry dgae+ / / (€1 Ky 2 de
0 S1
T 1
= / £t e 37" [T |* ddt
0 S1
g 3 ¢ 2 ~
+/ €7D (e7 33t + e M2 5| dedt
0 So
2 —1 2
<CHlvollFess + Cn voll e
Therefore,

1 1
155 voll 20,1y < C2 ol o + C 2 [lvoll e
(4.1) then follows from interpolation.

The proof of (4.2) is similar. For p = oo,

||K?UO||LN(O,T;HS) i

For p = 2,

T
1 s 9 —lya
HK'YUOHL2(0THS+1 Sl 1/ / 15‘2( H)’f‘ %e 4”t|U0’2dfdt
0 S1
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T
! / [P (o g e 4 P P dedt
0 Sa

<Cn lvoll%

Therefore,

1
18T voll 2o ooy < €2 [lvoll -

(4.2) then follows from interpolation. This completes the proof of Proposition 4.2. [

The following proposition assesses the maximal regularity on K7.

Proposition 4.3. Let v > 0, 71> 0, s € R and 2 < p < co. Then there is a constant
C > 0 such that, for any T > 0 and f € L*(0,T; H*™ '),

/Ot KI(t—7) f(r) dr < ¢

LP(O,T;HS+%) - 77%+% Hf”LQ(O,T;Hs—1)

Proof. For p = oo, by Lemma 3.1,

‘/Oth(t—r)f(r) dr

Leo(0,T;H%)

t —~ —~
- / EP|K (¢ — ) F(&,7) dr
0 L2®) || oo (0,1)
t — —~
< / PR (t — ) Fle,7) dr
0 L>(0,T) L2(S1)
t — —~
+ ' / €K (¢ — 1) FE, ) dr
0 Lo°(0,T) L2(S2)
< SIKY (8)]] 2 FE, )12
< [ el 1T Ol o 1 FCE Oz | .
+ IR Ol nlFE Dlon |,

_1
<Cn> “f”L?(O,T;HS*l)'
Similarly, for p = 2,

/Ot Kt —7) f(r) dr L

< EH]C”LQ(O,T;HS—l)

L2(0,T;Hs+1)

The general case is obtained via interpolation. This proves Proposition 4.3. U

5. LINEARIZED MHD AND LINEARIZED MHD-WAVE EQUATIONS

This section estimates the difference between solutions to the heat equation and the
solution of the linear damped wave equation. More precisely, we establish the following
proposition.



MHD EQUATIONS OF DAMPED WAVE TYPE 17

Proposition 5.1. Let > 0 and v > 0. Let s € R. Assume that By € H* N H* and
ag € H®. Let B be the solution of the heat equation

B —-nAB =0, xcR%t>0, (5.1)
B(x,0) = By(x), z€R% '
Let B., be the solution of the damped wave equation
3tt37 + 3,537 — ’I’]A.B,y =0, ze€ ]RQ, t >0,
) (5.2)
B,(x,0) = By(x), (0,B,)(z,0) =ae(z), =z &R

Let 2 < q < 0o. Then there exists a constant C' > 0 independent of v and n such that,
for any T > 0,

HB’Y _BH

_1
fesngsr T Cyn 2aol

1
2)§O’}/‘1“BQ‘ s+

La(0,T;H°"a
The proof of Proposition 5.1 relies crucially on the following lemma.
Lemma 5.2. Letv> 0 and n > 0. Let

—1 £ /1 —4ynfEl?
Ay =
2

and

YA A T

Let 2 < q < o0. There is a constant C' > 0 independent of v and n such that, for any
£eR? and any 0 < T < o0,

1 6)\+t _ 6)\_t e)\+t _ 6)\_t

1 .
Kj = §(€A+t +erh), K=

< Oy, (5.3)
La(0,T)

< CHs. (5.4)

La(0,T)

K] + %l?? — e

H_f(lv _ e mlél?t

In the case when q = 2, the sharp coefficient s C' = \/Li

Proof. We first prove (5.3). We divide our consideration into two cases: £ € S; and
€ € Sy. Here S; and S, are defined in Lemma 3.1. For £ € S; (the high frequency case),

3 16
4777|€|22;l or 1 '[¢] 2§§7-

We do not need to reply on the difference in this case. By Lemma 3.1,

H[?g + %IA(? — P

L4(0,T)
<||&y + 1y + He—"‘fPt
2 La(0,T) L2(0,T)
1
<C H6_8wt||Lq(0’T) + ||l
L4(0,T)

1 _1 _2 1
< Oy + O[T < O,
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For £ € S, (the low frequency case) or

3
dymlel® < 5,
we need to make use of the difference and it does not appear possible to perform a
direct estimate. The idea here is to use the equations they satisfy instead of the solution

formula. We recall that, according to Proposition 2.2,
1
b= (Kg + 5 K1)bo + K (vao)

solves the linear wave equation

b(z,0) =bo(z), (0:b)(x,0) = ao(z).
In particular, if we set by = 1 and ap = 0, we find that F = K + $ K7 solves
F(z,0)=1, (0,F)(x,0)=0. '
Similarly, G = K7 solves
G(z,0) =0, (90,G)(z,0)= % '
Therefore A := F — e"™* satisfies
VA + O A+ nfEPA = —0(e™), 58)

We can solve (5.8) to get

t
A& t) = KY (mlel*) = gl /O KJ(&t = r)e i ar.
Taking the L9(0,00) in time and applying Young’s inequality yield
LA, D)l ooy < IEPNET ooy + 10211 N ET [ oo 17 €]
< 29l€P I K7 oo
< Cymléf?
< Cys 4+ ComléP? (nlef?)
< Cryi 4 Cyy 70
< O,
This completes the proof of (5.3).

3
e_ﬂt + 6*77|§|2t

La(0,T)

We now turn to the proof of (5.4). For high frequencies, say £ € S;, we do not need
to make use of the difference since each part can be bounded suitably. For & € 57,

1KY — e rao ) < KT |l zaory + e | rogormy
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< C||e_%t||Lq(07T) + 6—77\5|2t

L4(0,T)
< Cyi+C (e e <O,

Now we consider the low frequency case £ € S5,

3
dynl¢)? < T

We make use of the equation of
H=K]—e"™ or H=K]—e "
H satisfies
VO H + O.H + n|¢[*H = —ym?|¢| e e,
~ ~ 1
H(E0) =1, OH(E0) =+l

Solving this equation yields

~ -1~ ~
H = (Kg + g K)(=1) + K{(1+ nlé)?)

t
it [ Rae= e ar
0
1 ~ . .
= (5 K1 = K§) +mleP K7
— 1 |€!4/ Ki(t —7)e " dr.
Therefore,

~ 1~ ~ ~
1 oo,y < 1557 = Kgllzaor) + CnlePlIKT N Lo,

where we used Young’s inequality in the estimate of the last part

/ K7 Je —nlel*T gr
La(0,7)

el =
< P KT a0l a0y < mlEPIET oo
For £ € S5, according to Lemma 3.1,

K] <Ce '+ Cellt

¢t

Thus R ) )
1K | Laory < Cya 4+ C (n]é]*) s
and, for £ € Sy or 4yn|¢|? < 3,

~ 1 _1
EPIET 2oy < Cyo +4(lEP) s < Cryn.

Q=

Recall that

1+ o~ 1 1
_Kiy _ K(“){ — (6)\+t . eA,t> o _(e)\+t + eA,t)
2¢/1 = dym¢? 2



20 RUIHONG JI, JIAHONG WU AND XIAOJING XU

1 1 e 1 1

= (—- _ At
~ 3l e ) )

i 1)e
1 — 4vyn|¢|?

For £ € S, ; .
4 2.2 - <9
mlél* < T =
and thus
2
). By
V1 —4dyn|¢| V1= 4|1+ /1 — 4yn[€]?)

Therefore, if we use the upper bounds for A, and A_ in Lemma 3.1, we have

1 1 277‘§|2 2
A==+ V1Al =— < —nl¢
oy § 1+ /1T —dyn|¢P? !

A<
27y
Thus
Loy o 2 -nlef2t | 3 ki
§K1 — Kg| < 4yléfe Tyt
and
1~ ~ _1 1 14l 1
H§KY—K3 < CmléfP(lel?) e +Cys < Cyy™Ha + Cy
La(0,T)
< O,
This completes the proof of Lemma 5.2. U

We remark that, in the case of ¢ = 2, (5.3) and (5.4) in Lemma 5.2 can be alternatively
shown via direct calculations for ¢ € R%. The calculations are tedious and can not be
extended to ¢ # 2. For notational convenience, set

1
a = —/1—4ynl¢|?

2y
and rewrite K7 and K] as
R-g _ 1 (6—%t+at X e—%t—at) 7 kiy _ 1 (6—%t+at _ e—%t—at) '
2 2y«
Then
~ 1~ 1 1 1 1 1 1
K’y _K'y — - - 72—t+at - 72—tfat'
0+2 ! (2+4’ya)e ’ * 2 4yo <
Thus

2
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1 1 1 1 1 1
i Ly Loty
4( +2fya> %—204—'—4( 2704) %Y—i-Za
1 1 1
(1 —
30T T e
1 1 1 1
—(1 —(1—
1+ 15

270’ 3 — a+nl¢? 5 +a g

After regrouping the terms, we have

2
HIA(J + %IAQ” — e

L2(0,00)

1
- +
(%—aﬂzm? %+a+n|£l2)

1 1 1
290 \ 55 —a+nlE? 5 +a+ g
(1 = 29%a?) g
1 —4y2a2 2(1 — 4y2a?)
1 gl
T oeP T T—aya?
4y + 8y*nl¢)? 4y

(T+ 29mfER) — 4777 (1+ 29mgP)? — Hy%a?

Recall that

2ya = /1 =4yl or 4y%a® =1 — dynl¢]*.

Then
(1 = 29%a?) v P
1 — 474202 2(1 —4v2a?) 292 1 — 4722

vy 1

PR

L sy 4y
(L+2ym|€[?)* — 42 (1 +2m[?)? — 49%a?

1 2+ 2yn|¢f

€ 2+ mlé)?

21
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Therefore,
1 2
~ ~ e
HKg + oK —e nleft

L2(0,00)
O S S | e B B
2 g2 nlEP 2+l 2 24+ ml€)2 T 2

This completes the proof of (5.3) in the case of ¢ = 2. The second one is similar.
We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. The solutions B and B, can be represented as

1
B=e"™B,, B,=(K]+ 5[(;)30 + K7 (yap).

Therefore,

1
1By — BHLq(O,T;HSJr%) S HU{J + §K17 - enAt)BO

Lq(O,T;HSJr%)
+ | K7 (vao) |

= Il + ]2.

. 2
La(0,T;H° ")

For 2 < ¢ < oo, by Minkowski’s inequality,

N 1 ~ N
Io= |||l a(RKy + =Ky — e B,
2 L2llLa(0,T)
Sy Loy —n)¢?t +21 5
< |||[(Kg + 5 K7 —e ™) €17 2] Bol
2 L9(0.T) L
1 st25
< Oy lef** 71 Bol|
L2
1
= Ol Boll gopprss-
By Proposition 4.2,
_1
I, < Cyn alaoll g
This completes the proof of Proposition 5.1. U

6. GLOBAL EXISTENCE

This section establishes the global existence part of Theorem 1.1 for the MHD-wave
system. The idea here is to examine the difference

(uy = u, by = b)
between the solution (u.,b,) of the MHD-wave equation (1.1) and the solution (u,b)
of the 2D MHD system. We make use of the integral representation. We prove via
the bootstrapping argument that this difference is bounded globally in time. Since the

solution (u,b) of the 2D MHD system is known to be bounded for all time, we obtain a
global bound for (u., b,).
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For the purpose of comparing with the solution of the MHD-wave system, we first
provide a global existence and uniqueness result in the functional setting suitable for our
purpose. An interesting problem associated with this result is the maximal regularity
that the solution can achieve when the initial velocity ug and the magnetic field by have
different regularities.

We consider the 2D MHD equation with the initial data (uo, by),

8tu+u-Vu+V(p+@) =vAu+b-Vb, x€R% t>0,
b+ u-Vb=nAb+b- Vu,
V-ou=V-b=0,
u(z,0) = up(x), b(x,0)=bo(x).
Clearly, for uy € L*(R?) and by € H'(R?), the MHD equations (6.1) has a unique and
global solution.

(6.1)

Proposition 6.1. Assume that (ug,by) € L*(R?) and V -ug =V - by = 0. Then the 2D
MHD equations (6.1) has a unique global solution (u,b) satisfying

we C([0,00); L) N () L7(0, 00 H7),

p=2
be C([0,00); L*) N m LP(0, oo; H%)
p=2
In particular,
u,b € L4(O,oo;H%).
In addition, if by € L* N H', then, forany 0 < s <1,
be C([0,00); H?) N L*(0, 00; H**). (6.2)

Since the global existence and uniqueness can be obtained by a rather standard ap-
proach, we omit the details. We shall only provide the proof of (6.2), which can be
shown by direct energy estimate.

1d
2dt
= —/As(u -Vb) - N°bdx + /As(b -Vu) - A°bdx

IABIIZ> + nll AT bII7

:/As(u®b)~ASVbdx—/As(b®u) - N°Vbdx
<IN (@ )2 A "Bz + |A*(b @ w)llz2 AT+
< (A%l 2 18l 2, + NA®Bllgallullze ) [AT*0] 2

< [Vl 2 1A%l 2l A7)

1 3 1 1
+[IATDI 2 1A =B F [l 22 V] -
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< My ptss s s
< SIATblLa + ClIVullza A2 + C llullza Vel 7 |A*D] 7.

Therefore,
d S S S S
il bl72 + nllAT*b]7: < O Vaull72 ]| A7 + C [lull7e | Vul|72 | A% 7.

Integrating in time and using the fact that u € L>(0, 0o; L) N L%(0, 00; H'), we obtain
the global bound for b in (6.2).

We are now ready to prove the global existence part.

Proof of Theorem 1.1 (Global Existence part). First we represent (u, — u,b, — b) in in-
tegral form. The solution (u,b) of the MHD equation (6.1) is given by

t
u(t) =e""Puy — / e/IAPY - (u @ u)(s) ds
0
t
+ / /EAPY . (b @ b)(s) ds,
0
t
b(t) =e"2by — / =92 . (u @ b)(s) ds
0

t
+ / " =AY - (b @ u)(s) ds.
0
By Proposition 2.2,

t
u, =" ug — / /IAPY - (u, @ uy)(s) ds
0
t
+ / /ImIAPY - (b, @ D,)(s) ds,
0
1
b, =(K] + Kw)bo—l—K (v ao)

/ KI(t = $)(V - (uy ® b)) — V- (b, @ u.))(s) ds.

Taking the difference yields the equation of (u, — u, b, —b),

W — = — /0 L INPY . (1 — u) @ 1) (s) ds
v IIPY - (1 (u — ) () ds
v IBBY (b, — 8) © b,)(5) ds
- IBBY (b3 (b, — 8))(s) ds, (63

1
by — b= (K7 + S KT = e")bo + K7 (3 a0)
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'+4QKﬂv—ﬂ—eWszV~w®u»—V-W®b»w

t

KI8T by (=) + (V- (b =) © ) ds

+ i Klt—s5)(V-(u—u,) ®b)+ V- (u,® (b—0b,)))ds. (6.4)

We now estimate ||u, — ul| . We shall write L4 H2 for L*(0,T; Hz). Taking the

1
4k
L4 H?2

norm L4H 2 of (6.3) and invoking Proposition 4.1 yields

§ SCURIV - (= 1) ® ) g

iy =l

+Cv iV (u® (u— Uw))HLQTH*l
+ Cv 3|V - ((by = 0) @byl 2 7+
+CvTAIV - (0@ (by = b))l 2.

_3
<CvHuy = ull 3 sl

+Cv i —

L4TH% ||u7 L4TH%

+Cvi[lb, — b

L‘%H%HbV”L“TH%

_3
+CvTa[bfl 10y =0l

-1 1
4 1735 4 1757
LiH?2 LiH?2

where we have also used the simple inequality
1 gllzasy < 1oy Ngllzoceey < C U1 p o 1913
Writing u, = u, — u +w and by, = by — b+ b yields
s =l g < C o Ul g+ 100 ) = B = )]
+ Cv iy — by =B, Ly

where we have written

ICF I, = F12, Ly + ol

.1 .1 1.
L1H?2 LY H?2 LYH2

We now take L4 Hz-norm of (6.4) and estimate the right-hand side term by term. By
Lemma 5.2,

1
|53+ 557 = e

1~ b~
=itz + 572 - e,

-1
L%H2 2 L‘%

~ 1~ ~
< ’ (g + 5 K7 — e | g2 bol
2 L4
T L2
1 1~ 1 1
<Ot il = Ot il < O Italse
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By Lemma 4.2,
”
et (WLO)HULH? < 2 lag| 2.
We now estimate the nonlinear terms. We start with

‘ /{:(Kf(t —5) =AYV - (b@u) = V- (u®b))ds

The estimate of this term is very involved. The goal here is to obtain a bound with
to a positive power so that this term can be made small for small v > 0. We divide
our consideration into the high frequency case and the low frequency case. They are
handled differently. We split the spatial integral into two parts,

1
4
LAF2

/t(Kf(t — ) — e”(t_S)A)(V (b®u)—V-(u®b))ds

-1
4
L4 HZ

t
- H|§|é/ (Kg(t—s)—e—w—s)lf\z) €](b®u+ u® b)
0

2|74
L1 L,

<

/Ot (fc;(t—s) e =9)lEP ) E2(0®u+u®b)

= M, + Mo,

LE || 12

where M; and M, are given by

t
M, = /(Ky(t—s) eI |l (E @+ 0 6 b)ds |
0 LTl p2(sy)

t
M= ||| [ (Rie =) = e i G u+ a by
0

4
LrllL2(sy)

Recall that

PR
VRN

1= : forany ¢ €5y,

S -I%

[un

€] < Tv_%nW for any £ € 5.

According to Lemma 3.1, for £ € Sy,
IK7(€,t)] <Oy gz e[ te s

By Young’s inequality for convolution,

= _ 2 3 - -3
M < [(RTO, + hee ) I+ T Bl
T T

L2(Sh)

1 1 _ 3 _ 3 3 3 — —_—
<Ol Fr b gyt g R e u+ v @bl

L2(S1)

1 _1 _ _3 1 1 _ 3, — —
<C H(wn 2T T iy )IETHIEE D @ u +u @b 2,

L2(S51)
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< Oyt ||l lb®u+ u @b s

<Oy s |lgl e u+ u @bl |,

< Cyin 2 (A2 (0@ u)| e + |A2 (u @ D) 12.12)

< Cyin (|| Az ul| 2 galIbll oo + [fuell o o | Al 1 1)

< O 2 (lull i 100 s+ 10l gt 100 )

By Young’s inequality, Lemma 5.2 and the fact that |£| < \/Tgy_%n_% for any £ € Sy, we
have, for any % <s <1,

R [0(0 —e*"t*f'QuLsz e IEBu+a @l

T L2(52)
< 0ot (i) ) e e,
L7 L2(S2)
< Ori iy ||lgF @ u+ u @) s | g
T
s_1 _3.s s s
< CE R A @ w) e + 1A @ )1e]]
T
s_1 _3.s s S
< Ori s (gl A0lga + 1A%l 210, 0 )
T
s_1 _3.s
< O (ull g 100 g s + el i 1005 )
s_1 _§ El
<Cn2mina 2(||u||L4H%||b||L2H1r1L2H1+S

+ HUHLQTHI HbHLQTHlmL%OHQS—l)'

In summary, we have obtained, for % < s <1,

/t(Kf(t —5) ="MV (b@u) — V- (u®b))ds

L‘;H%
1 1
< Cyam s (lull g 10l et + el g 3 1PNt o)
1 3.8
T (lll g g 100 g g e
 lull iz i 10022 s e ).

We deal with the second time integral term of (6.4) in L4TH%. By Proposition 4.3,

/0 Kt~ $)(V - (by ® (uy — ) + (V- ((by — b) ® u)) ds

L4TH%
<ONEIV - (by ® (uy — ) + (V- ((by = D) @u) 2591
< Cyi(|by ® (uy — w)ll 22 + 10y — b) @ ull2.12)
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_3
< O iyl g ey = ull g g+ Nl g g 10y =Bl )

_3
< O (lull g gy + 100 g )1 Cuty — 1w by =B

_3
+ O [|(uy —u by = D)2

)“Lg,g%

L s

The last term in (6.4) is bounded similarly,

/Kw—s (=) b)) +V - (uy @ (b—b,)))ds

L4TH%
<Cy (ell g + HbHLw%)HWV —u,by =

+Cn | (uy = u,by = D)

Mg

L4H2'

Combining the estimates above, we obtain, for % < s <1 (close to 1),

1 _1
3 < Cyillboll gz + Cn 2y flaolle

Ity = 0.y = B) 4 0

3+ llull

LwH2

1 1
+ Cyin 2 ([Jull g2 g [0 paih 1Ol e 3o d)
s_1  _3,s
O3z (ull g W0l g g e
+ [ull g2 go 10l L2 g pos r2e-1)

_3 _3
+C W+ 4)(HUHL%H%+HbHL4H%)H(uw—u,bw—b

+ Ot 1) (uy — u, by — b))

Mg

L4H2

(6.5)

Invoking the fact that the solution (u,b) of the MHD equations is bounded uniformly,

_1 _1
lull g g < w72 llwollze, WO oo g oy < 72 lBollir,

=

lull g s < v H oz, 18]z inngeiee < 0”2 Bollan,
we reduce (6.5) to
(g = u, by — b)”L‘lTH%
< Oy 3G, m) (luollze + Nboll e + llaol|z2)
+Cy (v +77‘%)(IIU|IL4H§ 100y ) (15— 10,By = b

+C (T ) (uy — u, by — )|

)”L4TH%

L HE

(6.6)

Here 3 — i < % for % < s < 1, and () is an absolute constant (independent of ~, v and
n), G(v,n) is a function of v,n only. We apply the bootstrapping argument to establish

a uniform global bound for ||(u, —u,by —
(6.6)

)”L4H*

3

_3 _3
Crvm e ™) (ull g3 + 1100 g )y =205 = B 4 41

Due to the presence of the term in
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we need to implement this process on a finite number of sub-intervals of (0,00). We
recall a basic fact from real analysis.

Lemma 6.2. Let (X, B, i) be a complete measure space. Let f be integrable with respect
to the measure p. Then, for any € > 0, there is a 0 > 0 such that, if A € B and
w(A) <6, then

/A (@) d(z) < e.

Since the solution (u,b) of the MHD equation satisfies

||| < 00, < 0,

L4(0,00;H2) HbHLél(O’OO;H%)
there are T; > 0 such that, for any p > 0, |[(u, b)] 1. is small. In particular, we

L (p,p+T1;H2)
choose T} > 0 such that

_3 _3 1
O(” + + n 4>(||u||L4(p,p+T1;H%) + ||b||L4(p,p+T1;H%)) S 5 (67)
In addition, there is T5 > 0 such that
3 3 1
C(V 4 + ,'7 4)(||u||L4(T2,OO;H%) + ||b||L4(T2,OO;H%)) S 5
Obviously, there is a positive integer ky > 0 such that
koTy > Ts.
We first apply the bootstrapping argument on [0, 7] and then repeat this process on the
time intervals [11, 27], [274,3T4], - -, [(ko — 1)T1, koT}] and [T, 00) to obtain a global
bound. Inserting (6.7) in (6.6) yields
H(u7 — U b’Y - b)HL‘l(O,Tl;H%)

< 371G, ) (luoll = + [1boll e + llaollz2)
_3 _3
+C (7T + 71| (uy = u, by = D)2 (6.8)

L4(0,T1;H%)'
If we make the ansatz that

b)HL‘l(O,Tl;H%) S CZa (69)

[[(uy = u, by —
where Cy satisfies
CrCo(v™i+971) < %
Inserting (6.9) in the right-hand side of (6.8) yields

(g =1, by = D)

||L4(0,T1;H%)
s_1
< 2C1y2 3G (v, m)(luoll L2 + 1boll grnge + llaollz2)
For 7q satisfying (1.6) in Theorem 1.1, namely
s_1
Y% “H@,n)(luollze + 1boll g1aze + llaollL2) < Co

for a suitable function H of v and 7, and sufficiently small Cj, we have, for v < 7,
”(u7 ) b’Y - b)

HL4(0,TI;H%)
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s_1 C
< 2C1 371G, m)(Juollzz + boll ez + llaollz2) < 57

The bootstrapping argument then yields the desired bound on [0,7}]. Repeating this
process on the time intervals [T1,27%], [214,3T1], ---, [(ko — 1)1, koTy] and [T%, 00)
allows us to obtain a global bound on [0,00). Combining with the global bound for

| (u, b)||L4 o1yt ylelds the desired global bound for ||(u,, b >HL4(0,T1;H%)'

Next we explaln that
u, € C([0,00); L*) N L*(0,00; H'), b, € C([0,00); L*) N L*(0, 00; HY).
Due to the global bound for ||(u,, bV)HL‘*(o,oo;H%)’ (u., by) satisfies the integral equation
in L*(0, oc; H%),
w, = ey — /t /ImIAPY - (u, @ uy)(s) ds
0
+ /t /IIAPY - (b, @ D,)(s) ds,
0
b = (K3 + K7+ K7 ao)
[ K 98 =y ) s) s
According to Proposition 4.1, for uy € L2,

By € ﬁ LP(0, o0; H%) N C([0,00); L?).
p=2
For (u,,b,) € L*(0, 00; H?),
V- (uy@uy), V-(by®b,) € L*0,00; HY)
where we have used the bound

1907 9)1 -2 g0y < C 171151 g ]

By Proposition 4.1 again,

a5 (ra)

t [e%s)
/ e INPY - (1, © un)(s) ds € () L(0, 005 HE) 0 C([0, 00); L),

0 p:2

t [e%e)
/ e INPY - (b, @ b,)(s) ds € () L7(0, 00; HE) 1 C([0, 00); L?).
0 p=2

Thus, we have shown that

uy € () LP(0,00; H#) N C([0,00); L?).

p=2
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The proof is similar for
b, € () LP(0,00; E ) N C([0, 00); L*).

p=2
This completes the proof of the global existence part in Theorem 1.1. O

7. UNIQUENESS

This section proves the uniqueness part of Theorem 1.1. As explained below, the
proof can not be achieved via energy estimates. Instead we need to make use of the
integral representation.

Proof of the Uniqueness Part of Theorem 1.1. We first explain why the method of en-
ergy estimates would not work here. The main reason is that some of the terms can not
be bounded suitably. Assume that

(uél),bél),aél)) € L*x H' x L* and (uéQ),béQ), a((f)) € L?*x H' x L*

are two initial data. Let Wi, 6{)) € L(0, 00: L2) N L2(0,00; H') and (u{?,b)) €
L>(0, 00; L*)NL*(0, 00; H') be the corresponding solutions. We estimate their difference

(ﬂv b) - ((u'(yl)v b(yl)) - (u'(y2)7 bf(yQ))
We explain that the energy method of estimating the L?-norm of the difference would

not work! In fact, if we proceed with this approach, we would encounter a term that
can not bounded. The difference (u, b) satisfies

atu+u7 Vu-—VP—i—l/Au—l—b Vb+b- Vb — 7 vul?
~Oub + 0+ ul - Vb =nAb+ b Vi + b val? — @ - Vb

The L?-norm obeys
1d

2dt”<u b)||L2 + VHVU/HLQ +T]||Vb||L2 - _/7//5' attgdx—i_l,

where

I= /(?5- Vb — - Vul?) - lide + /(?5- Vul? — - Vo) - bdz.

Integration by parts yields

/?;. b di — %/Z} b dz — 0|2,
Therefore,

1d -~ N ~ ~
st (W@ DI+ 2y [5-08ds ) + IV + 0l VBI =503 + 1. (7.0

Dotting the equation of b by 8,55, we have

1d
5= (V1912 + nlI VI + 10:Bl13- = J, (72
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where

/ab a4 b Vi b Vel — i Vb)) do.
(7.1)+2vx (7.2) yields

1d -~ ~ ~
5 (W@ DI+ 27 [50bds -+ 121001 + 2 T12: )

+ V||Vl 7a + nll VBl + y10bl72 = 1 + J.
I can be bounded by
11 < (IVuf2lz2 + [IVOP [ 2) ([l 2 + [[B]] 20)?
<Vl + 1195
+C (V@32 + VB2 |72 11(E )]

But unfortunately J can not be bounded suitably. For example, the term in J

A

—/3,;6- u(vl) - Vbdz
can not be bounded. We can only use L? on 8,;5 and VZ, and then we have to take
L*°-norm of ugl). But then we need more than one-derivative since
HuS)HLw <C Hugl)HHs, s> 1.
which is beyond the regularity of ugl),
(ul), b)) € L(0,00; L?) N L*(0, 00; H').
This explains why the energy method fails.

In order to prove the uniqueness, we use the integral form, which has an advantage.
(w,b) satisfies

U= eutA(u(()l) _ qu))

t
- / IRV - (ul) © T+ @ @ u)(s) ds
0

t ~ ~
+ /0 eIAPY - (b @ b+ b @ bY)(s) ds,

1
b= (K5 + 5 KD —86) + K7 (7 (ag” — ag”))
1 7 1 ~
/K“’ ug)-VlH—bg)-Vu

+b- Vuﬁf) — - Vbﬁf))(s) ds.

Taking the Xp := L*(0,T; H %)—norm and estimating the terms via the propositions in
Section 4, we have

~ _ 1
[l xr < vt uf? = uf? 12
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+C i ((||ul! HXT-%HU HXf)HuHXf (169 1z + 185 e )l x.)

_1 1 2
1Bl x, < C (7 + 1) [0 = b2 s + C7af — a2

+ O3 (P e+ 1P ) Bz + B e + 152 )] ).

Adding the inequalities and taking 7" > 0 to be sufficiently small such that

C w5 4l er + 108 e 60 e + [61x,) <

we obtain

~ ~ _ 1 1 _ 1 1
[l + Bl xy < C (71 +71)]u” — uﬁf’up +C (1 )65 = 08 |

1
+ O illal) — a2 + = <HuHXT+||bHXT>

Therefore,

HMMfHWHTSKNV4+7HWo—uemﬁ+ﬂHn4+7)W
+2C 74 lag” — af|| 2.
In particular, if
(2.0, 0) = (2,2,
then, on [0, 77,
u=0, b=0.

— b ||

33

Repeating this process on the time intervals [T, 2T, [27",3T] and so on yields the desired
uniqueness on any time interval. This finishes the proof for the uniqueness part.

8. HIGH REGULARITY

O

This section establishes the higher regularity part for b, in Theorem 1.1, namely for

any 0 < s <1,
b, € C(0,00; H*) N L*(0, 00, H*).

(8.1)

Proof of the Higher Regularity Part for b, in Theorem 1.1. The regularity in (8.1) can

be verified using the integral form of b,. Recall that

1
by = (K¢ + ;Kb + Ki(vao)

/ KI(t = $)(V - (u, ® b)) — V- (b, @ u.))(s) ds.

Applying A* and taking the L?-norm yield
1

A, s < AT + S KDl + AT (7 a0)
t

b [ K9 0) - V- 4 @ w0
0

L2
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Invoking the upper bounds on K| and K| in Lemma 3.1, we have

. ) !
I4°03 + 3EDles < © ([P Ba(e)de) < C ol

where we have used the fact that |K]|,|K7| < C. Using the facts from Lemma 3.1 that
5 € Sla or 4’777|€|2 > %17

|[A(17| < C’y_S/Qn_S/Q|£|_867§t forany 0<s<1,
and for £ € Sy, or 4yn|¢]? < 3,

7| < Co 2P| se ! 4 C et

we obtain

VI K o2 < C 2 / €€ ()2 de
S

_3
+ Oy [ gy TlEl e B tfag (€) ) dE
Sa

F O [ JEPe I G (€))7 de
Sa

< CY* 7 %ao|F2 + 072/ Y 0@ (€)1 dE < C P08 |aol|7 -
Sa
That is,
VA K aol|r2 < Cy' 2072 |ag]| 2.

We turn to the nonlinear terms. We start with the first one

A /Ot KI(t = $)V - (u, @ b,)(s) ds

L2

< HHA /Oth(t—s)V~(u7®b7)(s) ds

L2 111,52 (0,00)

< HH [ I€PIRT = sl b, () s
0

L2 11 120 (0,00)

t
1 1 slel—1 —L(t—s —
<Cvy 2n 2 ‘/ |f| |§| le & )|§||uv®bv|(3>d‘9
0 L2(51) || 1o (0,00)
t
_1 1 slel—1 —3 (t—s -
TOy H/ €1°1€] e g [ @ by (s) ds
0 L2(52) || o< (0,00)
t
s, ,— 2(t—s NN
e / €7 i D B, | (s) ds
0 L2(S2) || 100 (0.00)
t
Sc'fénié H/ |5|86_%(t_8)‘u7®b7|(5>d3
0 LOO(O,OO) LQ(RQ)
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t
/0 € i @ B | (s) ds

Lo (0,00) L2(S2)
1 1 1
<O~ 2p 2 H Tay? As b))l 2
=~ 50 <l 5 (0,00) | (u7® )HLﬁS(O,oo) L2(R?)
+C —nl¢f*t As b
€ Lii(Ooo || (u,y@ )H 1275(0700) L2(S2)
S 1
< T 5m,m 9 S
SR [ LNCAEL H] SN .
s _1 s
< Oz 2|18y @ b)) 2l 12 o)
_s _1 s
< Oz 2 {180y | zallby - + s - [|AD, zall 2 o
< Chy i 2|AY e < o0,

‘|L1%(0,00;L2)|| 7||L1%(0,00;L2)

where the last inequality holds due to the fact that wu,, b, € LP(0,00; H %) for any

2 <p< oo, and
1 1 1 1 1 s 1

1
g r 2 q 4 4 r 4
In summary, we have shown that, for any 0 < s < 1,

B~ ®

s

Hb’YHLOO(O,oo;HS) < C HbOHH1 + 071_%77_5

GJOHLQ
14+s

_s _1 1t+s
Oy AT ] 1l et 00022

Similarly, we can show that [|b][ ;2 (g .1+ admits the same bound. This completes the
proof of the higher regularity part. 0J
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