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Abstract

Enabling the vision of on-demand cyber manufacturing-as-a-service requires a new set of cloud-based
computational tools for design manufacturability feedback and process selection to connect designers with
manufacturers. In our prior work, we demonstrated a generative modeling approach in voxel space to model the shape
transformation capabilities of machining operations using unsupervised deep learning. Combining this with a deep
metric learning model enabled quantitative assessment of the manufacturability of a query part. In this paper, we extend
our prior work by developing a semantic segmentation approach for machinable volume decomposition using pre-
trained generative process capability models, which output per-voxel manufacturability feedback and labels of
candidate machining operations for a query 3D part. Using three types of complex parts as case studies, we show that
the proposed method accurately identifies machinable and non-machinable volumes with an average intersection-over-
union (IoU) of 0.968 for axisymmetric machining operations, and a class-average F1 score of 0.834 for volume
segmentation by machining operation.

Keywords: semantic segmentation, unsupervised learning, convolutional neural network, process planning,
feature recognition

1. Introduction

With the rise of digital transformation and cloud computing in the manufacturing industry, on-demand cyber
manufacturing services have begun to emerge with the goal of connecting geographically distributed designers with
manufacturers through online interactive design tools and instant job quotes [1]. Because custom parts may prove
technically or economically impractical to fabricate, there is a need for early-stage cloud-based manufacturability
analysis and automated process selection. While commercially available computer aided design (CAD) tools often
include design for manufacturability (DfM) modules [2], such a rule-based manufacturability checker is only developed
for generic manufacturability rules, which do not factor in the supplier’s actual manufacturing capabilities. In addition,
DfM modules often require significant processing time to evaluate a query part, which makes them undesirable for
deployment in a cloud-based environment.

Automated manufacturability analysis and process selection are long-standing challenges at the forefront of
computer-aided process planning (CAPP), which seeks to bridge the gap between CAD and computer aided
manufacturing (CAM), and aims to automatically generate a process plan from a CAD model of the part [3]. A major
body of early literature targeting manufacturability analysis and process selection in machining is focused on extracting
manufacturing features from 3D CAD models using feature recognition (FR) technologies [4]. The objective of FR is
to first recognize a set of known features and then connect these features to manufacturing capabilities. Most recent
efforts are focused on developing deep learning (DL) methods to recognize features from different representations of
CAD models such as boundary representation [5, 6], surface representation [7, 8], and volumetric representation [9-
11]. For instance, Colligan et al. [5] presented a hierarchical graph neural network (GNN) to identify machining
features. Wang and Rosen [8, 12] developed a process classification method using Heat Kernel Signature and point
cloud-based convolutional neural network (CNN). Zhang et al. [10] proposed FeatureNet that utilized a voxel-based
3D-CNN to recognize manufacturing features. Ning et al. [13] presented a hybrid machining feature recognition
approach that combines graphs with 3D-CNN. Zhang et al. [14] developed an artificial bee colony algorithm with a
neural network to recognize features in a STEP-NC part. Recent advances in object detection using methods such as
single-shot multibox detector (SSD) [15, 16] and semantic segmentation [17, 18] have also permeated into FR. Shi et
al. [19] presented an SSD-based machining feature localization and recognition network. Zhang et al. [20] proposed a
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multi-task neural network using instance and semantic segmentation to identify machining features. While the feature-
based approaches have demonstrated varying levels of success in FR, the definition of features is ambiguous across
design and manufacturing systems, which adds to the challenge of determining a suitable manufacturing process for a
given feature. Because a feature may be produced by more than one manufacturing process, feature-to-process
matching is not trivial. In addition, it has been reported that complex/intersecting features can be difficult to identify
[21].

Volumetric decomposition is a notable approach proposed to resolve the challenges in identifying
complex/intersecting features in a query part [22]. Instead of identifying a clearly separate feature, cellular
decomposition [23], convex hull decomposition [24], and maximal feature decomposition [25] have been proposed to
convert the delta volume, which is the Boolean difference between a raw stock and a complex query part, into
identifiable manufacturing features. Prior works have demonstrated the capability of fitting a sequence of
manufacturing features to a delta volume, from which a “machinable volume” is identified [26]. Because machining is
a subtractive process, “machinable” implies that volumes are subtracted from a raw stock and arranged in an order,
such that the volumes are accessible for machining after the preceding volume has been removed [27]. However, critics
argue that volumetric decomposition approaches may result in an excessive number of manufacturing features from
which determination of the process plan is impractical [28]. Recent work by Nelaturi et al. [29] and Behandish et al.
[28] on feature-free spatial planning of machining and hybrid manufacturing has focused on developing a systematic
methodology to identify process primitives of a given part using filter-based sweeping operations of “manufacturing
capability” that are pre-defined for a specific cutting tool/nozzle based on the allowable motion and tool/nozzle shape.
Using the process primitives on a query part, a Boolean enumeration is employed to identify the machinable volumes
and candidate processes [28, 29]. However, a disadvantage of this approach is the difficulty in pre-defining the
manufacturing capability of a process. Manufacturing capabilities of a large number of processes can be difficult to
determine and hard-code, as well as computationally expensive to permutate for identifying a process primitive.
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Figure 1. Representative literatures in volumetric decomposition for process planning automation: a) feature-based
approach [26] and b) primitive-based approach [29].

As shown in Figure 1, while feature-based approaches have demonstrated success in recognizing geometric
features in a CAD model, manufacturing processes must still be automatically assigned to the recognized features to
realize the process selection step in automated process planning. For instance, the sub volumes shown in Figure 1(a)
do not represent manufacturing processes directly, but rather are assumed to be manufacturable by some known
processes. Therefore, a significant research gap still exists in bridging design and process planning to enable process
planning automation. In the context of cyber manufacturing, a set of cloud-based computational tools are necessary for
efficient manufacturability feedback and automated process selection. Here, we envision a platform-based process
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Figure 2. Overview of the proposed generative semantic segmentation approach with a) pretraining of process
capability models, and b) a window-based feature scanning algorithm.

planning tool that visualizes manufacturability of a given design and suggest candidate machining processes in an
interactive fashion [30]. To this end, we developed a generative modeling approach in voxel space to model the
machining process/operation capabilities using unsupervised deep learning [31]. It was further demonstrated that
combining a deep metric learning approach with data-driven process capability models enables quantitative assessment
of manufacturability of a query part [32]. However, utilizing the data-driven machining process capability models for
identification of candidate machining operations for producing complex query parts with multiple features remains a
challenge. Therefore, in this paper we extend the methodology of process capability modeling to answer the following
questions: (1) How can we efficiently identify machinable volumes using process capabilities learned from machining
data? and (2) how can we assign candidate machining process labels to the identified machinable volumes? These
questions are answered through a semantic segmentation approach for machinable volume decomposition using deep
generative pre-trained process capability models. For purposes of illustration, we limit our scope to machining
operations performed on a lathe, namely turning, grooving and chamfering. However, the methodology is general and
can be extended to other machining operations as well. Figure 2 shows the workflow of the proposed generative
semantic segmentation approach. The process capability models, along with a deep metric learning model, are trained
on a synthetic dataset consisting of machinable volumes generated by turning, chamfering, and grooving operations.
An iterative window-based feature scanning algorithm is developed to identify a machinable volume and to assign
machining operation labels to each voxel contained in the volume. The performance of the generative semantic
segmentation approach for machinable volume decomposition is evaluated through tests on eleven complex cases of
three different types.

The rest of the paper is organized as follows. Section 2 introduces the generative semantic segmentation of
machinable volumes by leveraging the pre-trained machining process capability models. Section 3 presents the results
of three types of case studies with eleven complex parts and three realistic parts from a public repository. The paper
concludes with a discussion of the effectiveness and limitations of the proposed generative semantic segmentation
approach and provides recommendations for future work.

2. Generative semantic segmentation

2.1 Generative machining process capability modeling for manufacturability analysis and process selection

In our prior work, we presented three separately trained deep unsupervised learning models to learn the shape
transformation capabilities of turning, grooving, and chamfering, which are lathe-based machining operations [31]. It
was demonstrated that the shape transformation capability of a machining process can be learned as a latent probability
distribution from voxelized training data. However, a limitation of this approach is that a human must be incorporated
into the computational loop to manually assess manufacturability and perform process selection through visualization.
To address this limitation, we extended the generative modeling approach by incorporating deep metric learning to
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enable quantitative evaluation of the similarity of the part shapes output by the pre-trained machining processes
capability models in response to the query part shapes [32]. Specifically, an autoencoder-Siamese neural network (AE-
SNN) based generative model was developed and shown to outperform discriminative models trained on the same
dataset in manufacturability analysis and process selection [32]. Because generative models capture the underlying
manufacturing process capability and not a discriminative boundary between classes, the AE-SNNs do not require
unmanufacturable parts in the training dataset for accurate manufacturability analysis, which is an advantage over
traditional classification models since unmanufacturable parts are typically not available. Figure 3 shows the
architecture of the AE-SNN adopted in this work.
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Figure 3. The architecture of AE-SNN, which consists of Encoder, Decoder and Siamese neural networks, all of which
use 3D-CNN as their backbone.

In this work, we investigate the possibility of developing a semantic segmentation approach for machinable
volume identification to evaluate manufacturability and to identify machining operations for complex part geometries
that require more than one operation to produce them. As an extension to AE-SNN’s ability to determine
manufacturability and select an operation for a query part feature, the outputs of the semantic segmentation approach
are the manufacturability of and machining operations for the machinable volumes in the voxelized query part.

2.2 Synthetic data generation and processing

We created three synthetic datasets consisting of axisymmetric 3D CAD models of parts machinable by turning,
grooving, and chamfering operations carried out on a lathe. These part shapes in the dataset generally follow the basic
feature generation approach described by Peddireddy et al. [33]. The starting geometry of parts in all three datasets
was a solid cylinder. We set the length of the cylinder to 100 mm, while the diameter was varied from 10 mm to 100
mm to produce the parts in the dataset. As shown in Figure 4, each part was parameterized using feature size and
feature position parameters. It is evident that turning, grooving, and chamfering require different number of parameters.
In addition, step turning, taper turning and profile turning are considered in this work as subsets of the turning operation.
For profile turning, both convex and concave shapes were generated for training. In all, 1600 models for step turning,
1226 models for taper turning and 376 models for profile turning were generated, totaling 3202 parts for the turning
operation. Similarly, we generated 100 parts for grooving and 64 parts for chamfering operations. A 70-30 data
distribution was used for the training-validation split. The CAD models were generated automatically using a Siemens
NX macro. We used binvox [34], a voxelizer library, to convert the generated CAD models into their voxelized
representations with a resolution of 128 x 128 x 128.



Yan et al. 2023

—E— - Parameters
d
Step- d: radial depth of cut
turning F x: step turn length in longitudinal axis
——
Taper- T¢  d: radial depth of cut at smaller taper end
turning / x: taper turn length in longitudinal axis
rp
: radial depth of cut at smaller profile en
A" d:radial depth of cut at small file end
Profile- x: profile size in longitudinal axis
turning r: radius of profile
? p: convexity indicator of profile
. : radial depth of cut for groove
Groovin 14 4. radial depth of cut f
9 -l- w: width of the groove
[ |.|__=£1
. ¢;: radial chamfer size
Chamfering

¢, longitudinal chamfer size

---------------- Im—==="
1 ]
1
! Bid A .
\ Turning 1, Grooving 1 ,Chamfering
Step- ~ Taper-  Profile- |1
turning  turning turning

1
1
]
1
1
]
B ! Joint AE-SNN
]
1
1
]
1

En—/

i S g iy

—
\ Machinable
’, Volume
Identification
'y T ¥ T =E=======
Machining
Operation
Selection

Figure 4. Synthetic data generation based on parameters for turning, grooving, and chamfering operations.

For each voxelized part in the dataset for a machining operation, the corresponding delta volume was determined
by subtracting the voxelized part from a voxelized solid cylinder of the same diameter as the part. The delta (or
machinable) volumes for each operation were used to train an autoencoder (AE) model for that operation, resulting in
three AE models for the three machining operations. In addition, an AE-SNN model was also trained on the combined
dataset of delta volumes for all three operations.

2.3 AE-SNN Architecture and Training

The specific model architecture and layer constructions of the AE-SNN follow that reported in [32]. As shown in
Figure 4, three encoder and decoder pairs were trained (one each for turning, grooving, and chamfering), while an AE-
SNN model was trained on the combined dataset. The encoder takes voxelized delta volumes from the training dataset
as input to learn the corresponding latent probability distribution of the shape transformation capability of the
machining operation, while the decoder generates realistic 3D shapes that can be produced by the operation, and the
SNN outputs a similarity score between 0 and 1 for a pair of input delta volumes. Each voxelized input volume has
dimensions of 128 x 128 x 128. The encoder has four 3D-convolutional (Conv3d) layers followed by the Leaky
rectified linear unit (LReLU) activation function, defined as LReLU(x) = max (X, yx), where v is set to 0.2. After the
convolutional layers, a fully connected layer outputs a latent vector with dimension of 128 X 1. The decoder closely
mirrors the encoder. The first fully connected layer expands the dimension to 262144 x 1, which is followed by four
3D-transpose-convolutional (ConvTranspose3d) layers. The Sigmoid activation function, defined as o(x) =
[1+ e™*]71, is applied to enforce a value between 0 and 1 for each voxel in the 128 x 128 x 128 output. The SNN
has a network structure similar to the encoder with an additional cosine similarity layer and the Tanh activation
function, which is defined as T(x) = (e* — e™*)(e* + e™*)~1. Because Tanh outputs a value between -1 and 1, we
linearly transform the output by S = (T'(x) + 1)/2 to ensure that the output is between 0 and 1. Note that both similar
and dissimilar pairs of samples are required to train the SNN. In the training dataset, a similar pair is composed of an
anchor and a positive, and a dissimilar pair comprises the same anchor and a negative. For a given input, the output of
the decoder is used as the anchor, the input is used as the positive, and a different sample randomly drawn from the
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training dataset is used as the negative.

For a typical encoder and decoder pair, a simple reconstruction loss function is defined as follows:

1% = xI2 (1)

where x is the encoder input, X is the decoder output. Note that the prediction of the machinable volume should not
exceed the query delta volume, as excess material removal (overcutting) is undesirable; in this work, the reconstruction
loss is modified as a weighted reconstruction loss to penalize overcutting as follows:

a||Xr — xfllz + 1% — x¢ll2 (2

where x; are the voxels with ground truth as false (no delta volume), X are the corresponding predictions, x; are the

voxels with ground truth as true (contains delta volume), and their corresponding predictions X;. In this work, we set
a; to 5 to increase penalty for overcutting during prediction.

For the SNN, a triplet loss function is used:
azlog(1 —S(xg,x,)) + logS(xa,xp) 3)

where S is the output of the Siamese neural network, and x4, x;), and x, are the anchor, positive, and negative in a
triplet, respectively. The value of a, in this work is set to 2.

The models were constructed using PyTorch [35] and trained on an HP ZBook workstation with a NVIDIA RTX
A2000 GPU. Due to data imbalance among the three machining operation classes, the models were trained for the
same number of batches, not epochs. The batch size in this work is one, and each model was trained for 40000 batches,
which on average took approximately 8 hours. Note that the training time may improve with more GPUs used in
parallel. Adaptive moment estimation (Adam) [36] was used as the optimizer with initial exponential decay rates of
the first and second moments of gradient, §; and f3,, set to 0.8 and 0.99, respectively. All learning rates were set to
6x10™*. These training hyperparameters were manually tuned in this work.

The trained AE-SNN and AE models were evaluated by observing the training losses. Figure 5 shows the AE
reconstruction loss given by Eq. (1). As training progresses, the reconstruction losses of all four models decrease and
converge to a level close to zero after 40000 training batches. Note that the grooving and chamfering training losses
had lower initial loss and decreased faster compared to turning model. This is the expected training behavior as the
number of data points and data diversity in these two datasets are much lower than the turning dataset. Similarly, the
triplet loss converged to a low level after 40000 batches.
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Figure 5. Training reconstruction losses for the combined model, turning model, grooving model, and chamfering
model.

Additionally, the classification performance of the trained AE-SNN models were evaluated using the validation
dataset, where the AE models were tasked to generate the closest matching output based on the features in the validation
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dataset. Figure 6 illustrates the validation confusion matrix, which indicates that the AE-SNN models were able to
distinguish among the basic operations in the dataset presented in section 2.2.
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Figure 6. Validation confusion matrix for turning, grooving and chamfering operations.

2.4 Window-based algorithm for feature map generation

In the instance segmentation literature, Region Proposal is commonly adopted to locate objects in a 2D image by
scanning with anchor boxes, from which the existence and locations of objects in an image can be determined [37].
Subsequently, an object class label is assigned to the isolated object using a multiclass classification model. Semantic
segmentation goes one step further by assigning object class labels to each pixel in the image.

A key challenge in applying semantic segmentation to the manufacturing domain is the lack of pre-segmented
training data. In this work, we use pre-trained generative models trained on machinable volumes to scan the query
parts, which eliminates the need for a segmented training dataset. Similar to the instance and semantic segmentation
literature, where the metric of intersection-over-union is used with a threshold, ¢4, to isolate the locations of potential
objects, here we assign a similarity score, S, to each isolated anchor window for outputs of the pre-trained process
capability models. A voxel-space merging operation is used across the feature maps of a given operation to merge the
similarity scores for each voxel in a query delta volume. An argmax operation is used to assign a process class label to
each voxel across the three pre-trained models of turning, grooving and chamfering operations. For semantic
segmentation, a noise reduction post-processing operation based on a 26-neighborhood connected component analysis
[38] is implemented with a threshold of 100 voxels. The output is a fully segmented query delta volume for each pre-
trained machining operation. Specifically, the pretrained generative process capability models for the three machining
operations considered in this work, the pretrained Siamese network, the window sizes in voxel space, and the step sizes
along the longitudinal axis of the part are inputs to the algorithm. We also ensure that the axes of the input object satisfy
the three axes specified in the training dataset, where the first axis is the longitudinal axis. In the initialization step, a
placeholder of segmentation logits of the query part size with an additional channel dimension equal to the number of
process capability models is created. After that, for each process capability model, the part is scanned using each
window size over all step sizes. If the window is not empty, the output of the process capability model is generated and
the similarity, S, between the input and output of the generative process capability model is computed. If S is greater
than the segmentation logits of the window from the previous step, update the placeholder logits with the new higher
output. Here, the window sizes are set to 32 or 16 voxels, whereas the step size is set to 1 voxel.

Figure 7 shows a flowchart for the window-based operation scanning algorithm, which is used to assign similarity
scores as segmentation logits. In this work, the dimension of segmentation logits is 3 X 128 X 128 x 128, where 3 is
the channel size equal to the number pre-trained process capability generative models. Argmax is used across the first
dimension to obtain integer labels (i.e. 0 = turning, 1 = grooving, 2 = chamfering) representing the corresponding
machining operations.
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Figure 7. Flowchart of the window-based operation scanning algorithm.

3. Case studies

3.1 Case overview

The objective of the case studies presented here is two-fold: (1) evaluate the effectiveness of the proposed method
for machinable volume identification, and (2) assess the performance of semantic segmentation by machining
operations. Eleven complex 3D parts belonging to three case types shown in Figure 8 were created and evaluated as
query part inputs to the proposed method. Specifically, Type 1 cases include five manufacturable query parts with
ground truth machining operation labels; Type 2 cases are curvilinear query parts, which do not have ground truth
operation labels based on the training dataset; Type 3 cases contain non-axisymmetric features that cannot be
manufactured by the axisymmetric machining operations considered in this work.

a) Type 1 Cases b) Type 2 Cases c) Typ
I

Figure 8. Case study overview: a) Type 1 cases are manufacturable query parts with defined operation ground truths,
b) Type 2 cases are curvilinear query parts without ground truth, and c¢) Type 3 cases are query parts with features
unmanufacturable using turning, grooving and chamfering operations.
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3.2 Machinable volume identification

Two metrics are used to evaluate the performance of machinable volume identification: intersection over union
(IoU) and unmanufacturable feature indicator (UI). IoU is a metric that has been commonly used to evaluate the match
between two objects. The value of IoU ranges between 0 and 1, where 1 indicates 100% overlap between the two
objects, and 0 indicates the two objects are mutually exclusive. In the voxel-space, loU is computed by the number of
intersecting voxels divided by the number of voxels that are collectively occupied by the two objects. In addition to
IoU, Ul is a metric based on connected components analysis in voxel space, which evaluates the residual voxels after
identified machinable volumes are removed. Two occupied voxels are deemed connected if they coexist in a 26-voxel-
neighborhood, which is a 3 X 3 X 3 grid excluding the reference voxel. In this work, we set a threshold of 100
connected voxels to identify the presence of an unmanufacturable feature in the residual.

Metrics:

Intersection over union (loU)

Unmanufacturable feature indicator (Ul)
Query Voxel Voxel Residual IloU Ul
Part Input Output

2 - - 0.9873 No
— | =
b) (et - . o 09425 Yes

Figure 9. Machinable volume decomposition examples: a) Type 1 example where machinable volumes are fully
identified without significant residual, b) Type 3 example with significant residual voxels, which indicates that
additional manufacturing operations are needed to fully manufacture the query part.

Figure 9 shows two example case studies for machinable volume identification. Figure 9(a) is a Type 1 case that
has ground truth labels for the operations, and the query part is manufacturable based on the ground truth. The IoU for
the predicted output and input is 0.984, and the UI for this part is false, which indicates that this part is manufacturable
by the axisymmetric operations considered here. Figure 9(b) is a Type 3 case that contains non-axisymmetric query
volumes, which in this case are not manufacturable by the axisymmetric operations. The residual of the part shows the
volumes that cannot be manufactured. Although the IoU is still quite high (0.943) indicating that the majority of the
query part can be manufactured by the modeled machining operations, the UI returns true, which correctly points to
the presence of unmanufacturable volumes after removal of the machinable volumes identified by the axisymmetric
operations.

Figure 10 shows a chart of inputs, outputs, residuals, and evaluation metrics for machinable volume identification
for all eleven complex geometries. With the exception of two Type 1 cases, which are misclassified as containing
unmanufacturable volumes, the manufacturability of the remaining nine geometries from different case types are
correctly predicted. The average loU of 0.968 demonstrates that the majority of the delta volumes are manufacturable,
which matches intuition as all cases contain mostly axisymmetric volumes. Note that, except for Type 3 cases, all
residuals in other cases tend to be thin axisymmetric profiles. This could be due to the lack of similarly thin training
data for any machining operation. While in practice such thin profiles maybe achievable, no distinctions can be made
between the operations due to the limitations of voxel resolution, e.g., a chamfer and a groove with only one voxel
thickness along the longitudinal axis are equivalent in the voxel domain. Such limitation is an inherent disadvantage
of utilizing voxel representations for 3D objects in general. Because the total number of voxels scale cubically with
increase in the number of voxels in the x, y, z directions, increasing the resolution of the 3D models requires much
larger memory and computational capabilities. A possible solution to this limitation is to use a sparse-voxel
representation such as an octree. In an Octree-based voxel representation, only voxels near the surface of the object are
stored and used in computing and rendering, which significantly reduces the computational and memory cost. Recently,
researchers have introduced methods to train deep learning models on sparse-voxel representations [39, 40]. However,
how to develop deep learning methods for cyber manufacturing and process planning using hierarchical sparse voxel
representation remains an open problem.
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Figure 10. Machinable volume identification case study. From top to bottom: CAD model of query parts, input query
parts in the voxel domain, output reconstructed parts from the generative models in the voxel domain, residual
difference between voxel outputs and inputs, loU and UI as metrics.

3.3 Semantic segmentation by machining operations

In addition to identifying the machinable volumes at the voxel level, another objective is to obtain per-voxel
operation labels. Precision, recall, and Fl-scores are used as evaluation metrics for semantic segmentation by
machining operation. These metrics are defined as follows:

Precision = True Positive 3)
" True Positive+False Positive

Recall = True Positive (4)

True Positive+False Negative

F1 = 2 x PrecisionxRecal )

Precision+Recall

Using the turning operation as an example, true positive refers to a correct prediction of turning for a given voxel
that matches the ground truth; a false positive means a voxel is falsely predicted as manufacturable by turning, when
in fact its ground truth is another operation; and a false negative occurs when a prediction falsely predicts a different
operation for the given voxel, when its ground truth is turning. F1 is the harmonic mean of precision and recall, which
accounts for both.

These performance metrics require a comparison to ground truth labels. Among the eleven cases, only Type 1
cases contain ground truth labels, which are used to evaluate the semantic segmentation performance. Figure 11 shows
two examples of semantic segmentation predictions. Figure 11(a) shows a query part that requires turning, grooving,
and chamfering operations based on the ground truth. Qualitative visualization indicates that the prediction correctly
identifies these operations at their respective voxel locations. For turning and grooving operations, the F1 scores are
0.962 and 0.976, which suggest that most of the voxels belonging to turning and grooving have been correctly
identified. However, the chamfering operation only reached F1 score and recall of 0.785 and 0.649, respectively, which
are much lower than for the turning operation.
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Figure 11. Semantic segmentation examples: a) Type 1 case with predictions for grooving, chamfering and turning
operations, b) Type 1 case with only tuning and chamfering operations. In both cases, segmentation metrics for
chamfering are the lowest among all operations.

Similar results are observed in Figure 11(b) where the F1 score for turning (0.998) is much higher than the F1
score for chamfering (0.839). Two possible reasons could have led to this result. First, because the volume removed
by chamfering is small compared to the volume removed by other operations, any missed prediction has a higher impact
on the evaluation metric. Similarly, because of the small volume, the chamfering operation is harder to capture,
considering the fixed kernel size of the deep learning model.

Figure 12 shows the semantic segmentation results for all five Type 1 cases. Overall, the semantic segmentation
by machining operation reached a class-average F1-score of 0.834. It is evident that turning operations reached high
F1 scores for all five parts while the grooving and chamfering operations resulted in lower F1 scores. The same parts
with misclassified machinable volumes yielded the lowest grooving and chamfering F1 scores. The result aligns with
the intuitive observation that turning removes most of the volume in the cases presented here. Because chamfering and
grooving operations remove less material than the turning operation, a higher similarity score is given to turning when
considering large continuous volumes. Only when window sizes closely match the volumetric range of grooving and
chamfering operations will they score a higher similarity than turning. This is a unique challenge in semantic
segmentation for manufacturing. Unlike semantic segmentation for generic objects where discrete objects can be
localized via transitions in pixel values, in manufacturing the machinable volumes are connected with few hints to
assist in localizing the operation.

Another possible cause of this result is the geometric overlap of operations used in training. For instance, while
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Query Voxel Voxel Ground Prediction Turning Turning Turning Grooving Grooving | Grooving | Chamfer Chamfer Chamfer
Part Input Qutput Truth Precision Recall F1-Score | Precision Recall F1-Score | Precision Recall F1-Score

-— - - 99.9% | 99.8% | 99.8% N.A. N.A. N.A. 99.9% | 72.3% | 83.9%
ﬂ.‘ . . 86.9% | 97.8% | 921% | 98.8% | 77.5% | 86.9% N.A. N.A. N.A.
rpy
w 99.8% | 88.0% | 93.5% | 52.4% | 89.5% | 66.1% N.A. N.A. N.A.
Pran
|l ' . - 93.5% | 93.9% | 93.7% N.A. 0% N.A. 99.8% | 357% | 52.6%
i
92.7% | 99.9% | 96.2% | 96.8% | 98.4% | 97.6% | 99.2% | 64.9% | 78.5%

Figure 12. Semantic segmentation case study. From left to right: CAD model of query parts, input query parts in the
voxel domain, output reconstructed parts from the generative models in the voxel domain, ground truth labels for
each voxel, prediction labels from the generative models, precision, recall and F1-Score for turning, grooving, and
chamfering respectively.

the feature sizes of the chamfer and taper turning operations used in training are different, the volumes removed by
these operations have the same shape, which may have contributed to misclassification of the operation label. Such
geometric overlap is particularly troublesome when the resolution of the voxel representation is relatively low. As
noted in Section 3.2, the current voxel resolution of 128 X 128 X 128 cannot be significantly increased due to space
and computational time complexity. Small features such as chamfers and grooves cannot be effectively distinguished
when useful geometric information is lost in the process of converting the features to dense voxel representations.
Future studies on semantic segmentation by manufacturing processes should focus on utilizing deep learning on a
hierarchical sparse voxel representation, which has the potential to access geometric differences of features embedded
in a much finer voxel resolution.

Furthermore, although we limited the parts in the training dataset to only one ground truth label for each operation,
in reality, more than one possible operation can be used to remove a given machining volume. For example, one of the
predicted grooves in the third part in Figure 12 is larger in diameter than the ground truth, and, by definition, many
voxels are falsely predicted as grooves. However, the solution provided by our method can technically still produce
the desired shape. While this solution might not be preferred, it is still valid if volume is the only factor considered.
This suggests that there are other considerations such as process precedence constraints or user preference to be
included in future research, as process selection is multi-objective in nature.

3.4 Visualizable manufacturability feedback for cyber manufacturing services

With the rise of platform-based manufacturing [30], a designer is presented with a large number of manufacturing
resources. It can be tempting to assume that a design can always be manufactured if a manufacturing supplier with the
required capability is available. However, not all manufacturing suppliers are equipped with the necessary
manufacturing processes/operations for a given design. Our method enables a visualization-based evaluation of the
manufacturability of a query design based on available manufacturing operations. Therefore, the designer can
interactively evaluate whether a part design containing multiple features is manufacturable by a particular supplier
through visualization. If additional operations are required to manufacture the query part, the designer can either choose
to reduce the part complexity and conform to the available manufacturing operations or select a different manufacturer
with additional process capabilities to create the required features in the part.
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Figure 13. Manufacturability analyses of a) a wheel hub, b) a shaft with key seats, and c) a cam lobe. Unmanufacturable
volumes are displayed as residuals.

Figure 13 shows three examples of realistic parts obtained from a publicly available dataset [41-43], which were
input to the proposed semantic segmentation method for machinable volume decomposition. Based on the voxel inputs,
voxel outputs, and the residuals, it is evident that all three parts contain machinable volumes and non-machinable
volumes using only the three axisymmetric machining operations considered in this paper, namely turning, grooving
and chamfering. Specifically, in Figure 13(a) our method identified the through holes on the hub body and backing
plates as residual, which requires additional machining operations such as drilling. Furthermore, the internal geometric
features of the hub were also identified as being part of the residual, which potentially requires specialized processes
such as broaching. In Figure 13(b), our model successfully identified the key seats that cannot be manufactured using
the axis-symmetric operations. In Figure 13(c), the cam lobe most likely requires an additional process (e.g., grinding)
to achieve the specific lobe shape. Therefore, the residual indicates the corresponding volumes that cannot be produced
by turning.
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It is evident from the above examples that our method is able to identify machinable and non-machinable portions
of the query parts, which can provide visualizable manufacturability feedback to the designers based on the generative
models for available manufacturing operations. Contrary to discriminative machine learning approaches where a part
is classified or segmented into known classes, our method does not assume all features can be manufactured by the
available manufacturing resources, and instead, utilizes generative models of the manufacturing operations to
determine the probability of recreating the desired machinable volumes. If more than one “equally good” operation
exists, they can be provided as available options to choose from, which requires either human-in-the-loop decision
making or additional optimization objectives. In the context of a cyber manufacturing service, such manufacturability
feedback not only reduces the communication cost between designers and manufacturers, but also enables selection of
the required manufacturing resources. For instance, if a machine shop is not equipped with specialized automotive
grinding tools for precision machining of cam shafts, our model is able to demonstrate the limitation of the available
manufacturing operations (e.g., axis-symmetric operations) to the designers at the early design stage.

4. Conclusion

In this work, we presented a semantic segmentation method for machinable volume decomposition of complex
query parts using generative pre-trained neural networks. Through a case study of eleven query parts and three realistic
parts from a public repository, we demonstrated that (1) the proposed approach achieves over 96.8% IoU between the
voxel input and output pairs for machinable volume identification, (2) volumes in the query part that cannot be removed
by axisymmetric machining operations can be identified and visualized in the residual, and (3) the segmentation results
for the turning operation are better than for the grooving and chamfering operations, potentially due to the size
differences in machinable volumes for these operations and the limited resolution of the voxel representations, which
can be potentially addressed through deep learning on sparse voxel representations. These findings have profound
implications in the context of cyber manufacturing services. For instance, the proposed approach can assist designers
by determining which portion of their design is manufacturable using available manufacturing operations. Through
intuitive visualizations, designers modify their designs to target elimination of the residual volumes identified by the
proposed method. For process planners, the segmented volumes and visualizations serve as an intuitive assistant to
enable initial process/operation selection. It is also conceivable that process planners can leverage such visualizations
to plan for a sequence of operations, based on geometric and process precedence constraints.

For future work, a few notable limitations of the current approach should be addressed. First, in addition to volume
and shape, the geometric and temporal context of the machinable volumes should be included in training. For example,
the current approach does not specify the order of operations, whereas, in reality, some segmented volumes can only
be accessed after removing the outer layer of materials (e.g., chamfering can only occur after turning in Figure 11b).
In addition, an investigation of deep learning methods for octree-based sparse voxel representation should be conducted
in the context of cyber manufacturing and process planning, which has the potential to access features in much finer
resolution to improve classification and rendering of small manufacturing features. More complex part geometries and
machining operations should be modeled using the proposed approach, e.g., a logical next step is to train models for
all material removal operations available in a turn-mill machine tool. Other key manufacturing information such as
surface roughness should be considered in the training dataset. Finally, adding supervised learning using pre-segmented
training data has the potential to improve the segmentation results.
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