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A variety of simulation methodologies have been used for modeling reaction-diffusion dynamics
— including approaches based on Differential Equations (DE), the Stochastic Simulation Algorithm
(SSA), Brownian Dynamics (BD), Green’s Function Reaction Dynamics (GFRD), and variations
thereon — each offering tradeoffs with respect to the ranges of phenomena they can model, their
computational tractability, and the difficulty of fitting them to experimental measurements. Here,
we develop a multiscale approach combining efficient SSA-like sampling suitable for well-mixed
systems with aspects of the slower but space-aware GFRD model, assuming as with GFRD that
reactions occur in a spatially heterogeneous environment that must be explicitly modeled. Our
method extends the SSA approach in two major ways. First, we sample bimolecular association
reactions following diffusive motion with a time-dependent reaction propensity. Second, reaction
locations are sampled from within overlapping diffusion spheres describing the spatial probability
densities of individual reactants. We show the approach to provide efficient simulation of spatially
heterogeneous biochemistry in comparison to alternative methods via application to a Michaelis-
Menten model.

I. INTRODUCTION

Simulation methods have become a valuable adjunct
to experimental work, facilitating the interpretation of
experimental data and inferences about experimentally
unobservable aspects of biomolecular dynamics [1], yet
accurate simulations remain challenging for many bio-
chemical processes crucial to living systems. The need
for improvements in simulation technology is particu-
larly acute for macromolecular assembly systems, which
are central to nearly all cellular processes, yet frequently
not directly observable experimentally due to their small
scale and rapid dynamics [2]. Intractability of experimen-
tal approaches is particularly acute for understanding
self-assembly in vivo, which may operate quite differently
from purified in vitro models due to such effects as spa-
tial confinement [3–5], macromolecular crowding [6, 7],
and influences of extrinsic cellular factors [8]. The chal-
lenges of developing simulations that are both accurate
and efficient, especially for hard-to-model systems like
self-assembly, has led to extensive work on models and
algorithms for biochemical simulation seeking to balance
computational efficiency with fidelity to the complexity
of the underlying biology.

The Gillespie Stochastic Simulation Algorithm (SSA)
[9, 10] was particularly influential in establishing a com-
putational framework for efficient sampling of chemical
reaction trajectories, especially for small copy-number
settings typical of biochemistry in the cell. The SSA
has proven a valuable tool for understanding the kinetics
of reaction networks, i.e., tracking the evolving popula-
tions of interacting reactant species, when older meth-
ods based on deterministic differential equation systems
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are too inaccurate or computationally infeasible [11–13].
Many improvements have been made to efficiency of the
basic method either via approximations or for particular
spaces of model parameter [14–22]. Yet the SSA is not
explicitly spatial and instead treats the reactants as uni-
formly distributed at all times, aside from transient fluc-
tuations. To better capture spatial heterogeneity, exten-
sions of the SSA have been developed based on the reac-
tion diffusion master equation (RDME), typically parti-
tioning the reaction volume into compartments or voxels
for which the usual well-mixed assumption applies in each
compartment [23, 24]. In these spatial Gillespie models,
reactants can react within a compartment or diffuse to
an adjacent compartment. However, there is an inherent
conflict between accuracy (smaller compartments imply
higher spatial resolution) and the well-mixed assumption
(better satisfied with larger compartments and/or diffu-
sion rates). In fact, even in the limit of fast diffusion
rates, RDME may not converge to the Chemical Master
Equation (CME) underlying the Gillespie algorithm [25].

Brownian dynamics (BD) methods provided an oppo-
site extreme of efficiency/realism tradeoffs for such mod-
eling, allowing detailed, off-lattice spatial dynamics but
at much greater computational cost. Coarse-grained BD
methods have been widely used in self-assembly model-
ing, as they can deal well with systems with complicated
spatial heterogeneity or geometrically intricate structures
[26–33]. However, their need to explicitly model diffusion
trajectories of single particles creates high computational
demands due to the large gap between timescales of dif-
fusive motion versus those of typical molecular assembly
processes. Smoldyn [34] is one particularly prominent
example, in which molecules diffuse with ideal Brownian
motion and react upon collisions. Smoldyn has been con-
siderably extended and improved since its initial release
in 2003, e.g., by the inclusion of rule-based modeling,
volume exclusion handling, on-surface diffusion, single
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particle tracking, and integration with BioNetGen. How-
ever, Smoldyn depends on the use of discrete fixed time
steps, creating tradeoffs between accuracy and efficient
run time in some problem domains.

Green’s function reaction dynamics (GFRD [35, 36])
provided an alternative approach to capture spatial het-
erogeneity in simulating reaction-diffusion systems while
taking advantage of SSA-like efficient discrete event sim-
ulation without requiring spatial discretization. In-
stead of generating sample trajectories from the CME
or RDME through MCMC, or numerically solving the
many-body Smoluchowski equation as in Brownian Dy-
namics, GFRD analytically solves the Smoluchowski
equation for single molecules and molecular pairs in
terms of Green’s functions. These Green’s functions
describe the probability of finding a molecule (pair) at
a certain location and time given a known position(s)
at an earlier time. A maximum time step is chosen
such that, with high probability, at most two molecules
come into contact, a requirement for analytical tractabil-
ity. This single/pairwise interaction assumption becomes
more valid with smaller time steps, introducing a trade-
off between accuracy and efficiency. Reactions are in-
corporated through the boundary conditions, and the
method combines into a single step propagation through
space and reactions between particles. eGFRD [37] is
a more recent exact algorithm which removes the ac-
curacy/efficiency trade-off by including the concept of
”protective domains” first developed by Oppelstrup et
al. [38]. These domains are geometrically simple math-
ematical boundaries enclosing single molecules or pairs,
each of which requires a distinct Green’s function solution
yielding next event types (domain escape or reaction) and
waiting times. Because the time steps are now domain
specific, eGFRD is an asynchronous algorithm allowing
increased efficiency in some circumstances, although the
additional mathematical complexity comes at significant
computational expense.

The Small Voxel Tracking Algorithm (SVTA) [39] of-
fers another strategy for particle-based simulation of
reaction-diffusion systems. While SVTA is based on the
same underlying physics as eGFRD, its implementation is
based on a discrete space model. Instead of protective do-
mains, SVTA constructs one and two particle “corrals,”
within which single molecules and molecule pairs hop be-
tween voxels and potentially interact. More specifically,
it is the center of each molecule that hops, since the voxel
size is typically smaller than the molecular radius. These
small voxel dimensions rule out the use of traditional
bimolecular propensity functions that rely on the well-
mixed assumption. Because the system state evolves on
the time scale of diffusion hops, SVTA does not need to
analytically sample locations on the protective domains,
an easy task only when the domain is a sphere or other
simple shape. It can instead simply keep track of when a
diffusion hop places a molecule’s center in a voxel iden-
tified with the corral. SVTA therefore bypasses the need
for a suite of domain specific Green’s functions in favor of

implementing individual diffusion steps on a lattice, pro-
viding a strategy for fast but physically realistic sampling
compared to prior off-lattice alternatives.

Similarly, the Microscopic Lattice Method (MLM) [40]
simulates lattice-based diffusion with reactions. How-
ever, MLM aims at optimizing efficiency by simulating
molecules of equal size, and requires that voxel dimen-
sions are larger than molecular radii. Additionally, with-
out corrals or protective domains, MLM relies on periodic
boundaries to control the simulation volume and number
of molecules. A direct comparison between Chew’s MLM
and Gillespie’s SVTA is unavailable, although each would
appear to offer some advantages, the former particularly
with respect to efficiency while latter can currently sim-
ulate more complex biochemistry.

Despite these advances, the most challenging systems
remain out of reach of molecular simulation methods
without substantial simplifications [2]. New advances in
models and algorithms for efficient but physically realis-
tic simulation remain a pressing concern if the field is to
continue to move towards solving the grand challenge of
truly comprehensive and predictive models of whole-cell
biochemistry.

In the present work, we develop an alternative method-
ology intended to reduce the computational complexity
of eGFRD while maintaining discrete event based system
updates. The method makes use of a Green’s function
representation of possible particle positions as a function
of time, as originally proposed in GFRD [35], but with
an alternative formulation of the probability function in
terms of joint probabilities densities of pairs of interacting
particles simultaneously. This reformulation enables a
new sampling algorithm for position updates that allows
for different tradeoffs of efficiency and precision with cur-
rent alternatives such as eGFRD, SVTA, and Smoldyn.
Our goal is not to present a fully optimized algorithm or
simulation tool, but rather to explore and advance an al-
ternative approach for the use of time-dependent reaction
propensities as a basis for reaction-diffusion simulation in
continuous space, which may offer better trade-offs be-
tween realism and efficiency than prior methods in some
problem domains.

THEORETICAL FRAMEWORK

In this section, we present some theoretical concepts
that will be useful subsequently in explaining our model
and its relationship to prior work. Consider the bimolec-
ular association reaction system:

A+B ⇒ C

governed by

d[A](t)

dt
=
d[B](t)

dt
= −k(t)[A](t)[B](t) (1)

where A and B are hard-sphere species with radii rA and
rB and diffusion coefficients DA and DB . There are two
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traditional treatments of diffusion influenced reactions.
The first was introduced by Smoluchowski [41] and later
extended by Collins and Kimball (CK) [42]. At time t=0,
a single particle of species A is considered fixed at the
origin and an initial surrounding concentration gradient
is set up for the mobile species B molecules. They showed
that

k(t) = Φ(t)/c0 = (4πR2D/c0)(∂c/∂r)r=R (2)

where Φ(t) is the probability flux across a boundary
sphere for the A particle at radius R, and c0 is the ini-
tial uniform concentration for species B. The simultane-
ous diffusion of both species is incorporated by setting
D as the sum of their respective diffusion coefficients. In
this picture, the concentration gradient for the mobile
B species c(r, t), defined as the concentration of the B
species at distance r from the origin at time t after the
initial condition, is found by solving the diffusion equa-
tion

∂c/∂t = D∇2c (3)

subject to initial condition c(r, 0) = c0 and the radiation
boundary condition D(∂c/∂r)r=R = κc(R, t) where κ is
a specific reaction rate. The solution c(r, t) is a compli-
cated function and obeys the relation

k(t)/ki =
c(R, t)

c0
(4)

where ki is the limiting value k(t ⇒ 0). Naqvi et al.[43]
(sections III.-IV.) updates this by replacing the diffusion
equation with a discrete random walk model from which
is obtained in the limit of sufficiently long time and dis-
tance scales

k(t)/k0 =
c(R+ ∆, t)

c0
(5)

with ∆ equal to two thirds the scattering mean free path.
The second treatment is due primarily to Noyes [44]

and considers an isolated pair of reactive molecules sep-
arating from a nonreactive encounter. They showed that

k(t) = k0

[
1−

∫ t

0

h(t′)dt′
]

(6)

where k0 is defined as “the rate constant applicable for an
equilibrium molecular distribution”[45] and h(t)dt is the
“probability two molecules separating from a nonreactive
encounter at time zero will react with each other between
t and t+ dt” [44]. This can be recast into the form ([43]
Eq.47)

k(t)/k0 = S(t; r0 = R0, R) (7)

where R0 denotes the distance between two molecules
separating from a nonreactive encounter at time zero,
and the survival probability S(t; r0, R) is defined as

S(t; r0, R) = 1−
∫ t

0

p(t′; r0, R)dt′. (8)

These two major approaches, based on the diffusion
equation and particle-pair standpoint respectively, can
be shown to be equivalent under certain assumptions and
by a lengthy derivation (see [43], sections IV and V).
Our method is most easily identified with the theoreti-
cal framework of Noyes, but with a different emphasis on
instantiating the physical model so as to enable efficient
stochastic off-lattice particle simulations. We describe
the novel features of our model in more detail below.
The function h(t) appearing in Noyes’ fundamental rela-
tion can be inferred as the special case

h(t) = p(t; r0 = R0, R) (9)

To be clear, the initial separation r0 is the separation dis-
tance immediately after a nonreactive encounter. Naqvi
argues that r0 6= R, the reactive contact distance defined
in the boundary condition, but instead r0 = R0 = R+∆.
The exact expression for p(t; r0, R) depends on various
assumptions, e.g., that the discrete random walks taken
by the particles are accurately described by a continuous
diffusion equation. In this case, one needs to make fur-
ther assumptions about initial conditions and boundary
conditions.

In the CK picture, the reaction rate evolves only dur-
ing the time window beginning with the initial condition
and ending with a reaction. The assumption here is that
immediately after a reaction, the system returns the con-
centration surrounding the product molecule to the fixed
initial value. As such, the formalism may not be suitable
to an event-driven, explicitly spatial simulation. Chew et
al. [40] with their microscopic lattice method address this
issue by deriving their lattice parameters as analogues to
the effective or steady state reaction rates in the contin-
uum CK/Noyes theory. This ensures the model behaves
similarly to the theory over suitably long time scales.

While our treatment of diffusion influenced reactions
is similar to the particle pair approach in Noyes theory,
there are notable differences. Instead of using proba-
bilistic arguments to derive reaction rate functions suit-
able for a differential equation model, we use them to
derive reaction propensities suitable for a discrete event
SSA. Our conception is as follows: Given a collection
of molecules in an explicit and bounded 3d space, and
assuming a maximum diffusion time before which we ob-
serve their positions, reaction waiting times can be ran-
domly sampled using pairwise propensity functions. The
probability density we focus on is not h(t) = p(t; r0 =
R0, R), but rather p(t; r0, R) where the initial separation
r0 is specified for each molecule pair, and R is the center
to center distance at which a reaction can occur.

In the remainder of the paper we describe the model
and implementation, which we refer to as the Diffusion-
Based Embedding of the Stochastic Simulation Algo-
rithm in Continuous Space (DESSA-CS) method, in ref-
erence to an earlier space-free method [46] based on an
accelerated SSA algorithm [17], and demonstrate its ef-
fectiveness in comparison to prior alternatives through
application to a Michaelis-Menten model.
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II. METHODS

Algorithm 1 summarizes our general procedure for off-
lattice spatial stochastic simulation. It makes use of a
discrete event structure similar to the stochastic simu-
lation algorithm, with the addition of routines for sam-
pling reaction locations. This sampling is based on dif-
fusion spheres containing nsigma standard deviations of
the Gaussian distributions describing each particle, sim-
ilar to GFRD. The resulting positions (due to reactions
and position-only updates) are therefore restricted to be
within the diffusion spheres, no matter the choice of
nsigma (typically 3-5).

In contrast with existing simulation methods in which
the boundaries of the simulation volume are either peri-
odic or reflective, we utilize an alternate approach. The
state of each molecule is represented as a probability dis-
tribution, therefore we only have access to precise po-
sitions immediately following an event, and do not con-
sider velocities at all. For this reason, traditional periodic
and reflective boundaries are not well defined. Our ap-
proach to reaction location sampling, assuming the wait-
ing time has been accurately sampled previously, is to al-
low the diffusion spheres of molecules near the boundary
to extend some distance beyond the boundary, typically
a fraction of the container length. If the sampled location
happens to be outside the container, we implement a re-
flection procedure designed to keep the molecules within
the simulation volume while respecting the physics of dif-
fusion.

Algorithm 1 DESSA-CS procedure

1: Initialize Event Queue: For each assembly, consider self
events (unimolecular reaction, position-only update) and
pair events (bimolecular reaction) and add to the queue
the earliest self event and pair event for each assembly.

2: Main Loop:
3: repeat
4: Extract the next event on the queue.
5: if event is bimolecular and valid then
6: sample location for product given waiting time; up-

date data structures; add next self event(s) to the queue;
add next potential bimolecular events to the queue.

7: else if event is unimolecular event and valid then
8: sample locations for both products; update data

structures; add next self event(s) to the queue; consider
each product and add next potential bimolecular events
to the queue.

9: else if event is position-only update and valid then
10: sample location; update data structures; add next

position-only update to the queue; add next potential bi-
molecular events to the queue.

11: (Apply boundary conditions to product(s) if necessary,
before adding new events to the queue.)

12: until max allowed simulation time or max allowed num-
ber of reactions is reached

SAMPLING BIMOLECULAR REACTION
WAITING TIMES

Consider a set of K possible bimolecular reactions, i.e.,
distinct pairs of individual molecules represented as ei-
ther point particles or finite spheres, and assume each
molecule traverses an explicit 3d space by diffusion. For
each molecule pair, k, there exists a reaction propensity
ak(t; s)dt describing the probability of an encounter and
subsequent reaction of that pair, within some small time
interval [t, t+ dt) after the most recently executed event
at time s. The waiting time, twait, before the next reac-
tion of reactant pair k can be sampled via the equation
[47] ∫ twait

0

ak(t | s)dt = ln(1/rk) (10)

which determines the time at which the integrated
propensity equals an exponentially distributed random
variable. rk is the uniform random number drawn for
molecular pair k, for use in sampling an exponential wait-
ing time by the transformation method. Because each
of our propensity functions are unique to their associ-
ated molecular pair, the reaction channels defined in the
original SSA and in Anderson’s modified next reaction
method [47] at the the species level are now defined at
the molecule pair level.

Point Particles

At the moment a given molecule’s state is updated, the
probability density describing its center of mass is con-
centrated at a single point, i.e., a Dirac delta function
centered on that point. As time progresses, the proba-
bility density spreads as a Gaussian. This is the free dif-
fusion Green’s function solution of the diffusion equation
[35]. The positions of two molecules A and B are there-
fore described by two independent Gaussian random vari-
ables, xA(t) ∼ N [µA,ΣA(t)] and xB(t) ∼ N [µB ,ΣB(t)].
In order to evaluate Pr(encounter & reaction | t), the
joint probability of an encounter and a reaction during
the interval [t, t + dt), we factor the joint probability as
Pr(encounter | t) * Pr(reaction | encounter). The lat-
ter factor is expressed using a time-independent intrinsic
reaction rate constant, c, such that c dt is the constant
encounter conditioned reaction probability over a small
time interval. The constant c is specific to this point
particle formalism and not equivalent to the microscopic
reaction rates used in Smoluchowski or Collins-Kimball
theory.

In evaluating the former factor, Pr(encounter | t), we
assume the initial positions of A and B are known and
ask the following question: given a sampled position xA
of molecule A taken after time t, what is the probability
a sampled position xB of molecule B after time t will be
close to A? Here ”close” means at a distance less than a
threshold denoting contact or an encounter.
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This question can be answered in the language of dis-
tributions of quadratic forms in random variables. We
define the quadratic form Q(t) as the squared Euclidean
distance between Gaussian random variates xA and xB .

XB−A(t) ∼ N
(
µB − µA, [ΣA(t) + ΣB(t)]

)
Q(t) = XB−A(t)T XB−A(t) (11)

Thus,

Pr(encounter | t) = CDFQ(t)(R
2
enc) (12)

= Pr
(
Q(t) < R2

enc

)
(13)

where R2
enc is the square of the encounter threshold dis-

tance. Theorem 4.2b.1 of Mathai & Provost[48] provides
a formula in terms of an infinite power series expansion
which we use for evaluation.

CDFQ(t)(R
2
enc) =

∞∑
h=0

(−1)hzh(t)
(R2

enc)
(3/2)+h

Γ
(
(3/2) + h+ 1

) (14)

The coefficients zh(t) are defined recursively and depend
on µAB = µB − µA, and ΣAB(t) = (ΣA + ΣB). See Ap-
pendix A for a full description. Convergence is defined by
no change to 5 places after the decimal for 20 successively
higher order approximations. For very small t and large
initial separation, the approximation can oscillate wildly
about zero. In these parameter regions where numerical
instability is detected, we set the CDF to zero.

With isotropic diffusion, the reaction propensity given
R2
enc and d = norm(µAB) after time t, and with in-

trinsic rate c, can be reparameterized as a function of
the variance v of XB−A(t) rather than of time directly.
This variance is simply the diagonal element of ΣAB(t).
The reparameterized reaction propensity, denoted ak(t),
is then given by:

ak(t)dt = ak(v | dk, R2
enc,k, c)dv (15)

The time to next reaction can now be determined by
evaluating

argminv

∫
ak(v)dv ≥ ln(1/rk) (16)

and inferring twait from the variance value, should it ex-
ist. Figure 3 visualizes the wait time sampling procedure.
One added complication is that the DESSA-CS algorithm
is event driven. After each event, potential new reactions
are considered for the product(s) of that most recently
executed event. This implies that the position of the
product (e.g., reactant A) is known precisely, while its
potential partner (e.g., reactant B) has been diffusing for
a time toffset and thus has its position represented by
a Gaussian random variable. Any integrated propensity
up through v(toffset) must therefore be discounted when

sampling the variance at which a reaction occurs. See
Figure 1 for an illustration. The sampling procedure is
described in Algorithm 2. For finite sized molecules, the
procedure is similar, except the integrated propensities
(called IntF in Algorithm 2) are expressed directly in
terms of times rather than variances. A Matlab imple-
mentation of the algorithm is available on GitHub [49].

Our propensity function describing Pr(encounter &
reaction | t) is equivalent to p(t; r,R) from the Noyes
theory under the assumption that the molecules are di-
mensionless point particles for which there is no mini-
mum separation distance. In this case, there is no need
to go beyond the free diffusion Green’s function solution
to the diffusion equation as there are no boundary con-
ditions enforcing a minimum pairwise separation.

Particles with Finite Size

With molecules of finite size, we will still use integrated
reaction propensities to sample reaction waiting times.
However, a different mathematical framework is required
to construct the propensities. Assume both particles are
spherical and R defines the center-to-center distance at
contact. In this context, p(t; r0, R) described in the The-
oretical Framework section above is expressed as

p(t; r0, R) = p(r = R, t; r0, 0) ∗ c dt (17)

where c now denotes the absorbing/radiation boundary
condition parameter, and p(r, t; r0, 0) is the Green’s func-
tion solution to the following boundary value problem.
Assume p(r, t; r0, 0) obeys a diffusion equation, and the
initial separation between molecules is r0. This is ex-
pressed with the initial condition

p(r, 0) =
δ(r − r0)

4πr2
. (18)

The two boundary conditions on p(r, t; r0, 0) ensure that
the molecular separation never reaches infinity, and that
at contact, the probability of a reaction is accounted for:

lim
r→∞

p(r, t) = 0 (19)

4πR2D
∂p(r, t; r0, 0)

∂r

∣∣∣∣∣
r=R

= c p(R, t; r0, 0) (20)

From Chew et al. [40], and Jaeger & Carslaw [50] p.
368), the Green’s function solution is

p(r, t; r0, 0) =
1

8πrr0

1√
πDt

(
exp[−(r − r0)2/4Dt]

+ exp[−(r + r0 − 2R)2/4Dt]

− 2B
√
πDt exp[B2Dt+B(r + r0 − 2R)]

∗ erfc( (r0 −R)

2
√
Dt

+B
√
Dt)

)
(21)
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Figure 1. The figures on the left depict two molecules, A and B, described as Gaussians with means separated by d = 7.235µm.
The point-particle reaction propensity grows as the variance increases, reaching a peak just before 20µm2 and then decreases
monotonically. The figures on the right are more typically encountered in the algorithm. The most recent reaction for A was
just executed and wait times are being sampled for the A + B reaction. B has already been diffusing for a time toffset, thus,
propensity function integration begins not at zero variance, but instead at variance equal to 20µm2.

where B = (1+ c
4πRD )/R. Note that the Green’s function

also depends on c through B. The propensity function is

a(t)dt = p(R, t; r0, 0) c dt (22)

and the time to next reaction, twait, can be determined
from the integrated propensity by evaluating

B

4πR2r0

[
erfc

[B(r0 −R)

2
√
τ

]
−

(
exp(Br0−BR+ τ) erfc

[Br0 −BR+ 2τ

2
√
τ

])
− 1

]τ−max
0

− ln(1/rk) = 0 (23)

with rk ∼ uniform[0, 1] and τ = tDB2. The waiting
time is inferred as twait = τ/DB2. As in the point par-
ticle context, when molecule B of the molecular pair has
been diffusing for a time toffset when we are sampling
reactions for molecule A, the integrated propensity up
through toffset must first be subtracted from the L.H.S.
of Eq. 23. Alternately, Eq. 21 can be numerically inte-
grated.

Validation of the Wait Time Sampling Procedure

Noyes theory is formulated in terms of the probabil-
ity two molecules will re-collide (and potentially rebind)

following a nonreactive encounter, therefore comparing
the theoretical and simulated rebinding time probabil-
ity densities is a useful test of our Gillespie-inspired wait
time sampling procedure. Following Chew et al. [40],
we consider both the activation-limited and diffusion-
influenced cases (Figure 2). These are distinguished by
c/νAB < 1 and c/νAB ≥ 1, respectively. See Gillespie et
al. [39] for a derivation of this relation. The parameter c
is the boundary value parameter appearing in the finite
particle propensity function and is related to the colli-
sion frequency νAB = 4πR(DA +DB) between A and B
molecules in a hypothetical nonreactive system as:

c =
P (reaction | encounter)νAB

g(r = R)ρB
,

where g(r) is the particle pair correlation function in a
liquid phase and ρB is the relative density of B molecules.
See [51]. Figure 2 shows, for three values of c/νAB ,
the theoretical density and the results of our simula-
tions. We computed the integrated reaction propensity
at 70,000,000 time points linearly spaced in the range
[10−8,1]. On the order of 109 wait time samples were
drawn for each of the three ratios and then aggregated
into bins of width wbin = 5× 10−9s. Simulated probabil-
ity densities for a subset of bins were computed as

pdf(bin) =
Nbin

Ntotal wbin
,

where Nbin is the number of samples in the bin and Ntotal
is the total number of samples. As the total number of
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samples grows, the simulated values approach the theo-
retical density.

Algorithm 2 Sampling Bimolecular Wait Times - Point
Particle Representation

1: (Pre-simulation) Define vector of variance values, v =
[0, Vmax]

2: (Pre-simulation) Define the curve IntF (v | d,R2
enc, c) as

the cumulative sum of reaction propensity values along
the points v. {IntF (v | d,R2

enc, c)} is then the set of
integrated propensity curves at increasing d, computed
once, before the simulation begins. If desired, further sets
of curves can be precomputed for alternate values of Renc

and c.
3: (At run time) For reactant pair k = (A,B), select the

appropriate curve, IntF (v | dk, R2
enc, c)

4: Evaluate IntF (vtoffset), the integrated propensity to be
discounted, at the variance value corresponding to toffset,
i.e., 6Dbtoffset.

5: Set v∗ ← argminv IntF (v) ≥ ln(1/rk) + IntF (vtoffset)
6: If v∗ exists, twait is the solution to v∗ = 6Datwait +

6Db(twait + toffset)
7: Else, no reaction is sampled. Update particle positions.

SAMPLING BIMOLECULAR REACTION
LOCATIONS

Again we make use of the labels A and B for the spe-
cific molecules undergoing the next association reaction.
At this time, the spatial region available for the reaction
consists of the intersection of the diffusion spheres bound-
ing their independent Gaussian probability distributions.
In order to correctly sample from this region, henceforth
called the overlap volume (OV), we first introduce the
concept of equiprobable rings.

Equiprobability Rings

The line AB connecting the initial known positions of
A and B defines an axis of symmetry in the sense that
within the OV there exist rings centered on this axis,
whose points are equidistant from A and equidistant from
B. The rings are therefore sets of equiprobability points
from which molecule positions might be sampled. Each
ring is uniquely defined by two numbers: the magnitude,
rA, of any vector from the initial position of A to a point
on the ring, and the CCW angle, θA, between the vector
and the line AB. After sampling (rA, θA), we choose the
reaction location uniformly at random from on the ring.
The joint probability density describing (rA, θA) can
be factored as p(rA|t) and the conditional probability
p(θA|rA, t), which suggests a sequential sampling proce-
dure. First determine rA and then use it to determine
θA.

Diffusion Sphere Overlap Volume

While the OV grows continuously due to diffusion, for
the purpose of location sampling at a given time we have

found it useful to classify it into one of five distinct cases.
These cases are not inherently meaningfully different in
the theory behind them, but provide a convenient way
of describing the evolution of the OV as well as distin-
guishing the integration regions involved in sampling, rA
and θA, for purposes of clearer exposition. For example,
if the OV is identical to the diffusion sphere of A (as
in cases 3 and 5), θA may take on any value in [0, 2π],
however if the OV has an irregular shape, certain angles
may be prohibited. Figure 4 visualizes the two trajec-
tories possible for the OV. The first trajectory applies
when DB > 4DA and passes through cases 1, 2, 3 and
5. The second trajectory applies when DA < DB < 4DA

and passes through cases 1, 2, 4 and 5. Given the current
system time t, the waiting time until the next reaction of
A and B, twait, and the system time at which the state B
was last updated, we can infer tA−elapsed and tB−elapsed,
the durations during which each had been diffusing be-
fore the reaction, which includes the waiting time to the
reaction. Using tA−elapsed and tB−elapsed to define the
diffusion spheres at the moment the molecules react, we
can infer the OV case.

Case 2 begins when the radius of the faster diffusing
particle (here, B) is equal to d, the distance between the
Gaussian means of A and B. This radius can be computed
as RB(t) = nsigma

√
6DBt, where nsigma is the number

of standard deviations bounded by the sphere. See Fig. 5
for an illustration of the integration variables in Case 2.
The starting time is given by

tstart−2 =
d2

6DBn2
sigma

(24)

Starting times for cases 3-5 are calculated as follows:

Path 1 Case 3 Start Case 5 Start

DB > 4DA

d > RA(t) d = RA(t)
RA(t) + d = RB(t) RA(t) + d < RB(t)

tstart−3 = tγ tstart−5 = t∼γ
Path 2 Case 4 Start Case 5 Start

DA < DB < 4DA
d = RA(t) d < RA(t)

RA(t) + d > RB(t) RA(t) + d = RB(t)
tstart−4 = t∼γ tstart−5 = tγ

where

tγ =
1

6n2
sigma(DA −DB)2

(2D2
An

2
sigmaγ+ 2D2

Bn
2
sigmaγ

− 4DADBn
2
sigmaγ +DAd

2 +DBd
2), (25)

t∼γ = d2

6DAn2
sigma

, and γ =
√

DADBd4

n4
sigma(DA−DB)4

.
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Figure 2. Rebinding time probability density from Noyes theory. We compare the theoretical curves in the finite particle
representation with values computed from simulations at c/νAB = 0.1, 1, and 100. Deviations from the theory at larger
rebinding times are explained by the fact that more samples are required to characterize the probability densities at these
limits than were drawn in our analysis. Simulation parameters were: DA = 1µm2s−1, DB = 1µm2s−1, r0 = 0.01001µm. At
the largest times, numerical instabilities can appear in the Green’s function computations, leading to the noise seen in the
c/νAB = 100 theoretical (theory) data.

Figure 3. Examples of successful and unsuccessful sampling of a biomolecular reaction in the point particle representation. In
both subfigures, the solid curve is the integrated reaction propensity associated with two reactants described by Gaussians with
means separated by 8µm. The left subfigure shows the successful sampling of a bimolecular reaction waiting time as there is
a variance value (and thus, a waiting time) at which the integrated reaction propensity equals the exponentially distributed
random number, 0.2. In the right subfigure, the exponentially distributed random number is 0.26, and so there is not sufficient
integrated propensity for a reaction to occur. In the finite particle representation, the x-axis will represent the waiting time
directly instead of variance.
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Figure 4. Cases of potential overlap of diffusion spheres in the
process of sampling waiting time to a biomolecular reaction.
Shown are the diffusion sphere intersections at increasing time
points. It is assumed here that DB > DA. Case 1: The OV
contains neither µA nor µB . Case 2: The OV contains µA

only, and is not identical to either diffusion sphere. Case 3:
The OV contains µA only, and is identical to the diffusion
sphere of A. Case 4: The OV contains µA and µB , but is not
identical to either diffusion sphere. Case 5: The OV contains
µA and µB , and is identical to the diffusion sphere of A.

Figure 5. (Left) Visualizing the regions of integration for w(rA) in Case 2. (Right) Visualizing θA, rA, and rB(θA) in Case 2.
The equiprobability ring passes through point J , perpendicular to the plane of the page.

Case 1

Sampling rA

In order to sample rA correctly, we re-weight the prob-
ability density in the OV, i.e., compute a posterior prob-
ability. Define hring(θA) as the radius of the ring whose
points are at distance rA and for which the top most point
defines a line with A at angle θA. The circumference of
this ring is 2πhring(θA). Integrating this circumference
over the available θA range allows us to determine the
size of the set of points at distance rA.

preweighted(rA, t) = w(rA) ∗ p(rA, t) (26)

with

w(rA) =
[TotalProbability − at− rA]∫

OV
dr
(

[TotalProbability − at− r] ∗ p(r, t)
) ,

∫
preweighted(rA, t)drA =

∫
w(rA)p(rA, t) = 1, (27)

and

p(r, t) =
1√

12πDAt
exp(−r2/12DAt) (28)
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w(rA) =

∫ θmax(rA)

0
dθA2πhring(θA)∫ rub

rlb
dr
[( ∫ θmax(r)

0
dθ(r)2πr sin(θ)

)
p(r, t)

]
=

rA
(
cos(θmax(rA))− cos(0)

)∫ rub

rlb
dr
[
r
(
cos(θmax(r))− cos(0)

)
p(r, t)

]
=
rA

(
r2A+d2−R2

B

2rAd
− 1
)

[
term1 + term2

] (29)

term1 =
1

4d
(d2 + 6DAt−R2

B)
[
erf
(
rub/

√
12DAt

)
− erf

(
rlb/

√
12DAt

)]

term2 =
1√

12πDAt
6DAt

[
(rlb − 2d)exp(−r2

lb/12DAt)

− (rub − 2d)exp(−r2
ub/12DAt)

]
The upper limit of integration, θA−max, is calculated

by considering the triangle defined by the three points:
A, B, I. The base (AB) length is d. The side BI has
length RB since I is the point at which (rA, θA) intersects
the OV, i.e., a point on the B diffusion sphere. The
remaining side length is rA. From the law of cosines,
θA−max is calculated in terms of the side lengths.

θA−max(r) = cos−1

(
r2 + d2 −R2

B

2rd

)
(30)

The lower and upper bounds, rlb and rub, on rA defin-
ing the OV are [(d−RB), RA].

Sampling θA|rA, t

The tuple (θA, rA) uniquely defines a ring of equiprob-
ability points within the OV from which a single reaction
location can be chosen uniformly at random. Thus, the
probability with which a given θA is sampled should be
proportional to the size of the corresponding ring.

Consider the triangle defined by the points A, B, J
where J is a point in the OV at (θA, rA). The length of
side BJ is rB(θA) and can be computed with the Law of
Cosines. The height of this triangle, hring, is again the
radius of the ring passing through point J .

p(θA|rA, t) = p(rB(θA)|t) ∗RingCircumference

p(θA|rA, t) =
1√

12πDBt
exp

(
−rB(θA)2

12DBt

)
∗ 2πhring

(31)

r2
B(θA) = r2

A + d2 − 2rAd cos(θA) (32)

hring = rA sin(θA) (33)

θA ∈ [0, θA−max]

Case 2

Sampling rA

w(rA) =

∫ θA−max(rA)

0

dθA2πrAsin(θA) ∗(∫ RB−d

0

dr
[ ∫ θmax(r)

0

dθ(r)2πr sin(θ)
]
∗ p(r, t)

+

∫ RA

RB−d
dr
[ ∫ θmax(r)

0

dθ(r)2πr sin(θ)
]
∗ p(r, t)

)−1

(34)

θA−max(r) = cos−1
(max[r2, (RB − d)2] + d2 −R2

B

2d max[r, (RB − d)]

)
(35)

Figure 5 provides a visual description of the relevant
Case 2 variables. Variables for the other cases are defined
similarly. For any rA less than or equal to (RB − d), the
full angular range of region 2 is available, i.e., θ ∈ (0, π).
As rA increases from (RB − d) to RA, the available posi-
tions within region 2 decrease to 0. We capture this de-
pendence with the angle integration limits, (0, θA−max),
where θA−max = π for rA ≤ (RB − d). The logic behind
the form of w(rA) is analogous to case 1, however.

Sampling θA|rA, t

Sampling here is analogous to case 1, with updates to
the available angle ranges for a given rA.

p(θA|rA, t) =
1√

12πDBt
exp

(
−rB(θA)2

12DBt

)
∗ 2πhring

(36)
With r2

B(θA) = r2
A + d2 − 2rAd cos(θA), hring =

rA sin(θA), and θA ∈ [0, θA−max].

Case 3

Sampling rA

In this case, the full range in rA (∈ [0, RA]) is available.
Therefore, no re-weighting of probabilities is needed.

p(rA|t) =
1√

12πDAt
exp

(
− r2

A

12DAt

)
(37)
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Sampling θA|rA, t

Sampling here is analogous to case 1, but with the full
range of angles available.

p(θA|rA, t) =
1√

12πDBt
exp

(
−rB(θA)2

12DBt

)
∗ 2πhring

(38)
With r2

B(θA) = r2
A + d2 − 2rAd cos(θA), hring =

rA sin(θA), and θA ∈ [0, π].

Case 4

Sampling rA

Sampling here is analogous to case 2.

w(rA) =

∫ θA−max(rA)

0

dθA2πrAsin(θA) ∗(∫ RB−d

0

dr
[ ∫ θmax(r)

0

dθ(r)2πr sin(θ)
]
∗ p(r, t)

+

∫ RA

RB−d
dr
[ ∫ θmax(r)

0

dθ(r)2πr sin(θ)
]
∗ p(r, t)

)−1

(39)

θA−max(r) = cos−1
(max[r2, (RB − d)2] + d2 −R2

B

2d max[r, (RB − d)]

)
(40)

Sampling θA|rA, t

Sampling here is also analgous to case 2.

p(θA|rA, t) =
1√

12πDBt
exp

(
−rB(θA)2

12DBt

)
∗ 2πhring

(41)
With r2

B(θA) = r2
A + d2 − 2rAd cos(θA), hring =

rA sin(θA), and θA ∈ [0, θA−max].

Case 5

Sampling rA

In this case, the full range in rA (∈ [0, RA]) is available.
Therefore, no re-weighting of probabilities is needed.

p(rA|t) =
1√

12πDAt
exp(− r2

A

12DAt
) (42)

Sampling θA|rA, t

Sampling here is analogous to case 1, but with the full
range of angles available.

p(θA|rA, t) =
1√

12πDBt
exp

(
−rB(θA)2

12DBt

)
∗ 2πhring

(43)
With r2

B(θA) = r2
A + d2 − 2rAd cos(θA), hring =

rA sin(θA), and θA ∈ [0, π].

Determining Bimolecular Reaction Locations by
Rejection Sampling

Because PDFs in each case may be complicated func-
tions, we cannot always sample from them directly. In-
stead, we first draw a sample of our variable x (i.e. rA
or θA) uniformly from its feasible range. In order to de-
termine whether this sample is accepted or rejected, we
utilize an envelope function, Q(x) whose probability den-
sity at all feasible points is at least as great as that of the
PDF from which we want an observation. The sample x
is accepted if q(x) drawn uniformly from [0, Q(x)] is less
than p(x).

One potential issue is that volume exclusion should
prevent sampled locations from leading to particle over-
lap. We define two molecules to be overlapping if the dis-
tance between their Gaussian means is less than R, the
minimum allowed separation, and neither molecule has
been diffusing for longer than R2/6D. In the event over-
lap is detected, a new location is sampled. This proce-
dure for handling volume exclusion in location sampling
is not highly optimized in the demonstration implemen-
tation presented here, and can significantly impact the
run time as the particle density increases.

Simulation Boundaries

Figure 6 illustrates our method for ensuring all par-
ticles remain within the simulation volume. We treat
this volume as a cube bounded by planes about which
a particle may be reflected if its initially sampled posi-
tion exceeds the plane. The algorithm samples an un-
constrained reaction location and the displacements for
both particles are noted. Next, assume the reaction loca-
tion happens to be outside the simulation volume. Each
molecule can be considered to have travelled along a lin-
ear path from its initial location to the reaction location,
with one piece of the path within the simulation volume
and one piece outside. Because the unconstrained spatial
probability densities describe radial displacements from
either particle’s initially known location, application of
reflective boundary conditions need only guarantee both
particles’ piecewise linear paths each sum to the noted
displacements, and terminate within the simulation vol-
ume.
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This procedure is strictly correct only if the wait time
sampling, i.e., computing the integrated reaction propen-
sities, is correct. The point (finite) particle reaction
propensities described in this paper do not take into ac-
count the boundaries of the simulation volume. Error is
therefore introduced in wait time sampling for molecules
diffusing long enough to encounter a boundary. However,
given a wait time t, reaction location sampling depends
only on the possible net displacements of either particle
after diffusing for t units of time. We can therefore as-
sume free diffusion to sample the location and then use
our reflecting procedure if necessary.

III. RESULTS

Application: Michaelis-Menten

We applied DESSA-CS to the well known Michaelis-
Menten enzymatic reaction system within a 90µm3 vol-
ume. The original benchmark was developed by Andrews
[34] and updated by Chew et al. [40] to account for the
extreme run time demands of eGFRD. Figures 7 and 8
display our results for the updated benchmark, displaying
the population dynamics for molecular species E, S, ES
and P, which obey the binding rules E + S ⇔ ES ⇒ P.
Figure 9 shows comparable results for eGFRD. Note that
the different models approximate and parameterize the
physical system in different ways and so it is not possi-
ble to conduct perfectly equivalent simulations by each
method, but we have chosen parameter values so as to ap-
proximate the same physical conditions in each method
as closely as they allow in our choice of rate constants.
Simulation run times for the point particle and finite par-
ticle representations respectively were 20 seconds and 90
seconds, roughly two orders of magnitude faster than
eGFRD (see Figure 5 of Chew et al. [40] and Table I
below).

In the point particle simulations, the data set (com-
puted before run time) consisted of 3000 linearly spaced
distances from Renc to 2*dmaxD, where dmaxD corre-
sponds to the mean square displacement due to diffusion
at TmaxD, the max allowed diffusion time. At each dis-
tance, the integrated propensity was computed at 50,000
time points (i.e. variances). There were 40,000 linearly
spaced time points from 1∗10−6 to 1∗10−2 where the cur-
vature is often highest, and 10,000 linearly spaced time
points from 1 ∗ 10−2 to TmaxD. This 3000 by 50,000
data set was computed in 14.5 minutes in the Go lan-
guage (golang). The propensity function integration er-
ror for a given distance value and time duration de-
pends on the number of integration intervals - here 50,000
for the full duration. We used the trapezoid method,
whose error at each time point can be upper bounded

by Err(∆t) = ∆t3

12N2 ∗ K ∗ c, where K is the maximum
magnitude of the second derivative of the CDF, c is the
intrinsic reaction rate, and N is the number of integration
intervals over the duration ∆t. These are not likely to

be tight upper bounds due to the presence of inflection
points in the CDF graph. Our golang integration code,
including a method to print error bounds and integrals
to text files, can be found in the GitHub repository.

In the finite particle simulations, the data set consisted
of 3000 integrated propensity curves at the same distance
values, each of which was evaluated at 5500 time points.
Computation of the integrated propensity data set re-
quired ∼ 1m. Performing these numerical integrations
is possible in Matlab but requires symbolic computation
to evaluate the integrands. The result was that the same
data set takes on the order of days to compute. In golang,
the necessary numeric precision was achieved using its
big math package which implements arbitrary-precision
arithmetic.

In general, both the finite and point particle represen-
tations run more efficiently when each molecule is allowed
to diffuse farther outside the boundaries before wait times
are sampled. We will refer to a cubic simulation vol-
ume as having dimension (Lµm)3 and the fraction of the
cube length beyond which a particle may diffuse as lB .
It is then useful to analyze the behavior of simulations as
these vary. The Michaelis-Menten Benchmark requires
that 90µm3 = L(1 + lB). In Figure 10, we plot simula-
tion trajectories at multiple values of lB (i.e., lB = 0.03,
lB = 0.1, and lB = 0.3) for the finite particle represen-
tation. The plot demonstrates that while the kinetics do
not change appreciably with changes in lB , the run time
does. The respective run times are 2693s, 777s, and 157s.
The results are qualitatively similar in the point particle
representation case. As the relative distance allotted to
the cube’s length increases, so does the run time. This
results from the fact that as lB decreases, so does the
maximum diffusion time of molecules near the bound-
ary, leading to a much higher number of position updates
compared with the roughly unchanging number of reac-
tion events. Even though the change in kinetics is mini-
mal across the parameter values examined, the effective
association rate does show a weak inverse dependence on
lB .

IV. CONCLUSIONS

We have presented a novel event-based method for sim-
ulating reaction diffusion systems in continuous space
and in the presence of planar or curved boundaries. As in
the Gillespie algorithm and related methods, we sample
bimolecular reaction waiting times by utilizing propen-
sity functions. However, with the introduction of 3d
space, the reaction propensities now depend explicitly
on the time reactants diffuse, allowing them to encounter
one another. The result is that we integrate the propen-
sity function of each reactant pair in order to determine
whether (and when) a reaction is possible in a specified
duration. While the method is inspired by ideas from
GFRD and eGFRD, our method for sampling reaction
locations given the waiting time is, to our knowledge,
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Figure 6. (Left) Shown are applications of the reflective boundary condition after a position-only-update event (e.g. E) or after
a bimolecular reaction event (e.g. A&B, G&H). (Single Reflection) In the bimolecular case, we reflect about an axis defined
by the two intersection points of the lines connecting the reactants with the product, and the boundary. This ensures that
the distances traveled by both particles remains the same. When these lines exit the simulation box through the same face
(e.g. A&B), the reflection axis is parallel to the face. When the lines exit though different faces (e.g. G&H), the axis must
be computed and the reflection can be implemented with the Rodrigues rotation formula in the appropriate reference frame.
(Multiple Reflection) Depending on the location of the reactants and the distances they travel, the post-reflection location
may end up outside a different boundary, though to a lesser extent. We simply need to update the reactant positions to be
the boundary intersection point(s) and reapply the reflection procedure. In principle, this procedure works for any simulation
volume, including those with curved boundaries. (Right) For a cubic simulation volume, we determine through which face
(and at what point) a reactant (A) first passed if it is found outside the simulation volume. In this case, the pre-reflection
location A’ exceeds the simulation volume along more than 1 dimension which means it is necessary to compute dIntersect for
each 2d plane exceeded by A’, and then compute the intersection point, I, for the face with minimum dIntersect.

Figure 7. Point particle representation. (Left) Time evolution of 1000 molecules in the Michaelis-Menten model with
DESSA-CS. Unimolecular rate constant kuni = 0.1s−1 (governing ES ⇒ E + S and ES ⇒ E + P ) and diffusion coefficient
D = 1µm2s−1 are taken from Figure 5 of Chew et al. [40]. In order to reproduce similar dynamics, we chose the point-particle
reaction propensity constant c = 2.5 ∗ 107s−1 (with R2

enc = 0.012µm). (Right) The run time for the model increases roughly
linearly in log space with the number of molecules - [100,200,400,800,1600,3200,6400,12800] at a fixed volume of 90 µm3.
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Figure 8. Finite particle representation. (Left) Time evolution of 1000 molecules in the Michaelis-Menten model with DESSA-
CS. Unimolecular rate constant kuni = 0.1s−1 (governing ES ⇒ E + S and ES ⇒ E + P ), diffusion coefficient D = 1µm2s−1,
boundary condition parameter c = 1.2 ∗ 103s−1, and Renc = 0.01µm. (Right) The run time for the model increases roughly
linearly in log space with the number of molecules - [100,200,400,800,1600,3200,6400,12000] at a fixed volume of 90 µm3.

1000 Molecules, 100s Simulation Time

Local Workstation: Ubuntu 14.04 LTS, 128 GB memory, Intel Xeon E5-2630 2.40GHz

[40] Workstation: Ubuntu 16.04 LTS, 48 GB memory, Intel Xeon X5680 3.33GHz

Software Run Time Sim Parameters Boundary Type Space / Time Steps Workstation

DESSA-CS 100s r = 0nm, lB = 0.1 reflective off-lattice / sampled local

DESSA-CS 728s r = 10nm, lB = 0.1 reflective off-lattice / sampled local

eGFRD 10,561s r = 10nm periodic off-lattice / variable local

eGFRD 2,412s r = 1nm periodic off-lattice / variable [40]

eGFRD 3,246s r = 10nm periodic off-lattice / variable [40]

Smoldyn 20s ∆t = 1ms periodic off-lattice / fixed [40]

Smoldyn 298s ∆t = 67µs periodic off-lattice / fixed [40]

Spaciocyte MLM 13s ∆t = 1ms, r = 38.73nm periodic spatial lattice / fixed [40]

Spaciocyte MLM 276s ∆t = 67µs, r = 10nm periodic spatial lattice / fixed [40]

Table I. Method Comparison on Updated Benchmark from Chew et al. [40]. Diffusion coefficients are 1µm2s−1. The local
eGFRD simulation was run using the open source simulation environment E-Cell version 4 [52]. DESSA-CS parameter lB
describes, as a percentage of the container length, how far a molecule’s diffusion sphere may extend beyond the container
during location sampling.
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Figure 9. Time evolution of 1000 molecules in the Michaelis-
Menten model with eGFRD in the E-Cell v4 environment.
Unimolecular rate constant kuni = 0.1s−1 (governing ES ⇒
E+S and ES ⇒ E+P ), diffusion coefficient D = 1µm2s−1,
intrinsic bimolecular rate constant kbimol = 1 ∗ 10−2s−1, and
particle radius r = 0.01µm are taken from Figure 5 of Chew
et al. [40]

novel relative to other spatial simulation methods. For
point particles, we rely on two assumptions: (1) that
reactions must happen in the region both reactants’ dif-
fusion spheres overlap and (2) that the probability dis-
tributions characterizing the possible distances either re-
actant has traveled are Gaussian and independent. This
implies there are rings of equiprobable points at constant
distance from the Gaussian means of the reactants and
suggests a method to sample such a ring: first, sample a
distance, rA from one reactant, and then sample the an-
gle w.r.t. the axis connecting the means given rA. Each
ring is uniquely determined by this distance and angle,
and the reaction location can then be selected uniformly
at random from on the ring. In the case of molecules
with finite size, Green’s functions governing radial sepa-
ration must be used for wait time sampling, however the
same ring sampling procedure applies to reaction loca-
tions. We compare our method with its most relevant
competitor, eGFRD, on the modified Michaelis-Menten
benchmark model described in Chew et al.[40]. The dy-
namics displayed by eGFRD, Spatiocyte (implementing
a microscopic lattice method), and Smoldyn are quan-
titatively similar. DESSA-CS shows a substantial im-
provement over the run time of eGFRD, achieving run
times more comparable to the discrete-time alternatives
Smoldyn and Spaciocyte MLM. The method as presented
leaves several avenues for extension and improvement in
future work. DESSA-CS is able to achieve its compar-
atively high run time efficiency by exploiting the fact
that, under certain assumptions, wait time sampling can
be described by a deterministic part applicable in many
circumstances, and a stochastic part specific to each reac-
tant pair. We can therefore perform much of the expen-

sive deterministic computations once, independently of
each simulation run. Those assumptions include isotropic
diffusion as the primary method of transport, and that re-
actions between distinct pairs of molecules are described
by time-inhomogenous Poisson processes with mean pa-
rameter equal to the integrated propensity (this implies
exponentially distributed waiting times). These are rea-
sonable assumptions, yet both may be relaxed in future
work. Numerically integrating these reaction propensi-
ties when considering new reactions at every step of the
simulation can lead to the same computations being per-
formed thousands or millions of times. Only the sampling
of the exponentially distributed random numbers must
be performed for all potential bimolecular reactions. The
overall accuracy of the method is dependent on the reso-
lution of the pre-computed integrated propensity curves.
In future work, we will investigate more formally the na-
ture of the accuracy/efficiency trade off associated with
our handling of reflective boundaries. We will also con-
sider methods for updating our unconstrained integrated
reaction propensities to account for the boundaries of the
simulation volume. One other avenue for improvement is
the choice of programming language for the simulator.
Matlab was chosen for its ease of use, as well as its test-
ing and plotting infrastructure. Moving fully to Golang
or C would likely lead to substantially greater run time
efficiency.
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Appendix A: Evaluating CDFQ(y)

Following Mathai and Provost [48], we consider the p
dimensional Gaussian distributed random variable X ∼
N(µ,Σ),

∑
> 0 and the quadratic form Q = XTAX,

AT = A. Q has the following alternate representation in
terms of its eigenvalues:

Q =

p∑
j=1

λj(Uj + bj)
2 (A1)

Let P be a pxp matrix which diagonalizes Σ1/2AΣ1/2,
i.e. PTΣ1/2AΣ1/2P = diag(λ1, ..., λp), and PPT = I.

Now, UT = (U1, ..., Up), U = PTΣ−1/2(X − µ), bT =

(b1, ..., bp) = (P TΣ−1/2µ)T , and the Uj ’s are mutually in-
dependent standard normal variables. We are interested
in the distribution function (i.e. CDF of Q) which we
here define as Fp(λ,b; y). It can be shown (see sections
4.1-4.2) that



16

Figure 10. Varying the simulation volume’s boundary parameter for the finite particle representation. Time evolution of 1000
molecules in the Michaelis-Menten model with DESSA-CS. Unimolecular rate constant kuni = 0.1s−1 (governing ES ⇒ E + S
and ES ⇒ E + P ), diffusion coefficient D = 1µm2s−1, boundary condition parameter c = 1.2 ∗ 103s−1, and Renc = 0.01µm.
From left to right: lB = 0.03 (runtime = 2693s), lB = 0.1 (runtime = 777s), and lB = 0.3 (runtime = 157s).

Fp(λ,b; y) =

∞∑
k=0

(−1)kzk
yp/2+k

Γ(p/2 + k + 1)
, (A2)

0 < y <∞, with the following recursively defined coeffi-
cients.

z0 = exp(−1

2

p∑
j=1

b2j )

p∏
j=1

(2λj)
−1/2 (A3)

zk =
1

k

k−1∑
r=0

dk−rzr, k ≥ 1 (A4)

dk =
1

2

p∑
j=1

(1− kb2j )(2λj)−k, k ≥ 1 (A5)
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