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Abstract—While Virtual Reality (VR) applications are becom-
ing increasingly common, efficiently verifying a VR device user
before granting personal access is still a challenge. Existing VR
authentication methods require users to enter PINs or draw
graphical passwords using controllers. Though the entry is in
the virtual space, it can be observed by others in proximity and
is subject to critical security issues. Furthermore, the in-air hand
movements or handheld controller-based authentications require
active user participation and are not time-efficient. This work
proposes a low-effort VR device authentication system based on
the unique skull-reverberated sounds, which can be acquired
when the user wears the VR device. Specifically, when the user
puts on the VR device or is wearing it to log into an online
account, the proposed system actively emits an ultrasonic signal
to initiate the authentication session. The signal returning to the
VR device’s microphone has been reverberated by the user’s
head, which is unique in size, skull shape and mass. We thus
extract head biometric information from the received signal for
unobtrusive VR device authentication.

Though active acoustic sensing has been broadly used on
mobile devices, no prior work has ever successfully applied
such techniques to commodity VR devices. Because VR devices
are designed to provide users with virtual reality immersion,
the echo sounds used for active sensing are unwanted and
severely suppressed. The raw audio before this process is also
not accessible without kernel/hardware modifications. Thus, our
work further solves the challenge of active acoustic sensing under
echo cancellation to enable deploying our system on off-the-shelf
VR devices. Additionally, we show that the echo cancellation
mechanism is naturally good to prevent acoustic replay attacks.
The proposed system is developed based on an autoencoder and
a convolutional neural network for biometric data extraction and
recognition. Experiments with a standalone and a mobile phone
VR headset show that our system efficiently verifies a user and
is also replay-resistant.

Index Terms—Virtual Reality, Authentication, Biometric.

I. INTRODUCTION

Virtual reality (VR) technology has gained widespread
recognition over the past few years. Bridging digital and
physical worlds, VR has been increasingly adopted in enter-
tainment, education, medical care, and social networking to
provide immersive experiences. The international data corpo-
ration predicts that the shipments of VR headsets will reach
28.6 million in 2025, with the compound annual growth rate
anticipated at 41.4% [1]. In particular, the standalone VR
headsets, such as the Meta (Oculus) Quest, account for the vast
majority of shipments [2], which features built-in processors
and storage and is wire-free. The recent COVID-19 pandemic
further elevates the demand for VR technology in people’s
daily life.

Similar to other personal devices like smartphones, VR de-
vices are closely connected with user privacy, including private
app content, browsing histories, and preferences. However,
many successes in mobile device authentication can not be
easily copied to protect VR device/account access. Current so-
lutions ask users to enter passwords with handheld controllers
or in-air hand gestures, which are time-consuming and far less
convenient than typing on a physical keyboard or touchscreen.
Moreover, while a user inputs a password in the virtual space,
the sensitive hand movements could leak the password to a
nearby adversary in the physical world. Additionally, because
a VR device may be shared with close friends and family
members, practicing the multi-account service would be a
nightmare, given the tedious and insecure VR authentication
process. In this work, we design an authentication method for
VR devices based on acoustic domain human-VR interactions,
which is fast and easy to use.

There has been active work on extracting behavioral biomet-
rics from VR users’ hand/head/body motions for authentica-
tion. For example, Mathis et al. replace the traditional virtual
keyboard with a 3D Rubik’s cube for the user to enter a PIN,
and the hand motion patterns such as moving, pointing, and
button-click dynamics are captured by the handheld controllers
for authentication [3], [4]. In addition to relying on hand
motions, recent studies use VR headsets’ inertial sensors to
extract biometric information from head movements when
the user performs pointing, grabbing, walking, and typing
in the virtual space [5]-[7]. Wang et al. further develop an
authentication mechanism to allow AR/VR users to unlock
their accounts with a nodding action [8]. But these methods
all require users to actively interact with the VR device, which
is obtrusive and slow. The authentication performance is also
limited by behavioral inconsistency and the low fidelity of
embedded sensors.

This work employs the less obtrusive acoustic sensing
technique to simplify the human-device interactions required
for VR user authentication. We propose a low-effort VR user
authentication system based on extracting the acoustic-domain
head biometrics that are naturally born with head-mounted
devices. Specifically, when the user puts on a VR device, a
unique rigid body is formed by the user’s head and the device,
containing two chambers, the skull and the hollow space en-
closed by the VR device and the face. When an authentication
session 1is initiated, the proposed system emits an ultrasonic
signal using the VR device’s speakers. The signals traveling on



this rigid body are reverberated (e.g., damped and reflected) by
the individually unique head size, skull shape, mass, and face
pattern. The resulting signals reaching the microphone thus
carry the user’s biometric information and can be analyzed
for authentication.

However, deploying active acoustic sensing on off-the-
shelf VR headsets is not trivial. Though many works have
demonstrated such sensing techniques on mobile devices [9]-
[13], to our best knowledge, no prior work has successfully
applied them to commodity VR devices. The main reason
is that the raw audio data before echo cancellation can not
be directly accessed on these devices without kernel and
hardware modifications [14]. Because VR devices are designed
to provide immersion, the echo sounds, from its speaker to
mic, are unwanted and canceled by default [15], making
the received audio feedback hardly recognizable for sensing
purposes. Additionally, the current VR headset model designs,
such as placing speakers and microphones under the device’s
fabric cloth and strap, cause further acoustic attenuation and
noises.

To address the above challenges and achieve low-effort user
authentication on off-the-shelf VR devices, we develop a head
biometric-based authentication system based on a Convolu-
tional AutoEncoder (CAE) and a Convolutional Neural Net-
work (CNN). The system sends millisecond-level ultrasonic
signals and takes echo sounds as the input. We derive the 2D
spectrogram of mic data to measure the impact on the speaker-
to-mic channel caused by the user’s head. Furthermore, we
develop the CAE-CNN algorithm for user authentication,
which counteracts the device’s built-in echo cancellation and
encodes individual head biometrics. In particular, the CAE
algorithm encodes the head biometric information based on
reconstructing the spectrogram from the surviving echo sound.
Next, our three-convolutional-layer CNN model learns the
reconstructed head biometric spectrogram to distinguish users.
Both the single-user verification and the multi-user identifica-
tion services are supported. Access is granted only when the
user’s identity is claimed or belongs to one registered user.
We further prevent acoustic replay attacks by leveraging both
the CAE algorithm and the device’s echo cancellation.

Our contributions can be summarized as follows:

o We propose an efficient and low-effort authentication sys-
tem for current VR headsets leveraging head-reverberated
sounds. The engineering contribution is allowing the
already shipped VR headsets to identify a user through
millisecond-level acoustic signals without kernel or hard-
ware modifications.

o We find that a head-mounted VR device forms a unique
rigid body with the user’s head, and an actively emitted
acoustic signal can measure the individual rigid body to
extract head biometric information for authentication.

o This work, for the first time, achieves active acous-
tic sensing on commodity VR headsets and solves the
challenge of obtaining recognizable acoustic information
under echo cancellation. We further show that the exist-
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Fig. 1. Illustration of the acoustic signal interacting with the user’s head.

ing echo cancellation mechanisms are naturally good to
address acoustic replay threats.

e We develop a CAE-CNN algorithm to encode the head
biometric for each individual from acoustic signals, coun-
teract the built-in echo cancellation effect, reduce noise
impacts to serve long-term use, and increase difficulties
for replay attacks.

o Extensive experiments with a standalone and a mobile
phone VR headset show that our system efficiently veri-
fies a user and identifies multiple users while the acoustic
replays are prevented.

II. BACKGROUND AND SYSTEM MODELS
A. Head-reverberated Sound as Biometric

This work proposes to verify VR device users by capturing
their head biometrics in the acoustic domain. We find that
when users wear a VR headset, they tend to adjust the strap
to wear it tightly and conveniently. The device and the head
form a rigid body, whose deformation is relatively small, and
the distance between any two points remains constant or nearly
unchanged along time [16]. The VR device’s speaker and
microphone on this rigid body create an acoustic channel,
and a sound traveling on this channel would be absorbed
and reflected by it, as shown in Figure 1. Furthermore, the
rigid body contains two chambers, the skull and the enclosed
space between the face and the VR headset, which further
capture the propagating signal beams, causing strong internal
reflections and even amplifying the sound. Because each
human head has a unique size, skull structure, mass, and
facial pattern, the corresponding rigid body affects the sound
differently before it reaches the microphone. We thus use the
VR headset’s speaker to emit acoustic signals and analyze its
speaker-microphone channel responses to extract acoustically
presented head biometrics.

In particular, the relationship between the microphone sound
S(f) and the original speaker signal S(f) can be expressed
in the frequency domain as

S(f) = S(HHE(f) + N(f)- )
Hpg(f) is the speaker-microphone channel response describing
the echo effect, and N(f) is the combination of ambient
sounds. The channel response can be further divided into two
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Fig. 2. Human head reverberating the sounds in the speaker-microphone
channel of two types of VR devices.

components, the channel response related to the rigid body
Hpeoa(f) and the environmental reflections Hey,(f). Thus
the microphone sound can be further expressed as

S(f) = S(f) [Hneaa(f) + Heno ()] + N(f), (&)
The principle of extracting head biometrics from acoustic
signals is measuring Hj,cqq(f) based on S(f) while reducing
the impacts caused by Hc,,(f) and N(f). The intuition
is that the environmental ultrasonic reflections suffer from
higher attenuations due to traveling in the air, and the signals
propagating on the rigid body could dominate the microphone
data, though exposed to ambient noises [17].

To study the feasibility of using acoustic sensing to obtain
users’ head biometrics, we used two types of VR devices. Each
device emitted a short 18-22kHz chirp signal when the device
was placed on a table and worn by a user, respectively. The
VR device’s microphone recorded the echo sounds. Figure 2(a)
compares the spectrograms obtained by the mobile phone VR
headset (Samsung S8 phone) in the two scenarios. We find
that when a user wears the VR headset, significant changes in
the spectrogram are observed. In particular, stronger frequency
components after the direct-path chirp signal (marked with
a red circle) are observed when the user wears the device,
indicating that more echo sounds return to the device’s mi-
crophone. This is caused by the reflections of the head and
the effects of the two formed chambers. Similar results can be
observed on the standalone VR headset (Meta Quest) as shown
in Figure 2(b). Moreover, we find that while the mobile phone
VR keeps the original shape of the chirp signal in 18-22kHz,
the standalone VR obtains the severely distorted signal non-
linearly mapped within 0-16kHz, which is caused by its default
echo cancellation mechanism and low sampling rate.

We further examine the head-reverberated sounds between
two users using a mobile phone VR device, because its
microphone keeps most frequency components of the original
signal, making it easier to capture different physical impacts.
Specifically, a stimulus sound consisting of five sinusoidal
signals from 18kHz to 22kHz is used. Figure 3 shows the
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Fig. 3. Frequency responses of two VR users’ head-reverberated sounds.

frequency responses of the sound, when it is reverberated by
two users’ heads. We observe that the received echo sounds
present distinctive patterns for each user in the frequency
domain. More specifically, the signal amplitude is amplified
or suppressed differently at each frequency between the two
users. The results confirm the potential of recognizing a user’s
head using acoustic signals and further motivate us to leverage
the rich frequency components of a sound to describe head
biometrics with fine granularity.

B. Challenges

As shown in Figure 2, the echo signal recorded by a
standalone VR device is significantly different from the orig-
inal signal, whose shape is not maintained or recognizable.
Thus, it is hard to measure a target’s physical impacts on
the signal for sensing purposes. Additionally, the speakers and
microphones of standalone VR devices are located either in
the strap or under fabric cloth, whose influences on acoustic
sensing are still unknown. To comprehensively understand
the challenges of deploying active acoustic sensing on VR
devices, we conduct experiments to test a Meta Quest and
use a smartphone, Samsung Galaxy S8, as a baseline whose
speaker-microphone audio feedback has been shown not to
suffer from observable distortions.

VR Device Speaker Test. We use the Quest speaker to
play an ultrasonic chirp signal (18-22kHz) and the phone mic
to record the sound. As illustrated in Figure 4(a), the Quest
speaker is able to play the ultrasonic sound with significant
power maintained, though there are some frequency leakages
below 18kHz. Such leakages cause the emitted ultrasonic
sound slightly audible rather than truly inaudible. These
sounds may be caused by the imperfect hardware and the
vibration of the VR device frame and surface. We also observe
a similar result on the Meta Quest 2 device, though with a
different audio pattern. The speaker test indicates that the VR
device speaker can support active acoustic sensing. It also
motivates us to design the sensing signal in the ultrasonic band
with a short duration, such as at the millisecond level, which
further reduces the audibility of the signal to users.

VR Device Microphone Test. We use the phone speaker to
play the same ultrasonic chirp (18-22kHz) and use the Quest’s
mic to record data, which is implemented with the APIs in
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Fig. 4. Challenges of active acoustic sensing on standalone VR headset.

Unity [18]. Figure 4(b) shows the microphone test result,
indicating four critical challenges of using the VR device
for sensing: (1) The echo sound recorded by the Quest mic
is severely distorted, and the sensing signal’s original shape
is unrecognizable, which makes it hard to analyze the impact
of the sensing target. (2) The echo sound is also nonlinearly
mapped into the low-frequency range (< 16kHz), though
the original sound is only at the inaudible frequency range.
Although Unity supports over 48kHz microphone sampling
rates, the Quest can only record audio with up to 32kHz
sampling rate. The sounds above 16kHz would be nonlinearly
projected to the lower frequency range with distortions. The
data is also exposed to ambient audible noises. (3) Regarding
the echo sound distortions, the default echo cancellation al-
gorithm is the main cause, and there are also influences from
the VR device’s case and the speaker/mic locations. Some
VR devices have such algorithms built in the hardware [14],
[19], and thus, it requires rooting the VR device or modifying
its hardware before applying the traditional active acoustic
sensing methods. (4) Figure 4 also shows that the signal
amplitudes of the Quest’s mic data are significantly lower than
that of smartphones, which adds more difficulties to using the
signal for sensing. This is because such dedicated sensing
signals are not recognized as meaningful media sounds or
human voices and they are suppressed like noises [14]. As
the noise suppression/removal algorithm is often integrated or
concatenated with echo cancellation, we use echo cancellation
to represent both in the rest of the paper.

Active Sensing Under Echo Cancellation. Active echo
cancellation algorithms are widely used to remove the speaker-
microphone-propagated sounds, such as least-squares FIR
adaptive filters and frequency domain adaptive filters [20],
[21]. These algorithms learn from short-term observations
to estimate the speaker-microphone channel and predict a
reference audio to deduct from the microphone data. Specif-
ically, they need to consider multiple factors in generating
the reference audio, including echo paths, circuit/signal prop-
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agation delays, and volume levels. The detailed designs of
these algorithms on commodity VR devices are not released.
But as shown in the above feasibility studies, these algorithms
cannot completely remove the echo sounds due to the failure
of perfectly generate the reference audio. We thus propose to
recover useful sensing information from the surviving echo
and attempt to counteract the effect of echo cancellation. By
including the frequency response of echo cancellation Hgc (f)
and a noise suppression factor o to Equation 2, we model the
active acoustic sensing under echo cancellation as

S(£) = S(f) Hncaa(f) + Heno(f) = Heo ()] + aN(f).  (3)
Equation 3 presents the sensing model under echo cancella-
tion by including its most significant component, the linear
adaptive filter. The more precise model needs to consider the
nonlinear mapping due to low sampling rates [22], device
nonlinearities [23] and nonlinear filters [24].

C. System Overview

The architecture of our system is shown in Figure 5. When
the user puts on the VR device or is wearing it to log into an
app or an online account, the system initiates an authentication
session by playing a millisecond-level ultrasonic sound as the
stimulus signal. The corresponding microphone data (i.e., echo
sound) is obtained as the system input. We first perform data
preprocessing, which consists of denoising, synchronization,
and segmentation. Specifically, the system uses a bandpass
filter to process the audio data and remove the acoustic noises
outside the interested frequency band. Next, the system syn-
chronizes the data based on the reference audio and locates the
echo segment in the microphone data that corresponds to the
stimulus signal and is expected to contain head-reverberated
sounds.

The core of our system is a CAE-CNN authentication
algorithm. The algorithm derives the spectrogram from the
echo sound to describe the time-frequency characteristics of
the head-reverberated signals. After that, the CAE model
counteracts the echo cancellation effects and derives the stable
head biometric encoding from the echo sound spectrogram,
which further reduces the noise impacts, enables long-term



use and adds difficulties to replay attacks. The reconstructed
head biometric spectrogram is learned by a CNN to distinguish
users. Based on the demanded authentication scenarios, the
system can be deployed either locally at the VR headsets
(e.g., for unlocking devices) or at the remote server (e.g., for
logging into online accounts). For the remote server scenario,
the system verifies the user against the claimed user identity,
which is a binary classification. For the local authentication
scenario, the system can identify more than one user to support
multi-account features.

Multi-account Feature. Figure 6 illustrates the CAE-CNN
algorithm for m-user account authentication, m > 1. Each
row has a pair of CAE and CNN models bonded with one
of m registered users (e.g., user j, 1 < j < m), which
stores the user’s profile and estimates the probability of an
authentication request to be from this user. When user j
enrolls in this system, a pair of CAE and CNN models are
used to create two per-user profiles. Specifically, the user j’s
sound spectrogram goes through the encoder of CAE to derive
the head biometric encodings and create user j’s CAE profile.
The head biometric encodings of user j further go through the
CAE decoder to reconstruct the head biometric spectrogram,
which is fed into the following CNN model as user j’s
training data. Moreover, a set of nonusers’ head-reverberated
sound audios are processed by both the encoder and decoder
of user j’s CAE model, and the resulting spectrograms are
further input into user j’s CNN model as the nonuser training
data. The CNN model thus learns from the two classes of data
to construct user j’s CNN profile. During the authentication
phase, the spectrogram of a testing audio needs to be pro-
cessed by each of the m users’ CAE and CNN model pairs.
Each CNN model outputs probabilities for two classes, the
designated user and the nonuser, whose sum is 1. All user-
class probabilities are further compared to find the maximum,
which must be over 0.5 for an accept decision (i.e., one of the
registered users).

D. Attack Models

The goal of an adversary is accessing the user’s VR device
to steal private information (e.g., browsing histories, prefer-
ences and sensitive App content) and perform unpermitted
operations (e.g., deleting files, installing malware, making
online payments and controlling the user’s metaverse avatar).
To achieve this goal, the adversary needs to spoof the user’s
identity to pass the VR device’s authentication. We assume the
adversary has gained physical access to the user’s VR device
and is familiar with our authentication system. Based on the
specific professional knowledge and technical capabilities that
an adversary could obtain, we consider the following attacks:

Zero-effort Attack. Rather than following the authentica-
tion procedure to present a biometric, an adversary may place
the VR device on a table or a mount, attempting to break the
authentication system with zero effort. It is worth noting that
most VR headsets have the ability to detect the presence of the
user’s head based on a proximity sensor (usually placed on the
top edge of the goggles). If not detecting the device worn by a

| CAE for Uy

e
- o> )

: Head Biometric Encodings 1 Reconstructed
-------------- Spectrogram

s |
‘ 3 CNN

!
Head Biometric Encodings 1 Reconstructed

v il

CNN Pr(Ul)\

0
>
m
g
=

~N

1
o e D
: |

Pr(Uy) One of the

registered user?
Max(Pr)

Spectrogram
Echo Sound
Spectrogram

.
| i’ 1
| H P
e {CEDY =Dl prw) /
|

- '
Head Biometric Encodings 1 Reconstructed
__________________ Spectrogram

Fig. 6. The CAE-CNN authentication algorithm with m registered users.

user, the VR system goes to the sleep mode [25], [26]. Thus,
to keep the VR system awake and complete authentication
sessions, the adversary can simply attach a sticker to block the
proximity sensor and fool the “liveness detection” mechanism.

Impersonation Attack. The attacker attempts to pass the
authentication by wearing the VR headset in person, hoping
similar head biometrics could be presented. The adversary may
target victims with similar head sizes/mass and replicate the
wearing position, strap height, and tightness. Moreover, as our
system supports multi-user accounts, we divide impersonation
attacks into two categories: 1) In insider impersonation, the
attacker has been enrolled into the authentication system as
one user but attempts to log into one other registered user’s
account; 2) In outsider impersonation, the attacker is not
enrolled but attempt breaking into any one of the registered
users’ accounts.

3D Printed Head Attack. We consider a head biometric
replay attacker, who could forge a physical head similar to
the user based on 3D scanning & printing [27]. In particular,
we use a commodity 3D scanner, Revopoint 3D Scanner-
POP2 [28], to obtain the user’s 3D head model and import
it into a commodity 3D printer, Creality 3D Printer CR-10
V3 [29], to produce the fake head. Similar 3D printed heads
have been used to break facial recognition systems [30]. We
further add silicone [31], and the resulting head shows a
similar head shape, size, weight, and face pattern.

Acoustic Replay Attack. Due to the open nature of acoustic
channels, nearly all acoustic-based authentication systems are
subject to replay threats. We consider two types of acoustic
replay attacks based on how the adversary obtains the user’s
head-reverberated sounds: 1) The side-channel eavesdropping
replay attacker places a hidden microphone in the user’s
proximity to record the user’s authentication. The audio is
later amplified and replayed by an external speaker to the VR
authentication system. 2) The leaked biometric replay attacker
is assumed to have obtained the audio files exactly the same
as that used in the user’s profile training. This replay audio is
not impacted by additional noises (e.g., incurred during side-
channel eavesdropping) and is expected to reflect the maximal
replay attack performance.

Denial-of-Service Attack. The attacker who aims to disable
or cause errors in the authentication process could use an



(b) Reconstructed head biometric spectrogram

Fig. 7. Illustration of head biometric spectrograms of two users on mobile
phone VR headset (before and after CAE reconstruction).

external speaker to play dedicated ultrasonic sounds near the
target user. The ultrasonic attacking sounds may overwhelm
the authentication signal to keep the user rejected without
arousing attention.

III. APPROACH DESIGN
A. Sensing Signal Design

We design an ultrasonic pulse signal to sense the VR user’s
head. In particular, the pulse signal is designed to sweep
from 18kHz to 22kHz. This frequency band is barely audible
to human ears and does not overlap with regular ambient
noises, such as air conditioning, human voices, and media
sounds. Moreover, the sweeping frequency provides frequency
diversity to capture more aspects of the user’s head biometric
than a single frequency. The pulse signal lasts for a short
period (i.e., 25ms), and we capture both the direct-path sound
and the multi-path echoes that arrive later to analyze how the
original speaker signal is absorbed and reflected by the user’s
head before returning to the device’s microphone. We also
apply a Hamming window to smooth the signal and reduce
the spectral leakages and hardware noises, which are caused
by sharp frequency jumps.

B. Data Pre-processing

Before analyzing the microphone data, we first calibrate
the audio with denoising, synchronization and segmentation.
Specifically, we apply a bandpass filter to remove the noise
outside the interested frequency range. The passband is set
as 18-22kHz for mobile phone VR, and the air conditioning
noise, human voices and other environmental sounds can be
removed [32], [33]. For standalone VR, because its mic can
only record sounds up to 16kHz, we set the passband to be
1-16kHz and need to further use our CAE model to denoise
and recover useful sensing information. It is worth noting that
standalone VR devices’ echo cancellation is often integrated
with noise suppression. Thus, the above noises are suppressed
together with the sensing signal.

Next, synchronization is performed to locate the pulse signal
in the microphone data. We iteratively shift the microphone
data § and compute its cross-correlation with a reference signal

ﬂ (a) Echo sound spectrogram

(b) Reconstructed head biometric spectrogram

Fig. 8. Illustration of head biometric spectrograms of two users on standalone
VR headset (before and after CAE reconstruction).

s. The shift length leading to the maximum cross-correlation
coefficient indicates the time delay between the two signals as
expressed by
N—m-—1
delay = argmax Z
n=0
where m is the number of shifted samples. After subtracting
this delay, we find the start of the pulse within the microphone
data and obtain a 7bms audio segment containing both the
pulse period (25ms) and a silent period. The purpose is to
capture the user’s head biometric features from both the direct-
path signal and the reflected/refracted signals that arrive later.
We find that received sounds attenuate over 20dB after 75ms,
which shows low signal power and are discarded. Additionally,
we normalize the amplitude of the audio segment to be within
the range [—1,1].

(n+m)s(n), 4

C. Echo Sound Spectrogram Derivation

We derive the echo sound spectrogram using the mic data,
which is a time-frequency image to describe how each spectral
point of the original signal is interfered with by the user’s head
along time. The echo sound spectrogram s(7) is calculated
based on a window function w(7) with length T'. Specifically,
each pixel at the spectrogram position (¢, f) is computed by
Equation 5 and 6, where ¢ and f are the time and the frequency
index. The derived echo sound spectrogram is fed into our
CAE-CNN authentication algorithm to extract head biometric
information and perform biometric-based authentication.

t+T—1

Z s(T)w(t —t)e 92T (5)

T=t

STDTFT(t, f) =

spectrogram(t, f) = |STDTFT(t, f)?| (©6)

Figure 7 (a) and Figure 8 (a) show the derived echo sound
spectrograms for two users using the mobile phone VR and the
standalone VR, respectively. We observe that the same sensing
signal results in slightly different echo spectrograms for the
two users on both VR devices. Moreover, not only the direct-
path signal but also the reflected signals present individually
unique patterns in the time-frequency domain.
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Fig. 9. Detailed design of our CAE-CNN algorithm.

D. CAE-CNN Authentication Algorithm

We design a CAE-CNN algorithm to extract the user’s
head biometric encoding and perform user authentication. In
particular, a pair of CAE model and CNN model is created
for each registered user as introduced in Section II-C. The
spectrogram derived from the echo sound is input into each
user’s consecutive CAE and CNN models. The probability of a
head biometric belonging to each user is output and compared
for authentication decision. We next introduce the detailed
designs of our CAE and CNN models.

1) CAE-based Biometric Representation: We design a CAE
model, which derives stable head biometric encodings under
noises and counteracts the built-in echo cancellation to recover
biometric spectrograms. The per-user CAE model is shown
in Figure 9(a). It consists of three main parts, an encoder,
the latent space, and a decoder. The input to the CAE model
is a 64 x 64 x 3 echo spectrogram image, which covers the
frequency range 18-22kHz for mobile phone VR and 1-16kHz
for standalone VR. The output of the CAE model has the
same dimensions as the input. The encoding and decoding
process filters out the noises, environmental reflections, and
the echo cancellation’s effect (as shown in Equation 3) and
leaves only the head biometric information in the reconstructed
spectrogram. Mean Squared Error (MSE) is used as the loss
function to update the network weights during the training
phase. In the CAE model, we choose the dimension of the
latent space to be 2048.

Encoder. As the first major part of the CAE model, the
encoder derives head biometric encodings from echo sound
spectrograms and consists of four convolutional layers and
three max pooling layers. Its detailed structure is presented
in Table 1. The encoder starts with a convolutional layer with
3x 3 kernels of size 64 x 64 x 3 to learn the large-scale features,
followed by three convolutional layers with 3 x 3 kernels of
size 32 x 32 x 48, 3 x 3 kernels of size 16 x 16 x 192 and

TABLE I

THE STRUCTURE OF CAE MODEL ENCODER.
Layer Output Shape | Param #
Input: Echo sound spectrogram | (64, 64, 3) 0
Conv2D + RecLineU (64, 64, 48) 1344
Max Pooling 2D (32, 32, 48) 0
Conv2D + RecLineU (32, 32, 96) 41568
Max Pooling 2D (16, 16, 96) 0
Conv2D + RecLineU (16, 16, 192) 166080
Max Pooling 2D (8, 8, 192) 0
Conv2D + RecLineU 8, 8, 32) 6176

3 x 3 kernels of size 8 x 8 x 32 to learn small-scale features.
Additionally, a stride of 1 is applied, and ReLU is used as the
activation function for all convolutional layers.

Decoder. The reconstructed spectrogram is decoded from
the latent feature space (i.e., head biometric encodings) learned
by the encoder. Its detailed structure is shown in Table II. It has
five convolutional layers with 1 x 1 kernels of size 8 x 8 x 32,
3 x 3 kernels of size 16 x 16 x 192, 3 x 3 kernels of size
32 x 32 x 96, 3 x 3 kernels of size 64 x 64 x 48, and 3 x 3
kernels of size 64 x 64 x 3, respectively. A stride of 1 is applied.
ReLU and Sigmoid are used as the activation functions for the
first four and the last convolutional layers, respectively. Three
upsampling layers are used in the decoder with a stride of 2
for upsampling. The last convolutional layer is used to force
the output from the previous layer to be interpreted as pixel
intensity of an RGB image with dimension 64 x 64 x 3. It is
then fed into the following CNN model for user authentication.

CAE Profile. Each user has their own CAE model. During
the registration phase, the user’s training data are collected
and input into the CAE to learn head biometric encodings.
It is important to note that only the CAE encoder and the
user’s data are needed to create the user’s CAE profile. There
is no need for a nonuser dataset at this stage. We then use
the user’s CAE profile to reconstruct spectrograms during the
authentication phase. Figure 7(b) and Figure 8(b) show the
reconstructed spectrograms of two users with two types of VR
devices. For both devices, we observe that the differences in
the reconstructed spectrograms between the two users are “am-
plified”. The reason is that the head biometric information is
emphasized while the unrelated signal components, including
the noises, environmental reflections, and the influence of echo
cancellation, are removed. More importantly, though the mic
data of standalone VR heavily suffers from ambient noises and
echo cancellation, our CAE model is still able to extract stable
biometric encodings from severely distorted sensing sounds.

TABLE I

THE STRUCTURE OF CAE MODEL DECODER.
Layer Output Shape | Param #
Input: Head biometric encodings | (8, 8, 32) 0
Conv2D + RecLineU (8, 8, 192) 6336
Up Sampling 2D (16, 16, 192) 0
Conv2D + RecLineU (16, 16, 192) 331968
Up Sampling 2D (32, 32, 192) 0
Conv2D + RecLineU (32, 32, 96) 165984
Up Sampling 2D (64, 64, 96) 0
Conv2D + RecLineU (64, 64, 48) 41520
Conv2D + Sigmoid (64, 64, 3) 1299
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Fig. 10. User verification accuracy and the CNN vs. CAE-CNN comparison (standalone VR).

2) CNN-based User Identification: We develop a CNN
model with three convolution layers and one fully connected
layer to analyze reconstructed spectrograms and learn the head
biometric features to differentiate users. The per-user CNN
model outputs binary classification results, the probabilities
for the user and nonuser class. The output dimensions in each
layer are tuned to balance processing time and accuracy, which
is calculated as

dimensions = (2=ht2d 4 1) i (m=kt2d 4 1) 0t (7)

where m, k, [, d and ¢ are the input image size, kernel size,
step length, the number of padding, and number of filters.

The detailed structure of our CNN model is shown in Figure
9(b). In the first layer, the dimensions of the normalized input
image are set as 150 x 150. After the input layer, there is a
convolutional layer followed by a max pooling layer, where
the convolutional kernel size is 3 x 3 and the pooling kernel
size is 2x 2. The step length is set as 1. The number of padding
applied is set as 0, and the number of filters is 32. After the
first convolution operation, the dimensions are calculated as
148 x 148 x 32 by the above equation. Since the kernel size of
the pooling layer is 2 x 2, the dimensions after the first pooling
operation are 74 x 74 x 32. We keep the same configuration
for the rest of the convolution and pooling layers. At the end
of the model, we utilize the softmax function to normalize the
network output and obtain a probability for each class as the
decision confidence or CNN score. We then utilize Adam as
the optimizer leveraging the power of adaptive learning rates
to find individual learning rates for each parameter. We use
sparse categorical cross-entropy as the model’s loss function
since we expect class labels to be provided as integers instead
of one-hot encoding.

CNN Profile. The training requests two classes of data
labeled user and nonuser. Both classes’ spectrograms first go
through the user’s CAE model to be encoded and decoded
based on the user’s CAE profile. The reconstructed spectro-
grams are then fed into the user’s CNN model for training,
which learns from two classes of data to create the user’s
CNN profile. When testing, if there is only one registered user,
a high CNN score for the user class leads to a granted access
permission. When a group of users shares one VR device, the
testing data needs to go through all pairs of CAE and CNN
models for multi-account authentication. The maximum CNN
score is searched among all user classes. If it is greater than
0.5, the access permission of the corresponding user’s account
is granted.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Platforms. We evaluate our system with two types of VR
headset devices, a standalone VR (i.e., Meta Quest) and a
mobile phone VR (i.e., DESTEK V3 VR with a smartphone
- Samsung Galaxy S8). The two devices also represent the
VR devices, which have or have no default echo cancellation
mechanism. We developed two experimental platforms for the
study. Specifically, we developed an Android App for the
mobile phone VR headset and installed it on the smartphone
running Android 9.0, which emits an ultrasonic pulse signal
and records the stereo sounds using the phone’s two micro-
phones simultaneously. For the standalone VR headset, we
developed a VR App based on Unity 2019.4.4f1. We utilize its
AudioSource package to let the standalone VR headset play the
ultrasonic pulse signals via its two built-in speakers (embedded
on the two side straps). It has only one built-in microphone to
record the sound at the same time. The collected audios are
processed offline.

Data Collection. We recruited 30 participants (7 females
and 23 males) with ages 20 ~ 35, heights 52" ~ 64",
weights 103 ~ 216lbs, fat ratios 15 ~ 28%, and hair
lengths 0.6 ~ 22 inches to conduct experiments with both
VR devices. The IRB approval had been obtained. Before data
collection, participants were given time to use the VR headset
and adjust the headset straps to their convenient tightness.
During experiments, each participant was asked to put on and
take off the VR headset 20 times, and 10 chirp sounds were
collected each time when the user was wearing the device.
Thus, the slight change of the rigid body incurred by practical
VR device uses and behavioral inconsistency is included in
the collected data. Each participant also had the freedom to
sit and stand during the experiment. Moreover, we conducted
a long-term study with 11 participants and collected multi-
session/day data over 15 months, and the impacts of weight
changes and behavioral inconsistency over this long time and
the cross-day variations (e.g., the ambient noises, clothes,
and hair styles/lengths) are considered. For single session/day
evaluation, we use 60% of the data for training and the rest
for testing. For multi-session/day evaluation, we use the first
day’s 60% data for training and all other days’ data for testing.
Regarding the nonuser dataset, for every participant’s CNN
model, the other 29 participants are included to train the
nonuser class.
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Fig. 11. Device comparison in user identification (Mobile phone VR headset vs Standalone VR headset).

B. User Authentication Performance

1) Single-user Verification: We first evaluate the authenti-
cation performance of our system in the single-user scenario.
Figure 10 shows the user verification accuracy for each of
the 30 participants using the standalone VR. We observe
that our system based on CAE-CNN achieves high accuracy
for all the participants. In particular, the system verifies the
user with 98.87% accuracy on average, and nearly half of
the participants achieve above 99% accuracy. Additionally,
Appendix Table VI and Table VII show that our CAE-CNN
algorithm achieves 98.90% True Positive Rate (TPR) and
98.82% True Negative Rate (TNR). The results confirm the
high verification performance of our system.

CAE-CNN vs. CNN. To examine the security gain brought
by the CAE model, we compare the verification performance
of 30 participants using CAE-CNN and CNN, respectively.
Figure 10 and Appendix Table VI and Table VII show that
when using CNN alone, our system only achieves 88.90%
accuracy, 89.00% TPR and 88.86% TNR. Adding the CAE
model for each user significantly improves the verification
performance by 11.2%. The reason is that encoding head
biometrics helps remove noise, making the individually unique
head biometrics become identifiable and more resistant to
behavioral inconsistencies and environmental noise.

Device Comparison.We compare the performances of two
VR devices, a standalone VR and a mobile phone VR. They
represent two categories of popular VR models and record
two types of microphone data, with and without default echo
cancellation. Figure 11 shows the user verification accuracy
achieved by the two devices. We find that our system performs
well for both devices. In particular, our system achieves
98.87% accuracy on average for the standalone VR, and
the average accuracy is 99.33% for the mobile phone VR.
Moreover, for each of the 30 participants, the mobile phone
VR device achieves higher accuracy. One reason is that it does
not have the default echo cancellation mechanism and thus
maintains good shapes of the sensing signal for analysis. The
device model differences, including the speaker/microphone
locations and the device surface materials (plastic or fabric
cloth), are also reasons to cause the performance differences.
The results demonstrate that our system is able to scale among
different VR device models to provide reliable authentication
services.

2) Multi-user Account Verification: We next evaluate the
authentication system when the VR headset is shared among

[ True Positive Rate
[ True Negative Rate
[C— Accuracy
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Fig. 12. Multi-user account verification performance (standalone VR).

a group of m users (e.g., family members, lab mates, class-
mates). If a nonuser is recognized as any one of the registered
users, or a user is identified as another registered user, the
authentication fails. Figure 12 shows the multi-user account
authentication results of the standalone VR headset when m
changes from 1 to 5, covering most typical family sizes.
We find that our system achieves a high user verification
performance for all multi-user scenarios, though their average
performance is slightly lower than the single-user scenario. In
particular, when two users are registered, the system achieves
a 98.92% TPR to identify the user and a 98.79% TNR to
reject nonusers or misclassify the users. The performance
drops slightly when more users are registered. When there are
three registered users, the system achieves 98.88% TPR and
98.65% TNR, and when there are five registered users, the
TPR and TNR are 97.56% and 97.50%. The results indicate
the capability of our system to provide multi-user account
verification services on VR devices.

Multiple CNNs vs. Single CNN. We compare the multi-
user verification performance of using single and multiple per-
user CNN models. Table III presents the performance of five
registered user scenario. The multi-CNN model outperforms
the single CNN for multi-user account verification. Specifi-
cally, using five CNNs improves the verification accuracy, TPR
and TNR by 7.45%, 6.61%, and 8.6%, respectively. The reason
is that we assign a CNN model to each user and leverage
its multi-class classification capability to tolerate behavioral

TABLE III
MULTI-USER VERIFICATION (MULTI-CNNS Vvs. 1 CNN).
Accuracy TPR TNR
One CNN 90.73% 91.95% 89.51%
Multiple CNNs  98.18% 98.56% 98.11%
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Fig. 13. Long-term evaluation with 11 participants and the CNN vs. CAE-
CNN comparison (8/22/2021~11/18/2022).

inconsistency and noises.

C. Long-term Study

1) Eleven Users Over 15 Months: We conduct a long-
term two-session study to examine the performance of our
system. In 15 months, the participants may have varying hair
lengths/styles, body weights, clothes, and the environmental
factors, such as furniture and ambient noises, are not the same,
reflecting a practical VR device-using scenario. Specifically,
eleven participants’ data on 8/22/2021 is used for training
(60% data), and their data collected between 11/15/2022 and
11/18/2022 is used for testing. Meta Quest is used. Figure 13
shows that our system using the CAE-CNN model achieves
high verification performance for all 11 participants, with
98.22% TPR and 97.78% TNR on average. The results indicate
that our system is robust to diverse practical variations, and
the acoustically represented head biometric is stable despite
the normal human weight and clothes changes in the long run.
In comparison, using the CNN model alone achieves 68.87%
TPR and 67.59% TNR on average. The addition of the CAE
model brings 42.6% performance improvement. The results
confirm the ability of our CAE-CNN model to derive stable
head biometrics and reduce the impacts of irrelevant factors.

2) Multi-day Tracking & Two VR Devices: To better under-
stand the environmental impacts and the long-term changes of
the user’s head biometric, we track two participants’ authenti-
cation performance on two VR devices over 8 months. We use
60% of the first-day data for training, the rest of the first-day
and all other days’ data for testing. Figure 14(a) shows the
user verification accuracy achieved by the mobile phone VR
on five different days, which are all very high. The minimum
performance is achieved on the day 9/8/2021, which has a
98% TNR. Figure 14(b) presents the verification performance
achieved by the standalone VR. The device achieves high
accuracy for all five days, though its long-term performance is
slightly lower than that of the mobile phone VR. In particular,
the standalone VR device achieves 97% TPR and 98% TNR
on 4/16/2022 and 98% TPR and 96% TNR on 4/29/2022.
The slight performance fluctuations across different days are
owing to the variations in the participant’s status and the
environmental noises. No significant performance degradation
is observed over time. The results confirm our CAE-CNN
model’s effectiveness in providing daily VR authentication
services.
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Fig. 14. Long-term tracking of two users with two VR devices.

D. Zero-effort and Impersonation Attack

Zero-effort Attack. We now evaluate our system against
zero-effort attackers who attempt to pass authentication by
presenting no head biometrics. We simulate this attack by
placing the standalone VR headset on a table and blocking
the device’s proximity sensor with a small tape to pretend that
a user wears the device. Then the attacker uses the handheld
controller to start the authentication session and attack each
participant. Table V presents the success rate of the zero-effort
attack, which is 0%. The result reflects the effect of our system
to reject authentication requests when the VR device is not
worn by a human head.

Impersonation Attack. A robust and secure user authen-
tication system needs to successfully detect both insider and
outsider impersonation attackers. We simulate the two types of
impersonation attacks to evaluate the security of our system.
Specifically, each participant was respectively selected as the
target user and two assumed attackers attempted to imitate the
target user’s way of wearing the VR headset. The attackers
are beside each target user during data collection to learn and
later repeat the user’s wearing behaviors without changing the
device’s strap length. We consider two scenarios when the
attackers are within or outside of the registered user group.
Table V presents the success rates of the two impersonation
attacks on standalone VR device, which is 0.66% for the in-
sider impersonation and 0.82% for the outsider impersonation.
The results show that our system effectively prevents in-person
biometric imitations and confirms the robustness of acoustic
head biometrics because an adversary is hard to imitate the
skull structure, head mass and face patterns in person.

E. 3D Printed & Fake Head Attack

Though not being able to change head biometrics in person,
an adversary may choose a silicone fake head with a similar
size and shape to the target user’s head to attack. A more
advanced adversary could exploit the latest 3D scanning and
printing technology to replicate a head with exactly the same
head size/shape/weight and face patterns. We select one par-
ticipant as the target user with the most similar head shape and
size to our purchased silicone head. We further produce a 3D
printed head. The attacks are illustrated in Figure 15. For each
authentication session, the adversary puts the standalone VR
headset on one fake head and uses the handheld controller to
start the authentication. The attack performances are presented
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Fig. 15. Physically reproducing head biometrics with two fake heads.

in Table V. The silicone fake head and the 3D printed head
achieve 0% and 0.50% success rate, respectively. We further
test the 3D printed head with the mobile phone VR, which
achieves a 1.03% success rate as shown in Table IV. The
results indicate that only copying the head shape/size/weight
and face patterns is still hard to break our system. The
skull structure and the spatial distribution of head mass are
more important biometric characteristics, which are hard to
reproduce in practice.

FE. Acoustic Replay Attack

We evaluate our system with two types of replay attacks. To
generate the attacking sounds with sufficient signal power, we
use an audio amplifier, Douk Audio Mini, with a loudspeaker,
LU43PB 3-Way High-Performance Speaker, to replay the
attacking audio. Based on the potential of an attacker to obtain
the user’s authentication audio, we consider the side-channel
eavesdropping and the leaked biometric scenarios. The latter
directly replays the authentication audio recorded by the VR
device. For the mobile phone VR device, replaying leaked
biometrics is expected to achieve maximal performance. For
the standalone VR device, the side-channel eavesdropped
sound is still barely inaudible, but the leaked biometric audio
is audible, as shown in Figure 16.

Side-channel Eavesdropping Replay. We use a smart-
phone (i.e., Samsung Galaxy S8) to record during the target
user’s authentication process and use the above amplifier-
speaker setup to replay the eavesdropped audio to the VR
headset. Table V presents the replay success rate with the
standalone VR, which is 0.5%. The result shows that our
system performs well in preventing eavesdrop-based replays.

Leaked Biometric Replay. We simulate the attack by
directly playing the authentication audio recorded by the user’s
VR device. Table IV and Table V present the success rates
of this attack on the mobile VR and the standalone VR,
which are 1.05% and 0.76%, respectively. The results show the
high replay resistance of our system on different VR devices.
Moreover, we notice that while mobile phone VR performs
better than standalone VR in regular authentication scenarios,
its performance under replay attacks is lower. The lack of echo
cancellation majorly causes such differences.

TABLE IV
PERFORMANCE UNDER ATTACK (MOBILE PHONE VR).

Attack Success Rate
1.03%
1.05%

Attack Scenarios
3D Printed Head Attack
Replay Attack-Leaked Biometric

‘(a) Leaked Biometric

(d) Recorded by Quest

(c) Side-channel eavesdropping

Fig. 16. Two types of acoustic replay attacks on standalone VR device.

CAE and Echo Cancellation. To understand the effect of
the CAE model and the default echo cancellation in defending
against replay attacks, we conduct a comparison study using
different combinations of CNN, CAE and echo cancellation.
Figure 17(a) presents the attack success rates of the leaked
biometric replay. Specifically, when only using CNN, the
replay attack achieves a 23.42% success rate, which is a
serious security issue. But using CNN with echo cancellation,
the attack success rate is reduced to 5.35%. CAE has a higher
capability than echo cancellation to prevent replay sounds, and
using CAE with CNN reduces the attack to a 1.05% success
rate. Using CNN, CAE and echo cancellation altogether re-
duces the attack success rate to 0.76%. Better replay resistance
performance against side-channel eavesdropping is presented
in Figure 17(b). The results confirm the high replay resistance
capability of our system, which involves both CAE and echo
cancellation.

G. Noise Impact & Denial-of-Service Attack

When using a VR headset, the user tends to find a rela-
tively quiet place with few people around. We thus evaluate
our system under different ambient sounds with four-decibel
levels: a typical room environment (30dB), music played in
the next room (40dB), human conversation (50dB), and air
conditioner noise (60dB). Two participants are involved in the
ambient noise study. The standalone VR device is tested, as
mobile devices have been tested by many prior works [13],
[34], [35]. As illustrated in Figure 18, the system achieves the
best performance under 30dB noise with 99.36% accuracy.

TABLE V
PERFORMANCE UNDER ATTACK (STANDALONE VR).

Attack Scenarios Attack Success Rate
Zero-effort Attack 0%
Impersonation Attack (insider) 0.66%
Impersonation Attack (outsider) 0.82%
Silicone Fake Head Attack 0%

3D Printed Head Attack 0.50%
Replay Attack - Side-channel 0.50%
Replay Attack - Leaked Biometric 0.76%
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Fig. 17. Effects of CAE and echo cancellation to prevent replay sounds.

The accuracy performance is slightly degraded to 98.83% at
40dB and 97.52% at 50dB, which are still high. At 60dB,
the user verification accuracy drops to 92.31%, which is still
acceptable. The results show that our system can work well
for most regular indoor scenarios.

We finally examine the Denial-of-Service attack, which gen-
erates ultrasonic sounds on purpose to block the authentication
sounds without causing notice. The 17-22kHz white noises
are used to generate ultrasonic interference. We find that the
typical indoor ultrasound pressure level is usually lower than
10dB and thus choose five ultrasonic sound pressure levels
from 10dB to 70dB. The performance is shown in Figure 19.
We observe that our system achieves high accuracy with up to
50dB ultrasonic interference, though the performance slightly
degrades when the ultrasound increases from 10dB to 50dB.
In particular, our system achieves 95.55% TPR and 99.76%
TNR under 10dB ultrasonic noises. The performance degrades
to 92.82% TPR and 99.52% TNR when the ultrasonic noise
increases to 20dB. We also find that the TNR is always higher
than TPR at each ultrasound level, indicating that the system
tries to reject all suspicious users in a noisy environment.
When the ultrasound is at 50dB, our system achieves 92.24%
TPR and 98.32% TNR. We thus choose 50dB to be the
threshold for environment checking. If the ambient ultrasound
is higher than it, the user has to use the traditional passwords.

V. DISCUSSION & FUTURE WORK

Feature Importance. To investigate the importance of
different head characteristics, we partition 30 participants
into subsets according to head sizes and weights, and let
assumed attackers only impersonate the subsets that show
similar head sizes and weights. The attack success rates
are between 0.63~0.68%, comparable to the 0.66% reported
in Section IV-D. Moreover, the 3D printed head’s result in
Section IV-E shows that it is still hard to break our system
even presenting a similar head shape/size/weight and face
pattern. The above studies indicate that the skull structure
and the spatial distribution of mass within the head are more
important and stable characteristics, which are also harder
to reproduce in practice. Furthermore, the long-term study
in Figure 14 shows that the normal changes of the user’s
weight, body-fat ratio, clothes and hair length do not obviously
impact authentication performance. We further partition the
long-term results regarding each user and find that their
performances slightly drop on the same days, which indicates
that environmental factors (e.g., ambient/device noises) have
a greater impact than normal biometric feature changes.
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Practical Deployment. In our experiments, each participant
puts on/off the VR headset 20 times (e.g., 3 seconds per
time). For practical use, we need to know the impact of
user enrollment time on verification performance. In particular,
when the 30 participants wear the standalone VR headset 4,
6, 8, 10 and 12 times, our system achieves 86.37%, 90.25%,
92.44%, 96.84%, 98.87% verification accuracy on average,
respectively. Thus, to achieve over 90% verification accuracy,
a user needs to put on the device 6 times for enrollment.
Furthermore, we conducted a user study to find that 2/30
participants noticed the sensing signal on a mobile phone VR
device and 8/30 participants noticed the sound of standalone
VR due to the frequency leakage. All participants feel the
sound is acceptable, because the sound has a low volume and
is at a millisecond level.

Future Work. We consider the following tasks for future
work: (1) As we involve a nonuser data set for constructing
the user’s CNN profile, it is important to select a number of
nonusers covering a wide range of races, ages, weights, and
body fat ratios. (2) This work mainly studies Meta Quest and
Quest 2, because of their low prices and high shipments. We
will continue to evaluate other standalone VR devices, such
as HTC VIVE Pro and HP Reverb. The potential of applying
our system on AR devices will also be studied. Because we
have solved the challenge of acoustic sensing under echo
cancellation and noise suppression, it is expected that it will
not be hard to deploy our system on these devices. (3) Due to
hardware limitations, the authentication signal of our system
is still slightly audible on commodity VR devices. Though all
participants in our study think this sound is not disturbing,
we will further reduce the audibility of the sensing signal
by reducing its duration and trying other signal patterns. (4)
Further studies are needed to reduce the user’s training efforts,
including simulating speaker-microphone channels to augment
training data and using transfer learning to address the scenario
when the user changes VR headsets. (5) The sensing signal
pattern may be improved to address diverse ambient noises
and escape echo cancellation. (6) The more advanced 3D
scanning & printing technologies and filler materials will be
used to study physical head forgery attacks. (7) we will explore
other learning algorithms (e.g., FaceNet [36], [37]), which may
replace the role of multiple CNNs in our system and balance
complexity and security.

VI. RELATED WORK

While not having a touch screen, current VR devices ask
users to enter on a virtual floating keyboard with handheld



controllers, VR pointers and hand gestures. During this pro-
cess, the user’s vision is confined in the virtual world, but the
actions in the physical world could be observed by surrounding
people or cameras, which are subject to authentication secret
leakage [38]. To address such security issues, active works are
on extracting behavioral biometrics from the user’s motions
to improve VR authentication security. For example, head
movements are demonstrated to be identifiable when users
listen to music beats [39] or perform a required task in the
virtual space [5], [7], [40], [41], such as moving the VR pointer
to follow a ball or walking. Such head behavioral biometrics
are captured by the head-worn devices’ inertial sensors. Wang
et al. further develop a VR authentication technique that allows
users to unlock their profiles with simple nodding actions,
and the biometric features related to neck length and head
radius are captured [8]. Furthermore, the VR headset can
be used together with handheld controllers for enhanced VR
authentication, which captures not only the head movements
but also the hand motions, body motions and even the eye
gaze [6], [42]. Additionally, Mathis et al. ask the user to enter
a number password on a 3D Rubik’s cube in the virtual space,
where both the password and the handheld controller motion
patterns are verified. However, these methods are all based
on the slow motion-level human-device interaction, whose
performance is limited by behavioral inconsistency and the
low fidelity sensor data.

This work proposes to simplify the VR device authentication
procedure using active acoustic sensing. There have been many
studies exploring active acoustic sensing on mobile devices.
For example, active acoustic sensing can be used to recognize
finger/hand gestures performed on the mobile device or in the
air [43], [44]. ForcePhone [45] emits repetitive chirp sounds
and analyzes the structure-borne sounds to sense the finger
force applied on the smartphone screen. VSkin [46] transmits
modulated inaudible sounds to capture finger gestures on the
back surface of the device. RobuCIR [47] develops a contact-
free gesture recognition system for mobile devices based on
active acoustic sensing. Furthermore, active acoustic sensing
enables mobile devices to provide health monitoring. Nan-
dakumar et al. [48] transmit 18-20kHz sound waves using the
smartphone’s speaker and capture the reflected-back signals to
measure the chest/abdomen movements for apnea detection.
Qian et al. [49] further generate an acoustic cardiogram
using the acoustic reflections to monitor the user’s heartbeats.
Additionally, active acoustic sensing has been applied for
indoor localization using either audible [50], [S1] or inaudible
sounds [52], [53].

Active acoustic sensing has also been widely adopted on
mobile devices for low-effort user authentication. For example,
EchoFace emits acoustic signals to detect the uneven stereo
structure of the user’s face to prevent 2D replay faces [9], and
EchoPrint leverages the unique echoes bouncing off the user’s
facial contour for authentication [10]. EarEcho [54] leverages
the audio played by the earpiece speaker to sense the user’s ear
canal, where acoustic features are extracted from the transfer
function between the recorded echo and the played audio

for user authentication. When a user holds a mobile device,
acoustic signals are also used to recognize the user’s hand for
authentication [13], [55], [56]. However, no prior work has
successfully copied the success of active acoustic sensing from
mobile devices to head-mounted VR devices. Furthermore, the
above works all require the recorded audio feedback to keep
the major pattern of the original signal, while sensing with
distorted signals after echo cancellation is still an unsolved
challenge.

There are several studies using passive sensing for VR
user authentication, such as verifying the user’s voice com-
mands [57] or capturing the user’s subtle facial dynamics with
inertial sensors when the user is speaking [58]. These methods
still require the user’s active participation and are more easily
affected by environmental noises than active sensing. Schnee-
gass et al. use the bone conduction speaker and microphone
to achieve active acoustic sensing on Google Glasses and
capture the bone-conducted sound through the user’s skull as
biometric [59]. Isobe et al. develop an eyeglass prototype with
a pair of microphone and speaker on the nose pads, which
extracts individual nose features using acoustic signals for
authentication [11]. However, these methods require dedicated
hardware and cannot be deployed on commodity VR devices.
Some existing works use Head-Related Transfer Function
(HRTF) and ear canal biometrics for authentication [60],
[61]. HRTFs describe the speaker-to-ear channels with in-
air propagated sounds, and the raw audio data is needed to
estimate frequency responses. Differently, our sensing model
uses onboard speakers and microphones and analyzes distorted
signals, while ear information and earphones are not needed.

VII. CONCLUSION

This work proposes an efficient and replay-resistant VR
user authentication system based on acoustic-domain head
biometrics. The system interacts with the user via active acous-
tic sensing and captures the unique skull-reverberated sounds
for authentication. To deploy the system on commodity VR
headsets, we address the challenge of acoustic sensing under
echo cancellation and develop the CAE-CNN algorithm. The
CAE component reconstructs the spectrogram of the received
echo sound to recover the head biometrics and counteract the
effect of echo cancellation. Then the CNN component learns
from the reconstructed head biometric spectrogram to build
the per-user model and distinguish each user. We show that
the current echo cancellation mechanism is not a hindrance
to active acoustic sensing but is naturally a good mechanism
to prevent acoustic relay attacks. Experiments with two VR
device models (w/wo echo cancellation) and over a one-year
long-term study show that our system efficiently verifies single
or multiple users and is resistant to replay attacks.
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APPENDIX
A. Security Gain of CAE

To understand how effectively our CAE-CNN algorithm
addresses cross-day variations (e.g., noises) and counteracts
the effect of echo cancellation, we present the user verification
performance on the standalone VR device when CAE-CNN
and CNN are used, respectively. The True Positive Rate (TPR)
and True Negative Rate (TNR) of each of the 30 participants
are shown in Table VI and Table VII. We find that the user
verification performance is significantly improved by 11%
TPR and 13% TNR after adding the CAE model, compared to
using the CNN model alone to recognize the participant’s head
biometrics. Specifically, when using the CNN model alone, the
system achieves 89.0% TPR and 88.86% TNR on average.
In comparison, our CAE-CNN algorithm improves to 98.90%
TPR and 98.82% TNR on average. The results confirm our
proposed system’s high accuracy and robustness in identifying
users on commodity VR devices.

TABLE VI
META QUEST VERIFICATION PERFORMANCE (TPR) BEFORE AND AFTER
APPLYING AN AUTO ENCODER.

Model Ul U2 U3 U4 U5 U6 u7 Us U9 Ul0 Ull Ul2 Ul3 Ul4 Ul5s
CNN 94.509 96.19% 89.10% 82.18% 82.76% 95.0% | 90.0% | 86.25% 93.97% 96.83% 79.13% 97.48% 82.74% 90.78% 92.96%
CAE-CNN 98.25% 99.45% 98.82% 99.01% 100% | 98.75% 98.75% 98.75% 98.28% 98.41% 99.27% 98.32% 99.78% 99.31% 98.59%
Model ul6 ul17 Ul8 ul19 U20 U21 U22 U23 U224 U25 U26 u27 U28 U29 U30
CNN 97.22% 91.74% 82.06% 76.36% 77.50% 85.34% 97.92% 95.58% 81.00% 98.91% 94.97% 77.51% 94.74% 90.70% 78.57%
CAE-CNN 99.07% 100% | 99.71% 99.74% 99.17% 99.14% 100% | 99.12% 98.00% 97.38% 99.74% 97.60% 97.37% 99.48% 97.62%
TABLE VII
META QUEST VERIFICATION PERFORMANCE (TNR) BEFORE AND AFTER
APPLYING AN AUTO ENCODER.

Model Ul U2 U3 U4 U5 U6 U7 U8 U9 ulo Ull Ul2 Ul3 Ul4 Ul5
CNN 93.799% 95.69% 90.52% 80.86% 83.10% 95.13% 91.21% 87.24% 94.14% 95.86% 81.21% 97.76% 79.83% 89.56% 91.90%
CAE-CNN 97.93% 99.319% 98.79% 98.45% 100% | 98.05% 99.48% 98.79% 97.76% 98.28% 99.14% 98.10% 99.14% 98.52% 99.48%
Model Ul6 ul17 Ul18 Ul19 U20 U21 U22 U23 U24 u25 U26 u27 U28 U29 U30
CNN 96.21% 88.62% 81.90% 79.31% 76.90% 88.45% 96.55% 95.86% 81.03% 98.10% 95.00% 80.17% 93.97% 87.93% 77.94%
CAE-CNN 99.48% 100% | 98.79% 98.79% 99.66% 99.14% 100% | 98.97% 98.62% 97.419% 99.319 97.41% 97.41% 99.48% 98.86%




