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Abstract—Handheld phone distraction is the leading cause
of traffic accidents. However, few efforts have been devoted to
detecting when phone distraction happens, which is a critical
input for taking immediate safety measures, not only related to
the driver but also important to surrounding vehicles, pedestri-
ans, and vehicle networks. This work proposes a fine-grained
handheld phone-use monitoring system, which detects the start
of phone-distracted driving activities and further distinguishes
different handheld phone-use scenarios, which enables estimating
the impacts on traffic safety to take measures accordingly.
Specifically, the proposed system emits periodic ultrasonic pulses
to sense if the phone is being held in hand or placed on
support surfaces (e.g., seat and cup holder), and the unique
signal interference resulted from the contact object’s damping,
reflection, and refraction is analyzed based on the sounds that
return to the microphone. We derive the short-time Fourier
transform to describe such impacts and develop a CNN-based
binary classifier to distinguish phone use between handheld and
handsfree. Moreover, the system leverages the embedded inertial
sensors to capture the phone’s motion dynamics and recognize
specific handheld phone distractions (e.g., holding the phone for
calling). The system periodically samples the driver’s phone-use
status and use an error correction window to correct misclassified
samples. As a result, the start, end, and duration of each handheld
phone distraction activity can be obtained. Extensive experiments
show that our system achieves 99.5% accuracy in recognizing
handheld phone-use instances and a (0.76-second median error in
detecting the start of a handheld phone distraction.

Index Terms—Distracted Driving, Handheld Device, Vehicle
Safety, Driver Behavior.

I. INTRODUCTION

Using a handheld device while driving is a dangerous
behavior. The driver can be impacted by all three types of dis-
tractions from the phone (i.e., visual, manual, and cognitive),
which increases the risk of crashing by up to 23 times [1]. Ev-
ery year, around 660, 000 drivers attempt to use phones while
driving, and 14% of fatal crashes involve phones [2]. Though
law enforcement and insurance penalty policies help raise
public awareness and lower car accidents, they achieve limited
effects. Reports show that handheld device distractions cause
1.6 million crashes annually in the U.S. In 2020 alone, over
50, 098 people were injured or killed in car accidents related to
cell phone use [3], [4]. Since the COVID-19 pandemic, a 17%
increase in driver phone use has been found, because more
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people attempt to take Zoom calls, read Instagram messages,
or text while driving [5]. More efforts are still urgently needed
to reduce the driver’s handheld phone use, and incorporating
human factors into Vehicle-to-Vehicle (V2V) communications
is key to enhancing traffic safety.

There has been active work on using the phone itself to
prevent distractions. By recognizing when the phone user is
driving, the phone could automatically turn on the do-not-
disturb mode and prohibit phone use (e.g., delaying messages
and routing calls to voice mail). For example, cellphone han-
dovers and signal strength variations can be used to recognize a
phone in a moving car [6], [7]. To further distinguish whether
the phone user is a driver or a passenger, researchers have
developed in-vehicle localization methods, which estimate
whether the phone is closer to the driver or passenger seat [8],
[9]. However, most users refuse to disable phone services com-
pletely while driving though acknowledging the dangers [10].
They may have concerns about missing important notifications
and calls during long-distance driving. They may also prefer
to use the less distracting and legally allowable handsfree
phone operation, ask the passenger to read/reply or pull over
to a safe area to cope with emergencies. Thus, preventing a
driver from reaching out to the phone is more practical and
effective than disabling all phone services for an entire trip.
More specifically, we need to know when a driver holds the
phone to immediately address the handheld phone distraction.

This work aims to capture the precise timing (e.g., start,
end, and duration) of each distracted driving activity, which
is a critical input to numerous safety systems for taking
immediate safety measures. For example, knowing when the
driver picks up the phone, all Apps could be shut down
by the phone at once except for emergency calls. And the
nearby automobiles (especially self-driving cars) could be
notified to take precautionary measures. Additionally, such
information could be used to determine who is at fault in
a car accident or personalize insurance rates. The prior work
to monitor the driver’s phone use mainly relies on monitoring
the display on/off, the phone lock status, the phone lifting
action [11], [12], and the phone dynamics related to distracting
phone activities (e.g., calling and texting) [13]. But based on
such indirect phone-use indicators, these methods are hard
to determine the detailed timing of each distracted driving
instance. Moreover, they have limited abilities to cover the
diverse phone distraction scenarios and are not sufficiently
reliable in the practical in-vehicle environment, which is noisy.

It is noted that our system starts to work when the phone
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user has been identified as the driver by existing methods [8],
[9]. The phone’s speaker actively plays ultrasonic pulses to
sample the phone-use status periodically. The acoustic signals
traveling on the device surface could be uniquely damped,
reflected, and refracted by a gripping hand. Due to the palm
skin and unique contact areas, the resulting signals reaching
the phone microphones are different from the scenarios when
the phone is placed on a seat, cup holder, pocket, or phone
mount. Based on that, our system accurately detects when the
driver grabs/holds/drops the phone. To further recognize the
fine-grained handheld device use, we leverage the embedded
inertial sensors to study the phone’s motions resulted from
specific phone uses, such as reading, calling, scrolling, and
texting. Because no additional hardware is required, users of
our system can continue to use their existing cars without
technological restrictions.

In particular, we develop a learning-based distracted driving
monitoring system, which continuously monitors the phone-
use status and captures the fine-grained distracted driving
activities related to handheld device use. We utilize active
acoustic sensing to recognize the surface of the object that
contacts the phone and inertial sensing to recognize the phone-
use motion dynamics. The microphone data is used to derive
the short-time Fourier transform, which describes the unique
time-frequency characteristics of the signal interference caused
by the gripping hand or a support surface in the vehicle.
Based on that, we develop a CNN-based binary classifier
to distinguish whether the phone is handheld or handsfree.
To recognize the specific handheld phone use, we derive
statistic motion features from the accelerometer and gyroscope
data and develop an SVM-based classifier for analysis. After
getting a sequence of phone-use status samples, we further
utilize an error correction filter to address the misclassified
samples and output the start, end, and duration of each specific
handheld phone distraction activity.

Our contributions can be summarized as follows:

o This work proposes a continuous phone-use monitoring
system to detect the driver’s handheld device distractions,
which enables many prompt safety measures and is a
significant addition to vehicular networks.

« We develop an active acoustic sensing method to recognize
the phone’s contact surface. Specifically, we derive the short-
time Fourier transform from the sensing sound to describe
the characteristics of the phone’s contact surface and use a
CNN-based binary classifier to distinguish handheld phone
use from various handsfree scenarios.

o We utilize inertial sensors to capture the unique phone mo-
tion dynamics associated with different phone-use scenarios
and develop an SVM-based multi-class algorithm for fine-
grained handheld phone distraction recognition.

o We design error correction schemes to process the most
recent phone-use estimation samples, which facilitates de-
tecting the start of a handheld phone-use activity and its end
in noisy in-vehicle environments.

« Extensive experiments with different phone/car models and
participants show that our system accurately recognizes the
fine-grained phone distraction scenarios and estimates their
timing information.

II. RELATED WORK

There has been a rising interest in monitoring unsafe driving
behaviors. The vehicle’s speed, acceleration, and deflection
angle can be estimated from the phone sensor data to recognize
the dangerous driving behaviors [14], [15]. To improve the
drivers’ awareness of their driving habits, Chen et al. further
classify the abnormal driving behaviors among different ve-
hicle maneuver types by using phone sensors [16]. Xu et al.
focus more on the driver’s attention and use Doppler shifts of
the phone audio signals to sense the inattentive driving events,
such as eating, drinking, and turning back [17]. But none
of these works could effectively address the handheld device
distraction, one of the leading causes of traffic accidents.

The existing research efforts to prevent handheld phone
distraction are on differentiating the phone user to be the
driver or the passenger based on its in-vehicle location. Yang
et al. propose a relative-ranging system, which sends acoustic
signals in a programmed sequence from the stereo car speakers
and captures the time differences of their arrivals at the
phone to determine whether it is closer to the driver seat or
the passenger seat [8]. Wang er al. use the phone’s inertial
sensors to measure its centripetal acceleration when the vehicle
makes turns. By comparing to a reference point, they estimate
whether the phone is on the right or left side of the car [9]. Chu
et al. release the requirement of additional infrastructure and
rely entirely on the phone sensors to differentiate the micro-
activities between the driver and the passenger, such as with
which foot to enter the car first and along which direction
to fasten the seat belt [18]. There are also infrastructure-
free methods to recognize the phone user during driving,
which localize the phone based on its motion dynamics or
camera views [19], [20]. However, these methods are far from
satisfactory to address the handheld device distraction, as they
cannot detect when the distracted driving happens to take
proper safety measures right away, which requires capturing
the interaction between the phone and the driver.

There are several solutions to capture phone-driver interac-
tions based on cameras. For example, Chuang et al. monitor
the driver’s gaze direction using the phone front camera [21].
A recent work installs multiple cameras in the car to capture
the interaction between the driver and the phone, which com-
plements the blind spots of each single camera [22]. However,
these vision-based methods are limited by light conditions
(especially at night), camera view angles, or high installation
overhead.

We propose to monitor phone-driver interactions based on
sensing the gripping hand. There have been several studies on
detecting the grips of mobile devices. For example, the phone’s
rotations, vibrations, and touch events can be measured by
inertial sensors and the touchscreen to infer the user’s phone-
use postures, such as with which hand (or both hands) to
hold the device and which finger (e.g., index finger and
left/right thumb) to operate on the screen [23], [24]. These
are motion-driven approaches. Ono et al. attach a pair of
vibration motor and receiver on the phone case to recognize
the user’s hand postures [25], and Kim et al. achieve similar
functions based on acoustic sensing [26]. Both methods use a
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Fig. 1: Illustration of acoustic signal interaction with driver’s hand.

support vector machine as the classifier. However, the above
studies all assume the phone is already in the user’s hand
and then recognize the type of phone grip. Few of them
investigate distinguishing a handheld phone from that placed
on many other surfaces such as a table, seat, and phone
mount. Furthermore, it is unknown whether they could work
in the in-vehicle environment, which suffers from complex
acoustic noises and vibration noises related to the engine, road
conditions, and the wind. More importantly, none of them is
able to demonstrate the user-phone interaction monitoring and
capture the phone-grip start, end, and duration.

III. BACKGROUND AND SYSTEM ARCHITECTURE
A. Distracted Driving Instance

This work aims to reduce the impacts of distracted driving
caused by handheld phone use. We define a distracted driving
instance as the handheld phone-use activity, which begins from
the driver’s hand reaching the phone and ends until the phone
is dropped off. This entire period is subject to the combination
of all three types of distractions (i.e., visual, manual, and
cognitive). Compared to single-distraction-type activities, such
as checking the navigation system (visual), making a handsfree
phone call (cognitive), and eating/driving (manual), handheld
phone use is the most dangerous and is prohibited by law.
Therefore, one efficient and direct way to prevent handheld
phone use by a driver is to detect when and how long the
driver holds the phone and then disable or restore the phone
services accordingly. It also facilitates sending early warnings,
notifying nearby automobiles, assisting law enforcement, and
personalizing insurance rates.

B. Sensing the Gripping Hand Acoustically

We leverage the acoustic signals that propagate on or near
the phone surface to sense the gripping hand or other objects
that come in contact with the phone. In particular, we use
the phone speaker to send ultrasonic signals for sensing
periodically. The signal traveling on the phone case would be
interfered with by the driver’s gripping hand or the support
surfaces on which the phone is placed, such as the seat
and center console. The resulted sound reaching the phone
microphone contains useful information that could describe
how differently the original signal is damped, reflected, and
refracted by the gripping hand and the support surfaces.
Figure 1 illustrates how the acoustic signal interacts with the
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Fig. 2: Acoustic response of different phone placement.

driver’s hand, where the sound recorded by the microphone
includes the damped direct-path signal, the reflected signals,
and the air-borne refracted signals (near-surface). These signal
components are mainly determined by the material, area, and
pressure of the contact surface. Because the hand’s skin,
geometry, and gripping strength are distinct from any support
surface in the car, the gripping hand can be distinguished by
acoustic sensing.

To show the feasibility, we play an ultrasonic chirp sound
using the phone’s speaker, which sweeps from 18kHz to
22kHz in 25 ms. Figure 2 shows the waveforms of the
recorded sounds when the phone is on six different support
surfaces in a car, including a hand. We observe that the
microphone-recorded sound is distinguishable in the wave-
forms among all six phone placement scenarios, which shows
the potential of differentiating the gripping hand from the
other phone placement scenarios. Moreover, while the sensing
signal sweeps along the frequency, its amplitude is reinforced
or suppressed with different scales, and at the same frequency,
the amplitude change is also unique for each support surface.
This phenomenon reflects the frequency diversity of the sound
to sense the various support surfaces, which motivates us
to use the sound with rich frequencies rather than a single
frequency to achieve robust sensing. It is noted that we use
the 2D time-frequency images shown in Figure 5 instead of
directly utilizing the captured audio data in the time domain
to differentiate between handheld and handsfree phone use
status. The reason is that our system identifies phone-use status
by sensing the smartphone’s contact surfaces’ materials, and
different materials impact the signal’s frequencies differently
and presenting distinct patterns at time-frequency domain.

C. Challenges

We also face some challenges when using acoustic signals
to sense the gripping hand. Specifically, we find that the
microphone keeps receiving sounds for a long time after the
sensing signal stops at 25ms, as shown in Figure 2. These
sounds are mainly environmental reflections, which are much
stronger in the vehicle’s confined space than indoor or outdoor
scenarios. They also heavily rely on the in-vehicle phone
locations and should not be used for analysis. One exception
is the in-pocket scenario, because the fabric of the pocket is
a good sound-absorbing material, which significantly damps
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(b) Spectrogram of the periodic ultrasonic pulse signal.
Fig. 3: The periodic ultrasonic pulse signals for sensing.

the outward sounds and reduces the echoed back sounds. As a
result, the in-pocket waveform is more different from that of
the other five scenarios. In comparison, the handheld scenario
is harder to be differentiated from the center console, cup
holder, and phone mount scenarios. We thus rely on deep
learning to recognize the handheld scenario.

Furthermore, different people’s hands may exhibit slight
differences when holding the phone, due to their individually
unique hand shapes and gripping strengths. Even the same
person may hold the device slightly differently when texting,
scrolling, and calling. These variances need to be considered
and addressed. Furthermore, our acoustic system must work
under a noisy in-vehicle environment, where the background
noises result from the different road conditions, driving speeds,
and car audio sounds. Additionally, to accurately estimate the
start and end of a distracted driving instance, our system needs
to handle the classification errors and the noisy transient states
when the phone is being grabbed or dropped off.

D. System Design

The goal of our work is to eliminate the handheld phone-use
distraction based on detecting the gripping hand. To achieve
the goal and address the above challenges, we develop a
phone-use monitoring system, which sends unique signals for
sensing and uses a deep learning-based algorithm to recognize
the various in-vehicle phone-use statuses. Our system can
work with existing phone localization methods [8], [9] to
effectively eliminate handheld phone distraction. For example,
our system could start after the phone user is identified as the
driver. Alternatively, our system could continuously sense the
phone use status, and once it is in hand, the phone localization
method further confirms if this is the driver’s hand.

1) Sensing Signal Design: The sensing signal is used to
interact with the object that is in contact with the phone
and capture its characteristics in the acoustic domain to
differentiate whether the phone is in the driver’s hand or on a
support surface of the vehicle. Based on our feasibility study
and challenge analysis in Section III-B and III-C, we design
the sensing signal with repetitive ultrasonic chirps. Figure 3(a)
and Figure 3(b) illustrate the original waveform of the sensing
signal and its spectrogram. In particular, each pulse signal
lasts for a short period (i.e., 25ms), and every two pulses are
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Fig. 4: The architecture of our system.

separated by a stop period (i.e., 75ms). The short pulses suffer
less from the echo sounds which usually last for much longer,
and the stop time reduces the interference between adjacent
pulses. Only the 25ms pulse sound is used for analysis.

Moreover, each pulse signal is designed to sweep from
18kHz to 22kHz to leverage the rich frequency information,
which facilitates capturing more characteristics of the object in
contact with the phone. Besides, this high-frequency range is
not impacted much by the in-vehicle noises, which are mainly
on lower frequencies. The sounds in these frequencies are
also demonstrated to be hardly audible and not invasive [27].
Furthermore, we apply a Hamming window to smooth the
two ends of each pulse to reduce the spectral leakages and
the speaker hardware noises caused by the sudden frequency
jumps at the start and the end of each pulse. As a result, the
pulse signals could sample the phone-use status ten times per
second to detect the hand-grip.

2) System Flow: The architecture of our system is shown in
Figure 4, which takes the phone’s microphone recording and
inertial sensor data (e.g., accelerator and gyroscope) as input.
Data Pre-processing is performed first to calibrate the data
for analysis. It applies a bandpass filter to remove the noises
outside the sensing signal’s frequency range and synchronizes
the microphone’s data by referring to the original audio. Based
on that, we can find the start and end of the pulse signal
to obtain the pulse segment, which is one sample of the
phone-use status. We apply similar denoising schemes to the
inertial sensing data and further segment it based on the timing
information of the obtained audio segments.

The core of our system consists of three components. The
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CNN-based Phone-use Status Recognition processes the pulse
sound and recognizes the phone-use status at the current
sampling point. Specifically, we derive the short-time Fourier
transform (STFT) from the pulse sound to describe the time-
frequency characteristics of the contact surface in the acoustic
domain. The 2D STFT is input to the CNN-based binary clas-
sifier to differentiate the phone-use status between handheld
and handsfree.

Based on a series of the most recent phone-use status
samples, the Handheld Phone Distraction Timing Derivation
further finds the start and end of each complete distracted
driving activity. In particular, we develop an adaptive window-
based error correction method to examine the current status
sample and correct the classification errors based on the results
of the recent samples. We further use a threshold-based method
to determine whether a distracted driving activity occurs. If
the phone-use status toggles back and forth too quickly, it
is unlikely to be from human action and is corrected. Once a
distracted driving instance is confirmed, the system would take
safety measures immediately, such as sending early warnings
to the driver and notifying nearby self-driving vehicles to take
precautions via V2V networks. If the phone is detected to
be dropped off, the phone services can be restored and the
vigilance levels of surrounding vehicles can be reduced.

After identifying a handheld phone distraction activity, the
Fine-grained Handheld Phone-use Recognition further enables
recognizing detailed handheld phone use, such as reading,
calling, scrolling, and texting. This is important to quantify
the impact of distracted driving. For example, texting is shown
to be more dangerous than calling [28]. In particular, we
extract the phone’s motion dynamics features from both the
microphone and the inertial sensor data segments. The two
domain features, after Principal Component Analysis (PCA),
are feed into an SVM-based multi-class classifier for handheld
scenario determination.

IV. METHOD DESIGN
A. Data Pre-processing

After obtaining the data from the microphone buffer and
inertial sensors (e.g., accelerator and gyroscope), we first pre-
process it for denoising, synchronization, and segmentation.
In particular, for the data from the microphone, we design a
bandpass filter with the 18kHz-to-22kHz passband to reduce
the noises outside of the sensing signal’s frequency range. For
example, the engine, road, and wind noises can be removed,
which are mainly on frequencies below 6kHz [29], and the car
audio sound impact could be reduced. After denoising, we can
focus better on the sensing signal changes caused by different
contact objects.

Next, we run a synchronization scheme to locate the pulse
signal in the microphone data precisely. Specifically, we it-
eratively shift the microphone data & and compute its cross-
correlation with the original pulse signal x. The shift length
leading to the maximum cross-correlation coefficient indicates
the time delay between the two signals as expressed by
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Fig. 5: Short-time Fourier transform of different phone use statuses.

where m is the number of samples to shift. After subtracting
this delay, we can find the start and end of the sensing sound by
referring to the original pulse signal. The resulted 25ms pulse
segment is used for further analysis. We further normalize the
amplitude of the pulse segment to be within the range [—1, 1].
It is important to note that the pulse signal is generated every
100ms, and the 75ms microphone audio that comes after the
pulse is mainly the echo sounds. This audio part is heavily
affected by the phone’s in-vehicle location and is discarded.

Furthermore, most phones are embedded with two micro-
phones for noise cancellation (e.g., one at the top and one
at the bottom). By using the two acoustic channels, we can
leverage the spatial diversity to capture more characteristics
of the contact object. Therefore, we use the two mics to
independently sense the contact object and integrate their
results to make a decision, which reduces the errors of each
single mic and is robust.

We apply similar denoising schemes, including a highpass
filter (3Hz), to the accelerometer and gyroscope data along
three axes. This helps filter out low-frequency noise readings
from inertial sensors caused by sudden jerks and turns while
driving. This ensures minimal impact on the accuracy of our
fine-grained handheld use recognition. And further segment
them with the microphone data segments’ timing into chunks
of the same time length (e.g., 0.1 second). These inertial sensor
segments are used with the microphone data segment together
for distinguishing different handheld phone-use scenarios.

B. Short-Time Fourier Transform

We derive the STFT from the microphone data segment
to describe the characteristics of the contact object in the
acoustic domain. STFT presents the frequency spectrum along
time, which captures how each spectral point of the signal is
interfered with by the hand or a support surface in the vehicle.
In particular, we use a sliding window with the length 480
samples to compute the Discrete-Time STFT (DT-STFT) of
the pulse signal, which results in a 2D image. The value of
each image pixel at sample m and frequency f is expressed
by Equation 2, where w(n) is a window function.

DT-STFT(m, f)= Y #(n)w(n—m)e?>" (2)
Though the derived DT-STFT covers the microphone’s all
frequencies, which span from 0 to 24kHz, we crop the image
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to only focus on the pulse signal’s frequency range from
18kHz to 22kHz. Figure 5 shows the feasibility of using
the DT-STFT image of the pulse signal to differentiate six
different scenarios. We can observe that the DT-STFT images
show distinct pixel patterns among all the contact objects.
For example, the in-hand scenario presents several strong
spectral points around 19kHz, while the center console, pocket,
and seat show lower amplitudes around this frequency. When
the phone is on the center console, cup holder, pocket, and
phone mount, the received pulse signal has great amplitudes
between 20kHz and 22kHz. In comparison, the gripping hand
suppresses the pulse signal significantly on these frequencies.
The reason is that the impact on the pulse signal depends on
the contact object’s material, contact area, and pressure, which
may reinforce the signal at some frequencies but suppress it
at others. Our next step is to utilize a deep learning algorithm
to discriminate the handheld phone use from most handsfree
scenarios using the DT-STFT images.

C. CNN-based Binary Classifier

We resize all the DT-STFT images into a fixed size and
process them using a binary classifier based on Convolutional
Neural Network (CNN). CNN is widely used to analyze
images by learning their patterns. To recognize the gripping
hand based on DT-STFT images, we develop a CNN-based
binary classifier with three convolution layers and one fully
connected layer, which is a CNN structure widely used on
mobile devices [30]. The output dimensions in each layer are
tuned to reduce the processing time while ensuring accuracy.
Specifically, the dimensions of the output can be calculated as

dimensions = (Z=hE2d 4 1) i (m=kt2d 4 1) 0t (3)

where m, k, [, d and t are the input image size, the kernel
size, the step length, the number of padding applied and the
number of filters.

The detailed structure of our CNN classifier is shown in
Table 1. In particular, the dimensions of the normalized input
image is 150 x 150. The convolutional kernel size is 3 x 3 and
the pooling kernel size is 2 x 2. The step length is set as 1,
the number of padding applied is set as 0, and the number
of filters is 32. The dimensions after the first convolution
operation is 148 x 148 x 32 as computed by the above equation.
Since the kernel size of the pooling layer is 2, the dimension
after the first pooling operation is 74 x 74 x 32. We keep the
same configuration for the rest of the convolution and pooling
layers. At the end of the model, we utilize the softmax function
to normalize the network output and obtain a probability for
each class as the decision confidence or CNN score. Since
our system’s inputs are images, and the computing resources
needed for learning of image features is a crucial factor to
consider. We thus choose the efficient and low-cost optimizer
- Adam [31] [32]. We use sparse categorical cross-entropy as
the model’s loss function since we expect class labels to be
provided as integers instead of one-hot encoding ones.

Our CNN-based algorithm performs the binary classification
to discriminate the handheld and handsfree phone uses, which
consists of two phases. During the training phase, we involve
a number of people in collecting the handheld and handsfree
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phone-use instances. Moreover, the various handheld phone-
use activities are considered to cover various scenarios when
the user holds the phone still, taps/swipes on the phone screen,
and hold the phone close to face (e.g., making phone calls). It
is important to note that these phone-use activities generate
sounds and cause the handheld status to be unstable. Our
system does not rely on these sounds to recognize handheld
phone use, because they differ significantly among people
and activities. These acoustic noises mainly reside at low
frequencies and are suppressed by our bandpass filter. Though
the phone can be used differently in the driver’s hand, our
CNN algorithm can still distinguish them from the handsfree
scenarios, as the phone is consistently in the user’s hand, which
is discernible from other contact objects. Additionally, we train
two CNN models for Mic 1 and Mic 2 of the phone, for
analyzing the contact object from two acoustic channels.
During the testing phase, the DT-STFT images of the
testing pulse sound are input to the two CNN models to
process independently. The CNN scores of the two models are
integrated to make the classification decision. This result is the
phone-use status sampled by one sensing pulse. We compare
the binary classification performance when using SVM and
CNN models. We find that using the CNN model outperforms
SVM. We use the term FLOPS to measure the operational
requirements of a network model and to indicate the comput-
ing power of hardware like GPUs, providing an estimate of a
model’s training time on such hardware. The 150 MFLOPS
is calculated using a FLOPs calculator with tf.profiler for
neural network architecture written in TensorFlow 2.2+ [33],
when the model is trained on a MacBook Pro (13-inch, 2017,
Two Thunderbolt 3 ports). The memory usage during training
usually amounts to 5SMB on the CPU. Generally, there are no

TABLE I: The structure of our CNN-based binary classifier

Layer Output Shape | Param #
Input: short-time Fourier transform | (150, 150, 3) 0
Conv2D + RecLineU (148, 148, 32) 896
Max Pooling 2D (74, 74, 32) 0
Conv2D + RecLineU (72,72, 32) 92438
Max Pooling 2D (36, 36, 32) 0
Conv2D + RecLineU 34, 34, 32) 9248
Max Pooling 2D (17, 17, 32) 0
Flatten (9248) 0
Dropout (9248) 0

Dense (128) 1183872
Dense_1 (60) 7740
Dense_2 2) 122
Output: Probability in [0, 1] (1) 0
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Fig. 7: Motion dynamics captured by accelerometer and
of different handheld scenarios.

specific training requirements; most commercial laptops are
capable of training our model.

D. Handheld Phone-Use Monitoring

The accurate classification obtained with each sensing pulse
is the basis for monitoring phone use and detecting distracted
driving instances. But monitoring phone use in practical in-
vehicle scenarios is more challenging. Even the classification
error of a single sample could come at a tremendous cost.
We continue to study practical phone-use monitoring and
correct sample errors to cope with the false positives and false
negatives in classification results.

Our system is designed to sample the phone-use status ten
times per second. The phone-status monitoring result is a
sequence of labels between handheld and handsfree, based on
which the system decides when the user grabs or drops off the
phone. We design an adaptive window-based error correction
filter to process the label sequence based on the flip-and-merge
rule. The adaptive window starts from the first sample of the
current instance and compares it with its adjacent next sample.
If their labels are the same, the window grows its size by
one and examines the next consecutive sample. This recursion
continues until the sample status changes. The current window
extracts a sample chunk, and its size W is recorded. Then, the
above process repeats to find the next chunk.

The flip-and-merge rule further determines each chunk to be
an error or a valid chunk with two thresholds thq, the (thy <
ths), where a valid chunk represents a complete or a partial
instance. The intuition is that when a driver uses a phone, the
duration can not be too short (even for checking time). If W >
tho, the chunk is determined to be a valid chunk. If W < thq,
the entire chunk is considered to be misclassified because the
phone status toggles back and forth too fast, and the labels
of its all samples are flipped. This chunk after correction is
merged to its closest valid chunk. If th; < W < thy, we need
to examine the labels of its two valid neighbor chunks, v,,¢
and Vpepe. If Uppe = Vpeat, We consider this current chunk
to be erroneous, so it is flipped and merged with its neighbor
chunks. If vpye # Upeat, We keep the label of the current chunk
and merge it with the valid neighbor chunk that has the same
label. As a result, the handsfree and handheld instances are
obtained. Especially, the handheld instance is detected, if the
prior chunk is a handsfree instance and the current chunk size
grows larger than the (it is not necessary to wait to obtain
an entire chunk). The first sample of the current chunk then
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Fig. 8: Illustration of using audio and inertial sensors’ features for
fine-grained handheld recognition.

captures the handheld instance start, and its end is determined
when the next chunk is confirmed to be a handsfree instance.
Empirically, we use 0.5s and 0.8s for th; and ths.

Figure 6 illustrates the phone-use monitoring when a driver
grabs the phone for 5 seconds and then drops it off. The
top figure presents the spectrogram of this process, where
the ultrasonic pulses periodically sense the phone-use status,
and the transient state sounds (i.e., phone-grab and drop-off
actions) show the main signal powers at lower frequencies.
The bottom figure illustrates the phone-use status monitoring
results. We observe that though some samples are mistakenly
classified, they can be corrected by our adaptive window-based
filter. The resulted phone-use status sequence is close to the
ground truth curve. From this monitoring result, we can detect
the complete distracted driving instance as well as determine
its start, end, and duration.

E. Fine-grained Handheld Phone-use Recognition

After the phone is recognized to be in the driver’s hand, it is
important to further know how the phone is specifically used,
such as calling, reading, texting, and scrolling. These different
user-phone interactions present different distraction levels and
exert different impacts on the future vehicle status. For ex-
ample, texting distracts the driver much more than handheld-
phone calling and causes the driver to respond to traffic even
slower [34], [35], [36]. Knowing such detailed handheld phone
use is critical to estimate/quantify the distraction impacts and
manage the traffic accordingly.

While acoustic sensing is efficient in differentiating hand-
held status from handsfree, we find it has limited capability
to further distinguish the various handheld phone-use sce-
narios, such as reading, scrolling, and calling. Figure 8(a)
illustrates the difficulty of using acoustic sensing alone to
analyze handheld scenarios. The overlapped clusters of dif-
ferent handheld scenarios, though showing some feasibility,
are not sufficiently reliable. This is because the contacting
surface keeps moving when the user interacts with the phone,
which cause significant noises to our acoustic method. Inertial
sensors are good at capturing the phone motions caused the
user’s handheld phone-use. Figure 7 presents the unique phone
motions captured by the accelerometer and the gyroscope
when the user is reading, calling, scrolling or texting on the
phone. We observe that the inertial sensor data exhibit distinct
patterns among different handheld scenarios, demonstrating
the unique motion dynamics of the device during phone
use. Figure 8(b) further presents the effectiveness of using
inertial sensors to distinguish different handheld scenarios,
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Fig. 9: Using cross-domain features to recognize fine-grained hand-
held phone use.

which are separated in isolated clusters. Therefore, we propose
to enhance our system by incorporating inertial sensing and
developing a sensor fusion method. It is important to note
that fine-grained handheld phone-use recognition is performed
after a handheld distraction activity has been detected. We
still use the active acoustic sensing data to examine how the
gripping hand interferes with the periodically emitted pulse
signal. Differently, we use the accelerometer and gyroscope
data to passively monitor the phone’s motions resulted from
human-phone interactions. We observe that the ultrasonic
sounds emitted by the phone are not strong enough to affect the
data from inertial sensors. Therefore, we derive unique features
to describe detailed interactions between the driver and phone
across two domains and use a Support Vector Machine (SVM)
classifier for fine-grained handheld phone-use recognition.

Specifically, we derive the Mel-frequency Cepstral Coeffi-
cients (MFCC) from each microphone data segment and the
statistical features from each inertial sensor data segment.
The statistic features include Max, Min, Variance, Standard
Derivation, Range, Skewness, Kurtosis, and Quartiles. We
further use Principal Component Analysis (PCA) for feature
selection and find the key features that better capture the
unique phone motion dynamics. In particular, we recursively
eliminate one feature from the feature set and use PCA to
compute the sum of weights/coefficients/loading scores for
the remaining features. The feature sets achieving the highest
weight sums are selected, whose clustering performances are
further compared to determine the key feature set. We then
feed the key features into the SVM multi-class algorithm for
handheld phone-use recognition, and the output is each phone-
use status sample (e.g., for 1 ms).

Furthermore, we design an error correction filter to address
the mis-classified phone-use status samples. The intuition is
that the shifting between different phone uses can not be too
quick. We use the majority vote to process the phone-use status
samples in a sliding window and correct the minority samples.
We find that a window of a short time length (e.g., 1 second)
is sufficient for the error correction, given that it takes a user
1.67 second to type a word seconds [37]. Figure 9 illustrates
using three derived key features to distinguish four handheld
phone-use scenarios (before error correction). We observe that
these different handheld phone uses are separated in different
clusters. While calling is the more distinctive from other phone
uses, reading, calling and scrolling, are close to each other. The
reason is that the three phone uses are associated with the same

Handheld
(Reading,
Texting,
Scrolling,
and Calling)

P

s Phone Mount
w/o or w/ charging

Pant and Coat Pockets

Fig. 10: Eleven experimental scenarios in the vehicle.

hand-grip pose. But they can still be differentiated based on the
minute motion dynamic differences, and our error-correction
filter can further improve the fine-grained handheld phone-use
recognition performance.

V. PERFORMANCE EVALUATION
A. Experimental Setup

To evaluate our system, we develop an experimental plat-
form based on Android, which periodically sends ultrasonic
pulse signals and records the stereo sounds and inertial sensor
data simultaneously. The sensing signal is programmed to
play for 25ms, followed by a 75ms pause, and this pattern
repeats periodically. We use this platform to collect data from
four phone models, Samsung Galaxy S20, Samsung Galaxy
S8, Motorola Moto G8, and Google Pixel2, and the data is
processed offline. Samsung Galaxy S8, Motorola Moto G8,
and Google Pixel2 run Android 9.0, Samsung Galaxy S20
runs Android 12.0, and the microphone sampling rate is set to
48kHz. We also test two vehicle models, Nissan Rogue (Car
A) and Volkswagen Tiguan (Car B). We recruited eighteen
participants (6 females and 12 males, age 21~33) for data
collection. The authors were trained to act as drivers, while
the participants sat on the passenger side. Tests were conducted
to assess hand shape and size, body fat ratio, and phone use
behaviors, including grip strength, typing, swiping behaviors,
and grip pose. As shown in Figure 10, each participant was
asked to use the phone in eleven scenarios, including four
handheld phone uses (i.e., holding the phone still or reading,
texting, scrolling, and calling) and seven handsfree scenarios
(i.e., in a coat pocket, pant pocket, cup holder, center console,
phone mount, phone charging on phone mount and seat).
For each scenario, the participant was asked to re-grab or
reposition the phone 40 times for two main reasons: 1) to
enlarge dataset, and 2) to include behavioral inconsistency,
unfixed phone orientation and phone location differences.

The overall performance is evaluated based on eighteen
participants, eleven scenarios, car A and Samsung S8. We
apply half of the data for training and the rest for testing. We
also investigate the various impact factors based on four par-
ticipants and eleven scenarios. In particular, the device model
and the car model impacts are studied. Moreover, different
in-vehicle environments where the practical in-vehicle noises
caused by the engine, road conditions, and traffic are involved.
Additionally, the impact of the car audio (e.g., radio sounds) is
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Fig. 11: Distracted detection performance of our system.

studied. Furthermore, we monitored four participants’ phone-
distracted driving activities and fine-grained handheld phone
use, in which each participant was asked to use the phone by
grabbing it 40 times from the seat, center console, cup holder,
phone mount, and pocket for an hour of monitoring. Due to
safety reasons, the front passenger performed the experiments.

Evaluation Metrics. We use True Positive Rate (TPR)
to measure the proportion of actual positives (e.g., handheld
distraction instances) that are correctly identified by our sys-
tem. It is calculated as the number of successful recognitions
divided by the total number of tests. False Positive Rate
(FPR) is used to assess the proportion of actual negatives
(e.g., handsfree instances) that are incorrectly classified as
positives by our system. It is calculated as the number of
unsuccessful recognitions divided by the sum of tests. Equal
Error Rate (EER) is where TPR equals FPR. Additionally,
we use Distraction Detection Rate (DR) to represent the
percentage of instances (e.g., handheld distraction instances)
detected by the system.

B. Phone Distraction Detection Performance

1) Handheld vs. Handsfree: The ROC curves of our system
to detect phone distraction are presented in Figure 11. We find
the system achieves a high TPR and low FPR to distinguish
handheld from handsfree. In particular, when integrating the
two microphones, our system achieves 99.7% TPR and 0.5%
FPR, and the EER is 0.36%. The results are very promising as
the system correctly differentiates the handheld and handsfree
scenarios, regardless of how the driver uses the phone and
who holds the phone. The results also indicate that our system
is effective in practical usage. Furthermore, we find Mic 1
performs better than Mic 2. The reason is that Mic 1 is at the
top of the phone, far from the bottom speaker. Compared to
Mic 2, which is close to the speaker, Mic 1 receives sounds
that travel across the phone case and interact better with the
contact object to capture its characteristics.

2) Phone-use Contexts: Next, we investigate how the sys-
tem distinguishes eleven phone statuses between handheld
and handsfree. Figure 12 presents the DR in four handheld
and seven handsfree scenarios. We observe that our system
performs well for all eleven scenarios, obtaining a mean 99.6%
DR. For example, calling performs the best among the four
handheld scenarios with a 100% DR. The DRs of reading,
texting, and scrolling are slightly lower, which are 99.0%,
99.5%, and 98.61%, respectively. “The reason is that hand
movements in these three scenarios cause noise and slightly
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Fig. 13: Distraction detection performance for different users.

unstable contact between the phone and hand. Moreover,
reading and scrolling are coexisting behaviors that are hard to
differentiate. For the seven handsfree scenarios, except for the
pant pocket, which performs with a 99.0% DR, the other six
scenarios achieve a 100% DR and are recognized as handsfree.
These results indicate that our system successfully detects
handheld phone distractions based on their contact with phone.

3) Individual Difference: We also study how the system
performs across different users. Figure 13 presents the DR for
four types of phone use (i.e., handheld and handsfree) across
eighteen users. We observe that the system accurately detects
phone distractions for all participants, with an average DR of
99.7%. Moreover, more than half of the users achieve a DR
of 100%, with the lowest DR being 98.8%. The results show
that our system can work for different users regardless of their
unique hand geometry and gripping strengths.

C. Impact Factor Study

1) Device Models: We now investigate the impacts of de-
vice models. Our participants were asked to use four different
phones in Car A, and the above eleven types of phone statuses
were collected. Figure 14 shows the classification accuracy
for each device. We observe that all four devices accurately
distinguish handheld phone use from handsfree. In particular,
Samsung Galaxy S20 performs the best with 99.7% accuracy.
The performances of Google Pixel 2, Samsung Galaxy S8,
and Motorola G8 are slightly lower, which are at 99.6%,
98.9%, and 99.0%, respectively. The results indicate that our
system performs well with a range of Android phone models.
Considering the adaptability of Android phones to different
types, we believe that our system is compatible with Apple
phones as well, and therefore our system can be broadly
deployed on different devices [38].

2) Car Models: Similarly, the shells and interiors of dif-
ferent car models may affect the performance of our system.
Therefore, we repeat the above experiments in Car B using
Samsung Galaxy S8. Figure 15 shows the performance of each
car model. It can be observed that both car models achieve
good performance. In particular, Car B achieves an accuracy
of 99.6%, which is slightly higher than Car A. The reason
may be that Car B has a thick shell, which suffers less from
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wind, road, and engine noises. The results show our system is
able to detect distracted driving with different car models.

3) Vehicle Engine Status: The car engine at different sta-
tuses or speeds generates different noise levels, including
increased or decreased road and wind noises. We thus evaluate
our system under different engine statuses, including city
driving, highway driving, engine on, and engine off. We use
Car A and Samsung Galaxy S8 for this impact study. Figure
16 presents the classification results under the four different
engine statuses. Not surprisingly, engine off performs the best
with 100% accuracy, as this is a quiet in-vehicle environment.
Engine on also performs well with 99.8% accuracy. City
driving and highway driving achieve a slightly lower accuracy,
which are 98.9% and 98.8%, respectively, though they suffer
from different types of noises. In particular, city driving mostly
involves the noise from frequent accelerations and braking in
the traffic, while highway driving experiences more engine and
wind noises. However, our system is robust enough to detect
phone use distraction in both driving environments.

4) Car Audios: When driving, the drivers may turn the
radio or music on. The car audio sounds may interfere with
our sensing signal and affect the system’s performance. We,
therefore, evaluate our system with the car music on. It
is noted that car audios primarily operate in the audible
frequency range [39] [40], while our system works in the
ultrosonic frequency range. Moreover, our sounds are internal,
which are generated and recorded by the same device. As
shown by prior work [41], the smartphone’s own speaker
sounds leave much higher Signal-to-Noise Ratio (SNR) to its
microphone data compared to external sounds when they are
at the same frequency. A prior study also demonstrates the
feasibility of using ultrasonic sounds to record breath sounds
in vehicles [42]. Our experiments in a car audio environment
further confirm the limited impact of car audios on ultrasonic
signals. The experiment was done with Car A and Samsung
Galaxy S8, under the engine on status. The music sounds were
between 56~60dB. Figure 17 compares the performances of
our system when the music is on or off. We observe that
the music sounds do have a slight impact on our system
performance. The classification accuracy degrades to 97.0%
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when the music is on, which is still high. The result confirms
the robustness of our system to work under car audios.

D. Training Data Size Study

To balance the effort required from users in data collection
for model training with the goal of achieving good perfor-
mance, we evaluate our system with different training data
size splits. Specifically, we select five different percentages for
the training dataset split, 10%, 20%, 30%, 40%, and 50%, for
each of the eighteen participants for training, and used a fixed
50% of the dataset for testing. As illustrated in Figure 19(a),
we find that when we use more than 20% of the collected data
for training, the achieved accuracy is over 90%. Particularly,
our system achieves 92.2% accuracy when using 20% of the
collected data for training. When we use 30% and 40% of the
data for training, the accuracy increases to 94.9% and 98.9%,
respectively. Our system performs the best when 50% of the
collected data is used for training, achieving 99.6% accuracy.
This study demonstrates that our system can minimize user
effort by reducing the training data size while maintaining
good handheld phone detection accuracy.

E. Unseen Users

To investigate whether each individual user’s training data
is required, we conduct a study with participants who are not
included in the training data set or unknown to our system.
Specifically, we divide the participants into two groups, with
10 and 8, respectively. We use the 10 participants’ data to train
the handheld phone distraction detection system, while the 8
unknown participants’ data are used for testing. As illustrated
in Figure 18, our system achieves 98.6% accuracy in detecting
handheld phone distractions for unknown users, which is just
slightly lower than 99.6% achieved by the users included in
the training set. The results indicate that our system has the
potential to exempt a new user from training. The reason is that
our handheld phone distraction detection is based on detecting
the object’s surface that contacts the phone, and the differences
between the human skins are much smaller than the other in-
vehicle surfaces. Furthermore, we reduce the number of users
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Fig. 24: Distraction ste_. __._____ Fig. 25: Distraction end estima-
tion for different study cases. tion for different study cases.

included in the training model from 10 to 1 and still use the
8 unknown users’ data for testing. The results are presented
in Figure 19(b). Our system gets over 90% accuracy in phone
distraction detection when we use more than 5 enrolled users
for training. Specifically, our system obtains 91.3%, 94.2%,
96.2%, 98.4% and 98.6% classification accuracy in detecting
phone distraction when we use 6, 7, 8, 9 and 10 enrolled users
for training, respectively. The results indicate that it is possible
to pre-train our system with a data set and exempt the new
users from collecting new training data.

F. Fine-grained Handheld Phone-use Recognition

We evaluate the performance of our system in recognizing
four fine-grained handheld phone use scenarios (i.e., reading,
calling, scrolling, and texting) with eighteen participants.
Figure 20 presents the classification performance when using
acoustic sensing, inertial sensing, and their fusion, respec-
tively. We find our system achieves the highest performance
with the fusion of acoustic and inertial sensing. The accuracy
is 95.9% in recognizing the different handheld phone use
scenarios. The inertial sensing plays a dominant role, which
alone achieves 91.0% accuracy. This is much higher than using
acoustic signals alone, whose accuracy is 49.0%, while the
random guest rate is 25%. We further study the recognition
performance regarding each type of handheld phone-use sce-
nario. Figure 21 shows that our system achieves a high TPR
after for all the four handheld phone uses. In particular, with
the fusion of acoustic and inertial sensors, our system achieves
96.7% TPR in reading, 98.7% TPR in calling, 93.3% TPR
in scrolling, and 95.1% TPR in texting. Moreover, when we
only use inertial sensors for recognition, the performance is
slightly lower, and the TPRs are 92.7%, 93.9%, 86.8%, and
90.5%, respectively. But if only using the acoustic signals,
the TPRs are 48.1%, 52.7%, and 48.9%, respectively. The
results confirm that only using the acoustic signals is hard
to distinguish the different handheld device use scenarios
and that the fusion of acoustic and inertial sensors enables
the fine-grained handheld device distraction recognition. More
specifically, while the acoustic sensing is used to recognize the
contract surface of the phone, the inertial sensing is able to
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recognition monitoring. recognition monitoring.

recognize the phone’s motions resulted from specific handheld
phone uses.

G. Practical Phone-use Case Study

Lastly, we conducted eight case studies to monitor four
participants’ phone use. In each case, the assumed driver (front
passenger) grabs the phone from one place in the vehicle, uses
it, and then drops it at one place in the vehicle. Each case is
repeated 20 times. The eight different cases are as follows:

Case I: Seat - reading - seat.

Case 2: Center console - reading - center console.

Case 3: Cup holder - reading - cup holder.

Case 4: Phone mount - reading - phone mount.

Case 5: Pocket - reading - pocket.

Case 6: Pocket - calling - seat.

Case 7: Phone mount - texting - phone mount.

Case 8: Center console - scrolling - cup holder.

Our system achieves a 99.6% DR to capture the distracted
driving instances with all of these cases, and the FPR is
0.6%. This performance is the combined result of distraction
detection and the status sample error correction. We then
evaluate the performance of our system to detect when the
driver grabs and drops the phone. Figure 22 and Figure 23
present the distributions of the absolute time errors to detect
the start and the end of each distraction instance. Our system
achieves a median error of 0.67 seconds to determine the
start of the distraction instance, and a median error of 0.56
seconds to determine the end time. These time errors are
mainly associated with the complex transient states when the
user grabs and drops the phone. We also find that most larger
errors (e.g., between 1s and 2s) occur when the user grabs
the phone from or drops it to a phone mount. The reason is
that fetching a phone from or putting it on the phone mount
is a less smooth process and takes a longer time compared
to the pocket, cup holder, center console, and seat. Figure 24
and Figure 25 further present the distracted instance start/end
detection for each individual study case. The results confirm
that our system can effectively capture the start and the end
of a distraction instance in different cases.

We further evaluate our system performance in detecting
the fine-grained handheld phone-use recognition in these case
studies. Figure 26 presents the performance of our system in
recognizing the fine-grained phone uses (i.e., reading, calling,
scrolling, and texting) in these more practical scenarios, where
the classification accuracy is calculated after applying a 1-
second error correction window. We observe that our system
achieves 95.7%, 96.9%, 92.9%, and 93.1% TPR in recognizing
reading, calling, scrolling, and texting, respectively. The con-
fusion matrix of recognizing the four phone uses accuracy is
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presented in Figure 27, we find our system achieves an overall
accuracy of 95.2%. The results show that our system can ef-
fectively detect each distracted driving instance and recognize
the fine-grained handheld phone-use scenarios. Besides, we
observe a relatively lower true positive rate in recognizing
scrolling and texting, compared to calling and reading. The
reason is related to the fact that in practical scenarios, a
user may not consistently text or scroll but has these phone-
use actions accompanied by reading. For example, the user
may read a message, text back, and then reads the returned
message. Or the user may scroll the web page, read the
content, and scroll the page again. The mixed texting-reading
and scrolling-reading explain why some segments during the
participants’ texting and scrolling are classified as reading.
The results motivate us to further compute the texting-reading
and scrolling-reading ratios to estimate the impact of these
fine-grained phone uses. We leave this to future work.

VI. DISCUSSION & FUTURE WORK

Our system enhances traffic safety from three perspectives.
For the driver, it can reduce handheld phone distractions by
blocking or postponing non-emergency functions when the
phone is in the driver’s hand. Additionally, it can enable semi-
autonomous driving modes to assist with traffic response and
maintaining safe distances, similar to cruise control [43]. For
surrounding vehicles, particularly self-driving cars, it alerts
their systems to potentially unsafe nearby vehicles, allow-
ing them to take precautionary measures like maintaining a
longer distance. This alert includes accounting for possibly
slower reactions from distracted drivers. For transportation
management, the system transmits data on human factors to
vehicular networks, aiding in traffic analysis and planning to
reduce accidents and traffic congestion. Our proposed system
may have some limitations. Its performance may fluctuate
under certain conditions that are not covered by this work,
such as heavy traffic, poor weather and extreme temperatures.
The system’s effectiveness also depends on the smartphone’s
hardware, especially the ultrasonic and inertial sensors’ sen-
sitivity, fidelity and range. Additionally, the variability in
user behaviors and phone handling may result in occasional
misclassifications. We will further study these in future work.

There are multiple topics we plan to explore in future
work. 1) Our system currently focuses on law enforcement,
which typically prohibits only handheld phone use. We believe
our system can be extended to include handsfree phone use
detection. For example, it could detect a phone in a phone
mount when it makes a phone call. 2) We will explore the
use of different time-frequency characteristic representation
methods, such as the Discrete Wavelet Transform (DWT) to
distinguish between handheld and handsfree phone use. 3) As
shorter signals can also be used for sensing as demonstrated
by prior work [44], we will study the balance between
performance and computational overhead incurred by using
different lengths of sensing signal. 4) We will investigate
more potential impacts in practical driving scenarios, including
frequent stops, various invasive maneuvers, and evaluate our
system under such impacts. 5) The BFGS optimizer may
enhance parameter learning rates and model performance,

offering greater precision in parameter updates than Adam
and we plan to explore this optimizer comparison in future
work. We will adopt state-of-the-art methods to perform data
augmentation and enlarge the dataset.

VII. CONCLUSION

This work proposes a learning-based phone-use monitoring
system to address handheld phone distractions by sensing the
driver’s gripping hand. First, the system actively emits periodic
ultrasonic pulse signals to continuously sense the material of
the object in contact with the phone. Then, it determines
whether the phone is being held by hand or placed on a
surface within the vehicle, such as the seat, center console,
pocket, or phone mount. After identifying a handheld phone
distraction, the system employs a combination of acoustic and
inertial sensing to recognize specific handheld phone usage
activities, such as texting or calling. We develop an error
correction window to correct misclassified phone-use status
samples and to detect the start and end of each distracted
driving activity related to handheld device use. Through com-
prehensive experiments involving various phone/car models
and participants, the system is proven effective in providing
fine-grained monitoring of driver phone use.
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