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Abstract—Handheld phone distraction is the leading cause
of traffic accidents. However, few efforts have been devoted to
detecting when phone distraction happens, which is a critical
input for taking immediate safety measures, not only related to
the driver but also important to surrounding vehicles, pedestri-
ans, and vehicle networks. This work proposes a fine-grained
handheld phone-use monitoring system, which detects the start
of phone-distracted driving activities and further distinguishes
different handheld phone-use scenarios, which enables estimating
the impacts on traffic safety to take measures accordingly.
Specifically, the proposed system emits periodic ultrasonic pulses
to sense if the phone is being held in hand or placed on
support surfaces (e.g., seat and cup holder), and the unique
signal interference resulted from the contact object’s damping,
reflection, and refraction is analyzed based on the sounds that
return to the microphone. We derive the short-time Fourier
transform to describe such impacts and develop a CNN-based
binary classifier to distinguish phone use between handheld and
handsfree. Moreover, the system leverages the embedded inertial
sensors to capture the phone’s motion dynamics and recognize
specific handheld phone distractions (e.g., holding the phone for
calling). The system periodically samples the driver’s phone-use
status and use an error correction window to correct misclassified
samples. As a result, the start, end, and duration of each handheld
phone distraction activity can be obtained. Extensive experiments
show that our system achieves 99.5% accuracy in recognizing
handheld phone-use instances and a 0.76-second median error in
detecting the start of a handheld phone distraction.

Index Terms—Distracted Driving, Handheld Device, Vehicle
Safety, Driver Behavior.

I. INTRODUCTION

Using a handheld device while driving is a dangerous

behavior. The driver can be impacted by all three types of dis-

tractions from the phone (i.e., visual, manual, and cognitive),

which increases the risk of crashing by up to 23 times [1]. Ev-

ery year, around 660, 000 drivers attempt to use phones while

driving, and 14% of fatal crashes involve phones [2]. Though

law enforcement and insurance penalty policies help raise

public awareness and lower car accidents, they achieve limited

effects. Reports show that handheld device distractions cause

1.6 million crashes annually in the U.S. In 2020 alone, over

50, 098 people were injured or killed in car accidents related to

cell phone use [3], [4]. Since the COVID-19 pandemic, a 17%

increase in driver phone use has been found, because more
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people attempt to take Zoom calls, read Instagram messages,

or text while driving [5]. More efforts are still urgently needed

to reduce the driver’s handheld phone use, and incorporating

human factors into Vehicle-to-Vehicle (V2V) communications

is key to enhancing traffic safety.

There has been active work on using the phone itself to

prevent distractions. By recognizing when the phone user is

driving, the phone could automatically turn on the do-not-

disturb mode and prohibit phone use (e.g., delaying messages

and routing calls to voice mail). For example, cellphone han-

dovers and signal strength variations can be used to recognize a

phone in a moving car [6], [7]. To further distinguish whether

the phone user is a driver or a passenger, researchers have

developed in-vehicle localization methods, which estimate

whether the phone is closer to the driver or passenger seat [8],

[9]. However, most users refuse to disable phone services com-

pletely while driving though acknowledging the dangers [10].

They may have concerns about missing important notifications

and calls during long-distance driving. They may also prefer

to use the less distracting and legally allowable handsfree

phone operation, ask the passenger to read/reply or pull over

to a safe area to cope with emergencies. Thus, preventing a

driver from reaching out to the phone is more practical and

effective than disabling all phone services for an entire trip.

More specifically, we need to know when a driver holds the

phone to immediately address the handheld phone distraction.

This work aims to capture the precise timing (e.g., start,

end, and duration) of each distracted driving activity, which

is a critical input to numerous safety systems for taking

immediate safety measures. For example, knowing when the

driver picks up the phone, all Apps could be shut down

by the phone at once except for emergency calls. And the

nearby automobiles (especially self-driving cars) could be

notified to take precautionary measures. Additionally, such

information could be used to determine who is at fault in

a car accident or personalize insurance rates. The prior work

to monitor the driver’s phone use mainly relies on monitoring

the display on/off, the phone lock status, the phone lifting

action [11], [12], and the phone dynamics related to distracting

phone activities (e.g., calling and texting) [13]. But based on

such indirect phone-use indicators, these methods are hard

to determine the detailed timing of each distracted driving

instance. Moreover, they have limited abilities to cover the

diverse phone distraction scenarios and are not sufficiently

reliable in the practical in-vehicle environment, which is noisy.

It is noted that our system starts to work when the phone
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user has been identified as the driver by existing methods [8],

[9]. The phone’s speaker actively plays ultrasonic pulses to

sample the phone-use status periodically. The acoustic signals

traveling on the device surface could be uniquely damped,

reflected, and refracted by a gripping hand. Due to the palm

skin and unique contact areas, the resulting signals reaching

the phone microphones are different from the scenarios when

the phone is placed on a seat, cup holder, pocket, or phone

mount. Based on that, our system accurately detects when the

driver grabs/holds/drops the phone. To further recognize the

fine-grained handheld device use, we leverage the embedded

inertial sensors to study the phone’s motions resulted from

specific phone uses, such as reading, calling, scrolling, and

texting. Because no additional hardware is required, users of

our system can continue to use their existing cars without

technological restrictions.
In particular, we develop a learning-based distracted driving

monitoring system, which continuously monitors the phone-

use status and captures the fine-grained distracted driving

activities related to handheld device use. We utilize active

acoustic sensing to recognize the surface of the object that

contacts the phone and inertial sensing to recognize the phone-

use motion dynamics. The microphone data is used to derive

the short-time Fourier transform, which describes the unique

time-frequency characteristics of the signal interference caused

by the gripping hand or a support surface in the vehicle.

Based on that, we develop a CNN-based binary classifier

to distinguish whether the phone is handheld or handsfree.

To recognize the specific handheld phone use, we derive

statistic motion features from the accelerometer and gyroscope

data and develop an SVM-based classifier for analysis. After

getting a sequence of phone-use status samples, we further

utilize an error correction filter to address the misclassified

samples and output the start, end, and duration of each specific

handheld phone distraction activity.
Our contributions can be summarized as follows:

• This work proposes a continuous phone-use monitoring

system to detect the driver’s handheld device distractions,

which enables many prompt safety measures and is a

significant addition to vehicular networks.

• We develop an active acoustic sensing method to recognize

the phone’s contact surface. Specifically, we derive the short-

time Fourier transform from the sensing sound to describe

the characteristics of the phone’s contact surface and use a

CNN-based binary classifier to distinguish handheld phone

use from various handsfree scenarios.

• We utilize inertial sensors to capture the unique phone mo-

tion dynamics associated with different phone-use scenarios

and develop an SVM-based multi-class algorithm for fine-

grained handheld phone distraction recognition.

• We design error correction schemes to process the most

recent phone-use estimation samples, which facilitates de-

tecting the start of a handheld phone-use activity and its end

in noisy in-vehicle environments.

• Extensive experiments with different phone/car models and

participants show that our system accurately recognizes the

fine-grained phone distraction scenarios and estimates their

timing information.

II. RELATED WORK

There has been a rising interest in monitoring unsafe driving

behaviors. The vehicle’s speed, acceleration, and deflection

angle can be estimated from the phone sensor data to recognize

the dangerous driving behaviors [14], [15]. To improve the

drivers’ awareness of their driving habits, Chen et al. further

classify the abnormal driving behaviors among different ve-

hicle maneuver types by using phone sensors [16]. Xu et al.
focus more on the driver’s attention and use Doppler shifts of

the phone audio signals to sense the inattentive driving events,

such as eating, drinking, and turning back [17]. But none

of these works could effectively address the handheld device

distraction, one of the leading causes of traffic accidents.

The existing research efforts to prevent handheld phone

distraction are on differentiating the phone user to be the

driver or the passenger based on its in-vehicle location. Yang

et al. propose a relative-ranging system, which sends acoustic

signals in a programmed sequence from the stereo car speakers

and captures the time differences of their arrivals at the

phone to determine whether it is closer to the driver seat or

the passenger seat [8]. Wang et al. use the phone’s inertial

sensors to measure its centripetal acceleration when the vehicle

makes turns. By comparing to a reference point, they estimate

whether the phone is on the right or left side of the car [9]. Chu

et al. release the requirement of additional infrastructure and

rely entirely on the phone sensors to differentiate the micro-

activities between the driver and the passenger, such as with

which foot to enter the car first and along which direction

to fasten the seat belt [18]. There are also infrastructure-

free methods to recognize the phone user during driving,

which localize the phone based on its motion dynamics or

camera views [19], [20]. However, these methods are far from

satisfactory to address the handheld device distraction, as they

cannot detect when the distracted driving happens to take

proper safety measures right away, which requires capturing

the interaction between the phone and the driver.

There are several solutions to capture phone-driver interac-

tions based on cameras. For example, Chuang et al. monitor

the driver’s gaze direction using the phone front camera [21].

A recent work installs multiple cameras in the car to capture

the interaction between the driver and the phone, which com-

plements the blind spots of each single camera [22]. However,

these vision-based methods are limited by light conditions

(especially at night), camera view angles, or high installation

overhead.

We propose to monitor phone-driver interactions based on

sensing the gripping hand. There have been several studies on

detecting the grips of mobile devices. For example, the phone’s

rotations, vibrations, and touch events can be measured by

inertial sensors and the touchscreen to infer the user’s phone-

use postures, such as with which hand (or both hands) to

hold the device and which finger (e.g., index finger and

left/right thumb) to operate on the screen [23], [24]. These

are motion-driven approaches. Ono et al. attach a pair of

vibration motor and receiver on the phone case to recognize

the user’s hand postures [25], and Kim et al. achieve similar

functions based on acoustic sensing [26]. Both methods use a
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Fig. 1: Illustration of acoustic signal interaction with driver’s hand.

support vector machine as the classifier. However, the above

studies all assume the phone is already in the user’s hand

and then recognize the type of phone grip. Few of them

investigate distinguishing a handheld phone from that placed

on many other surfaces such as a table, seat, and phone

mount. Furthermore, it is unknown whether they could work

in the in-vehicle environment, which suffers from complex

acoustic noises and vibration noises related to the engine, road

conditions, and the wind. More importantly, none of them is

able to demonstrate the user-phone interaction monitoring and

capture the phone-grip start, end, and duration.

III. BACKGROUND AND SYSTEM ARCHITECTURE

A. Distracted Driving Instance

This work aims to reduce the impacts of distracted driving

caused by handheld phone use. We define a distracted driving
instance as the handheld phone-use activity, which begins from

the driver’s hand reaching the phone and ends until the phone

is dropped off. This entire period is subject to the combination

of all three types of distractions (i.e., visual, manual, and

cognitive). Compared to single-distraction-type activities, such

as checking the navigation system (visual), making a handsfree

phone call (cognitive), and eating/driving (manual), handheld

phone use is the most dangerous and is prohibited by law.

Therefore, one efficient and direct way to prevent handheld

phone use by a driver is to detect when and how long the

driver holds the phone and then disable or restore the phone

services accordingly. It also facilitates sending early warnings,

notifying nearby automobiles, assisting law enforcement, and

personalizing insurance rates.

B. Sensing the Gripping Hand Acoustically

We leverage the acoustic signals that propagate on or near

the phone surface to sense the gripping hand or other objects

that come in contact with the phone. In particular, we use

the phone speaker to send ultrasonic signals for sensing

periodically. The signal traveling on the phone case would be

interfered with by the driver’s gripping hand or the support

surfaces on which the phone is placed, such as the seat

and center console. The resulted sound reaching the phone

microphone contains useful information that could describe

how differently the original signal is damped, reflected, and

refracted by the gripping hand and the support surfaces.

Figure 1 illustrates how the acoustic signal interacts with the
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Fig. 2: Acoustic response of different phone placement.

driver’s hand, where the sound recorded by the microphone

includes the damped direct-path signal, the reflected signals,

and the air-borne refracted signals (near-surface). These signal

components are mainly determined by the material, area, and

pressure of the contact surface. Because the hand’s skin,

geometry, and gripping strength are distinct from any support

surface in the car, the gripping hand can be distinguished by

acoustic sensing.

To show the feasibility, we play an ultrasonic chirp sound

using the phone’s speaker, which sweeps from 18kHz to

22kHz in 25 ms. Figure 2 shows the waveforms of the

recorded sounds when the phone is on six different support

surfaces in a car, including a hand. We observe that the

microphone-recorded sound is distinguishable in the wave-

forms among all six phone placement scenarios, which shows

the potential of differentiating the gripping hand from the

other phone placement scenarios. Moreover, while the sensing

signal sweeps along the frequency, its amplitude is reinforced

or suppressed with different scales, and at the same frequency,

the amplitude change is also unique for each support surface.

This phenomenon reflects the frequency diversity of the sound

to sense the various support surfaces, which motivates us

to use the sound with rich frequencies rather than a single

frequency to achieve robust sensing. It is noted that we use

the 2D time-frequency images shown in Figure 5 instead of

directly utilizing the captured audio data in the time domain

to differentiate between handheld and handsfree phone use

status. The reason is that our system identifies phone-use status

by sensing the smartphone’s contact surfaces’ materials, and

different materials impact the signal’s frequencies differently

and presenting distinct patterns at time-frequency domain.

C. Challenges

We also face some challenges when using acoustic signals

to sense the gripping hand. Specifically, we find that the

microphone keeps receiving sounds for a long time after the

sensing signal stops at 25ms, as shown in Figure 2. These

sounds are mainly environmental reflections, which are much

stronger in the vehicle’s confined space than indoor or outdoor

scenarios. They also heavily rely on the in-vehicle phone

locations and should not be used for analysis. One exception

is the in-pocket scenario, because the fabric of the pocket is

a good sound-absorbing material, which significantly damps
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Fi g. 3: T h e p eri o di c ultr as o ni c p uls e si g n als f or s e nsi n g.

t h e o ut w ar d s o u n ds a n d r e d u c es t h e e c h o e d b a c k s o u n ds. As a
r es ult, t h e i n- p o c k et w a v ef or m is m or e diff er e nt fr o m t h at of
t h e ot h er fi v e s c e n ari os. I n c o m p aris o n, t h e h a n d h el d s c e n ari o
is h ar d er t o b e diff er e nti at e d fr o m t h e c e nt er c o ns ol e, c u p
h ol d er, a n d p h o n e m o u nt s c e n ari os. We t h us r el y o n d e e p
l e ar ni n g t o r e c o g ni z e t h e h a n d h el d s c e n ari o.

F urt h er m or e, diff er e nt p e o pl e’s h a n ds m a y e x hi bit sli g ht
diff er e n c es w h e n h ol di n g t h e p h o n e, d u e t o t h eir i n di vi d u all y
u ni q u e h a n d s h a p es a n d gri p pi n g str e n gt hs. E v e n t h e s a m e
p ers o n m a y h ol d t h e d e vi c e sli g htl y diff er e ntl y w h e n t e xti n g,
s cr olli n g, a n d c alli n g. T h es e v ari a n c es n e e d t o b e c o nsi d er e d
a n d a d dr ess e d. F urt h er m or e, o ur a c o usti c s yst e m m ust w or k
u n d er a n ois y i n- v e hi cl e e n vir o n m e nt, w h er e t h e b a c k gr o u n d
n ois es r es ult fr o m t h e diff er e nt r o a d c o n diti o ns, dri vi n g s p e e ds,
a n d c ar a u di o s o u n ds. A d diti o n all y, t o a c c ur at el y esti m at e t h e
st art a n d e n d of a distr a ct e d dri vi n g i nst a n c e, o ur s yst e m n e e ds
t o h a n dl e t h e cl assi fi c ati o n err ors a n d t h e n ois y tr a nsi e nt st at es
w h e n t h e p h o n e is b ei n g gr a b b e d or dr o p p e d off.

D. S yst e m D esi g n

T h e g o al of o ur w or k is t o eli mi n at e t h e h a n d h el d p h o n e- us e
distr a cti o n b as e d o n d et e cti n g t h e gri p pi n g h a n d. T o a c hi e v e
t h e g o al a n d a d dr ess t h e a b o v e c h all e n g es, w e d e v el o p a
p h o n e- us e m o nit ori n g s yst e m, w hi c h s e n ds u ni q u e si g n als f or
s e nsi n g a n d us es a d e e p l e ar ni n g- b as e d al g orit h m t o r e c o g ni z e
t h e v ari o us i n- v e hi cl e p h o n e- us e st at us es. O ur s yst e m c a n
w or k wit h e xisti n g p h o n e l o c ali z ati o n m et h o ds [ 8], [ 9] t o
eff e cti v el y eli mi n at e h a n d h el d p h o n e distr a cti o n. F or e x a m pl e,
o ur s yst e m c o ul d st art aft er t h e p h o n e us er is i d e nti fi e d as t h e
dri v er. Alt er n ati v el y, o ur s yst e m c o ul d c o nti n u o usl y s e ns e t h e
p h o n e us e st at us, a n d o n c e it is i n h a n d, t h e p h o n e l o c ali z ati o n
m et h o d f urt h er c o n fir ms if t his is t h e dri v er’s h a n d.

1) S e nsi n g Si g n al D esi g n: T h e s e nsi n g si g n al is us e d t o
i nt er a ct wit h t h e o bj e ct t h at is i n c o nt a ct wit h t h e p h o n e
a n d c a pt ur e its c h ar a ct eristi cs i n t h e a c o usti c d o m ai n t o
diff er e nti at e w h et h er t h e p h o n e is i n t h e dri v er’s h a n d or o n a
s u p p ort s urf a c e of t h e v e hi cl e. B as e d o n o ur f e asi bilit y st u d y
a n d c h all e n g e a n al ysis i n S e cti o n III- B a n d III- C, w e d esi g n
t h e s e nsi n g si g n al wit h r e p etiti v e ultr as o ni c c hir ps. Fi g ur e 3( a)
a n d Fi g ur e 3( b) ill ustr at e t h e ori gi n al w a v ef or m of t h e s e nsi n g
si g n al a n d its s p e ctr o gr a m. I n p arti c ul ar, e a c h p uls e si g n al
l asts f or a s h ort p eri o d (i. e., 2 5 ms), a n d e v er y t w o p uls es ar e
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Fi g. 4: T h e ar c hit e ct ur e of o ur s yst e m.

s e p ar at e d b y a st o p p eri o d (i. e., 7 5 ms). T h e s h ort p uls es s uff er
l ess fr o m t h e e c h o s o u n ds w hi c h us u all y l ast f or m u c h l o n g er,
a n d t h e st o p ti m e r e d u c es t h e i nt erf er e n c e b et w e e n a dj a c e nt
p uls es. O nl y t h e 2 5 ms p uls e s o u n d is us e d f or a n al ysis.

M or e o v er, e a c h p uls e si g n al is d esi g n e d t o s w e e p fr o m
1 8 k H z t o 2 2 k H z t o l e v er a g e t h e ri c h fr e q u e n c y i nf or m ati o n,
w hi c h f a cilit at es c a pt uri n g m or e c h ar a ct eristi cs of t h e o bj e ct i n
c o nt a ct wit h t h e p h o n e. B esi d es, t his hi g h-fr e q u e n c y r a n g e is
n ot i m p a ct e d m u c h b y t h e i n- v e hi cl e n ois es, w hi c h ar e m ai nl y
o n l o w er fr e q u e n ci es. T h e s o u n ds i n t h es e fr e q u e n ci es ar e
als o d e m o nstr at e d t o b e h ar dl y a u di bl e a n d n ot i n v asi v e [ 2 7].
F urt h er m or e, w e a p pl y a H a m mi n g wi n d o w t o s m o ot h t h e
t w o e n ds of e a c h p uls e t o r e d u c e t h e s p e ctr al l e a k a g es a n d
t h e s p e a k er h ar d w ar e n ois es c a us e d b y t h e s u d d e n fr e q u e n c y
j u m ps at t h e st art a n d t h e e n d of e a c h p uls e. As a r es ult, t h e
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CNN-based Phone-use Status Recognition processes the pulse

sound and recognizes the phone-use status at the current

sampling point. Specifically, we derive the short-time Fourier

transform (STFT) from the pulse sound to describe the time-

frequency characteristics of the contact surface in the acoustic

domain. The 2D STFT is input to the CNN-based binary clas-

sifier to differentiate the phone-use status between handheld

and handsfree.

Based on a series of the most recent phone-use status

samples, the Handheld Phone Distraction Timing Derivation
further finds the start and end of each complete distracted

driving activity. In particular, we develop an adaptive window-

based error correction method to examine the current status

sample and correct the classification errors based on the results

of the recent samples. We further use a threshold-based method

to determine whether a distracted driving activity occurs. If

the phone-use status toggles back and forth too quickly, it

is unlikely to be from human action and is corrected. Once a

distracted driving instance is confirmed, the system would take

safety measures immediately, such as sending early warnings

to the driver and notifying nearby self-driving vehicles to take

precautions via V2V networks. If the phone is detected to

be dropped off, the phone services can be restored and the

vigilance levels of surrounding vehicles can be reduced.

After identifying a handheld phone distraction activity, the

Fine-grained Handheld Phone-use Recognition further enables

recognizing detailed handheld phone use, such as reading,

calling, scrolling, and texting. This is important to quantify

the impact of distracted driving. For example, texting is shown

to be more dangerous than calling [28]. In particular, we

extract the phone’s motion dynamics features from both the

microphone and the inertial sensor data segments. The two

domain features, after Principal Component Analysis (PCA),

are feed into an SVM-based multi-class classifier for handheld

scenario determination.

IV. METHOD DESIGN

A. Data Pre-processing

After obtaining the data from the microphone buffer and

inertial sensors (e.g., accelerator and gyroscope), we first pre-

process it for denoising, synchronization, and segmentation.

In particular, for the data from the microphone, we design a

bandpass filter with the 18kHz-to-22kHz passband to reduce

the noises outside of the sensing signal’s frequency range. For

example, the engine, road, and wind noises can be removed,

which are mainly on frequencies below 6kHz [29], and the car

audio sound impact could be reduced. After denoising, we can

focus better on the sensing signal changes caused by different

contact objects.

Next, we run a synchronization scheme to locate the pulse

signal in the microphone data precisely. Specifically, we it-

eratively shift the microphone data x̂ and compute its cross-

correlation with the original pulse signal x. The shift length

leading to the maximum cross-correlation coefficient indicates

the time delay between the two signals as expressed by

delay = argmax
m

N−m−1∑

n=0

x̂(n+m)x(n), (1)

(a) In hand (b) On center console (c) On cup holder

(d) In pocket (e) On seat (f) On phone mount

Fig. 5: Short-time Fourier transform of different phone use statuses.

where m is the number of samples to shift. After subtracting

this delay, we can find the start and end of the sensing sound by

referring to the original pulse signal. The resulted 25ms pulse

segment is used for further analysis. We further normalize the

amplitude of the pulse segment to be within the range [−1, 1].
It is important to note that the pulse signal is generated every

100ms, and the 75ms microphone audio that comes after the

pulse is mainly the echo sounds. This audio part is heavily

affected by the phone’s in-vehicle location and is discarded.
Furthermore, most phones are embedded with two micro-

phones for noise cancellation (e.g., one at the top and one

at the bottom). By using the two acoustic channels, we can

leverage the spatial diversity to capture more characteristics

of the contact object. Therefore, we use the two mics to

independently sense the contact object and integrate their

results to make a decision, which reduces the errors of each

single mic and is robust.
We apply similar denoising schemes, including a highpass

filter (3Hz), to the accelerometer and gyroscope data along

three axes. This helps filter out low-frequency noise readings

from inertial sensors caused by sudden jerks and turns while

driving. This ensures minimal impact on the accuracy of our

fine-grained handheld use recognition. And further segment

them with the microphone data segments’ timing into chunks

of the same time length (e.g., 0.1 second). These inertial sensor

segments are used with the microphone data segment together

for distinguishing different handheld phone-use scenarios.

B. Short-Time Fourier Transform
We derive the STFT from the microphone data segment

to describe the characteristics of the contact object in the

acoustic domain. STFT presents the frequency spectrum along

time, which captures how each spectral point of the signal is

interfered with by the hand or a support surface in the vehicle.

In particular, we use a sliding window with the length 480
samples to compute the Discrete-Time STFT (DT-STFT) of

the pulse signal, which results in a 2D image. The value of

each image pixel at sample m and frequency f is expressed

by Equation 2, where w(n) is a window function.

DT -STFT (m, f) =
∞∑

n=−∞
x̂(n)w(n−m)e−j2πfn (2)

Though the derived DT-STFT covers the microphone’s all

frequencies, which span from 0 to 24kHz, we crop the image
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to only focus on the pulse signal’s frequency range from

18kHz to 22kHz. Figure 5 shows the feasibility of using

the DT-STFT image of the pulse signal to differentiate six

different scenarios. We can observe that the DT-STFT images

show distinct pixel patterns among all the contact objects.

For example, the in-hand scenario presents several strong

spectral points around 19kHz, while the center console, pocket,

and seat show lower amplitudes around this frequency. When

the phone is on the center console, cup holder, pocket, and

phone mount, the received pulse signal has great amplitudes

between 20kHz and 22kHz. In comparison, the gripping hand

suppresses the pulse signal significantly on these frequencies.

The reason is that the impact on the pulse signal depends on

the contact object’s material, contact area, and pressure, which

may reinforce the signal at some frequencies but suppress it

at others. Our next step is to utilize a deep learning algorithm

to discriminate the handheld phone use from most handsfree

scenarios using the DT-STFT images.

C. CNN-based Binary Classifier

We resize all the DT-STFT images into a fixed size and

process them using a binary classifier based on Convolutional

Neural Network (CNN). CNN is widely used to analyze

images by learning their patterns. To recognize the gripping

hand based on DT-STFT images, we develop a CNN-based

binary classifier with three convolution layers and one fully

connected layer, which is a CNN structure widely used on

mobile devices [30]. The output dimensions in each layer are

tuned to reduce the processing time while ensuring accuracy.

Specifically, the dimensions of the output can be calculated as

dimensions = (m−k+2d
l + 1)× (m−k+2d

l + 1)× t (3)

where m, k, l, d and t are the input image size, the kernel

size, the step length, the number of padding applied and the

number of filters.

The detailed structure of our CNN classifier is shown in

Table I. In particular, the dimensions of the normalized input

image is 150×150. The convolutional kernel size is 3×3 and

the pooling kernel size is 2 × 2. The step length is set as 1,

the number of padding applied is set as 0, and the number

of filters is 32. The dimensions after the first convolution

operation is 148×148×32 as computed by the above equation.

Since the kernel size of the pooling layer is 2, the dimension

after the first pooling operation is 74× 74× 32. We keep the

same configuration for the rest of the convolution and pooling

layers. At the end of the model, we utilize the softmax function

to normalize the network output and obtain a probability for

each class as the decision confidence or CNN score. Since

our system’s inputs are images, and the computing resources

needed for learning of image features is a crucial factor to

consider. We thus choose the efficient and low-cost optimizer

- Adam [31] [32]. We use sparse categorical cross-entropy as

the model’s loss function since we expect class labels to be

provided as integers instead of one-hot encoding ones.

Our CNN-based algorithm performs the binary classification

to discriminate the handheld and handsfree phone uses, which

consists of two phases. During the training phase, we involve

a number of people in collecting the handheld and handsfree
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Fig. 6: The phone-use monitoring and classification error correction.

phone-use instances. Moreover, the various handheld phone-

use activities are considered to cover various scenarios when

the user holds the phone still, taps/swipes on the phone screen,

and hold the phone close to face (e.g., making phone calls). It

is important to note that these phone-use activities generate

sounds and cause the handheld status to be unstable. Our

system does not rely on these sounds to recognize handheld

phone use, because they differ significantly among people

and activities. These acoustic noises mainly reside at low

frequencies and are suppressed by our bandpass filter. Though

the phone can be used differently in the driver’s hand, our

CNN algorithm can still distinguish them from the handsfree

scenarios, as the phone is consistently in the user’s hand, which

is discernible from other contact objects. Additionally, we train

two CNN models for Mic 1 and Mic 2 of the phone, for

analyzing the contact object from two acoustic channels.

During the testing phase, the DT-STFT images of the

testing pulse sound are input to the two CNN models to

process independently. The CNN scores of the two models are

integrated to make the classification decision. This result is the

phone-use status sampled by one sensing pulse. We compare

the binary classification performance when using SVM and

CNN models. We find that using the CNN model outperforms

SVM. We use the term FLOPS to measure the operational

requirements of a network model and to indicate the comput-

ing power of hardware like GPUs, providing an estimate of a

model’s training time on such hardware. The 150 MFLOPS

is calculated using a FLOPs calculator with tf.profiler for
neural network architecture written in TensorFlow 2.2+ [33],

when the model is trained on a MacBook Pro (13-inch, 2017,

Two Thunderbolt 3 ports). The memory usage during training

usually amounts to 5MB on the CPU. Generally, there are no

TABLE I: The structure of our CNN-based binary classifier
Layer Output Shape Param #
Input: short-time Fourier transform (150, 150, 3) 0
Conv2D + RecLineU (148, 148, 32) 896
Max Pooling 2D (74, 74, 32) 0
Conv2D + RecLineU (72, 72, 32) 9248
Max Pooling 2D (36, 36, 32) 0
Conv2D + RecLineU 34, 34, 32) 9248
Max Pooling 2D (17, 17, 32) 0
Flatten (9248) 0
Dropout (9248) 0
Dense (128) 1183872
Dense 1 (60) 7740
Dense 2 (2) 122
Output: Probability in [0, 1] (1) 0
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Reading - ACC Calling - ACC Scrolling - ACC Texting - ACC

Reading - GYRO Calling - GYRO Scrolling - GYRO Texting - GYRO

Fig. 7: Motion dynamics captured by accelerometer and gyroscope
of different handheld scenarios.

specific training requirements; most commercial laptops are

capable of training our model.

D. Handheld Phone-Use Monitoring

The accurate classification obtained with each sensing pulse

is the basis for monitoring phone use and detecting distracted

driving instances. But monitoring phone use in practical in-

vehicle scenarios is more challenging. Even the classification

error of a single sample could come at a tremendous cost.

We continue to study practical phone-use monitoring and

correct sample errors to cope with the false positives and false

negatives in classification results.

Our system is designed to sample the phone-use status ten

times per second. The phone-status monitoring result is a

sequence of labels between handheld and handsfree, based on

which the system decides when the user grabs or drops off the

phone. We design an adaptive window-based error correction

filter to process the label sequence based on the flip-and-merge
rule. The adaptive window starts from the first sample of the

current instance and compares it with its adjacent next sample.

If their labels are the same, the window grows its size by

one and examines the next consecutive sample. This recursion

continues until the sample status changes. The current window

extracts a sample chunk, and its size W is recorded. Then, the

above process repeats to find the next chunk.

The flip-and-merge rule further determines each chunk to be

an error or a valid chunk with two thresholds th1, th2 (th1 <
th2), where a valid chunk represents a complete or a partial

instance. The intuition is that when a driver uses a phone, the

duration can not be too short (even for checking time). If W ≥
th2, the chunk is determined to be a valid chunk. If W < th1,

the entire chunk is considered to be misclassified because the

phone status toggles back and forth too fast, and the labels

of its all samples are flipped. This chunk after correction is

merged to its closest valid chunk. If th1 < W < th2, we need

to examine the labels of its two valid neighbor chunks, vpre
and vnext. If vpre = vnext, we consider this current chunk

to be erroneous, so it is flipped and merged with its neighbor

chunks. If vpre �= vnext, we keep the label of the current chunk

and merge it with the valid neighbor chunk that has the same

label. As a result, the handsfree and handheld instances are

obtained. Especially, the handheld instance is detected, if the

prior chunk is a handsfree instance and the current chunk size

grows larger than th2 (it is not necessary to wait to obtain

an entire chunk). The first sample of the current chunk then

(a) Audio Features (b) Inertial Sensors’ Features

Fig. 8: Illustration of using audio and inertial sensors’ features for
fine-grained handheld recognition.

captures the handheld instance start, and its end is determined

when the next chunk is confirmed to be a handsfree instance.

Empirically, we use 0.5s and 0.8s for th1 and th2.

Figure 6 illustrates the phone-use monitoring when a driver

grabs the phone for 5 seconds and then drops it off. The

top figure presents the spectrogram of this process, where

the ultrasonic pulses periodically sense the phone-use status,

and the transient state sounds (i.e., phone-grab and drop-off

actions) show the main signal powers at lower frequencies.

The bottom figure illustrates the phone-use status monitoring

results. We observe that though some samples are mistakenly

classified, they can be corrected by our adaptive window-based

filter. The resulted phone-use status sequence is close to the

ground truth curve. From this monitoring result, we can detect

the complete distracted driving instance as well as determine

its start, end, and duration.

E. Fine-grained Handheld Phone-use Recognition

After the phone is recognized to be in the driver’s hand, it is

important to further know how the phone is specifically used,

such as calling, reading, texting, and scrolling. These different

user-phone interactions present different distraction levels and

exert different impacts on the future vehicle status. For ex-

ample, texting distracts the driver much more than handheld-

phone calling and causes the driver to respond to traffic even

slower [34], [35], [36]. Knowing such detailed handheld phone

use is critical to estimate/quantify the distraction impacts and

manage the traffic accordingly.

While acoustic sensing is efficient in differentiating hand-

held status from handsfree, we find it has limited capability

to further distinguish the various handheld phone-use sce-

narios, such as reading, scrolling, and calling. Figure 8(a)

illustrates the difficulty of using acoustic sensing alone to

analyze handheld scenarios. The overlapped clusters of dif-

ferent handheld scenarios, though showing some feasibility,

are not sufficiently reliable. This is because the contacting

surface keeps moving when the user interacts with the phone,

which cause significant noises to our acoustic method. Inertial

sensors are good at capturing the phone motions caused the

user’s handheld phone-use. Figure 7 presents the unique phone

motions captured by the accelerometer and the gyroscope

when the user is reading, calling, scrolling or texting on the

phone. We observe that the inertial sensor data exhibit distinct

patterns among different handheld scenarios, demonstrating

the unique motion dynamics of the device during phone

use. Figure 8(b) further presents the effectiveness of using

inertial sensors to distinguish different handheld scenarios,
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Fig. 9: Using cross-domain features to recognize fine-grained hand-
held phone use.

which are separated in isolated clusters. Therefore, we propose

to enhance our system by incorporating inertial sensing and

developing a sensor fusion method. It is important to note

that fine-grained handheld phone-use recognition is performed

after a handheld distraction activity has been detected. We

still use the active acoustic sensing data to examine how the

gripping hand interferes with the periodically emitted pulse

signal. Differently, we use the accelerometer and gyroscope

data to passively monitor the phone’s motions resulted from

human-phone interactions. We observe that the ultrasonic

sounds emitted by the phone are not strong enough to affect the

data from inertial sensors. Therefore, we derive unique features

to describe detailed interactions between the driver and phone

across two domains and use a Support Vector Machine (SVM)

classifier for fine-grained handheld phone-use recognition.

Specifically, we derive the Mel-frequency Cepstral Coeffi-

cients (MFCC) from each microphone data segment and the

statistical features from each inertial sensor data segment.

The statistic features include Max, Min, Variance, Standard

Derivation, Range, Skewness, Kurtosis, and Quartiles. We

further use Principal Component Analysis (PCA) for feature

selection and find the key features that better capture the

unique phone motion dynamics. In particular, we recursively

eliminate one feature from the feature set and use PCA to

compute the sum of weights/coefficients/loading scores for

the remaining features. The feature sets achieving the highest

weight sums are selected, whose clustering performances are

further compared to determine the key feature set. We then

feed the key features into the SVM multi-class algorithm for

handheld phone-use recognition, and the output is each phone-

use status sample (e.g., for 1 ms).

Furthermore, we design an error correction filter to address

the mis-classified phone-use status samples. The intuition is

that the shifting between different phone uses can not be too

quick. We use the majority vote to process the phone-use status

samples in a sliding window and correct the minority samples.

We find that a window of a short time length (e.g., 1 second)

is sufficient for the error correction, given that it takes a user

1.67 second to type a word seconds [37]. Figure 9 illustrates

using three derived key features to distinguish four handheld

phone-use scenarios (before error correction). We observe that

these different handheld phone uses are separated in different

clusters. While calling is the more distinctive from other phone

uses, reading, calling and scrolling, are close to each other. The

reason is that the three phone uses are associated with the same

Handheld 
(Reading, 
Texting, 
Scrolling, 
and Calling) Center Console

Cup Holder

Phone Mount
w/o or w/ charging

Seat

Pant and Coat Pockets

Fig. 10: Eleven experimental scenarios in the vehicle.

hand-grip pose. But they can still be differentiated based on the

minute motion dynamic differences, and our error-correction

filter can further improve the fine-grained handheld phone-use

recognition performance.

V. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate our system, we develop an experimental plat-

form based on Android, which periodically sends ultrasonic

pulse signals and records the stereo sounds and inertial sensor

data simultaneously. The sensing signal is programmed to

play for 25ms, followed by a 75ms pause, and this pattern

repeats periodically. We use this platform to collect data from

four phone models, Samsung Galaxy S20, Samsung Galaxy

S8, Motorola Moto G8, and Google Pixel2, and the data is

processed offline. Samsung Galaxy S8, Motorola Moto G8,

and Google Pixel2 run Android 9.0, Samsung Galaxy S20

runs Android 12.0, and the microphone sampling rate is set to

48kHz. We also test two vehicle models, Nissan Rogue (Car

A) and Volkswagen Tiguan (Car B). We recruited eighteen

participants (6 females and 12 males, age 21∼33) for data

collection. The authors were trained to act as drivers, while

the participants sat on the passenger side. Tests were conducted

to assess hand shape and size, body fat ratio, and phone use

behaviors, including grip strength, typing, swiping behaviors,

and grip pose. As shown in Figure 10, each participant was

asked to use the phone in eleven scenarios, including four

handheld phone uses (i.e., holding the phone still or reading,

texting, scrolling, and calling) and seven handsfree scenarios

(i.e., in a coat pocket, pant pocket, cup holder, center console,

phone mount, phone charging on phone mount and seat).

For each scenario, the participant was asked to re-grab or

reposition the phone 40 times for two main reasons: 1) to

enlarge dataset, and 2) to include behavioral inconsistency,

unfixed phone orientation and phone location differences.

The overall performance is evaluated based on eighteen

participants, eleven scenarios, car A and Samsung S8. We

apply half of the data for training and the rest for testing. We

also investigate the various impact factors based on four par-

ticipants and eleven scenarios. In particular, the device model

and the car model impacts are studied. Moreover, different

in-vehicle environments where the practical in-vehicle noises

caused by the engine, road conditions, and traffic are involved.

Additionally, the impact of the car audio (e.g., radio sounds) is
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1) H a n d h el d vs. H a n dsfr e e: T h e R O C c ur v es of o ur s yst e m
t o d et e ct p h o n e distr a cti o n ar e pr es e nt e d i n Fi g ur e 1 1. We fi n d
t h e s yst e m a c hi e v es a hi g h T P R a n d l o w F P R t o disti n g uis h
h a n d h el d fr o m h a n dsfr e e . I n p arti c ul ar, w h e n i nt e gr ati n g t h e
t w o mi cr o p h o n es, o ur s yst e m a c hi e v es 9 9. 7 % T P R a n d 0. 5 %
F P R, a n d t h e E E R is 0. 3 6 %. T h e r es ults ar e v er y pr o misi n g as
t h e s yst e m c orr e ctl y diff er e nti at es t h e h a n d h el d a n d h a n dsfr e e
s c e n ari os, r e g ar dl ess of h o w t h e dri v er us es t h e p h o n e a n d
w h o h ol ds t h e p h o n e. T h e r es ults als o i n di c at e t h at o ur s yst e m
is eff e cti v e i n pr a cti c al us a g e. F urt h er m or e, w e fi n d Mi c 1
p erf or ms b ett er t h a n Mi c 2. T h e r e as o n is t h at Mi c 1 is at t h e
t o p of t h e p h o n e, f ar fr o m t h e b ott o m s p e a k er. C o m p ar e d t o
Mi c 2, w hi c h is cl os e t o t h e s p e a k er, Mi c 1 r e c ei v es s o u n ds
t h at tr a v el a cr oss t h e p h o n e c as e a n d i nt er a ct b ett er wit h t h e
c o nt a ct o bj e ct t o c a pt ur e its c h ar a ct eristi cs.

2) P h o n e- us e C o nt e xts: N e xt, w e i n v esti g at e h o w t h e s ys-
t e m disti n g uis h es el e v e n p h o n e st at us es b et w e e n h a n d h el d
a n d h a n dsfr e e . Fi g ur e 1 2 pr es e nts t h e D R i n f o ur h a n d h el d
a n d s e v e n h a n dsfr e e s c e n ari os. We o bs er v e t h at o ur s yst e m
p erf or ms w ell f or all el e v e n s c e n ari os, o bt ai ni n g a m e a n 9 9. 6 %
D R. F or e x a m pl e, c alli n g p erf or ms t h e b est a m o n g t h e f o ur
h a n d h el d s c e n ari os wit h a 1 0 0 % D R. T h e D Rs of r e a di n g,
t e xti n g, a n d s cr olli n g ar e sli g htl y l o w er, w hi c h ar e 9 9. 0 %,
9 9. 5 %, a n d 9 8. 6 1 %, r es p e cti v el y. ” T h e r e as o n is t h at h a n d
m o v e m e nts i n t h es e t hr e e s c e n ari os c a us e n ois e a n d sli g htl y
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Fi g. 1 2: Distr a cti o n d et e cti o n u n d er diff er e nt p h o n e- us e c o nt e xts.
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Fi g. 1 3: Distr a cti o n d et e cti o n p erf or m a n c e f or diff er e nt us ers.

u nst a bl e c o nt a ct b et w e e n t h e p h o n e a n d h a n d. M or e o v er,
r e a di n g a n d s cr olli n g ar e c o e xisti n g b e h a vi ors t h at ar e h ar d t o
diff er e nti at e. F or t h e s e v e n h a n dsfr e e s c e n ari os, e x c e pt f or t h e
p a nt p o c k et, w hi c h p erf or ms wit h a 9 9. 0 % D R, t h e ot h er si x
s c e n ari os a c hi e v e a 1 0 0 % D R a n d ar e r e c o g ni z e d as h a n dsfr e e.
T h es e r es ults i n di c at e t h at o ur s yst e m s u c c essf ull y d et e cts
h a n d h el d p h o n e distr a cti o ns b as e d o n t h eir c o nt a ct wit h p h o n e.

3) I n di vi d u al Diff er e n c e: We als o st u d y h o w t h e s yst e m
p erf or ms a cr oss diff er e nt us ers. Fi g ur e 1 3 pr es e nts t h e D R f or
f o ur t y p es of p h o n e us e (i. e., h a n d h el d a n d h a n dsfr e e) a cr oss
ei g ht e e n us ers. We o bs er v e t h at t h e s yst e m a c c ur at el y d et e cts
p h o n e distr a cti o ns f or all p arti ci p a nts, wit h a n a v er a g e D R of
9 9. 7 %. M or e o v er, m or e t h a n h alf of t h e us ers a c hi e v e a D R
of 1 0 0 %, wit h t h e l o w est D R b ei n g 9 8. 8 %. T h e r es ults s h o w
t h at o ur s yst e m c a n w or k f or diff er e nt us ers r e g ar dl ess of t h eir
u ni q u e h a n d g e o m etr y a n d gri p pi n g str e n gt hs.

C. I m p a ct F a ct or St u d y

1) D e vi c e M o d els: We n o w i n v esti g at e t h e i m p a cts of d e-
vi c e m o d els. O ur p arti ci p a nts w er e as k e d t o us e f o ur diff er e nt
p h o n es i n C ar A, a n d t h e a b o v e el e v e n t y p es of p h o n e st at us es
w er e c oll e ct e d. Fi g ur e 1 4 s h o ws t h e cl assi fi c ati o n a c c ur a c y
f or e a c h d e vi c e. We o bs er v e t h at all f o ur d e vi c es a c c ur at el y
disti n g uis h h a n d h el d p h o n e us e fr o m h a n dsfr e e. I n p arti c ul ar,
S a ms u n g G al a x y S 2 0 p erf or ms t h e b est wit h 9 9. 7 % a c c ur a c y.
T h e p erf or m a n c es of G o o gl e Pi x el 2, S a ms u n g G al a x y S 8,
a n d M ot or ol a G 8 ar e sli g htl y l o w er, w hi c h ar e at 9 9. 6 %,
9 8. 9 %, a n d 9 9. 0 %, r es p e cti v el y. T h e r es ults i n di c at e t h at o ur
s yst e m p erf or ms w ell wit h a r a n g e of A n dr oi d p h o n e m o d els.
C o nsi d eri n g t h e a d a pt a bilit y of A n dr oi d p h o n es t o diff er e nt
t y p es, w e b eli e v e t h at o ur s yst e m is c o m p ati bl e wit h A p pl e
p h o n es as w ell, a n d t h er ef or e o ur s yst e m c a n b e br o a dl y
d e pl o y e d o n diff er e nt d e vi c es [ 3 8].

2) C ar M o d els: Si mil arl y, t h e s h ells a n d i nt eri ors of dif-
f er e nt c ar m o d els m a y aff e ct t h e p erf or m a n c e of o ur s yst e m.
T h er ef or e, w e r e p e at t h e a b o v e e x p eri m e nts i n C ar B usi n g
S a ms u n g G al a x y S 8. Fi g ur e 1 5 s h o ws t h e p erf or m a n c e of e a c h
c ar m o d el. It c a n b e o bs er v e d t h at b ot h c ar m o d els a c hi e v e
g o o d p erf or m a n c e. I n p arti c ul ar, C ar B a c hi e v es a n a c c ur a c y
of 9 9. 6 %, w hi c h is sli g htl y hi g h er t h a n C ar A. T h e r e as o n
m a y b e t h at C ar B h as a t hi c k s h ell, w hi c h s uff ers l ess fr o m

T hi s arti cl e h a s b e e n a c c e pt e d f or p u bli c ati o n i n I E E E Tr a n s a cti o n s o n V e hi c ul ar T e c h n ol o g y. T hi s i s t h e a ut h or' s v er si o n w hi c h h a s n ot b e e n f ull y e dit e d a n d 

c o nt e nt m a y c h a n g e pri or t o fi n al p u bli c ati o n. Cit ati o n i nf or m ati o n: D OI 1 0. 1 1 0 9/ T V T. 2 0 2 4. 3 3 7 4 5 8 9

© 2 0 2 4 I E E E. P er s o n al u s e i s p er mitt e d, b ut r e p u bli c ati o n/r e di stri b uti o n r e q uir e s I E E E p er mi s si o n. S e e htt p s:// w w w.i e e e. or g/ p u bli c ati o n s/ri g ht s/i n d e x. ht ml f or m or e i nf or m ati o n.
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Fig. 14: Impact of different de-
vices for phone distraction detec-
tion.
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Fig. 15: Impact of car models for
phone distraction detection.
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Fig. 16: Impact of engine status
for phone distraction detection.
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Fig. 17: Impact of in-car music
for phone distraction detection.

wind, road, and engine noises. The results show our system is

able to detect distracted driving with different car models.

3) Vehicle Engine Status: The car engine at different sta-

tuses or speeds generates different noise levels, including

increased or decreased road and wind noises. We thus evaluate

our system under different engine statuses, including city
driving, highway driving, engine on, and engine off. We use

Car A and Samsung Galaxy S8 for this impact study. Figure

16 presents the classification results under the four different

engine statuses. Not surprisingly, engine off performs the best

with 100% accuracy, as this is a quiet in-vehicle environment.

Engine on also performs well with 99.8% accuracy. City
driving and highway driving achieve a slightly lower accuracy,

which are 98.9% and 98.8%, respectively, though they suffer

from different types of noises. In particular, city driving mostly

involves the noise from frequent accelerations and braking in

the traffic, while highway driving experiences more engine and

wind noises. However, our system is robust enough to detect

phone use distraction in both driving environments.

4) Car Audios: When driving, the drivers may turn the

radio or music on. The car audio sounds may interfere with

our sensing signal and affect the system’s performance. We,

therefore, evaluate our system with the car music on. It

is noted that car audios primarily operate in the audible

frequency range [39] [40], while our system works in the

ultrosonic frequency range. Moreover, our sounds are internal,

which are generated and recorded by the same device. As

shown by prior work [41], the smartphone’s own speaker

sounds leave much higher Signal-to-Noise Ratio (SNR) to its

microphone data compared to external sounds when they are

at the same frequency. A prior study also demonstrates the

feasibility of using ultrasonic sounds to record breath sounds

in vehicles [42]. Our experiments in a car audio environment

further confirm the limited impact of car audios on ultrasonic

signals. The experiment was done with Car A and Samsung

Galaxy S8, under the engine on status. The music sounds were

between 56∼60dB. Figure 17 compares the performances of

our system when the music is on or off. We observe that

the music sounds do have a slight impact on our system

performance. The classification accuracy degrades to 97.0%
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Fig. 18: Distraction detection for
unenrolled users (not in the train-
ing model).

(b) Unseen User Study

(a) Training Data Size Study

Fig. 19: Training data size and
unseen user study performance.
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Fig. 20: Using different fea-
ture sets to recognize fine-grained
handheld phone use.
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Fig. 21: Detailed performance of
recognizing fine-grained handheld
phone use.

when the music is on, which is still high. The result confirms

the robustness of our system to work under car audios.

D. Training Data Size Study

To balance the effort required from users in data collection

for model training with the goal of achieving good perfor-

mance, we evaluate our system with different training data

size splits. Specifically, we select five different percentages for

the training dataset split, 10%, 20%, 30%, 40%, and 50%, for

each of the eighteen participants for training, and used a fixed

50% of the dataset for testing. As illustrated in Figure 19(a),

we find that when we use more than 20% of the collected data

for training, the achieved accuracy is over 90%. Particularly,

our system achieves 92.2% accuracy when using 20% of the

collected data for training. When we use 30% and 40% of the

data for training, the accuracy increases to 94.9% and 98.9%,

respectively. Our system performs the best when 50% of the

collected data is used for training, achieving 99.6% accuracy.

This study demonstrates that our system can minimize user

effort by reducing the training data size while maintaining

good handheld phone detection accuracy.

E. Unseen Users

To investigate whether each individual user’s training data

is required, we conduct a study with participants who are not

included in the training data set or unknown to our system.

Specifically, we divide the participants into two groups, with

10 and 8, respectively. We use the 10 participants’ data to train

the handheld phone distraction detection system, while the 8
unknown participants’ data are used for testing. As illustrated

in Figure 18, our system achieves 98.6% accuracy in detecting

handheld phone distractions for unknown users, which is just

slightly lower than 99.6% achieved by the users included in

the training set. The results indicate that our system has the

potential to exempt a new user from training. The reason is that

our handheld phone distraction detection is based on detecting

the object’s surface that contacts the phone, and the differences

between the human skins are much smaller than the other in-

vehicle surfaces. Furthermore, we reduce the number of users



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 11

Fig. 22: Distraction start estima-
tion.

Fig. 23: Distraction end estima-
tion.
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Fig. 24: Distraction start estima-
tion for different study cases.
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Fig. 25: Distraction end estima-
tion for different study cases.

included in the training model from 10 to 1 and still use the

8 unknown users’ data for testing. The results are presented

in Figure 19(b). Our system gets over 90% accuracy in phone

distraction detection when we use more than 5 enrolled users

for training. Specifically, our system obtains 91.3%, 94.2%,

96.2%, 98.4% and 98.6% classification accuracy in detecting

phone distraction when we use 6, 7, 8, 9 and 10 enrolled users

for training, respectively. The results indicate that it is possible

to pre-train our system with a data set and exempt the new

users from collecting new training data.

F. Fine-grained Handheld Phone-use Recognition

We evaluate the performance of our system in recognizing

four fine-grained handheld phone use scenarios (i.e., reading,

calling, scrolling, and texting) with eighteen participants.

Figure 20 presents the classification performance when using

acoustic sensing, inertial sensing, and their fusion, respec-

tively. We find our system achieves the highest performance

with the fusion of acoustic and inertial sensing. The accuracy

is 95.9% in recognizing the different handheld phone use

scenarios. The inertial sensing plays a dominant role, which

alone achieves 91.0% accuracy. This is much higher than using

acoustic signals alone, whose accuracy is 49.0%, while the

random guest rate is 25%. We further study the recognition

performance regarding each type of handheld phone-use sce-

nario. Figure 21 shows that our system achieves a high TPR

after for all the four handheld phone uses. In particular, with

the fusion of acoustic and inertial sensors, our system achieves

96.7% TPR in reading, 98.7% TPR in calling, 93.3% TPR

in scrolling, and 95.1% TPR in texting. Moreover, when we

only use inertial sensors for recognition, the performance is

slightly lower, and the TPRs are 92.7%, 93.9%, 86.8%, and

90.5%, respectively. But if only using the acoustic signals,

the TPRs are 48.1%, 52.7%, and 48.9%, respectively. The

results confirm that only using the acoustic signals is hard

to distinguish the different handheld device use scenarios

and that the fusion of acoustic and inertial sensors enables

the fine-grained handheld device distraction recognition. More

specifically, while the acoustic sensing is used to recognize the

contract surface of the phone, the inertial sensing is able to
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Fig. 26: Fine-grained phone-use
recognition monitoring.

Fig. 27: Confusion matrix of
recognition monitoring.

recognize the phone’s motions resulted from specific handheld

phone uses.

G. Practical Phone-use Case Study

Lastly, we conducted eight case studies to monitor four

participants’ phone use. In each case, the assumed driver (front

passenger) grabs the phone from one place in the vehicle, uses

it, and then drops it at one place in the vehicle. Each case is

repeated 20 times. The eight different cases are as follows:

Case 1: Seat - reading - seat.

Case 2: Center console - reading - center console.

Case 3: Cup holder - reading - cup holder.

Case 4: Phone mount - reading - phone mount.

Case 5: Pocket - reading - pocket.

Case 6: Pocket - calling - seat.

Case 7: Phone mount - texting - phone mount.

Case 8: Center console - scrolling - cup holder.

Our system achieves a 99.6% DR to capture the distracted

driving instances with all of these cases, and the FPR is

0.6%. This performance is the combined result of distraction

detection and the status sample error correction. We then

evaluate the performance of our system to detect when the

driver grabs and drops the phone. Figure 22 and Figure 23

present the distributions of the absolute time errors to detect

the start and the end of each distraction instance. Our system

achieves a median error of 0.67 seconds to determine the

start of the distraction instance, and a median error of 0.56

seconds to determine the end time. These time errors are

mainly associated with the complex transient states when the

user grabs and drops the phone. We also find that most larger

errors (e.g., between 1s and 2s) occur when the user grabs

the phone from or drops it to a phone mount. The reason is

that fetching a phone from or putting it on the phone mount

is a less smooth process and takes a longer time compared

to the pocket, cup holder, center console, and seat. Figure 24

and Figure 25 further present the distracted instance start/end

detection for each individual study case. The results confirm

that our system can effectively capture the start and the end

of a distraction instance in different cases.

We further evaluate our system performance in detecting

the fine-grained handheld phone-use recognition in these case

studies. Figure 26 presents the performance of our system in

recognizing the fine-grained phone uses (i.e., reading, calling,

scrolling, and texting) in these more practical scenarios, where

the classification accuracy is calculated after applying a 1-

second error correction window. We observe that our system

achieves 95.7%, 96.9%, 92.9%, and 93.1% TPR in recognizing

reading, calling, scrolling, and texting, respectively. The con-

fusion matrix of recognizing the four phone uses accuracy is
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presented in Figure 27, we find our system achieves an overall

accuracy of 95.2%. The results show that our system can ef-

fectively detect each distracted driving instance and recognize

the fine-grained handheld phone-use scenarios. Besides, we

observe a relatively lower true positive rate in recognizing

scrolling and texting, compared to calling and reading. The

reason is related to the fact that in practical scenarios, a

user may not consistently text or scroll but has these phone-

use actions accompanied by reading. For example, the user

may read a message, text back, and then reads the returned

message. Or the user may scroll the web page, read the

content, and scroll the page again. The mixed texting-reading

and scrolling-reading explain why some segments during the

participants’ texting and scrolling are classified as reading.

The results motivate us to further compute the texting-reading

and scrolling-reading ratios to estimate the impact of these

fine-grained phone uses. We leave this to future work.

VI. DISCUSSION & FUTURE WORK

Our system enhances traffic safety from three perspectives.

For the driver, it can reduce handheld phone distractions by

blocking or postponing non-emergency functions when the

phone is in the driver’s hand. Additionally, it can enable semi-

autonomous driving modes to assist with traffic response and

maintaining safe distances, similar to cruise control [43]. For

surrounding vehicles, particularly self-driving cars, it alerts

their systems to potentially unsafe nearby vehicles, allow-

ing them to take precautionary measures like maintaining a

longer distance. This alert includes accounting for possibly

slower reactions from distracted drivers. For transportation

management, the system transmits data on human factors to

vehicular networks, aiding in traffic analysis and planning to

reduce accidents and traffic congestion. Our proposed system

may have some limitations. Its performance may fluctuate

under certain conditions that are not covered by this work,

such as heavy traffic, poor weather and extreme temperatures.

The system’s effectiveness also depends on the smartphone’s

hardware, especially the ultrasonic and inertial sensors’ sen-

sitivity, fidelity and range. Additionally, the variability in

user behaviors and phone handling may result in occasional

misclassifications. We will further study these in future work.

There are multiple topics we plan to explore in future

work. 1) Our system currently focuses on law enforcement,

which typically prohibits only handheld phone use. We believe

our system can be extended to include handsfree phone use

detection. For example, it could detect a phone in a phone

mount when it makes a phone call. 2) We will explore the

use of different time-frequency characteristic representation

methods, such as the Discrete Wavelet Transform (DWT) to

distinguish between handheld and handsfree phone use. 3) As

shorter signals can also be used for sensing as demonstrated

by prior work [44], we will study the balance between

performance and computational overhead incurred by using

different lengths of sensing signal. 4) We will investigate

more potential impacts in practical driving scenarios, including

frequent stops, various invasive maneuvers, and evaluate our

system under such impacts. 5) The BFGS optimizer may

enhance parameter learning rates and model performance,

offering greater precision in parameter updates than Adam

and we plan to explore this optimizer comparison in future

work. We will adopt state-of-the-art methods to perform data

augmentation and enlarge the dataset.

VII. CONCLUSION

This work proposes a learning-based phone-use monitoring

system to address handheld phone distractions by sensing the

driver’s gripping hand. First, the system actively emits periodic

ultrasonic pulse signals to continuously sense the material of

the object in contact with the phone. Then, it determines

whether the phone is being held by hand or placed on a

surface within the vehicle, such as the seat, center console,

pocket, or phone mount. After identifying a handheld phone

distraction, the system employs a combination of acoustic and

inertial sensing to recognize specific handheld phone usage

activities, such as texting or calling. We develop an error

correction window to correct misclassified phone-use status

samples and to detect the start and end of each distracted

driving activity related to handheld device use. Through com-

prehensive experiments involving various phone/car models

and participants, the system is proven effective in providing

fine-grained monitoring of driver phone use.
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