
MITIGATING DATA INJECTION ATTACKS ON FEDERATED LEARNING

Or Shalom1 , Amir Leshem2, Waheed U. Bajwa3

1shalomo7@biu.ac.il; 2amir.leshem@biu.ac.il; 3waheed.bajwa@rutgers.edu
1,2Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel

3Dept. of Electrical & Computer Engineering, Rutgers University–New Brunswick, NJ 08854 USA

ABSTRACT

Federated learning is a technique that allows multiple entities to col-
laboratively train models using their data without compromising data
privacy. However, despite its advantages, federated learning can be
susceptible to false data injection attacks. In these scenarios, a mali-
cious entity with control over specific agents in the network can ma-
nipulate the learning process, leading to a suboptimal model. Conse-
quently, addressing these data injection attacks presents a significant
research challenge in federated learning systems. In this paper, we
propose a novel approach to detect and mitigate data injection at-
tacks on federated learning systems. Our mitigation strategy is a
local scheme, performed during a single instance of training by the
coordinating node, allowing for mitigation during the convergence
of the algorithm. Whenever an agent is suspected of being an at-
tacker, its data will be ignored for a certain period; this decision
will often be re-evaluated. We prove that with probability one, af-
ter a finite time, all attackers will be ignored while the probability
of ignoring a trustful agent becomes zero, provided that there is a
majority of truthful agents. Simulations show that when the coordi-
nating node detects and isolates all the attackers, the model recovers
and converges to the truthful model.

Index Terms— Attack Detection, Data Injection Attacks, Fed-
erated Learning, Provable Security

1. INTRODUCTION

Big-data processing capabilities have increased significantly over the
past years due to the increasing volume and variety of data that is be-
ing generated and collected. Today, data has become an asset, and
processing that data is required in many, if not all, the industries
affecting our lives, such as healthcare, finance, transportation, man-
ufacturing, and many more. With the increased need for data, a new
need for the privacy and security of the data has risen [1, 2].

Federated learning is a popular approach for collaboratively
training machine learning models while preserving data privacy
[3, 4]. In this approach, instead of training a centralized model us-
ing a combined dataset as traditionally done, multiple independent
agents train local models using their private datasets, which are
assumed to be statistically independent. The agents exchange the
local model parameters (i.e., weights and biases) with a centralized
node coordinating the learning process, which in turn returns a new
model (or model updates) to all the agents (cf. Figure 1). Although
the agents benefit from the training performed on other agents’ data,
the datasets are not shared and remain private.

Even though the federated learning model preserves privacy, it
is vulnerable to various security threats, including data injection and

This work is partially supported by ISF grant 2197/22.

Coordinating Node

Agent AgentAttacker

L
oc
al
U
pd
at
es

L
oc
al
U
pd
at
es

L
oc
al
U
pd
at
es

G
lo
ba
lM

od
el

G
lo
ba
lM

od
el

G
lo
ba
lM

od
el

Fig. 1: A simple federated learning system. Each agent performs
training on its private dataset; the local updates are then transmitted
to a coordinating node, which returns a global model. Some of the
agents may be malicious, meaning they might send unreliable up-
dates to the coordinating node.

poisoning attacks [5–8], backdoor access [9, 10], gradient attacks
[11] and many more [12, 13]. In data injection attacks, malicious
participants (agents) inject false data into the training process to ma-
nipulate the global model. Detecting data injection attacks in fed-
erated learning is challenging due to the distributed nature of the
data across multiple devices. Although a coordinating node over-
sees the training process, it does not have access to the complete
dataset, limiting its ability to comprehensively monitor for these at-
tacks. This has led to the development of various techniques for de-
tecting and preventing data injection attacks, including model-based
methods [14, 15], anomaly detection techniques [16], Byzantine re-
silient methods [17–20], and federated outlier detection [21, 22].

Previous works on detecting data injection attacks in federated
learning have made notable contributions. For instance, Tolpegin et
al. [7] proposed a PCA-based detector. Based on the difference in
agents’ parameter updates, they were able to separate the parame-
ter updates into two clusters, one comprising malicious agents and
the other consisting of trustworthy agents. Yar et al. [10] suggested
a modified dual “gradient clipping defense”. Standard clipping de-
fense is a scheme specifically designed for data poisoning attacks,
in which agents that send updates with norms too high are clipped.
Yar et al. showed that in a dynamic network, a dual threshold clip-
ping defense with one smaller threshold for neighboring agents and
another larger threshold for the global model achieves better results.

In this paper, we present a novel detection method for data in-
jection attacks in federated learning. The method is performed along
the model training process and is based on evaluating the gradient
of the updates of the participating agents, comparing this gradient
to the coordinatewise median over the agents, and ignoring updates
from suspicious agents. Considering the history of detections us-
ing a majority voting among the coordinating node’s decisions, we

can overcome false alarms and missed detections. We prove conver-
gence to a truthful model with probability one, provided that data
is independent and identically distributed (i.i.d.) among agents. It
could be argued that the assumption of i.i.d. data might impose limi-
tations. However, many theoretical papers use i.i.d. data for the the-
oretical analysis (see [7, 23]. This has also been the case with signal
processing adaptive algorithms where i.i.d. data is widely assumed.
The approach taken generalizes the decentralized optimization for
M-estimators in [16] to the federated learning context. We also
demonstrate by simulations that the proposed technique can over-
come constant output and label-flipping attacks [5–13], even when
these attacks are hidden with partially truthful responses.

2. PROBLEM FORMULATION

2.1. Federated Learning

The federated learning problem involves learning a model using
agents’ private data. In this setting, each agent, using its private
data, refines its model parameters. These local updates are then
transmitted to the coordinating node, denoted as agent 0, which
synthesizes them into a global model. This process ensures that only
the model’s parameters, not the data itself, are shared among agents.

Consider a dataset D labeled with labels from a set C. Within
this framework, agents 1, . . . , N—referred to as the edge agents—
iteratively refine their model parameters during the learning phase
using this labeled dataset. The objective typically involves minimiz-
ing a function using a gradient descent approach:

min
W

F (W), where F (W) :=

N∑
k=1

pkFk(W), (1)

where N represents the number of participating agents,
∑

k pk = 1,
and Fk is the local empirical risk function for the k-th agent. Al-
though pk = 1

N
is common, varying these values can prioritize the

risk of certain agents. At each time step, after completing their learn-
ing phase, the edge agents broadcast their model parameters to the
coordinating node, which then computes and returns the averaged
model parameters to all agents.

2.2. Data Injection Attacks

The federated learning approach was previously shown to achieve
excellent results [24, 25], particularly when all collaborating agents
share the same goal. However, consider a scenario where some
agents participating in federated learning are malicious. We use the
following notation: Denote the set of attackers A ⊂ 1, . . . , N and
let na = |A|. We assume that 0 ≤ na < N/2, and nt = N − na is
the number of trustworthy agents.

In this context, since attacking agents must coordinate to achieve
a false model, we can assume, without loss of generality, a single
malicious agent, say agent a, influencing the joint model training.
Agent a’s goal is to manipulate the joint model training, thus pre-
venting it from performing successfully by transmitting false param-
eters, voiding the convergence of the model around an optimal point,
and steering it towards a false model with predetermined perfor-
mance. This agent is capable of executing various destructive attack
schemes, such as “label flipping attack”, “constant output attack”,
“randomized attack” and more (see [5–8]).

In a randomized attack, the attacker broadcasts a random set of
model parameters back to the other agents, a tactic that rapidly de-
grades the learned model’s performance. However, this type of at-
tack is relatively easy to detect, as the malicious agents’ responses

stand out significantly from those of the trustworthy ones. The con-
stant output attack aims to steer the system towards a model that
consistently classifies a single class c irrespective of the data. Lastly,
the more challenging to detect label flipping attack involves choos-
ing a specific permutation of the labels. The attacker responds as if
this permutation has been applied to the training data’s output or by
sending a model trained to recognize the permuted class values. For
example, in an attack on MNIST, this could involve using a model
that classifies class c as class (c+2) mod 10 rather than its true value
c for any given training data point.

A stronger type of attack would try to hide the previous attacks
by combining a false model and a true one. This reduces the statisti-
cal discrepancy between the malicious agents’ response and the other
agents’ response, by adding a bias to the reported model. While the
attacker’s main goal is to manipulate the joint model parameters and
prevent convergence to a steady optimal point, it also has a secondary
goal of remaining hidden and disguising the attack. In this strategy,
let Wa,r(t) represent the model parameters that the attacker, pos-
ing as a regular agent, would have updated by reliably updating the
model W (t − 1) provided by the coordinating agent with correct
data at time t, while Wa,f is a pre-trained false model, classifying
labels according to the attacker’s desired attack scheme.1

Building on this concept, the attack can be formally described
as follows: A malicious agent a responds at time t by sending

Wa(t) := g(t)Wa,r(t) + (1− g(t))Wa,f , (2)

where Wa(t) denotes the set of parameters transmitted by agent a
at time t, and g(t) is a time-varying mixing weight satisfying the
following conditions:

• For all t ≥ 0, 0 ≤ g(t) ≤ 1,
• g(0) ≡ 1, limt→∞ g(t) = 0, and
• g(t) decreases over time, i.e., g(t+ 1) ≤ g(t).

For instance, delaying the start of the attack to time Ta can be
achieved by setting g(t) = 1, 0 ≤ t ≤ Ta. While the monotonicity
of g(t) can be relaxed, it is essential for ensuring convergence to the
attacker’s desired model.

Note that this attack scheme is realistic as the attacker has no ac-
cess to other agents’ datasets and it can’t manipulate the model learn-
ing process or the parameters aggregation done by the coordinating
agent. The attacker is only capable of pre-learning a manipulated
model and it doesn’t rely on a specific neural network configuration,
optimization function, or loss function.

3. ATTACKER DETECTION AND AVOIDANCE

In our proposed method, the coordinating agent compares the up-
dates received from edge agents over time. The private datasets are
assumed to be identically distributed and therefore if an agent is ma-
licious and its model parameters update differently, it will stand out
and be considered malicious.

To localize the attacker, we propose a low-complexity metric,
computed over time by the coordinating agent once every ∆T up-
dates. When the coordinating agent suspects an edge agent to be an
attacker, it ignores its parameter updates for the next ∆T updates.
Let Ik = [(k− 1)∆T + 1, k∆T]. Define the two hypotheses tested
over the interval Ik:

H0
j,k – agent j is trustworthy.

H1
j,k – agent j is malicious.

1For simplicity of notation we assume Wa,f is time independent, but it
can also be dependent.

The proposed detection metric for a given interval Ik, computed
over time for agent j’s model parameters, is given by

∆Uj,k :=
1

∆T

∑
t∈Ik

Uj(t)
H0

j

≶
H1

j

δu
√
N, (3)

where

Uj(t) := ∥∆Wj(t)−median{∆Wℓ(t) : ℓ ∈ {1, . . . , N}\{j}}∥∞.
(4)

Here, the median is a coordinatewise operation, ∆Wj(t) :=
Wj(t) − Wj(t − 1), and δu is a predefined threshold. The fol-
lowing lemma characterizes the probability of accurately identifying
malicious agents using the metric ∆Uj under certain assumptions.

Lemma 1 When attacker(s) are present in the network, the proba-
bility of False-Alarm and the probability of attacker Detection can
be bounded as

PFA(k) = P
(
∆Uj,k > δu

√
N |H0

j

)
≤

≤ 2 exp

(
− δ2uN

2ra(t∗k)

)
−−−−→
k→∞

0,
(5a)

PD(k) = P
(
∆Uj,k > δu

√
N |H1

j

)
≥

≥ 1− exp

(
−
max{0,−δu

√
N + [µr(t

†
k)]s∗}

2

2[rr(t
†
k) + ra(t

†
k)]

)
−−−−→
k→∞

1,

(5b)

where the time indexes t∗k = argmaxt∈Ik
∥∆Wj(t)−∆Wl(t)∥∞,

t† = argmint∈Ik
∥∆Wj(t) − ∆Wl(t)∥∞ are time indexes with

the highest/lowest difference between the parameters-updates in in-
terval Ik respectively, s∗ = argmaxs |[∆Wj(t

†)−∆Wl(t
†)]s| and

µr, rr, ra are sub-Gaussian parameters defined in the proof of the
Lemma.

Proof (Lemma 1) As previously stated, the attackers’ broadcast a
pre-chosen model together with a random noise imitating the trsut-
worthy agents’ parameters convergence rate i.e. Wf (t) is a sub-
Gaussian random variable with mean Wf and parameter rr(t).
This allows us to define ∆Wf (t) = Wf (t) − Wf (t − 1) as a zero
mean sub-Gaussian random variable with parameter 2rr(t).

The trustworthy agents on the other hand are updating accord-
ing to a gradient descent algorithm with a learning factor α, i.e.

Wr(t+ 1) = Wj(t)− α∇F (Wj(t)). (6)

Without loss of generality, we assume that the trustworthy agents are
trying to converge to an optimal model with parameters Wr , wether
there are attackers present in the network or not.

Define the trustworthy agents’ model parameters update (where
there are na attackers present in the network) as

∆Wr(t+ 1) =
na

N
[Wf (t)−Wr(t)]− α∇F (Wj(t)). (7)

From this definition, we see that the trustworthy agents’ parameters
update can be described as a sub-Gaussian random variable with
mean µr(t) and some parameter ra(t), where

µr(t) =
na

N
[Wf −Wr]− αE[∇F (Wj(t))] ̸= 0. (8)

Define the probability of False-Alarm at the Ik interval as the
probability for a trustworthy agent to be marked as an attacker,

PFA(k) = P
(
∆Uj,k > δu

√
N |H0

j

)
. (9)

Assuming that the majority of agents are trustworthy, the median
of the parameters-update ∆Wl, depicting the parameters-update
median given in Equation (4) is distributed similarily to a trustwor-
thy agent parameters-updates. This assumption allows us to bound
the probability of False-Alarm as

PFA(k) = P
(
∆Uj,k > δu

√
N |H0

j

)
=

= P

 1

∆T

∑
t∈Ik

∥∆Wj(t)−∆Wl(t)∥∞ > δu
√
N
∣∣∣H0

j

 ≤

≤ P
(
∥∆Wj(t

∗
k)−∆Wl(t

∗
k)∥∞ > δu

√
N |H0

j

)
≤

≤ 2 exp

(
− δ2uN

2ra(t∗k)

)
−−−−→
k→∞

0,

(10)

where t∗k = argmaxt∈Ik
∥∆Wj(t) − ∆Wl(t)∥∞ is a time

index with the highest difference between the parameters-updates
in interval Ik, the last transition is using Hoeffding’s bound to
bound the probability as [∆Wj(t

∗
k)−∆Wl(t

∗
k)] is a zero-mean

sub-Gaussian random variable with parameter 2ra(t
∗
k). Note that

as we eliminate the attackers, the trustworthy agents converges to
the optimal parameter and ra(t) −−−→

t→∞
0.

Similarily for the probability of False-Alarm, we define the prob-
ability of Detection at the Ik interval as the probability to detect an
attacker,

PD(k) = P
(
∆Uj,k > δu

√
N |H1

j

)
. (11)

In order to bound the probability of Detection, we look at the
probability of Miss-Detection,

PMD(k) = 1− PD(k) = P
(
∆Uj,k < δu

√
N |H1

j

)
. (12)

Under the previous assumption, for a trustworthy agent ∆Wl

we get

PMD(k) = P
(
∆Uj,k < δu

√
N |H1

j

)
=

= P

 1

∆T

∑
t∈Ik

∥∆Wj(t)−∆Wl(t)∥∞ < δu
√
N
∣∣∣H1

j

 ≤

≤ P
(∥∥∥∆Wj(t

†
k)−∆Wl(t

†
k)
∥∥∥
∞

< δu
√
N |H1

j

)
,

(13)

where t† = argmint∈Ik
∥∆Wj(t) − ∆Wl(t)∥∞ is a time index

with the lowest difference between the parameters-updates in inter-
val Ik. We mark as ρ = |[∆Wj(t

†) − ∆Wl(t
†)]s∗ | where s∗ =

argmaxs |[∆Wj(t
†) −∆Wl(t

†)]s|. Those definitions allows us to
bound Equation (13) using Chernoff’s bound as

PMD(k) ≤ P(|ρ| < δu
√
N) ≤

≤ P(ρ− µρ > −δu
√
N + |µρ|) ≤

≤ E[exp(s(ρ− µρ))]

exp(s(−δu
√
N + |µρ|))

.

(14)

From the definition of ρ we see that it is a sub-Gaussian ran-
dom variable with mean µρ = −[µr(t

†
k)]s∗ and parameter rρ =

rr(t
†
k) + ra(t

†
k), hence we get

E[exp(s(ρ− µρ))] ≤ exp
(
s2[rr(t

†
k) + ra(t

†
k)]/2

)
, (15)

which leads us to

PMD(k) ≤
exp

(
s2[rr(t

†
k) + ra(t

†
k)]/2

)
exp(s(−δu

√
N + |µρ|))

. (16)

Finding the maximal point at s′ = −δu
√
N+|µρ|

rr(t
†
k
)+ra(t

†
k
)
, s′ > 0, gives

PMD(k) ≤ exp

(
−
max{0,−δu

√
N + [µr(t

†
k)]s∗}

2

2[rr(t
†
k) + ra(t

†
k)]

)
, (17)

which result in a probability of Detection converging to 1 as k
grows

PD(k) ≥ 1−exp

(
−
max{0,−δu

√
N + [µr(t

†
k)]s∗}

2

2[rr(t
†
k) + ra(t

†
k)]

)
−−−−→
k→∞

1.

(18)

Lemma 2 Assume that the majority of agents are trustworthy.
Furthermore, assume that data is sub-Gaussian and i.i.d. be-
tween agents and classes. There are values δu and ∆T for which
PFA(Ik) < 1

2
< PD(Ik) when detection is based on consecutive

∆T model updates, where PFA denotes the probability of a false
alarm and PD denotes the probability of detection.

The proposed detector facilitates continuous operation, unaffected
by the convergence time of the joint model, drawing on the insights
from the lemma. Let dk denote the outcome of applying (3) on in-
terval Ik. This results in a sequence of decisions d1, d2, . . ., where
di = 1 if the examined agent crosses the threshold, and di = 0 oth-
erwise. At the conclusion of K∆T updates, the coordinating agent
assesses each edge agent’s behavior. If an edge agent’s average de-
cision score over these K intervals, calculated as

1

K

K∑
k=1

dk, (19)

exceeds 1/2, the agent’s input is excluded for the next segment
IK+1. Nonetheless, the coordinating agent continues to compute
the statistics (3) during this period. Furthermore, if

1

K

K∑
k=1

dk <
1

2
, (20)

the agent is added back to the list of trustworthy agents. The validity
of this approach is encapsulated in the following lemma:

Lemma 3 Assume we set δu, ∆T such that for each k, PFA(Ik) <
1/2 < PD(Ik). Then, with probability 1, there exists a sufficiently
large k0 such that the presented scheme (cf. (3)–(20)) ignores all the
malicious agents after time k0∆T , while ensuring that updates from
all trustworthy agents are incorporated beyond this time.

The proof of Lemma 3 is based on a sequence of decisions
where for each interval Ik of length ∆T the detector is applied to
obtain a decision dk. Then a majority among all prior decisions is
used to decide whether to disconnect the agent. By the assumption
PFA(Ik) < 1

2
< PD(Ik) and the Borel Cantelli lemma the proof

follows.

Proof (Lemma 3) Let d1, d2, ... be a sequence of decisions regard-
ing a specific agent, using the detector in (3) based on intervals
of length ∆T where ∆T is selected such that PFA(Ik) < 1

2
<

PD(Ik).
Let DK =

∑K
k=1 dk. We block an agent whenever Dk > K

2
.

Note that by the selection of ∆T and the fact that the intervals are
mutually disjoint, we have that for all K P (DK < K/2) ≤ P (X <
K/2), where X is a binomial random variable with K trials and
probability p < 1

2
if the agent is malicious. Similarly, if the agent is

trustworthy there is such a binomial random variable Y with p < 1
2

such that P (DK > K/2) ≤ P (Y > K/2).
Using Chernoff’s inequality for X,Y , we can bound from be-

low the probability that a trustworthy agent was blocked from the
network, and the probability that an attacker remained inside the
network during the interval Ik.

Since X ∼ B(K, p),

Pr(X = k) =

(
K

k

)
pkqK−k, q = 1− p, (21)

Using Chernoff’s inequality we obtain the following:

Pr(X < K/2) ≤ [4p(1− p)]K/2 (22)

Pr(Y > K/2) ≤ [4p(1− p)]K/2 (23)

Note that for p ̸= 1/2, this probability is smaller then 1 and de-
creases exponentially with K.

Let AK be the event

AK =

{
1

K

K∑
k=1

dk >
1

2

∣∣∣the agent is trustworthy

}
. (24)

By (23)
∑∞

K=1 Pr(AK) < ∞. Hence by the Borel-Cantelli Lemma,
the probability that only finitely many AK occur has probability 1,
i.e,

Pr

(
lim sup
K→∞

AK

)
= 0. (25)

This implies that each trustworthy agent is removed only finitely
many times. A similar argument yields that with probability 1, each
malicious agent is included in the computation only finitely many
times

BK =

{
1

K

K∑
k=1

dk <
1

2

∣∣∣the agent is malicious

}
. (26)

Since we have a finite network we get that the result holds for all the
agents. The total number of errors is finite with probability 1. This
proves the lemma.

4. NUMERICAL SIMULATIONS

In this section, we evaluate the effectiveness of our detection algo-
rithm through simulated attacks on federated learning systems, uti-
lizing the MNIST dataset, a cropped version of the ’LISA Traffic

Light’ dataset [26–28] and the MIT-BIH Arrhythmia dataset for this
purpose. The MNIST dataset comprises images of handwritten dig-
its 0, . . . , 9, with the objective being to accurately classify each digit.
The MNIST dataset includes 60, 000 pictures used for training and
10, 000 pictures used for model validation. The LISA dataset was
collected in San Diego, CA, USA. It provides 17 daytime and 7
nighttime recordings. We are using a cropped version of this dataset,
where an image of each traffic light was extracted from the video
and labeled. There are in total 36, 534 traffic light pictures, with the
following labels: ’go’, ’stop’, ’warning’, ’stopLeft’, ’goLeft’, ’go-
Forward’, and ’warningLeft’. The dataset is divided into a training
set of 32, 797 images and a validation set of 3, 737 images. As the
most common labels in the dataset were ’go’, ’stop’ and ’warning’
(comprising almost 90% of the dataset), we have reduced the num-
ber of labels from 7 to 3, marking ’goLeft’ and ’goForward’ as ’go’,
’stopLeft’ as ’stop’, and ’warningLeft’ as ’warning’. Examples of the
cropped traffic lights pictures can be seen in Figure 2. The MIT-BIH
Arrhythmia dataset [29, 30] is a sample set of ECG strips, derived
from over 4000 long-term Holter recordings (48 subjects aged 23 to
89) that were obtained by the Beth Israel Hospital Arrhythmia Lab-
oratory between 1975 and 1979. The MIT-BIH includes 17 labels
including ’Supraventricular tachyarrhythmia’ (SVTA), ’Idioventric-
ular rhythm’ (IVT), and many more. An example taken from the
MIT-BIH dataset can be seen in Figure 3.

To gauge performance, we focus on the classification error of
the learned model as our primary metric of interest. Consequently,
we evaluate the algorithm’s efficacy based on the average error rate
of the learned model, rather than quantifying detection probabilities
for individual agents.

In each example, we performed 100 random cross-validation
experiments. In the MNIST examples, each experiment involved
60,000 images to train the agents and 10,000 images for testing their
performance, where each agent received a random set of 60, 000/N
different images for training. In the LISA Traffic Light dataset ex-
amples, each experiment involved 32,797 images to train the agents
and 3,737 images for testing their performance, where each agent
received a random set of 32, 797/N different images for training.
In the ’MIT-BIH’ dataset examples, each experiment involved 800
records to train the agents and 200 records for testing their perfor-
mance, where each agent received a random set of 800/N different
records for training.

The division of training data between agents ensures that each
agent’s data is distinct from the data of the other agents in the train-
ing phase. In the MNIST example, the dataset is divided between
the agents in a non-iid manner (with overlap) such that no agent
receives images of all the available digits. In the MIT-BIH ECG
dataset, the dataset is also divided in a non-iid manner where each
agent received data from different patients. Note that although the
data was collected from different patients the labels (classification)
are overlapping as different patients had the same classification re-
sult.

In the MNIST dataset example, the number of participating
trustworthy agents included N = 3, 5, 10 with an additional agent
participating as an attacker. In the LISA Traffic Light and the MIT-
BIH datasets examples, the number of participating agents is N = 5,
with one designated as an attacker. The attacker’s mixing weight
was g(t) = 1/

√
t+ 1 and the integration time was ∆T = 5.

For the MNIST and LISA Traffic Light datasets examples we
implemented a 7-layer convolutional neural network (CNN):

(a) An example of a ’go’ traffic light taken from the video.

(b) An example of a ’stop’ traffic light taken from the video.

(c) Examples of cropped traffic lights taken from the dataset.

Fig. 2: Examples of traffic lights taken from the LISA Traffic Lights
dataset video and the cropped dataset [26].

Fig. 3: Example (10s) of annotations in MIT-BIH database [29].

Layer Size Input Output
Conv+ReLU Cx32x3x1 Cx28x28 32x26x26
Conv+ReLU 32x64x3x1 32x26x26 64x24x24
MaxPool2D 2x2 64x24x24 64x12x12

Dropout + Flatten p = 0.25 64x12x12 1x9216
FC + ReLU 9216x128 1x9216 1x128

Dropout p = 0.5 1x128 1x128
FC 128x10 1x128 1x10

where a ‘Conv’ layer size is (CHin, CHout, kernel, stride), and
C is the amount of color channels in each dataset, C = 1 for the
MNIST dataset and C = 3 for the LISA Traffic Light dataset.

For the MIT-BIH dataset example, we are using a 17-layer CNN
suggested in [31]:

Layer Size Input Output
Conv+ReLU 1x8x16x2 (Pad 7) 1x3600x1 8x1800x1
MaxPool1D 8 (Stride 4) 8x1800x1 8x449x1
Conv+ReLU 8x12x12x2 (Pad 5) 8x449x1 12x224x1
MaxPool1D 4 (Stride 2) 12x224x1 12x111x1
Conv+ReLU 12x32x9x1 (Pad 4) 12x111x1 32x111x1
MaxPool1D 5 (Stride 2) 32x111x1 32x54x1
Conv+ReLU 32x64x7x1 (Pad 3) 32x54x1 64x54x1
MaxPool1D 4 (Stride 2) 64x54x1 64x26x1
Conv+ReLU 64x64x5x1 (Pad 2) 64x26x1 64x26x1
MaxPool1D 2 (Stride 2) 64x26x1 64x13x1
Conv+ReLU 64x64x3x1 (Pad 1) 64x13x1 64x13x1
MaxPool1D 2 (Stride 2) 64x13x1 64x6x1
Conv+ReLU 64x72x3x1 (Pad 1) 64x6x1 72x6x1
MaxPool1D 2 (Stride 2) 72x6x1 72x3x1

Flatten 72x3 72x3x1 1x216
FC + ReLU 216x64 1x216 1x64

Dropout p = 0.1 1x64 1x64
FC 64x17 1x64 1x17

4.1. Example I—MNIST Non-IID Constant-Output Attack

In this example, the agents are attempting to learn a classifier for
the MNIST dataset, while the attacker (w.l.o.g marked as agent 0) is
aiming to inject a model that consistently outputs the digit 9. In this
example we have 5 trustworthy agents in the network, the dataset is
divided between the agents in a non-iid manner (with overlap) such
that each agent 1, 2, 3, 4, 5 receives pictures of the following digits
respectively {0− 3}, {2− 5}, {4− 7}, {6− 9}, {8, 9, 0, 1}.

Figure 4 displays the accumulated statistics over 100 experi-
ments, including the 10% and 90% confidence bounds. Figure 4(a)
shows the statistics of 100 trustworthy experiments with no attack-
ers present in the network, and Figure 4(b) illustrates the statistics of
100 experiments of an attacked network with detection.

Figure 5 depicts the mitigation scheme ROC for different num-
bers of trustworthy agents, N = 3, 5, 10, in the network. We can see
that the higher portion the attacker holds in the network, it becomes
harder to detect it.

(a) Trustworthy network with no attackers (100 Experiments).

(b) Network Resilience With Detection (100 Experiments).

Fig. 4: Comparative Analysis of Constant-Output Attack on the
Non-IID MNIST dataset: Showcasing 100 experiments on a N = 5
agent network, this figure highlights the model’s classification with-
out attackers present (a) and with the detection scheme where attack-
ers are present (b). Included are 10% and 90% confidence bounds,
underscoring the attack’s effect and the detection’s efficacy.

4.2. Example II—Traffic Lights-Constant-Output Attack

In this example, the agents are attempting to learn a classifier for the
cropped LISA dataset, while the attacker is aiming to inject a model
that consistently outputs a ’stop’. Figure 6 displays the accumulated
statistics over 100 experiments, including the 10% and 90% confi-
dence bounds. Figure 6(a) shows the statistics of 100 experiments of
an attacked network without detection, and Figure 6(b) illustrates the
statistics of 100 experiments of an attacked network with detection.

Figure 9 depicts an illustration of the Confusion-Matrix without
the detection scheme (a) and with the detection scheme (b). It is
very clear that the Constant-Output attack is very powerful yet the
mitigation scheme is able to detect it.

Fig. 5: ROCs temporal difference detection performance of the at-
tacker applying Constant-Output Attack on the Non-IID MNIST
dataset, for different network sizes, varying between N = 3, 5, 10.

(a) Attack Impact Without Detection (100 Experiments).

(b) Network Resilience With Detection (100 Experiments).

Fig. 6: Comparative Analysis of Constant-Output Attack on the
Traffic-Lights dataset: Showcasing 100 experiments on a N = 5
agent network, this figure highlights the model’s classification er-
ror with and without the detection scheme [(a) and (b)]. Included
are 10% and 90% confidence bounds, underscoring the attack’s ef-
fect and the detection’s efficacy. Note that approximately 58% of
the Traffic-Lights dataset consists of ’stop’ picture, i.e. a successfull
Constant ’stop’ attack will result in ∼ 42% error rate.

(a) Attack Impact Without Detection.

(b) Network Resilience With Detection.

Fig. 7: Confusion Matrix for the Constant-Output Attack on the
Traffic-Lights dataset on a N = 5 agent network. This figure ex-
amples the model’s classification performance with and without the
detection scheme [(a) and (b)].

(a) Classification Error Without Detection (100 Experiments).

(b) Label-Flip Success Rate Without Detection (100 Experiments).

(c) Classification Error with Detection (100 Experiments).

Fig. 8: Evaluating Label-Flipping Attack Impact on the Traffic-
Lights dataset: Plots (a) and (b) present the outcomes of 100 ex-
periments without detection, showing classification error and label-
flip success rate, respectively. (c) Classification error with detection
implemented, offering a comparative perspective. All plots include
10% and 90% confidence bounds.

(a) Attack Impact Without Detection.

(b) Network Resilience With Detection.

Fig. 9: Confusion Matrix for the Label-Flip Attack (Flip ’go’ to
’stop’) on the Traffic-Lights dataset on a N = 5 agent network.
This figure shows the model’s classification performance with and
without the detection scheme [(a) and (b)].

4.3. Example III—Traffic Lights-Label-Flipping Attack

In this example, the agents are attempting to learn a classifier for
the cropped LISA dataset, while the attacker aims to inject a model
that flips the ’go’ label to ’stop’. Consider a label-flipping function
h(c) : C → C̃, where C is the set of possible labels and C̃ ⊆ C. For
any sample di with label ci, the attacker’s model will return h(ci)
instead. The label-flipping function used in this example is described
in the following table:

ci ’go’ ’stop’ ’warning’
h(ci) ’stop’ ’stop’ ’warning’

Note that multiple label flipping is also supported.
Figure 8 presents the acquired statistics over 100 experiments,

complete with the 10% and 90% confidence bounds. Figure 8(a) dis-
plays the average classification error from 100 experiments of an at-
tacked network without detection. Figure 8(b) illustrates the average
number of successful label-flippings according to the label-flipping
function h(ci), and Figure 8(c) depicts the average classification er-
ror from 100 experiments of an attacked network with detection.

Figure 9 depicts an illustration of the Confusion-Matrix without
the detection scheme (a) and with the detection scheme (b). It is
very clear that only the ’go’ label is affected as stated by the attack
description, fully classified as ’stop’ without the detection scheme
applied and truthfully classified as ’go’ with the detection scheme.
Note that the ’warning’ label isn’t affected by that targeted attack at
all.

4.4. Example IV—ECG Non-IID Constant-Output Attack

In this example, the agents are attempting to learn a classifier for the
ECG MIT-BIH dataset, while the attacker (w.l.o.g marked as agent
0) is aiming to inject a model that consistently outputs ’Supraventric-
ular tachyarrhythmia’ (SVTA). In this example we have 4 trustwor-
thy agents in the network, the dataset is divided between the agents
in a non-iid manner such that each agent 1, 2, 3, 4 receives records
from 12 different subjects, with no overlap. Note that each record is
individually labeled thus each agent may be exposed to all 17 labels.

Figure 10 displays the accumulated statistics over 100 experi-
ments, including the 10% and 90% confidence bounds. Figure 10(a)
shows the statistics of 100 experiments of an attacked network with-
out detection, and Figure 10(b) illustrates the statistics of 100 experi-
ments of an attacked network with detection. Figure 10(c) illustrates
the statistics of 100 experiments of a trustworthy network with no
attack, offering a comparative perspective. We can see that the mit-
igation scheme detects the attack long before it becomes effective,
allowing the network to maintain convergence as if it was not at-
tacked at all.

5. CONCLUSIONS

In this paper, we have presented a robust federated learning algo-
rithm that can operate in the presence of data injection attacks. We
have provided conditions for the identification of malicious agents.
We have also demonstrated the performance of the proposed tech-
nique on various attacks. Detailed proofs of the lemmas as well

as bounds on the attacker detection probability and the false-alarm
probability are to be presented in an extended version of this work.

(a) Classification Error Without Detection (100 Experiments).

(b) Classification Error with Detection (100 Experiments).

(c) Classification Error Without Attack (100 Experiments).

Fig. 10: Evaluating Constant-Output Attack Impact on the ECG
MIT-BIH dataset: Plots (a) and (b) present the outcomes of 100 ex-
periments with (a) and without (b) detection on an attacked network,
showing classification error. Plot (c) demonstrates the performance
of the network without attack, offering a comparative perspective.
All plots include 10% and 90% confidence bounds.

6. APPENDIX

6.1. Appendix A.

This appendix states the available labels in the MIT-BIH database
[30]. The labels are 1,2,3,4,5,6,7,8,9,... [OS: TODO]

7. REFERENCES

[1] W Nicholson Price and I Glenn Cohen, “Privacy in the age of
medical big data,” Nature Medicine, vol. 25, no. 1, pp. 37–43,
2019.

[2] Priyank Jain, Manasi Gyanchandani, and Nilay Khare, “Big
data privacy: a technological perspective and review,” Journal
of Big Data, vol. 3, pp. 1–25, 2016.

[3] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan
Gao, “A survey on federated learning,” Knowledge-Based Sys-
tems, vol. 216, pp. 106775, 2021.

[4] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith, “Federated learning: Challenges, methods, and future
directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50–60, 2020.

[5] Yang Li, Xinhao Wei, Yuanzheng Li, Zhaoyang Dong, and
Mohammad Shahidehpour, “Detection of false data injection
attacks in smart grid: A secure federated deep learning ap-
proach,” IEEE Transactions on Smart Grid, vol. 13, no. 6,
pp. 4862–4872, 2022.

[6] Liang Zhao, Jiaming Li, Qi Li, and Fangyu Li, “A federated
learning framework for detecting false data injection attacks in
solar farms,” IEEE Transactions on Power Electronics, vol. 37,
no. 3, pp. 2496–2501, 2021.

[7] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling
Liu, “Data poisoning attacks against federated learning sys-
tems,” in Computer Security–ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, ESORICS
2020, Guildford, UK, September 14–18, 2020, Proceedings,
Part I 25. Springer, 2020, pp. 480–501.

[8] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong,
“Local model poisoning attacks to {Byzantine-Robust} feder-
ated learning,” in 29th USENIX security symposium (USENIX
Security 20), 2020, pp. 1605–1622.

[9] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Es-
trin, and Vitaly Shmatikov, “How to backdoor federated learn-
ing,” in International conference on artificial intelligence and
statistics. PMLR, 2020, pp. 2938–2948.

[10] Gokberk Yar, Cristina Nita-Rotaru, and Alina Oprea, “Back-
door attacks in peer-to-peer federated learning,” arXiv preprint
arXiv:2301.09732, 2023.

[11] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller, “Inverting gradients-how easy is it to break
privacy in federated learning?,” Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 16937–16947, 2020.

[12] Lingjuan Lyu, Han Yu, and Qiang Yang, “Threats to federated
learning: A survey,” arXiv preprint arXiv:2003.02133, 2020.

[13] Priyanka Mary Mammen, “Federated learning: Opportunities
and challenges,” arXiv preprint arXiv:2101.05428, 2021.

[14] Sissi Xiaoxiao Wu, Hoi-To Wai, Anna Scaglione, Angelia
Nedić, and Amir Leshem, “Data injection attack on decen-
tralized optimization,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 3644–3648.

[15] Nikhil Ravi and Anna Scaglione, “Detection and isolation of
adversaries in decentralized optimization for non-strongly con-
vex objectives,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 381–
386, 2019.

[16] Or Shalom, Amir Leshem, and Anna Scaglione, “Localization
of data injection attacks on distributed m-estimation,” IEEE
Transactions on Signal and Information Processing over Net-
works, vol. 8, pp. 655–669, 2022.

[17] Jian Xu and Shao-Lun Huang, “Byzantine-resilient decentral-
ized collaborative learning,” in ICASSP 2022-2022 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2022, pp. 5253–5257.

[18] Jinhyun So, Başak Güler, and A Salman Avestimehr,
“Byzantine-resilient secure federated learning,” IEEE Jour-
nal on Selected Areas in Communications, vol. 39, no. 7, pp.
2168–2181, 2020.

[19] Cheng Fang, Zhixiong Yang, and Waheed U. Bajwa,
“BRIDGE: Byzantine-resilient decentralized gradient de-
scent,” IEEE Trans. Signal Inf. Process. Netw., vol. 8, pp. 610–
626, July 2022.

[20] Zhixiong Yang and Waheed U Bajwa, “ByRDiE: Byzantine-
resilient distributed coordinate descent for decentralized learn-
ing,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 5, no. 4, pp. 611–627, 2019.

[21] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ram-
chandran, “Robust federated learning in a heterogeneous envi-
ronment,” arXiv preprint arXiv:1906.06629, 2019.

[22] Nuria Rodrı́guez-Barroso, Eugenio Martı́nez-Cámara, M Vic-
toria Luzón, and Francisco Herrera, “Backdoor attacks-
resilient aggregation based on robust filtering of outliers in
federated learning for image classification,” Knowledge-Based
Systems, vol. 245, pp. 108588, 2022.

[23] Idan Achituve, Wenbo Wang, Ethan Fetaya, and Amir Leshem,
“Communication efficient distributed learning over wireless
channels,” arXiv preprint arXiv:2209.01682, 2022.

[24] Farzin Haddadpour and Mehrdad Mahdavi, “On the conver-
gence of local descent methods in federated learning,” arXiv
preprint arXiv:1910.14425, 2019.

[25] Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour,
Christopher G Brinton, Mung Chiang, and H Vincent Poor,
“Fast-convergent federated learning,” IEEE Journal on Se-
lected Areas in Communications, vol. 39, no. 1, pp. 201–218,
2020.

[26] ITHB, “Lisa traffic light detection dataset,” https:
//universe.roboflow.com/ithb-5ka4m/
lisa-traffic-light-detection-8vuch,
Roboflow Universe.

[27] Mark Philip Philipsen, Morten Bornø Jensen, Andreas
Møgelmose, Thomas B Moeslund, and Mohan M Trivedi,
“Traffic light detection: A learning algorithm and evaluations
on challenging dataset,” in intelligent transportation systems
(ITSC), 2015 IEEE 18th international conference on. IEEE,
2015, pp. 2341–2345.

[28] Morten Bornø Jensen, Mark Philip Philipsen, Andreas
Møgelmose, Thomas Baltzer Moeslund, and Mohan Manubhai
Trivedi, “Vision for looking at traffic lights: Issues, survey, and
perspectives,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 7, pp. 1800–1815, 2016.

 https://universe.roboflow.com/ithb-5ka4m/lisa-traffic-light-detection-8vuch
 https://universe.roboflow.com/ithb-5ka4m/lisa-traffic-light-detection-8vuch
 https://universe.roboflow.com/ithb-5ka4m/lisa-traffic-light-detection-8vuch

[29] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M
Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mi-
etus, George B Moody, Chung-Kang Peng, and H Eugene Stan-
ley, “Physiobank, physiotoolkit, and physionet: components of
a new research resource for complex physiologic signals,” cir-
culation, vol. 101, no. 23, pp. e215–e220, 2000.

[30] George B Moody and Roger G Mark, “The impact of the mit-
bih arrhythmia database,” IEEE engineering in medicine and

biology magazine, vol. 20, no. 3, pp. 45–50, 2001.

[31] Hanshi Sun, Ao Wang, Ninghao Pu, Zhiqing Li, Junguang
Huang, Hao Liu, and Zhi Qi, “Arrhythmia classifier using
convolutional neural network with adaptive loss-aware multi-
bit networks quantization,” in 2021 2nd International Con-
ference on Artificial Intelligence and Computer Engineering
(ICAICE), 2021, pp. 461–467.

	 Introduction
	 Problem Formulation
	 Federated Learning
	 Data Injection Attacks

	 Attacker Detection and Avoidance
	 Numerical Simulations
	 Example I—MNIST Non-IID Constant-Output Attack
	 Example II—Traffic Lights-Constant-Output Attack
	 Example III—Traffic Lights-Label-Flipping Attack
	 Example IV—ECG Non-IID Constant-Output Attack

	 Conclusions
	 Appendix
	 Appendix A.

	 References

