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COMMENTARY

Conducting polymers take control of the field
Robert R. McLeoda,1 and George G. Malliarasb,1

In PNAS, Oikonomou et al. (1) introduce the concept of eSoil, a 
conducting polymer–based scaffold for the hydroponic culture 
of plants. They show that when eSoil is polarized, it accelerates 
the growth of barley seedlings by 50% after 15 d of growth. This 
is an exciting result that may one day enable a method to 
increase crop yields in a sustainable fashion. Although the 
underlying biological processes remain to be elucidated, a key 
message from this work is the fact that conducting polymers 
enable a controlled way to study and direct the biology of plants 
(Fig. 1).

Conducting polymers are made by doping conjugated pol-
ymers such as polythiophenes, polyanilines, or polypyrroles. 
The doping process involves the oxidation or reduction of 
the conjugated polymer and leads to a high electronic con-
ductivity, in the range of values that are typical for metals. A 
contemporary example is PEDOT:PSS, in which the polymeric 
semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT) is 
doped by polystyrene sulfonate (PSS). The first observation 
of metal-like conductivity in a conducting polymer in the late 
1970s (2) created a great deal of excitement: The idea of 
“synthetic metals” that are cheap to make, are lightweight, 
and can be processed like plastics led to a significant body 
of work exploring the applications of these materials in elec-
tronics and optoelectronics. This work culminated in the 2000 
Nobel Prize in Chemistry.

More recently, however, the realization that conducting 
polymers can also support high ionic conductivity, has cre-
ated a second wave of excitement for these materials (3). 

This combination of properties that are typical of metals 
(high electronic conductivity) and of electrolytes (high ionic 
conductivity) makes conducting polymers ideal materials for 
interfacing these two worlds, with applications in biology, 
medicine, and sustainability. One example is conducting 
polymer electrodes that efficiently transduce ionic currents 
that result from neuronal activity to map the human brain 
(4). Another example is conducting polymer electrodes that 
facilitate ion-to-electron conversion in lithium-ion batteries 
(5). The key parameter in these applications is a large elec-
trochemical capacitance, arising from the volumetric inter-
action of ionic and electronic carriers in the conducting 
polymer.

At the interface with biology, conducting polymers offer 
additional unique characteristics that make them attractive. 
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Fig. 1. The field of organic bioelectronics has provided powerful tools for controlling cellular properties, now extended to controlling plant growth.
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Their properties can be tuned via chemical synthesis includ-
ing the covalent incorporation of biomolecules such as 
enzymes to build biosensors. They can be processed from 
solution and easily combined with different biopolymers to 
form porous 3-dimensional (3D) scaffolds that mimic the 
properties of their biological analogues. These scaffolds sup-
plement the tailored biochemical and biomechanical envi-
ronments of synthetic or bio-derived hydrogels with active 
controls including electrical stimulation via ion injection, drug 
release, electrochemical manipulation such as radical scav-
enging, and electromechanical actuation such as solvent 
osmosis (6). These mechanisms have been shown to control 
cell morphology and function (7, 8), to improve wound heal-
ing (9) and the growth of bone (10), muscle (11), and neuronal 
tissues (12), and to guide the development and function of 
stem cells (13, 14). These materials innovations are coupled 
with the design of new sensors and actuators that leverage 
mixed conductivity to deliver new diagnostic and therapeutic 
devices (15). The term “organic bioelectronics” has been 
coined to describe this burgeoning field.

As the field of organic bioelectronics is maturing, empha-
sis shifts beyond demonstrations of new capabilities and 
into detailed investigations of the biological mechanisms 
underlying the observed phenomena. Here is where the 
high electrochemical capacitance of conducting polymers 
can prove to be their most useful property yet as it enables 
one to apply an electric field in electrolytes without causing 
electrochemical reactions. A key limitation of most metal 
electrodes is the fact that they charge up, forcing the applied 
field to collapse at their interface with the electrolyte. To 
overcome this, a high voltage needs to be applied. This, 
however, initiates electrochemical reactions that change the 
composition of the electrolyte, with detrimental effects to 
the biological system under study. High capacitance elec-
trodes made of conducting polymers can take a very long 
time to charge, during which time the applied voltage drops 
at the electrolyte (16). This can help avoid electrochemical 

reactions and pave the way for reproducible experimental 
conditions.

Oikonomou et al. (1) have capitalized on this property and 
extended the application of conducting polymer scaffolds to 
the plant kingdom. Their paper is an important development 
in the new and exciting field of “environmental bioelectronics” 
which applies the organic bioelectronics toolkit developed for 
human health to the rest of the living world. Environmental 
bioelectronics exploit all the advantages of conducting poly-
mers mentioned previously as well as low-cost, solution-
based manufacturing methods and combination with 
biodegradable materials. These materials and devices are 
expected to have impact as new tools for botanical science, 
precision agriculture, and environmental monitoring, e.g., for 
climate resilience. Nearly all of the biome is under study 
including soil, water, atmosphere, and living plants. The final 
category has been actively studied since initial reports demon-
strated that conducting polymer circuits could be fabricated 
within the tissue of plants (17) and now extended to chemo-
sensing of plant exudates (18), bioelectronic monitoring 

within living plants (19), and modulation of plant 
physiology (20).

Taken as a whole, these studies hint that we 
are at the beginning of a new era in which the 
natural, living world may be monitored and con-

trolled electronically, solving critical problems in climate 
change and food security. Inexpensive, possibly biodegrad-
ing organic electronic sensors and actuators for living plants 
could provide control signals for closed-loop agriculture or 
drought response. Plants in hydroponic environments, as 
indicated by Oikonomou et al. (1), may be electronically mon-
itored and controlled for objectives such as maturation, yield, 
nutrition, or disease resistance. Extrapolating further, net-
works of permanent biosensors throughout the biome could 
enable us one day to “log on” to a forest to monitor its health 
which in turn could be modulated by embedded bioactua-
tors. Overall, it is clear that this field is primed for explosive 
growth.
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Oikonomou et al. introduce the concept of eSoil,  
a conducting polymer–based scaffold for the 
hydroponic culture of plants.
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