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Online Data Driven Scheduling for
Deadline-Sensitive Tasks of Mobile Edge
Computing Enabled Consumer Electronics

Lichao Yang, Kailin Wang, Mingyan Xiao, Heli Zhang, Ming Li, Xi Li, Hong Ji

Abstract—With the remarkable prosperity in smart consumer
electronics (CEs), Mobile Edge Computing (MEC) has emerged
as a pivotal technology to tackle the prevalent latency issues
faced by smart CEs. Consequently, this has produced multiple
deadline-sensitive tasks, imposing stringent computational time
requirements on the infrastructure of 6G wireless communication
systems. To meet the deadline demands of tasks when offloading,
research efforts have focused on improving the scheduling mode.
However, a majority of modes are offline, which is unrealistic for
MEC servers to schedule tasks or reserve resources according
to the global information (i.e., the time and quantity of tasks
released by CEs) grasped in advance. To address this concern, we
propose an online data-driven scheduling mechanism maximizing
the revenue of deadline-sensitive tasks in the MEC-enabled
consumer electronics system. Given that the released time and
deadline time are fixed, but the execution process are flexible
and the execution process involves two network resources, we
design a two-step online resource allocation (TORA) algorithm
comprising an online spectrum allocation sub-algorithm and an
online computing resource allocation sub-algorithm. Moreover,
we derive a precise competitive ratio to evaluate the performance
of our TORA algorithm. Finally, through extensive simulations,
we demonstrate its superiority in improving system revenue.

Index Terms—Mobile edge computing, online, deadline-
sensitive, resource allocation, competitive ratio.

I. INTRODUCTION

In the forthcoming sixth-generation (6G) wireless communi-
cation network, a diverse range of smart consumer electronics
(CEs), such as smartphones, smart appliances, smart wearable
devices, etc., lead to massive data and computing tasks with
strict processing deadlines produced at the network edge [1]–
[3], Mobile Edge Computing (MEC) emerges as a low-latency
solution to provide computing resources close to CEs [4]–[6].
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Although MEC offers remarkable advantages in reducing
the processing delay of tasks, there are still numerous bot-
tlenecks in the existing task scheduling schemes. First, the
majority of studies focus on the offline scheduling mode [7]–
[9], where all users information is known beforehand. For
instance, [10] formulated the secure computation offloading
problem to maximize users satisfaction based on grasping
users requirements in advance. [11] designed an offline task
offloading approach to minimize the energy consumption of
all users. However, considering spatio-temporal variations in
the practical networks, offline task scheduling fails to adapt
to the dynamic network. Therefore, it becomes imperative to
optimize network resources in an online fashion.

Subsequently, it is worth noting that previous research
has investigated the online scheduling mode [12]–[15]. For
example, [16] proposed a parallel offloading policy to fulfill
the deadline requirements of tasks while considering the load
balancing of the MEC servers. [17] addressed the average
offloading cost minimization problem which took into account
the maximum tolerable delay of tasks. in [18], the objective
was to maximize user QoE by optimizing service selection,
computation resource allocation, and task offloading decisions.
Another study [19] tackled the challenge of enhancing energy
efficiency and meeting desired QoE requirements through a
dynamic resource allocation scheme, introducing a novel hy-
brid algorithm based on differential evolution and a modified
first-fit heuristic. In the context of a non-orthogonal multiple
access-based MEC system, [20] aimed to allocate as many app
users as possible to a minimal number of edge servers using
an online approach. Actually, release time and deadline would
be fixed by the CEs when the tasks are released in the online
scene, the MECs can flexibly schedule the tasks to ensure
accomplishment before deadlines to harvest the revenue by
the system [21]. However, the above researches ignored the
revenue maximum problem before deadlines leading to the
network resources idle or in short supply in online scene.

For proposed online algorithm, the competitive ratio to
measure the performance of online algorithms is crucial, which
means the ratio between the performance of the offline algo-
rithm and the online algorithm. However, the value is difficult
to obtain exact value, for instance, [22] proposed an online
scheduling algorithm for file caching, which achieved the
O(logK) competitive ratio. [23] introduced the Greedy-One-
Restart (GOR) algorithm to minimize the offloading costs of
tasks, whose competitive ratio reached O(

p
m). In comparison

to [22], [23], we smartly use duality theory to derive a more
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precise competitive ratio to quantify the performance of our
online deadline-sensitive task scheduling mechanism.

In this paper, we delve into the realm of a 6G edge
cloud network and propose an online data-driven scheduling
mechanism for deadline-sensitive tasks. Our research focuses
on two key aspects: one is to design an online scheduling
mechanism for deadline-sensitive tasks with a flexible exe-
cution sequence of tasks to maximize the revenue of fully
processed tasks, and the other is to derive a precise competition
ratio to demonstrate the superiority of the online algorithm. To
address these objectives, we leverage dual theory principles
and propose a practical two-step online resource allocation
(TORA) algorithm tailored for edge networks. Moreover, we
introduce a provable competitive ratio, which serves as a
constant-factor benchmark to evaluate the performance of our
scheduling mechanism. The derivation of this competitive
ratio is supported by a comprehensive charging argument.
To validate our findings, we conduct extensive simulations,
affirming the exceptional performance of the TORA algorithm.
In summary, the key contributions of this paper are as follows:

• We study an online revenue maximization problem in-
tegrated with MEC. Our focus lies in developing an
online scheduling mechanism for deadline-sensitive tasks.
In order to ensure that tasks are fully transmitted and
computed before their deadlines and maximize the rev-
enue of fully processed tasks, those tasks that cannot be
completed by the deadline would be abandoned in time.

• We propose the TORA algorithm, comprising an online
spectrum allocation sub-algorithm and an online com-
puting resource allocation sub-algorithm. Diverging from
other online resource allocation algorithms that primarily
concentrate on a single resource, our approach involves
a two-step process to jointly allocate bandwidth and
computing resources, which significantly enhances the
overall efficiency. Specifically, for the online spectrum
resource allocation algorithm (OSRAA), we employ du-
ality theory to propose preemption and resumption rules.
As for the online computing resource allocation algorithm
(OCRAA), we adopt the first-in-first-out principle.

• We derive a provably competitive ratio for the TORA
algorithm. To measure the performance of our scheduling
mechanism, we introduce the concept of a competitive
ratio for the TORA algorithm. Since the TORA algorithm
consists of both OSRAA and OCRAA, for OSRAA, a
provably competitive ratio is obtained through a charging
argument. For OCRAA, we employ geometric theory to
derive a provably competitive ratio.

The remaining sections of this paper are organized as
follows. In Section II, we provide a concise introduction to
the system model. Section III formulates the problem of online
revenue maximization. Building upon this, Section IV presents
the design of a two-step online resource allocation algorithm,
which encompasses the online spectrum resource allocation
algorithm (OSRAA) and the online computing resource allo-
cation algorithm (OCRAA). Furthermore, Section V presents
the derivation of a competitive ratio, representing the ratio
between the total revenue achieved using an optimal offline
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Fig. 1: System model of 6G edge cloud Network.

algorithm and that of our proposed online algorithm before the
deadlines. In Section VI, we conduct simulations to compare
the performance of our approach with existing algorithms.
Finally, Section VII concludes the paper, summarizing our
findings and contributions.

II. SYSTEM MODEL

A. Network Model

We consider a practical model as illustrated in Fig.1, there
are a number of MEC servers, associated with small base
stations (SBSs) via the wired connection. So the nearby
devices can efficiently offload computation tasks attached with
deadlines to SBSs enabled with EMC servers via channels.
Furthermore, each MEC server can only process a task at each
time point because of limited computing resource. Thus, each
SBS has a task scheduling module and a resource allocation
module.

Fig. 1 consists of a set of small base stations (SBSs),
denoted by S = {1, 2, . . . , S}, s 2 S , and each SBS
is associated with one MEC server through wired manner.
Then the SBSs are connected to the Internet by the core
network of the MEC system. Assume that there are J CEs
that are connected to SBSs by wireless links, denoted by
J = {1, 2, . . . , J}. Assume that each CE has a computation
task required to be executed, denoted the set of computation
tasks by X = {x1, x2, . . . , xJ}, j 2 J .

We next consider two logical roles presented in Fig.1 in the
edge cloud networks: mobile edge network operator (MENO)
and MEC system operator (MSO). The MENO possesses the
spectrum resource, while the MSO owns MEC servers. We
adopt OFDMA to allocate spectrum resource in the edge
cloud networks. Since the channels are orthogonal in one
base station, we only consider the interference between base
stations. Specially, the spectrum is divided into M bands,
denoted by M = {1, 2, . . . ,M}. For ease of reference, we
list the key notations of our system model in Table I.

We further assume that when these tasks are released by
CEs, the tasks will not be migrated to other servers among
servers during execution. Moreover, assume that those tasks
reach the MEC system online in arbitrary order and those
tasks are released randomly over the continuous time interval
T = [0,1), as well as each MEC server can only allocate
one channel to one task at a time.
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TABLE I: LIST OF KEY NOTATIONS

Notation Description
S Set of SBSs

J Set of CEs

fjs The required computing resource of task xj on server s

aj The arrival time of task xj

dj The deadline of task xj

ym
js(t) The task dispatch variable

zm
js(t) The server occupy variable

Pm
i The transmission power of task xi on channel m

⌘ Density of thermal noise at the receiver

gij The channel gain power between task xi and task xj

� A constant related to the path loss

d(i, j) The Euclidean distance between task xi and task xj

^ A common set of two sets intersecting

B. Transmission/Interference Range and Link Capacity

Suppose the power spectral density of node i on channel
m is P

m
i . Power propagation gain between node i and node

j, denoted by gij , is gij = C · [d(i, j)]�� , where i and j

also denote the positions of node i and node j, respectively,
d(i, j) refers to the Euclidean distance between i and j, � is
the path loss factor, and C is a constant related to the antenna
profiles of the transmitter and the receiver, wavelength, and so
on. We assume that the data transmission is successful only
if the received power spectral density at the receiver exceeds
a threshold P

m
T . Meanwhile, we assume interference becomes

non-negligible only if it produces a power spectral density
over a threshold of Pm

I at the receiver1. Thus, the transmission
range for a node i on channel b is R

i,m
T = (CP

m
i /P

m
T )1/� ,

which comes from C(Ri,m
T )�� · Pm

i = P
m
T . Similarly, based

on the interference threshold P
m
I (Pm

I < P
m
T ), the interference

range for a node is R
i,m
I = (CP

m
i /P

m
I )1/� , which is

larger than R
i,m
T . Thus, different nodes may have different

transmission ranges/interference ranges on different channels
with different transmission power.

In addition, according to the Shannon-Hartley theorem, if
node i sends data to node j on link (i, j) using channel m,
the capacity of link (i, j) on channel m is2:

c
m
ij (t) = W

b(t) log2
⇣
1 +

gij(t)Pm
i

⌘

⌘
, (1)

where ⌘ is the thermal noise at the receiver. Note that the
denominator inside the log function only contains ⌘. This is
because of one of our interference constraints, i.e., when node i
is transmitting to node j on channel m, all the other neighbors
of node j within its interference range are prohibited from
using this channel.

1Note that the interference model we adopt in this study is the Protocol
Model introduced in [24], which considers one interfering link at a time.
[24] also introduces the Physical Model, according to which a transmission
is successful if its signal-to-interference plus noise ratio (SINR) is above a
threshold. It has been shown in [24] that these two interference models can
be equivalent in terms of network capacity by setting the interference range
in the Protocol Model appropriately.

2Note that this link capacity is the same no matter which radios the
transmitter and the receiver use.

First of all, a CE cannot transmit to multiple SBSs simul-
taneously. Thus, we have:

X

s2S

X

m2M
y
m
js(t)  1. (2)

Then, a server has M̄ idle channels at time t:
X

j2J

X

m2M
y
m
js(t)  M̄. (3)

In addition to the above constraints at the same CE/SBS,
there are also scheduling constraints due to potential inter-
ference among different transmissions. In particular, if CE i

uses spectrum m to transmit data to SBS s, then any other
CEs that may interfere with the reception at SBS s should not
use this spectrum. In other words, other SBSs that are within
CE i’s interference range cannot use the same spectrum m

(8j, k 2 J, k 6= j, s, u 2 S, u 6= s, u  R
j,m
I , 8m 2 M):

y
m
js(t) + y

m
ku(t)  1. (4)

C. Resource Allocation Constraint

Next, we illustrate the spectrum resource allocation con-
straint on the data transmission.

Assume that band m is available at both task xj and MEC
server j. We denote y

m
js(t) if the task xj is dispatched to

the MEC server s by channel m at time t. y
m
js(t) is a two

dimensional binary variable, and y
m
js(t) = 1 means that the

channel m is assigned to the task xj and the MEC server s at
time t. Otherwise, ymjs(t) = 0.

c
m
js(t) denotes the maximum link’s capacity on link (j, s)

via channel m at time t. We define Fs(cycles/s) as the
computation rate of MEC server s, and vm(cycles/bit) means
the number of CPU cycles required when processing per-bit
data. Denote Fs/vm as the data processing rate threshold
for channel m. In order to make full use of the spectrum
and computing resources, we consider the constraint condition
between the computation rate and the link’s capacity. Thus, the
link’s capacity of the transmission process should not be more
than the data processing rate on the MEC server:

X

j2J

X

s2S
y
m
js(t)c

m
js(t)  Fs/vm. (5)

Then in order to optimize the computing resource, zjs(t)
is a binary variable, and zjs(t) = 1 denotes that the server
s is occupied by task xj at time t, otherwise zjs(t) = 0.
Additionally, assume that fjs means the required computing
resource of task xj on server s. Thus we give the computing
resource allocation constraint shown as:

X

j2J

zjs(t)fjs  Fs. (6)

To avoid migration overhead, we do not allow the servers
to migrate a task to other servers upon scheduling to a server,
and one server just can execute one task at a time point:

X

j2J

zjs(t)  1. (7)
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D. The Definitions
Before we introduce the formulation of the revenue max-

imization problem, we list some key concepts and provide
descriptions of them.

Transmission Tasks Status. According to the final trans-
mission status of tasks, we divide those tasks into two sets: ful-
ly transmitted tasks X

F , which have been completed by their
deadline; partially transmitted tasks X

p, which have begun
their transmission but were not completed by its deadline. In
this paper, we also regard the untransmitted tasks as partially
transmitted tasks set, without additional discussion.

Computation Tasks Status. As we all know, only those
tasks that are transmitted successfully, will have chances to be
executed on servers. Finally, according to the final computation
status of tasks, we divide those tasks into two sets: Fully
computed tasks X

F 0
before their deadlines and X

F 0 2 X
F ;

Partially computed tasks X
p0

which have not been completed
by their deadlines and X

p0 2 X
F .

Revenue Gain Density. We define ⇡js(t) as the revenue
gain density of task xj when allocated per spectrum during
transmission process. Then we define ajs(t) as the revenue
gain density of task xj when executed on MEC server s for
per CPU.

Task’s Release Time. Assume that at time t, there is a task
xj released from the CE, we define the time point t as rj ,
named as release time of task xj . In this paper, assume that
upon one task release, the task will be connected to an MEC
server instantly.

Task’s Arrival Time. Suppose the arrival time of task xj

is aj on the MEC server, i.e., the deadline of the transmission
process.

Task’s Deadline. Suppose the deadline of task xj is dj

when completely executed on MEC sever.
Available Time based Task Transmission Status. In this

paper, we set the total length of time for transmitting one
task as |aj � rj | = (⇢ + 1)uj(t), where uj(t) is the re-
quired extra transmission time for each task xj at time t.
To guarantee the performance of our online algorithm, we
set a parameter ⇢ � 1. For task xj , set ⌦�⇢

j for the time
interval [rj , aj � ⇢uj(t)]. Synchronously, define ⌦0

j = ⌦j to
be the available time window [rj , aj ]. Correspondingly, define
A

�⇢(t) = {xj 2 X | t 2 ⌦�⇢
j } as a set of tasks whose

remaining availability time is at least ⇢ times their remaining
transmission time at time t.

Computation Time Availability. To guarantee the tasks
to be computed completely on the MEC servers, we set a
minimum available time window for computation process as
u
0
j satisfying u

0
j � |dj � aj |.

III. PROBLEM FORMULATION

In this section, we formulate a revenue maximization prob-
lem to contain the transmission and computation process. To
solve it, we divide the original revenue maximization problem
into two independent subproblems, i.e., transmission revenue
maximization problem and computation revenue maximization
problem, respectively. First, we give the revenue maximization
problem as follows:

max
X

xj2X

Z dj

rj

X

m2M

X

s2S

ym
js(t)⇡

m
js(t) +

X

s2S

zjs(t)ajs(t)dt

s.t. C1 :
X

m2M

X

s2S

Z dj

rj

ym
js(t)c

m
js(t)dt  Cj , 8m 2M, s 2 S,

C2 :
X

m2M

X

s2S

ym
js(t)  1, 8m 2M, s 2 S,

C3 :
X

j2J

X

m2M

ym
js(t)  M̄, 8j 2 J,m 2M,

C4 :
X

j2J

X

s2S

ym
js(t)c

m
js(t)  Fs/vm, 8j 2 J, s 2 S,

C5 :
X

j2J

zjs(t)  1, 8j 2 J, s 2 S,

C6 :
X

j2J

zjs(t)fjs  Fs, 8j 2 J, s 2 S,

C7 : ym
js(t), zjs(t) � 0, 8j 2 J, s 2 S,

(8)

where constraint C1 indicates that the task j allocated MEC
server s at time t can not exceed the maximized data size
Cj . Constraint C2 means that the task j can access one MEC
server through one channel at a time. Constraint C3 means one
server has at most M̄ available channels at time t. Then, to
guarantee the efficient utilization of spectrum and computation
resources, the data processing rate threshold Fs/vm on an
MEC server s can not exceed the link’s capacity at time t

in constraint C4. Constraint C5 shows that one MEC server
can execute one task at a time point. Constraint C6 means
that the computing resource allocated to task j at time t can
not exceed the maximal capacity of server s.

Next, since the transmission process and computation pro-
cess have a time execution order, we divide the original prob-
lem into the transmission revenue maximization problem and
computation revenue maximization problem according to time
order. Then we design two online resource allocation algo-
rithms, to measure the performance of our proposed algorithm,
the competitive ratio concept is introduced, which will be
described in detail in the next section. Specially, first, we do a
relaxation transformation for variable y to reformulate the op-
timization problem into a relaxed program problem (9). Then
assume the optimal solution of problem (9) is OPT

⇤(X) and
the objective value is e(OPT

⇤(X)). Since the variable ymxj ,s(t)
is a discrete two-dimensional binary variable, after relaxing
the variable, achieving that e(OPT (X))  e(OPT

⇤(X))).
Next, utilizing the dual fitting techniques, we find the dual
program problem (11). According to the weak duality, know
that the objective value of the dual program problem (11) is
the upper bound of problem (9). Thus, assume OPT

⇤⇤(X)
is a feasible solution (which does not have to be an optimal
solution) of the dual program problem, and e(OPT

⇤⇤(X))
is the objective value gained by the dual program problem,
indicating: e(OPT

⇤(X))  e(OPT
⇤⇤(X)).

For the convenience of description, we first formulate a
transmission revenue maximization problem. In particular, we
formulate a relaxed program problem (9) to maximize the
transmission revenue while guaranteeing as many tasks as
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possible transmitted before their arrival time:

max
X

xj2X

Z dj

rj

X

m2M

X

s2S
y
m
js(t)⇡

m
js(t)dt

s.t. C1, C2, C3, C4, C7, 8j 2 J, s 2 S.
(9)

Then, we formulate a computation revenue maximization
problem with a relaxed program, given by:

max
X

xj2X

Z dj

rj

X

s2S
zjs(t)ajs(t)dt

s.t. C5, C6, C7, 8j 2 J, s 2 S.
(10)

IV. TWO-STEP ONLINE RESOURCE ALLOCATION
ALGORITHM

In this section, we focus on the design of a two-step online
resource allocation (TORA) algorithm consisting of an on-
line spectrum resource allocation algorithm (OSRAA) and an
online computation resource allocation algorithm (OCRAA).
More details will be listed as follows:

A. Online Spectrum Resource Allocation Algorithm
To design OSRAA, we first adopt the dual fitting approach

to transform the relaxed program problem (9) into the follow-
ing dual program problem (11). By solving the following dual
program problem (11), the OSRAA finds the optimal solution
to the relaxed program problem (9):

min
X

j2J

Z 1

0

Cj�j(t)dt+
X

j2J

Z 1

0

⇣j(t)dt+

X

s2S

Z 1

0

M̄✏s(t)dt+
X

m2M

Z 1

0

Fs/vmm(t)dt

s.t. C8 : cmjs(t)�j(t) + ⇣j(t) + ✏s(t) + cmjs(t)m(t) � ⇡m
js(t),

C9 : �j(t), ⇣j(t), ✏s(t),m(t) � 0.
(11)

For the dual program problem (11), we introduce four
dual variables �j(t), ⇣j(t), ✏s(t) and m(t) for the constraints
C1, C2, C3 and C4 in relaxed program problem 9. In order
to find a set of feasible solution, we do the following analysis:
Specially, to ensure the task full transmission, we set variable
�j(t) = ⇡

m
js(t)/c

m
js(t) at time t. Second, we set the variable

⇣j(t) = 0 which ensures the constraint C2 in the relaxed
program problem. Then, it is obvious that the variable ✏s(t)
is related to the allocation of servers. In this paper, we just
consider the transmission process, so these dual variables ✏s(t)
will be set to 0. Finally, the variable m(t) is dependent on
the partially transmitted tasks, in the analysis for partial tasks,
we introduce a continuous function m(t) : R+ ! R

+ one
per channel.

From the above analysis, note that our goal is to con-
struct a feasible solution to the dual program problem that
could cover dual constraint C8. Notice that we set �j(t) =
⇡
m
js(t)/c

m
js(t) for each completely transmitted task xj 2 X

F .
Since the meaning of the expression is the revenue per bit
of task xj , this step increases the dual revenue by exactlyP

j2 X

R1
0 Cj�j(t)dt =

P
j2 X

R1
0 Cj⇡

m
js(t)/c

m
js(t)dt =

Algorithm 1 Online Spectrum Resource Allocation Algorithm
(OSRAA)

1: Input: assume there is a released task xj with release time rj
and arrival time aj , a transmitting task xi on channel m with
data transmission rate vm, total channel set M, excluded channel
set M0, available channel set M 0, rejected tasks set X0

2: Initialize: cmjs(t), ⇡m
js(t) and Fs

3: while t = rj do
4: task xj chooses the MEC server s randomly;
5: for m 2M do
6: if s 2 Ri,m

I and cmjs  Fs/vm then
7: m 2M0

8: end if
9: end for

10: M 0 = M�M0;
11: if m 2M 0 then
12: derive the profile ◆mjs(t) = {⇡m

js(t)/c
m
js(t)} of each task xj ;

13: rank ◆mjs(t) for all the channels of MEC server s in
descending order;

14: task xj chooses one most preferred channel m from M 0;
15: Preemption Rule:
16: if ◆mjs(t) � ◆mis(t) then
17: a released task xj preempts a transmitting task xi;
18: ym

js(t) = 1;
19: else if ◆mjs(t) < ◆mis(t) then
20: task xj is rejected by MEC server s;
21: xj 2 X0;
22: end if
23: Resumption Rule:
24: if t  aj � ⇢uj(t) then
25: task xj will send request to suboptimal channel m0

according to profile ◆m
0

js (t) = {⇡m
js(t)/c

m
js(t)};

26: repeat step 5-22;
27: ym

js(t) = 1;
28: else if aj � ⇢uj(t) < t < aj then
29: task xj will not be resumption any more;
30: ym

js(t) = 0;
31: end if
32: end if
33: end while
34: Output: y = {ym

js(t)}.

v(XF ). To cover the remaining dual constraints of partially
transmitted tasks, we introduce the m(t) function correspond-
ing time t. So to obtain a feasible solution to the dual program
problem, we require function m(t) to satisfy for every time
t 2 R

+ : m(t) � max{⇡m
js(t)/c

m
js(t)|xj 2 A(t)^xj 2 X

p}.
At first, we aim to design an OSRAA based on this

function m(t) related to the spectrum allocation during the
transmission process. However, notice that if we use variable
m(t) to design the OSRAA, some challenges will arise.
Since we introduce the definition of slackness, the design of
function m(t) can not cover all the schedule of partially
transmitted tasks. Accordingly, we design a new function

�⇢
m (t) : R+ ! R

+, defined by:


�⇢
m (t) = max

xj

{⇡m
js(t)/c

m
js(t) | xj 2 A

�⇢(t) ^ xj 2 X
p}.

(12)
The function 

�⇢
m (t) has one appealing property: When

xj satisfies xj 2 A
�⇢(t), the function 

�⇢
m (t) could cover

the constraints of the dual program problem. This nearly
completes the analysis. Then we use 

�⇢
m (t) and parameter ⇢

to design OSRAA. Specially, once the task is released, it will
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Algorithm 2 Online Computing Resource Allocation Algo-
rithm (OCRAA)

1: Input: The original scheduling sequence Qschedule, newly dis-
patched task j with a minimum available time window for
computation process u0

j .
2: Output: Completely executed task sequence Qbest.
3: Initialize: A series of completely transmitted tasks XF and

zjs(t);
Qbest  ;;

4: repeat
5: while aj  t  dj � u0

j do
6: do a descending order according to the revenue gain density

of tasks
7: for j 2 max{zjs(t)} do
8: Q0

schedule  insert j into original scheduling sequence
Qschedule;

9: end for
10: end while
11: until task j is completely executed;
12: Qbest  j;
13: Output: Qbest;

first choose one MEC server randomly. Then the CE j applies
the OSRAA to choose one channel m satisfying formula 12 on
server s. Once the channel m is occupied by the task xj , when
other tasks arrive in the same channel, it will use OSRAA to
pick one task that owns the largest value of 

�⇢
m (t). Finally,

the main procedures of OSRAA are listed in Algorithm 1.
Then to guarantee the tasks transmitted completely as many as
possible, as well as to meet online features of scheduling, we
add two rules in the OSRAA, i.e., preemption and resumption
rules, which are highlighted in the following section.

Preemption Rule: A released task x
0
j can preempt a trans-

mitting task xj on channel m at time t, when ⇡
m
j0s(t)/c

m
j0s(t) >

⇡
m
js(t)/c

m
js(t).

The preemption rule is primarily designed to determine the
task that should be transmitted upon its release. Specifically,
if a newly released task x

0
j has a higher value than the current

task xj on channel m, the preemption rule dictates that the
new task x

0
j will preempt the current task xj to be transmitted

through channel m. However, solely relying on the preemption
rule has a drawback: it allows a smaller task to preempt a larger
task with significantly higher revenue. This can result in a
substantial loss of revenue. To mitigate this issue, we leverage
the resumption rule to compensate for the lost revenue.

Resumption Rule: If at some time t, some tasks are
preempted or not transmitted yet, but their remaining available
time is larger than uj(t), they will consider choosing one new
channel.

The resumption rule is applicable in two distinct scenarios.
Firstly, for a task xj that remains untransmitted during the time
interval [rj , aj � ⇢uj(t)] at time t, it will not be transmitted
thereafter. However, if another task x

0
j intends to transmit

before the untransmitted task xj , it must possess a revenue
higher than ⇡

m
js(t)/c

m
js(t). This criterion ensures that the

preempting task has a higher potential for revenue generation.
Secondly, if a task xj has been partially transmitted (but
remains incomplete), any other tasks transmitted during the
time interval [aj � ⇢uj(t), aj ] must have a revenue of at

least ⇡m
js(t)/c

m
js(t). This condition guarantees that the revenue

generated by the concurrently transmitting tasks is at least
proportional to their allocated resources, ensuring fairness and
efficiency in the allocation process.

B. Online Computing Resource Allocation Algorithm
Upon completing the Online Spectrum Resource Allocation

Algorithm (OSRAA) during the transmission process, we
proceed to design the Online Computing Resource Allocation
Algorithm (OCRAA) for MEC servers. The OCRAA algo-
rithm is presented in detail in Algorithm 2. Specifically, when
tasks arrive at the MEC servers, the servers first update the
Q

0
schedule by arranging the tasks in descending order based

on their revenue gain density. Then, the algorithm selects the
task xj with the highest revenue gain density and adds it to
the sequence of completely executed tasks, Qbest. Once task
xj is completed before its deadline, the server performs a
new scheduling process that takes into account the current
time. This ensures that the scheduling remains adaptive and
responsive to the changing task dynamics.

V. ANALYSIS OF ONLINE SCHEDULING
ALGORITHM-COMPETITIVE RATIO

In this section, our primary focus is to evaluate the perfor-
mance of our proposed online data driven scheduling mecha-
nism using the concept of a competitive ratio. To begin, we
provide the following definition of the competitive ratio.

Competitive Ratio. Let X represent a series of tasks. We
denote e(TORA(X)) as the total revenue achieved through
the TORA algorithm, while e(OPT (X)) refers to the total
revenue obtained from the objective value of an optimal
offline allocation problem (i.e., the objective value of the
relaxed program problem). To ensure and assess the worst-
case performance of the TORA algorithm, we define a max-
imal specific value o as the competitive ratio. This ratio
is calculated as the revenue of tasks completed before the
deadlines using the optimal algorithm, divided by the revenue
obtained through our online algorithm, which is expressed as
e(OPT (X))/e(TORA(X)). Below, we present the expres-
sion for the competitive ratio:

o = max
X

{ e(OPT (X))

e(TORA(X))
}. (13)

From the above expression, we say the TORA algorithm is
o�competitive for some o � 1, and it achieves at least 1/o of
the optimal offline revenue value in the worst case. In addition,
the smaller the competitive ratio, the better the performance
of the TORA algorithm. Thus, the main focus and challenge
of this section are to compute the minimal constant value o,
and we list the detailed computing procedures below.

Notice that for the TORA algorithm, which contains OS-
RAA and OCRAA, the competitive ratios of those two online
algorithms can be derived respectively. Only the fully trans-
mitted and computed tasks can gain revenue, and the partially
transmitted and computed tasks do not result in partial revenue.
Thus, we set e(XF ) as the transmission revenue increased
by the fully transmitted tasks according to OSRAA. Then we

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2024.3362350

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 28,2024 at 22:48:57 UTC from IEEE Xplore.  Restrictions apply. 



7

set e(XF 0
) as the computation revenue increased by the fully

computed tasks according to OCRAA. Hence, o1 denotes the
competitive ratio of the OSRAA and o2 is the competitive
ratio of OCRAA. In this section, we first give the proof
of o1, so we need to find the upper bound of e(OPT (X))
which is related to e(XF ), set as e(OPT1(X)). In this paper,
since e(OPT1(X)) can not be obtained easily, we can derive
its upper bound e(OPT

⇤⇤
1 (X)) by solving the dual program

problem (11). Furthermore, we introduce the proof of o2, and
set e(OPT (X)) related to e(XF 0

) as e(OPT2(X)) by solving
the problem (10).

A. Competitive Ratio of OSRAA

However, how should we obtain the revenue value of
dual program problem 11? We will list the detailed analysis
process in the following section. Specially, notice that the first
part of the objective function is

P
xj2XF

R1
0 Cj�j(t)dt =P

xj2XF

R1
0 Cj⇡

m
js(t)/c

m
js(t) = e(XF ). Thus, we just focus

on the analysis of the second part of the objective function to
derive the upper bound of the objective value of problem 11
by the following lemma1.

LEMMA 1. Let function m(t) be satisfying: m(t) �
⇡
m
js(t)/c

m
js(t) for every task xj 2 X

p when t 2 ⌦j . Then there
exists function 

�⇢
m (t) satisfying: �⇢

m (t) � ⇡
m
js(t)/c

m
js(t) for

every task xj 2 X
p when t 2 ⌦�⇢

j , such that:
X

m2M

Z 1

o
m(t)dt 

X

m2M

(1 + ⇢)

Z 1

0

�⇢
m (t)dt. (14)

The geometrical relationship comes from [25]. The proof of
Lemma 1 is shown in APPENDIX. According to simulations
in Section VI, we find that the parameter ⇢ has a great effect
on the geometric formula 14.

When t 2 ⌦j , we set �j(t) = ⇡
m
js(t)/c

m
js(t) for every

fully transmitted task xj 2 X
F , and �j(t) = 0 otherwise.

In addition, to cover the remaining dual constraints, we apply
Lemma 1 on the function m(t) and 

�⇢
m (t). Then the variable

◆s(t) and ✏s(t) are all set to 0. Thus the dual revenue at most:
X

j2 X

Z 1

0
Cj�j(t)dt+

X

m2M

Z 1

0
Fs/vm

�⇢
m (t)dt+

 e(XF ) +
X

m2M

(1 + ⇢)Fs/vm

Z 1

0

�⇢
m (t)dt

 e(XF ) +
X

m2M

(1 + ⇢)Fs/vm

Z 1

0
F̄m(t)dt,

(15)

where function F̄m(t) represents the gained revenue-density
of the task transmitted by OSRAA at time t. Thus,

R1
0 F̄m(t)

represents the revenue gained by the OSRAA at every time
t. To derive the competitive ratio, we next need to boundR1
0 F̄m(t)dt by applying a charging argument.

A Charging Argument
THEOREM 1. Let XF represent the set of tasks that are

fully transmitted by the OSRAA given the input tasks X .
We denote e(XF ) as the total revenue value obtained by this
algorithm. Additionally, let F̄m(t) denote the revenue density

achieved by OSRAA for the task transmitted at time t on
channel m. Based on these definitions, we can establish the
following inequality:

X

m2M

Z 1

0
F̄m(t)dt  (⇢� 1)(1� ⌧)

⇢� ⌧⇢� 1
· e(XF ). (16)

How do we get the Theorem 1? First, we group the whole
timeline into two parts based on whether the task is completed
or not: T

F is a total time interval representing that all the
tasks will be fully transmitted eventually, and T

p is another
time interval representing that tasks will only be partially
transmitted, satisfying T

F [ T
p = ;. Thus, we introduce the

Lemma 2.
LEMMA 2. For every time t 2 T

F , assume that tj 2 T
F

is the time of task xj fully transmitted. We set �(tj) = F̄m(t)
for every time t. �0(tj) is the final revenue of �(tj) at the end
of the procedure. Then we introduce a probability parameter
⌧ satisfies: 0 < ⌧ <

⇢�1
⇢ (we will give detailed explanation in

the next section), Finally, a relationship between final charge
function �0(tj) and charge function �(tj) is derived by:

�0(tj) 
(⇢� 1)(1� ⌧)

⇢� ⌧⇢� 1
· �(tj). (17)

In order to prove Lemma 2, we will give the proof from
the following two steps: the pricing process and the price
transfer process respectively. First, we give the way of pricing.
Notice that sdj = [sj , aj ] as the interval between the task
admission time and its deadline, which is at least ⇢uj(sj).
Thus, the total time in sdj during which OSRAA scheduled
tasks different than task xj is at least (⇢� 1)uj(sj). We use

uj(sj)
(⇢�1)uj(sj)

= 1
⇢�1 as the price factor of partially processed

task xj for every transfer. The price factor is also appropriate
for the time interval sdj .

Second, we give the price transfer process: Since partial-
ly transmitted tasks do not gain revenue for OSRAA, by
transferring the charge for partially transmitted tasks to that
for fully transmitted tasks to obtain the final charge function
�0(t), which contains two parts, one is the revenue gained
by fully transmitted tasks, the other is that transferred by
partially transmitted tasks. Then we will take the transfer
process of one partially transmitted task as an example to
give the detailed charge argument. Specially, assume a par-
tially transmitted task xj at time tj , transferred to a fully
transmitted task x

0
j at time tj0 by multiple transfers. After

finishing the transfer process, for partially transmitted task
xj , �0(tj) = 0 for tj 2 T

p; for fully processed task x
0
j ,

�0(tj0) = �(tj0) + ��(tj) for tj0 2 T
F , where ��(tj) is

an increment function of charging from task xj to task x
0
j

by k transfers. Specially, ��(tj) = ⌧
i( 1

⇢�1 )
k�(tj0), where

⌧
i is a probability parameter for the ith partially transmitted

task selected. Finally, we achieve revenue
R1
0 �0(tj0)dt by

operating the charging procedure, which satisfies the following
inequation

P
m2M

R1
0 F̄m(t)dt =

P
m2M

R1
0 �0(tj0)dt.

Assume there exist i partially transmission tasks which
don’t contain task x0. After k transfers, the charge for partially
transmitted task x0 is transferred to the fully transmitted task
x
0
j . We will remake a charge �0(tj0) for task x

0
j : Know that
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the number of transfer is C
k�1
i , and let t0 ! t1 ! t2 !

...tk�1 ! tj0 denote the path of task x0 transferred to task
x
0
j . So the final charge for task x

0
j is given as follows:

�0(tj0)

= �(tj0) +��(tj)

= �(tj0) + ⌧ i+1
1X

i=0

i+1X

k=1

Ck�1
i (

1
⇢� 1

)k�(tj0)

= �(tj0) + ⌧ i+1
1X

i=0

i+1X

k=1

Ck�1
i (

1
⇢� 1

)k�(tj0)

= �(tj0) +
⌧ i+1

⇢� 1

1X

i=0

i+1X

k=1

Ck�1
i (

1
⇢� 1

)k�1 · 1i�k+1 · �(tj0)

= �(tj0) +
⌧ i+1

⇢� 1

1X

i=0

(1 +
1

⇢� 1
)i�(tj0)

= �(tj0) +
⌧

⇢� 1
lim

n!1

nX

i=0

(
⌧⇢

⇢� 1
)i�(tj0)

= �(tj0) +
⌧

⇢� 1
lim

n!1
{
1 · (1� ( ⌧⇢

⇢�1 )
n)

1� ⌧⇢
⇢�1

}�(tj0)

= �(tj0) +
⌧

⇢� 1
· 1
1� ⌧⇢

⇢�1

· lim
n!1

{1� (
⌧⇢

⇢� 1
)n}�(tj0)

= �(tj0) +
⌧

⇢� ⌧⇢� 1
· {1� lim

n!1
(

⌧⇢
⇢� 1

)n}�(tj0).
(18)

In formula (18), from the fourth equation to
the fifth equation, the binomial form is used, i.e.,Pi+1

k=1 C
k�1
i ( 1

⇢�1 )
k�11i�k+1 = (1 + 1

⇢�1 )
i. In addition,

it can be observed that ( ⌧⇢
⇢�1 )

i is an geometric series with a
common ratio of ⌧⇢

⇢�1 and an initial value of 1, which can be
obtained by the summation formula of geometric series, i.e.,Pn

i=0(
⌧⇢
⇢�1 )

i = ( ⌧⇢
⇢�1 )

0 + ... + ( ⌧⇢
⇢�1 )

n = { 1·(1�( ⌧⇢
⇢�1 )

n)

1� ⌧⇢
⇢�1

}. To
bound formula (18), set probability parameter satisfying the
followings:

�0(tj0) 
(

(⇢�1)(1�⌧)
⇢�⌧⇢�1 · �(tj0), 0 < ⌧ <

⇢�1
⇢ ;

1,
⇢�1
⇢  ⌧  1.

(19)

To bound
R1
0 Fm(t)dt, parameter ⌧ needs to meet the

condition 0 < ⌧ <
⇢�1
⇢ . Hence, the proof of Lemma 2 is

completed.
Next, we can take the integral of both sides of the inequation

(19), achieving that
R1
0 �0(tj0)dt  (⇢�1)(1�⌧)

⇢�⌧⇢�1 ·
R1
0 �(tj0)dt.

By simplifying, we have:
X

m2M

Z 1

0

F̄m(t)dt =
X

m2M

Z 1

0

�0(t)dt

=
X

m2M

Z

t2Tp
�0(t)dt+

X

m2M

Z

t2TF
�0(t)dt

=
X

m2M

Z

t2TF
�0(t)dt

 (⇢� 1)(1� ⌧)
⇢� ⌧⇢� 1

·
X

m2M

Z

t2TF
�(tj0)dt

=
(⇢� 1)(1� ⌧)
⇢� ⌧⇢� 1

· e(XF ).

(20)
To sum up, the proof of the theorem 1 is finished.

COROLLARY 1. The competitive ratio of OSRAA is at
most:

o1  1 +
Fs/vm(1 + ⇢)(⇢� 1)(1� ⌧)

(⇢� ⌧⇢� 1)
. (21)

Proof: In terms of problem formulation analysis, we learn
that there exists the following relationship for the revenue
among online transmission revenue maximization problem,
linear program problem and dual program problem, i.e.,
e(OPT1(X))  e(OPT

⇤
1 (X))  e(OPT

⇤⇤
1 (X)). We have:

o1 = max
X

{ e(OPT1(X))

e(OSRAA(X))
}

 e(OPT
⇤
1 (X))

e(XF )

 e(OPT
⇤⇤
1 (X))

e(XF )


e(XF ) + e(XF ) · { (1+⇢)(⇢�1)(1�⌧)

⇢�⌧⇢�1 }
e(XF )

= 1 +
Fs/vm(1 + ⇢)(⇢� 1)(1� ⌧)

(⇢� ⌧⇢� 1)
.

(22)

B. Competitive Ratio of OCRAA

From the theoretical analysis of this section, the competitive
ratio of OCRAA is analyzed in this section.

THEOREM 2. A no preemptive online OCRAA has a
competitive ratio of max{Fs(dj�aj)

cjvj
}.

Proof: The proof of Theorem 2 bears similarities to Lemma
1. The distinction lies in the fact that the offline optimal
algorithm possesses information regarding the arrival time and
deadline of all tasks before scheduling each task on the MEC
servers. Conversely, the OCRAA dynamically schedules tasks
with varying time constraints but lacks knowledge of future
task arrivals. Consequently, the revenue generated by the of-
fline algorithm surpasses that of the online algorithm, primarily
due to the emphasis on the time component u

0
j = Cjvj

Fs
.

By considering the characteristics of both online and offline
algorithms, we establish the following geometric relationship:

LEMMA 3. Let function Zjs(t) be satisfying: Zjs(t) �
zjs(t) for every task when t 2 |dj � u

0
j | in a offline fashion.

Then there exists function Z
0
js(t) satisfying: Z 0

js(t) � zjs(t)
for every task when t 2 |dj � aj | in an online fashion, such
that:

Z 1

0
Zjs(t)dt 

dj � aj

u0
j

Z 1

0
Z

0
js(t)dt

 dj � aj
Cjvj
Fs

Z 1

0
Z

0
js(t)dt

 Fs(dj � aj)

Cjvj

Z 1

0
Z

0
js(t)dt.

(23)
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Thus, the competitive ration o2 can be derived as follows:

o2 = max
X

{ e(OPT2(X))

e(OCRAA(X))
}


R1
0 Zjs(t)dtR1
0 Z 0

js(t)dt

 Fs(dj � aj)

Cjvj
.

(24)

In summary, according to Theorem 2 and Lemma 3, the
competitive ratio of OCRAA is at least max{Fs(dj�aj)

cjvj
}.

VI. SIMULATION RESULTS

comparing with other existing online algorithms, called
online scheduling algorithm [26] and ↵�fairness algorithm
[27], respectively. We also compare TORA algorithm with the
partial TORA algorithm, which is only the task preemption
process without resumption process by adjusting TORA algo-
rithm without parameter ⇢.

A. Simulations Settings
We consider a scenario with 20 tasks and 5 MEC servers

which covers 100m⇥100m area [28]. the bandwidth between
CE and MEC-SBS is 9MHz [29]. The transmission power
ranges from 1W to 2W randomly [8], and the environment
Gaussian noise is �s = �100dBm [29]. According to the
wireless channel model for cellular radio environment, we set
channel gain g = K · [d]�o, where K = 62.5, o = 4 and
d is the distance between CEs and MEC servers [30]. The
computation resource of each MEC server is characterized by
the number of CPU cycles per second, which is randomly
distributed from 6 ⇥ 109cycle/s to 9 ⇥ 109cycle/s [29]. Each
task is characterized by the input data size, which is randomly
released from 4MB to 6MB [28], and the number of required
CPU cycles for each MB is ⌘ = 1000cycle/MB. The revenue
for fully processed tasks is randomly distributed from 50 to
60.

B. Simulations Results
Figure 2 presents the impact of the number of MEC servers

on revenue. We consider the number of MEC servers ranging
from 5 to 25 while keeping the number of tasks fixed at 20.
Four algorithms are evaluated: the TORA algorithm, the partial
TORA algorithm, the ↵-Fairness algorithm, and the online
scheduling algorithm. In Figure 2, it can be observed that as
the number of servers increases, all algorithms converge to
a constant optimal revenue. This occurs because, despite the
increase in the number of servers, the total revenue remains
unaffected since the number of tasks is fixed. Additionally, it
is notable that all algorithms achieve the same revenue when
the number of MEC servers exceeds 20. This is due to the
fact that, in such cases, each server on average processes only
one task. Consequently, all tasks can be fully transmitted and
executed, regardless of the algorithm employed.

Fig.3 demonstrates the revenue affected by the number
of tasks, whose number is changing from 20 to 60 in the
simulations. It can be seen that for the TORA algorithm we
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Fig. 2: Revenue versus the number of servers.
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Fig. 3: Revenue versus the number of tasks.

proposed, 5 MEC servers can bear 30 tasks at most. For the
partial TORA algorithm, since the tasks that are preempted
cannot be resumed, when the number of tasks exceeds 40,
the frequent preemption of tasks causes a decrease in the
revenue. For the ↵�Fairness algorithm, with the number
of tasks increasing, the revenue decreases. That is because
when the tasks are released, they will divide the spectrum
and computing resources equally, which takes a long time to
finish processing one task and a great many tasks cannot be
completely executed before their deadline, so their revenue
cannot be harvested by the system. In this case, with more
tasks, the efficiency and the revenue of the system is lower.
For the online scheduling algorithm, it can be seen that the
revenue grows slowly with the number of tasks increasing, but
its revenue is the smallest among the four algorithms. When
the number of tasks reaches 60, the system cannot bear it, so
the revenue begins to decrease.

In Fig.4 analyzes the convergence of those four algorithms.
In this experiment, we set 5 MEC servers and 20 tasks
and evaluate the change of the revenue with the number of
iterations. It is observed that the online scheduling algorithm
reaches the minimal revenue, the revenue of the partial TORA
algorithm and that of ↵�Fairness algorithm are ranked second
and third respectively, and the TORA algorithm achieves
the maximal revenue and it owns the fast convergent rate,
meanwhile, saves the computation time, which can be seen
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algorithms.
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Fig. 5: Revenue versus the number of iterations under different
number of tasks and servers.

from Fig.6.
Fig.5 demonstrates the convergence and the revenue of the

TORA algorithm versus the number of MEC servers and tasks.
It can be seen that the algorithm we proposed owns the fast
convergent rate with 20 tasks and 10 servers, because in this
case, each server undertakes the least number of tasks. On
the contrary, the convergence of the algorithm is the worst
when there are 30 tasks and 5 servers, which means each
server processes the most tasks on average compared with the
other three cases. It is also observed that the TORA algorithm
reaches the most revenue with 30 tasks and 10 servers and the
minimal revenue with 20 tasks and 5 servers.

Fig.6 shows the performance of the execution time of those
four algorithms. In this experiment, we set the number of
tasks is 20, located close to 5 MEC servers, so that the
execution condition of our designed algorithm can be better
measured. It can be seen that the TORA algorithm takes the
shortest execution time. The execution time of the partial
TORA algorithm and that of the online scheduling algorithm
perform nearest. Since the ↵�Fairness algorithm focuses on
fairness, it takes the longest execution time. It is also observed
that the preemption rule and the resumption rule we proposed

Fig. 6: The execution time of different algorithms.
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Fig. 7: Revenue versus the number of iterations under different
value of ⇢.
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Fig. 8: Revenue versus the value of ⇢ under different number
of tasks and servers.

do not take extra startup time.
Fig.7 illustrates the convergence of the TORA algorithm

versus the value of ⇢. In this experiment, we set 5 MEC servers
and 20 tasks. It is observed that the algorithm owns the slowest
convergent rate and the largest revenue when the value of ⇢

is equal to 1. On the contrary, the algorithm owns the fastest
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Fig. 9: The execution time versus the value of ⇢ under different
number of tasks and servers.

convergent rate and the minimal revenue when the value of ⇢ is
equal to 2.5. Fig.8 shows the revenue of the TORA algorithm
versus the value of ⇢ under different numbers of tasks and
servers. From Fig.8, notice that with the increasing of the value
of ⇢, regardless of the number of tasks or servers, the revenue
will decrease. It is because a larger value of ⇢ means that the
conditions for the resumption of the tasks that are preempted
are stricter. Thus, when ⇢ rises from 1 to 2.5, the number
of fully processed tasks is decreasing which leads to lower
revenue. Fig.9 demonstrates the performance of the execution
time affected by the value of ⇢. It can be seen that when the
value of ⇢ increases, the execution time decreases. Similarly,
since the increase of the value of ⇢ causes a decrease in the
number of fully processed tasks, the execution time of the
TORA algorithm will be shortened.

VII. CONCLUSION

In this paper, we designed an online data-driven schedul-
ing mechanism to address the computational offloading of
deadline-sensitive tasks. Initially, we formulated an online
revenue maximization problem to ensure tasks were fully
transmitted and computed within their respective deadlines.
To tackle this problem, we devised a practical two-step online
resource allocation algorithm comprising an online spectrum
resource allocation algorithm and an online computing re-
source allocation algorithm. Additionally, we used duality
theory to verify the competitive ratio of the TORA algorithm.
Simulations from the revenue increase and execution time
improvement demonstrated the superiority of our scheduling
mechanism.

APPENDIX

First, for every task xj 2 X
p and t 2 ⌦j , we can get the

following geometrical relationship as:
X

m2M

Z 1

o
m(t)dt 

X

m2M

(1 + ⇢)

Z 1

0

�⇢
m (t)dt. (25)

Proof: Notice that m(t) denotes tasks from task set xj 2
A(t) ^ xj 2 X

p to be executed at time t, satisfying m(t) �

⇡
m
js(t)/c

m
js(t) during time interval t 2 ⌦j . 

�⇢
m (t) denotes

tasks from task set xj 2 A
�⇢(t) ^ xj 2 X

p to be executed at
time t, satisfying 

�⇢
m (t) � ⇡

m
js(t)/c

m
js(t) during time interval

t 2 ⌦�⇢
j . Thus, we get that �⇢

m (t) ✓ m(t), denoting 
�⇢
m (t)

is the subset of m(t) at each time t 2 ⌦�⇢
j . At the time, if we

execute task xj from task set m(t), and task xj0 from task set

�⇢
m (t), this inequation ⇡

m
j0s(t)/c

m
j0s(t)  ⇡

m
js(t)/c

m
js(t) will

be satisfied. Thus, when t 2 ⌦j , the following geometrical
relationship is derived:

X

m2M

aj � ⇢uj(t)� aj

aj � rj

Z 1

o
m(t)dt


X

m2M

Z 1

0

�⇢
m (t)dt.

(26)

According to the definition of available time of task, we
find that aj � rj � (⇢ + 1)uj(t), getting that uj(t)

aj�rj
 1

⇢+1 .
Then by transposition, the formula (26) can be simplified into
the followings:

X

m2M

Z 1

o
s(t)dt

 1

(1� ⇢
uxj

dxj�axj
)

X

s2S

Z 1

0

�⇢
s (t)dt.

(27)

Thus when the value
uxj

dxj�axj
is equal to 1

⇢+1 , the geomet-
rical relationship is satisfied. With the above, this completes
the proof of Lemma 1.
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