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Abstract. In this paper we develop and analyze a variational data assimilation method with
efficient decoupled iterative numerical algorithms for the Stokes—Darcy equations with the Beavers—
Joseph interface condition. By using Tikhonov regularization and formulating the variational data
assimilation into an optimization problem, we establish the existence, uniqueness, and stability of
the optimal solution. Based on the weak formulation of the Stokes—Darcy equations, the Lagrange
multiplier rule is utilized to derive the first order optimality system for both the continuous and dis-
crete variational data assimilation problems, where the discrete data assimilation is based on a finite
element discretization in space and the backward Euler scheme in time. By rescaling the optimality
system and then analyzing its corresponding bilinear forms, we prove the optimal finite element con-
vergence rate with special attention paid to recovering uncertainties missed in the optimality system.
To solve the discrete optimality system efficiently, three decoupled iterative algorithms are proposed
to address the computational cost for both well-conditioned and ill-conditioned variational data as-
similation problems, respectively. Finally, numerical results are provided to validate the proposed
methods.
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1. Introduction. Data assimilation seeks to optimally incorporate observations
into a physics model for improving performance of the state forecast. This technique
is employed in many applications, such as weather prediction [14, 15, 77], ocean state
forecasts [2, 41, 79], geoscience [12, 81, 85], and chemistry transport [58, 82, 84],
among many others. Currently there are several main categories of data assimilation
techniques. One category includes the statistical methods based on the Bayes’ theorem
and the Kalman filtering approach, which evolve the state vector along with time
according to error statistics [1, 3, 36, 65, 69, 76]. Another category includes the
variational methods based on the optimal control theory, which minimizes a cost
functional measuring the discrepancy between the state variable and the observed
data [11, 26, 38, 43, 61, 70]. The nudging method and continuous data assimilation
are also important and popular data assimilation techniques; see [7, 8, 42, 68, 72, 75,
90, 92]. In this paper we discuss a variational method to solve the data assimilation
problem for a Stokes—Darcy interface model.
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The Stokes—Darcy model has attracted significant attention due to its potential
applications to a variety of flow phenomena, for instance, the hydrological system
where surface water percolates through rock and sand [21, 24, 27, 30, 33, 45, 46, 56],
petroleum extraction [4, 5, 22, 39, 40, 51, 52, 64], and industrial filtration [35]. In
recent decades, there has been significant effort to study this sophisticated interface
system and its variations both theoretically and numerically [6, 9, 13, 16, 18, 23,
25, 28, 29, 31, 32, 34, 44, 47, 53, 54, 57, 60, 62, 71, 73, 78, 80, 83, 91]. However,
these works were dedicated to the idealized model, i.e., the relevant input data, such
as initial condition, boundary condition, sink/source term, and diffusion coefficients,
are entirely provided for the model prediction. In real implementations, some of
these input data literally remain unknown or in uncertainty. Therefore, one of the
challenging problems is to identify a set of faithful input data such that the forecast of
the target flow can be estimated reliably. This is where the data assimilation comes in.

A primary interest of this paper is to investigate a variational data assimilation
(VDA) for the Stokes—Darcy model and develop decoupled iterative numerical al-
gorithms to efficiently solve the VDA problem. Through theoretical derivation and
numerical iteration, we focus on identifying a faithful initial condition for the model
such that the flow state can be better predicted. To be able to construct reliable
efficient iterative numerical algorithms, we first need to mathematically formulate the
VDA problem, and then rigorously carry out the corresponding theoretical derivation
and analysis as a solid foundation. Our approach to achieve the goal is to incorporate
the noisy observation into the Stokes—Darcy model through an appropriately designed
cost functional, where the L?-Tikhonov regularization is utilized, and the discontinu-
ity on initial condition is admitted. The data assimilation problem hereby becomes
a minimization problem. Existence and uniqueness of such a minimization problem
are established. Stability with respect to the perturbation on observations and the
regularization parameter is also proven. The Lagrange multiplier rule is utilized to
derive the first order optimality system (OptS) for both the continuous and the dis-
crete VDA, where the discrete VDA is constructed based on a finite element method
(FEM) and the backward Euler scheme. Afterward, we analyze the convergence fea-
tures between the discrete optimal solution and the solution to the continuous data
assimilation problem. Particularly, with smooth enough input data, we prove the
optimal finite element convergence rate. The analysis is carried out by rescaling the
continuous OptS and rigorously proving its essential properties, such as Garding type
coercivity and continuity, for relevant bilinear forms. The necessary auxiliary equa-
tions are then delicately introduced in order to fill in the gaps or difference between
the classical partial differential equations (PDEs) and the PDEs in the optimality
systems. The optimal convergence rate is finally achieved by transferring the con-
vergence behavior of the VDA problem to the convergence results of the classical
Stokes—Darcy equation and a backward Stokes-type equation. All of these theoretical
works lay a solid foundation for both the numerical computation of the VDA and
the further development of efficient numerical algorithms. Hence we finally develop
three decoupled iterative algorithms based on the conjugate gradient (CG) method,
the BFGS method, and the steepest descent (SD) method, which greatly reduce the
computational cost for solving the discrete optimality system.

The outline of this article is as follows. In section 2, we introduce the basic
formulation for the Stokes—Darcy model and provide the necessary mathematical pre-
liminaries. In section 3, we prove the well-posedness of the continuous data assimi-
lation problem and derive the optimality system. In section 4, we discuss the finite
element approximation to the continuous data assimilation problem and present its
convergence analysis. In section 5, three iterative methods are presented to address
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the extreme computational cost. In section 6, numerical experiments are presented
to verify the proposed methods. In section 7, we draw some conclusions.

2. Mathematics formulation of the Stokes—Darcy model. We consider a
free flow in a bounded domain 2y and a porous media flow in another bounded domain
Q,. These two flows are coupled together in the domain € through the interface
I'=0Q,N Q¢ such that Q =Q,UQ;. We also let I, =90, \T' and I'y =90, \T. A
Stokes—Darcy model can be used to describe this coupled fluid phenomena, in which
the porous media flow is governed by the Darcy equation,

%‘f—v-(Kw):fp in€, x (0,7,
@1) 6(-0)=dy in®,
¢=0 onl),

where ¢ denotes the hydraulic head, K is the hydraulic conductivity tensor assumed
to be positive definite, f, is a sink/source term, and the free flow is governed by the
Stokes equation,

ou .
Fn -V -T(u,p) =f; inQyx (0,77,
(2.2) V-u=0 ian X (O,T],

u(',O):'U,O in Qf,

u=0 only,

where u denotes the fluid velocity, T(u,p) = 2vD(u) — pl is the stress tensor, D(u) =
%(V'u + V7Tu) is the deformation tensor, v is the kinematic viscosity of the fluid, p is
the kinematic pressure, and f; is a general external forcing term. Systems (2.1) and
(2.2) interact on T' through the Beavers—Joseph interface conditions [10, 17, 19, 20,
48, 63, 74, 88, 89

u-ng=KVp-n, —7-(T(u,p) ns)=ar- (u+KVg),
—ny - (T(u,p) -nf) =g(¢ - 2),

where nny and n,, denote the outer normal vectors to the fluid and the porous media
regions on the interface I', respectively, 7 denotes the unit tangential vector to the
interface I', «v is a permeability constant depending on v and K, g is the gravitational
acceleration, and z is a constant assumed to be 0 from now on.

For the purpose of discussing the data assimilation problem, it is necessary to
appropriately understand the Stokes—Darcy model. We first define the Hilbert spaces

X, = {p € H' (%) $=00n 99, \T},

Xyi={ve H (Qy): v=_(v1,v2)" =0 on 99\ T},

X=X, x X}, Xgiv;:{veXf:V-'U:O}, Xdiv::X;DXchiiv’
Q=L (), L*():=L() x L* (%)

(2.3)

and the corresponding norms

Nl

1l x, =¥l @, vlx, = H’UHHl(Qf) = (||U1H%11(Qf) + ||U2||§11(Qf)) 5
1
IVIx = (lvl, +191%,)% lvllxs = lvlao,)

IVIixa = (0%, + 1415,

1
2

Nl

, IVilzz @) = (#1220, + 101720,))
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For a domain D, (-,-)p denotes the L? inner product on D, and (-,-)y denotes
the inner product for other Hilbert spaces H(D). Depending on the context, (-,-)
can represent the inner product on the interface I' or a general duality between a
Banach space and its dual space. For simplicity, let || - || denote all the L? norms and
H™(D) denote the Sobolev space W™ 2(D). Besides, considering the temporal-spatial
function spaces, let LP(0,7;8) = W%?(0,T;B) and H™(0,T;B) = W™2(0,T;B),
where B is a generic Banach space. We use these notations to define the following
bilinear forms and linear functionals:

(2.4)
ap (¢,9) =(KVo, V), Vo, € Xy, ay (u7v):21/(ID)(u),]D)(v))Qf Vu,v e Xy,
a(U,V)=as (u,v) +ap(¢,%) + (99, v -ny) — (u-ng, )
(2.5) + a(P: (u+KV¢),Pv) YU =(p,u)’ € X,VV = (4,v)T € X,
(2.6)
by(v,p)= = (V-v,p)g,, b(V,p)=bs(v,p) Vwe Xy VV = (Y, v)" € X, ¥peQ,
(2.7)
<F3V> :(fpaw)ﬂp + (ffav)ﬂf VF = (fpaff)T GX/7 vV = (¢7U)T €X7
(2.8)

oU _ % 57’11/ . T 1 v _ T
<8tav>_<atvw>+<atvv> VU_(¢7U) GH(O7T7X)aVV_(va) EXa

where P, denotes the projection onto the tangent space on T', i.e., Pru = (u-7)7. For
(Pr(KV¢), Prv) in (2.5), we need the trace space defined as H(l)(/)2 (T'):=X¢|r, which
is a nonclosed subspace of H(l)/ 2(I') and has continuous zero extension to H(l)/ 200 )i
(Pr(KV¢), Prv) is then interpreted as a duality between (H(l,(/)z(F))’ and H(l)éz(F).
See [20] and references cited therein for more details.

We use bilinear forms a(-,-) and b(-,-) to define linear operators A, A*, B, and B*:

(29)  aU,V)=(AU,V)=(U,A"V), b(V,p)=(BV,p)=(V,B"p),

where A € £(X,X'), Be ¥(X,Q), A* € Z(X,X'), and B* € £(Q,X’) are the
adjoint operators of A and B, and .Z is a collection of linear and continuous operators
in the relevant spaces.

Testing systems (2.1) and (2.2) with (¢,v,¢)" € X x Q and incorporating the
three interface conditions (2.3), we obtain the weak formulation of the Stokes-Darcy
model:

(2.10)

B

(Gt +an(00) — twomgoo) = Ut V0E X,
<%§L,v>+af(u,v)+bf(v,p)+<g¢,v~nf>+a<PT(u+]KV¢),PTv):<ff,v>
V’UEXf,

by(u,q) =0 VgeQ,

#(-,0)=¢o in L*(), u(-,0)=ug in L*(Qy).

By definitions in (2.4)-(2.9) and denoting Uy = (¢, uo)?, (2.10) is equivalent to the
following expression:
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<?Z’V>+G<U7V>+6(V7p)<ﬂv> YV e X,
b(U7Q):O Vq € Q,
U(,0)=U, inL*Q).

(2.11)

An operator form of (2.11) can be written as

%—lt] +AU +B*p=F inX’,
(2.12) BU=0 i@,

U(-,0)=U, inL*(Q).

If we consider BU =0 € ()’ in the above as a constraint and restrict the discussion in
space X giv, & more concise form of (2.12) is

oUu

— +AU=F inXJ);
(2.13) ot S div

U(-,00=U, inL*(Q).

Recalling that (2.10), (2.11), (2.12), and (2.13) are all equivalent, the well-posedness
of each is further guaranteed by the continuous inf-sup condition [20]:

(2.14) inf s b(V.q)

up ———————— >3, Bis a positive constant.
0£a€Qoxvex llallo IV x

For each Uy € L*(Q) and F € L*(0,T; X’), the coupled Stokes-Darcy system (2.12)
admits a unique solution (U,p) € L*(0,T; X) N H*(0,T; X') x L*(0,T;Q) (cf. [18]).
We use formulation (2.12) to define the operator F : L*(0,T;X) N H'(0,T;X’) x
L2(0,T;Q) x L*(Q) — L*(0,T; X') x L*(0,T; Q") x L*(Q),

U %W+ AU +B*p—F
Flp|= BU
Uo U('vo)_UO

With a simple calculus of variation, one can see that the Fréchet derivative operator
F' is a bijective mapping, and the surjective of F’ is thereafter self-contained. These
basics later will allow us to use the Lagrange multiplier rule to find the optimal
solution for cost functionals constrained by the Stokes-Darcy equation. In addition,
throughout this paper, C, C;, C7, and C; j are generic positive constants that are
independent of the mesh parameter h and the time step 7 and are not necessarily the
same at each occurrence.

3. Data assimilation of the Stokes—Darcy model. Letting Y ,4 be an ad-
missible set for the initial value that could be either L?() or a closed convex subset
of L*(Q), we look for a solution to our data assimilation problem stated as follows:

given T > 0, v > 0, and the distributed observation U = (¢,%)7 € L2(0,T; L*(2)),
the VDA of the Stokes—Darcy model is

. JRVEPS Y .
(3.1) piuin J(Up) = 5/0 U —UUy)|2dt + §HU0||(2) subject to (2.12),

where the mapping U (Up) : L*(Q) — W(0,T) = L*(0,T;X) N H*(0,T;X’) is
defined as the solution of (2.12) with initial condition Ugp. The minimization of
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%fOT U — U(Up)||3dt in (3.1) is the primary goal, which drives the state variable

U (Uy) close to the distributed observation U via adjusting the initial data Ug. The

second term 2 [|Upl|3 is a L?-Tikhonov regularization. The parameter v balances

the re21ative importance of the minimization between terms fOT |U — U(Up)||3dt and
Uollg-

: ﬂ’orovided that F, U e L? (0,T; L*(Q)) and 9 and I are regular enough, we have

the following existence and uniqueness result.

THEOREM 3.1. There exists a unique solution UJ €Y qq for the data assimilation
problem (3.1). Furthermore, the solution Ug can be characterized by the variational
inequality:

T A~
T Z0-U5) = | [ W) - 00 (Z0) - U W)y
(3.2) 0o Ja
+v/ U (Zo—Ud)dzdy >0 VZo€Y a.
Q

Proof. Since J(Up) is nonnegative and thus bounded from below, the infimum
exists. Then let {Ug} € Y,q be a minimizing sequence such that J(U{) —
infyyey,, J(Uo). Note that J(Ug) > 2||Up||2 gives the boundedness of the sequence
{Uy} in L?. By the Eberlin-Smulian theorem, a bounded sequence in Hilbert space
has a weakly convergent subsequence. Therefore, we have a subsequence U (')Lk — Uy
weakly as k — co. Since the closed and convex set in L? is weakly closed, we have
Uy € Y,q. We know that the norm is a continuous functional, and the mapping
U(Uy) : L*(Q) — W(0,T) is continuous because of the well-posedness results of
Stokes-Darcy equations [18]. Hence the composite cost functional J(Up) is continu-
ous. Combining with the convexity of J(Up) that can be seen in (3.3), we claim that
J(Up) is weakly lower semicontinuous. Hence,

1

T
IO =TI+ 5 [ 1UWF) - Olfde < timint U3
0 — 00

= 1 < *
Uolenlf’ad J(Uy) <J(Uy),

which implies that U} is a minimizer we need.
By the linear property of the Stokes—Darcy equation, one can find out that J(U))
is Fréchet differentiable and its second order derivative can be calculated as follows:

(3.3)
T
J”(UO)(ZO,ZO):/ /UQ(ZO)dxdydtﬂ/ Zidxdy > || Zoll2 VZoEY aa
0 Q Q

Based on (3.3) and a standard argument for convex minimization we know the min-
imizer U is unique. Further, a calculus of variation of J(Uj) with respect to Uy
characterizes Uy as

T
TUZ0-Uy) = [ [ 0W3) ~0)U20) - U W) ddya
+ ’7/ US(ZO — US)dxdy >0VZo €Y g
Q

This finishes the proof. ]

Next, we show that the solution of problem (3.1) is stable regarding the pertur-
bation of the observational data U and the regularization parameter .
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THEOREM 3.2. The solution of problem (3.1) continuously depends on the obser-
vational data U and the parameter .

Proof. Introducing perturbations e; € R on v and €3 € L?(0,T; L*(Q)) on ﬁ,
respectively, and letting Uy denote the perturbed optimal solution, we have

T
| [ W@ -0 -e)w(z) - U@y

(3.4)
+(’7+61)/ Uo(Zo—ﬁo)dxdyZO VZo €Y qa-
Q

Taking Zo=Uy} in (3.4) and Z = Uy in (3.2), we obtain
T

| [©@0) -0 - ) Ws) - U@)dudyit + (3 + ) | DU - Uo)dady >,
0 JQ Q

T
| [ 0@y -0)w @) -0 W;) syt + | U300~ U)dady > 0.

Adding the two inequalities together, we have

/O /Q (UU}) — U00)) dedydt + (7 + 1) /Q (U — Uo)2dady
(3.5)

T
< / / e(U(Uy) — U(U}))dzdydt + 61/ Us(Uy —Ug)dzdy.
0 Q Q

Applying the Cauchy—Schwarz and Young’s inequalities for the right-hand-side terms
n (3.5), we have

(3.6) // U ((U3}))dzdydt < = // (UG) —U(Uy))*dwdydt

+ *||€2HL2(0 T:L2(Q))>

le1]

(37) 1 [ Ua(; - ooy < 0513+ 51

(US —Uy)*dxdy.

Combining (3.5)(3.7) and setting |e;| < 4, we obtain the inequality

(3.8) / / (U?) — U () dedydt
Q
lex]| 77
+3 [ 3= O0Pdedy < Sleallnioiaacan + 5 U313,

which implies that the solution of problem (3.1) continuously depends on the obser-
vational data U and the regularization parameter ~. O

Remark 3.3. Continuing on (3.5), another treatment of the term fOTfQ e(U(Uy)—
U (Uy}))dzdydt in (3.5) will produce a different stability estimation:

Y =z 1 |€1| *
(39) 3 [ U= 00 dady < fleala pisaan + 3 ITG1:

Inequality (3.9) provides perspective on how parameter 7 affects the stability of solu-
tion, i.e., small v will cause ill-conditioning of the data assimilation system.
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To find out the unique optimal solution that minimizes the objective functional
in (3.1), we apply the Lagrange multiplier rule which is apparently available due to
the property of the operator F (surjective of F') shown in section 2. The Lagrange
functional is formed as

1"
B10)  LOUpU0) =5 [ 10U+ FI00IE + A FO.p.To)"),

where A € L*(0,T; X")nH"(0,T; X')x L?(0,T; Q") x L*(Q)' is a Lagrange multiplier.
Since Hilbert space is reflexive, X x @Q and X” x Q" are therefore isometric. The
element in dual space of a Hilbert space can be identified by the element in the Hilbert
space itself. Hence, using the definition of operator F, (3.10) then can be rewritten
as

(3.11)
* ok * 1 r 77 2
‘C(U P 7U ('70)aUap7U0):§ HU_UHOdt
0

T
ouU
+1||U0\|§+/ — +AU + B*p— F,U* )dt
2 o \ Ot

T
+ / (BU.p)dt + (U(,0) — Uo,U*(-,0))
0
7]- r > 2 Y 2 T aU *
—5 [ 1T -t Jiwali+ [ (50"
T T
+/ a(U,U*)dt+/ b(U*,p)dt
OT 0
4 / b(U.p*)dt + (U(-,0) — Up, U*(-,0))
0
T

—/ (F,U*)dt.

0

Variations in the Lagrange multipliers U*, p*, and U*(-,0) recover the constraint
equation (2.12). Variations with respect to U, p, and Uy yield

T T oV T T
/ (U—U,—V)dt+/ <,U*>dt+/ a(V,U*)dt+/ b(V,p*) dt
0 0 ot 0 0

+(V(-,0),U*(-,0))=0 VYV e L*(0,T;X) x H'(0,T;X’),
T
b(U*,q)dt=0 Vqe L*(0,T;Q),

(3.12)

Y(Uo, Zo) — (Zo,U*(-,0)) =0 VZ,€ L*(Q).

Taking integration by parts with respect to time for fg(%—‘;, U™)dt in the first equation

of (3.12), we obtain

T =R T U™ T
/(U—U,—V)dt+(V,U*)|0T—/ <,V>dt—|—/ a(V,U*)dt
0 0 ot 0
T

+/ b(V,p*)dt + (V(-,0),U*(-,0)) =0.

(3.13)
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Choosing U*(-,T") = 0 and simplifying (3.13), we have

T T *
U*(.,T):o,/ (UfU,fV)dtf/ <3U ,V>dt

T T
+/ a*(U*,V)dtJr/ b(V,p*)dt=0,
0 0

(3.14)

where a*(U*, V) is given as

a”(U*, V) =2v(D(u*),D(v))g, + (KV", Vi), + (gu™ -ny, )

(3.15)
—(¢",v-ny5) + a(P-u*, Prv) + o Pru”, P (KV)).

Note that (3.15) is essentially a consequence of swapping terms related to V and U*
of a(V,U*); this is because (AV,U*) =a(V,U*) =a*(U*,V)=(A*U*,V).
Summarizing all operations from (3.10)—(3.15) and using the definition of dualities
and bilinear forms in (2.4)—(2.8), the optimal solution Uy is attained by solving the
following coupled equation systems in a weak form:
the forward state equation

<?;f7,¢)> +ap(6,0) = (u-ng,¥)=(fp.0) VYEX,,

<881;’v> +as (u,v) + by (v,p) + (g, v -ny) + a(Pr (u+KV¢), Pv)
:<ff"u> Yve Xy,
br(u,q)=0 VgeQ,

¢(',0):¢0 ¢O€L2(Qp)7 u('70):u0 quLQ(Qf)v

(3.16)

the backward adjoint equation

- <a¢’* w> T ay (6%, 6) + (gu* -mg, ) + a(P,ut, P, (KVY))

ot’
=(¢—0,0) VieEX,,
(3.17) - <8(,’;5,v> +ay(u*,v) + by (v,p*) — (9%, v -ny) + a(Pru*, Pv)

=(—u,v) YveXy,
by (u*,q)=0 Vgeq,
¢*('7T) :07 u*(aT) :Oa

and
(318) ¢0:;¢*(70)7 ’U’O:*,u‘*(70)

The coupled system (3.16)—(3.18) is the first order necessary optimality system.
The minimization problem (3.1) is strictly convex, thus the first order necessary con-
dition is also sufficient.

4. Numerical approximation. In this section, we propose a fully discrete ap-
proximation of the data assimilation problem (3.1), which is based on a finite element
discretization in space and the backward Euler scheme in time.
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For spatial discretization, we consider X" = X;} x X ? and Q" being pairwise well-
defined finite element subspaces of X = X, x X ¢ and @, respectively. These families
of spaces are parameterized by the mesh size h that tends to 0, and we assume these
finite element spaces satisfy the inf-sup condition, i.e., there exists a positive constant
[ such that

b(V
(4.1) in su _bV.a) > 5.
0#9€Q" gty c X ||‘ZHQ VIx
For the time discretization we uniformly construct a time grid 0=ty <t; <--- <
tp < -+ < ty = T with time step 7 = % Letting I, = (tn—1,tn] denote the nth
subinterval, we use the finite-dimensional space

X, n={V:[0,T] - X":V|;, € X" is constant in time}.

Let V', be the value of V), € X5, at t,, and X be the restriction to I,, of the
functions in X, p.

Given specific h, 7, v >0 and an admissible set YZd = X"NY 4 for the possible
initial values, the fully discrete approximation of problem (3.1) is stated as

N
. 1 ~n
(4.2) min_ Jy(Uon) =57 Y 0" —~ULIZ+ LUl
Uy €Yh, 2 ot 2
subject to
urtt —uy

- + AU 4 Bt = P in (XY
BUZ—H -0 in (C2h)/7
UO = UO,h in Xh.

(4.3)

Similar to the proof for the well-posedness of the continuous data assimilation
problem (3.1), one can prove the well-posedness of the fully discrete data assimilation
problem (4.2)—(4.3).

THEOREM 4.1. Given T = % and mesh size h, for every fixed reqularization

parameter vy, there exists a unique optimal solution U, € YZd such that the cost
functional (4.2) is minimized. The optimal solution continuously depends on the ob-
servation data U and the parameter .

Furthermore, one can also observe that small v will reduce the stability of the
discrete data assimilation problem.

We expect that the optimal discrete solution of (4.2)—(4.3) converges to the solu-
tion of (3.1). That is, given a fixed v, Ug ;, — U should be attained when the time
step 7 and finite element mesh size h tend to 0.

THEOREM 4.2. For a fized reqularization parameter =y, let {Ug’h}h,7>0 be the
corresponding sequence of minimizers of the discrete data assimilation problems (4.2)—
(4.3). Then {Ug ,}nr>0 converges to the continuous optimal solution Ug as h — 0
and T — 0.

Proof. The proof is a general extension from results in [59, 87]. It is not difficult to
see Jn(Ug ) < C for some constant C' independent of 7 and h. Then the coercevity
of J,(Ug ) implies the boundedness of {UF ,,} in L?*(Q). Hence we can extract a
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subsequence {U§ .} from {U7 ,} such that {U7, ;,,} converges weakly to p* in L*(9).
Recalling the Lemma 4.4 in [87], we have

N T
. 1 T n * 2 1 - *\ 112
i 570" ORI 5 [ 10 - U
Thus, for any V €Y .4, by the weakly lower semicontinuity

< , — /
J(p") <liminf T;”U ~ U (Us )5+ hmmeUOhno

(4.4) <liminf J (U7 1) < hm 1nf Jp (7 (V)

h' =0
1

T
- g
=3 | 10-UWa+ JIVIE=Iv).

where 73, is the L? projection operator from Y 4q to X™. Then (4.4) and the unique-
ness result in Theorem 3.1 imply p* is the optimal solution of the problem (3.1) and
thus the theorem is proved. 0

In order to derive the discrete optimality system and solve for the optimal solution,
we formulate the discrete Lagrange functional:

E(l_]haﬁhaUO mUZ@ZaUZO)
N-1
*TZ 1" —up + ||Uo,h||3+7 > (BUL T
(4.5) =0

U;H_l Uh n+1 * n+1 *M
+¢Z d + AU + Bt — F, o, UG,
+ (Uh — U, U3,

where U, = (UY, U}, U%,....UY), U, = (Ufll,U;?,...,U;‘LN_l), o = (pl,p2,
P3yeopN), and B = (010, pit, 0202, .., ppN ). By a few manipulations on U},
U;" and using the adjoint notation a(U,V) = (AU,V)=(U,A*V)=a*(V,U), we

reorganize (4.5) as

(4.6)
L(Uhapha UO,ha UZaﬁZ? UZO)

a N-1
1 “n , ) *
:§TZHU — hl”%+%HUO”’H%"’_TZ(BUZH,}?{L +TZ (Bt U
n=1 =0

s N-1 Un+1 U
+TZ<AUZ+1,UZTL>—TZ<FH+I7U’;‘:L>+ Z<Th U*n>
n=0 n=0 "0

+ Uy UM — Uy, U+ (U - Uo e U0)

N N
]. ~ N n *1— * M *MN—
=S I0" - URR + HUOh||o+TZ BUL" )47 BT
n=1

n=1
N N U™ 1 U*n
Fr S AL U - S (R U z< h >
n=1 n=1 n=1

+UY,UN) = (Uop, U3,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/24 to 198.21.163.153 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VDA AND ITERATIVE ALGORITHMS FOR STOKES-DARCY S153

Variations in the Lagrange multipliers (_]Z, Dr,and U ZO recover the constraint equation
(4.3). Variations with respect to Ug , U}, and pj yield

aﬁ(ﬁhapha UO,ha 027]527 U;;,O)

(4.7) U, Zi=(Uon, Z5)— (U, Zf) =0 VZieYl,
(4.8)
LU, o, Uopn, U, 5t U vt -ur
( hsDPh; 8071—;:7; h:PrsYh )Vh:T< h - h ,Vh>+T<A*U;;n_1,Vh>
h
+ T<thap;;n_1> - T(ﬁn - UZ7Vh)
=0 VWW,eX" n=1,....N—1,
(4.9)
LU, o Uon, U, 5t UL U:N-t
( hyPhs 6(;,}1]’\[ hProYn )Vh :7_< h 7Vh +T<A*U2N_1,Vh>
h
_ ~ N
+7(BVLpN ) —7(U - U, Vy)
=0 VV,eX"
(4.10)

LU, pn,Uon, Uy, 04, UR)
opp
Using (4.7)—(4.10) and the fact (BV,,p;" ") = (B*p;"~', V), we obtain the discrete
optimality system, n=0,...,N — 1,
vyt -up

an=(B*qn,U;" ") =0 Vg, €Q", n=1,...,N.

- + AU + Brpitt = F*Y BUTT =0, U, = Uy,
*n+1 *N
@11y ¢ Uy Uy et

1
h 4*[7—;;n B* Zn U UZ“, Blz—zn O7 ler O,
T

1
Uoyp=-U;.
v

In addition to the general convergence result in Theorem 4.2, one may be more
interested in how the convergence behaves in practical simulations since it will help
us properly set up discretization parameters for different scenarios. In the rest of this
section, we focus on proving that under enough smoothness assumptions on U, U,
and U™, the optimal finite element convergence rate is preserved for each of them.

Recall that the discrete optimality system (4.11) coincides with the direct full
discretization of (3.16)—(3.18) in the sense of the operator form. (4.11) thereby shares
lots of similarities with the discretization of classical PDEs except for a few special
terms. Therefore, instead of directly investigating the error equation between (4.11)
and (3.16)—(3.18), we can utilize the FEM results from classical PDEs to study the
convergence behavior in the data assimilation problem.

Before doing so, we need to rescale (3.16)—(3.18) such that the rescaled formula-
tions possess crucial features for our analysis. The rescaling is achieved by multiplying
the second equation in (3.16) and the first equation in (3.18) with n, respectively, the
corresponding rescaled bilinear forms are as follows:

an (U7V) =nafr (’LL,’U)—FCLP (¢a¢)+77<9¢a1’ 'I’Lf> - <U'I’Lf,’(/}>
+nalP, (u+ KV9), Pyo),
a, (U*, V) =ay (u*,v) +na, (¢",%) + n{gu™ -ng,¥) — (¢*,v-ny)
+ a{P-u*, P;v) + na(Pru*, P, (KVY)).
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As stated in the following lemma, both a,(U, V') and a;(U*, V) are coercive in
the sense of a Garding type inequality, and this property will be frequently used in
the convergence analysis.

LEMMA 4.3. For appropriately chosen positive rescaling parameter n, there exist
constants C1 .y, Cay, C3.y, and Cyy such that a,(U,V') and ay(U*, V) are coercive
in sense of the Garding type inequality:

(4.12) ay (U, U) + CryllUF = Coy U %,
(4.13) ay (U*,U*) + C3,|U*[[§ = Ca|U* %

Proof. We first prove the coercivity of the adjoint bilinear form ay(U",U"). Ac-
cording to the Korn, Cauchy—Schwarz, Poincaré, Young, and trace inequalities, we
deduce (cf. [20, Lemma 3.2])
ay (U*,U*) + C3,|U*|3
= Cs4|U*[[§ +20 (D (u*) D (u*))g, +0(KVe*, Vo )a, +n{gu* - ny,¢")

— (", u" - ny) + o(Pru”, Pru™) + na(Pru”, P (KVe™))
> Ca | U* (|5 + 20D (w*) [[§ + 7 Aumin (K) VO™ ([5 = ngCr [ Va* 1§ [lu*lIg [V 6* (1§ 19"l
1 * 1 * 1 * 1 * *
+al | Prut||7e iy — Cull Va3 [[u*(I5 1V (15 16* 15 — nedmax (K)[[Va™[[ol| V™ ||o
Amin(}K)

* * * n *
> G [U° I +2Con I3 + nhmin ()96 [ — 2222 e
(Cilng+ 1) .o |2 |2
s = 26— vV o I
2312
no )‘max K * n/\miH(K) *
- 2ol gy - Petal g

_ 1 * (12 (01(779+1))4 * 12
= (o~ a1 + (O — G Dy 0

232 (K Amin (K
no max( ))Hvu*||(2)+77 2( )

+ (Col/ — )\min (K)

Ve 13,

where C; are generic constants depending on €2, or I, or both Q and T, A\ (K),

Amax (K) are the smallest and largest eigenvalues of matrix K, and (P, u, P (KV¢)) is

understood as the duality between H(I,(/)2 (T") and (Hcl,(/,2 (T"))’. In addition, the bounded-
1 1 1 1

ness of —(ng+1)C1||Vu*||g |u*||g|[Vo*||E]l¢*||¢ in the above is considered as follows:

— (g + DCIVur(Ig [w*lIg IVe™ll§ 19716
o _IVurfollurlo _ ((ng + 1C)* [V6* [loll$* o
- 2 2
1 nAmin(K)

1600V 4

(Ci(ng +1))*
477)\min (K)

> —Cov|[Vu*(l§ — IVe™|lg — o™ 13-

15 —

Once one chooses 7 and Cj ), satisfying

COV)\min (K)
a2, (K)

max

(Ci(ng +1))*

and Cs,; > max{ 16Cor"  4nAmin(K) h
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then there exists a positive constant Cj , such that
a, (U, U") + Cs 5 [[U[§ = Cun U™
Furthermore, one can proceed with an argument similar to the above and identify n

. 4
and C, satisfying n < %ﬁ and C1, > max{ (Cléggjul)) , 8/\mi1n(1K) }; then there

exists a constant Cs,, such that

ay (U,U) + Cry|U; = C2 U |-

The proof is finally completed by choosing 0 < 1 < min{ i%l:\’\gm‘“(%), i‘;‘:\);‘“‘“(%) }. ]

Remark 4.4. In this paper, we consider «, K, v, and g as given constant param-
eters. Then C}, above, i = 1,2,3,4, are constants depending on {2 and I'. We may
later emerge Cj ,, to a generic coefficient Cq .

The following lemma is for the continuity of a,(U,V) and a;(U*,V), which
follow naturally from a group of standard inequalities, such as the trace, Korn’s, the
Cauchy—Schwarz, and the Poincaré inequalities.

LEMMA 4.5. a,(U,V) and ay(U*,V') are continuous, i.e., there exist constants
C depending on Q, T', n, g, a, K such that

(4.14) ay (U, V) <CU|x[IV]x,
(4.15) a, (U, V) <CU"||x[Vlx-

Proof. We provide only a brief proof for the adjoint bilinear form a,(U*,V),
since the proof of the other one is similar. We have

a; (U, V) < 2050w || x, [l x, + Crndmax(K)[[¢* |1 x, 10 x,
+Ca(1+ng)lw || x, 1] x, + Csollu” || x, vl x,
+ ConoAmax (K)l|w* | x, [ ¥l x,
< Css(llurllk, +1071%,) 2 (olk, + Ivl%,)?
+Cuslulk, +16°1%,) 2 (lvlk, +11vl%,)?
+ Crnmax(K) (1%, + 1l6711%,) 2 (lvli%, + 1911,
=C|U* x|V ]Ix,

N|=

where C; and C; ; are generic constants depending on 2, I', and

03)5 = maX{203V, 0501}, 04,6 = maX{C4(1 + 779)7 CﬁnaAmax(K)}a
C:maX{Cgﬁ,C4,6;C7n)\max(K)}' o

Remark 4.6. A consequence of Lemmas 4.3 and 4.5 is the optimal FEM conver-
gence of the backward adjoint equation if equipped with a regular, nonvariable force
term. This can be shown by an extension of the proof in [19, Theorem 4.4].

In the following, we will use the rescaled norms which are naturally defined as

2

T
1
||V||O,n:(n||v||(2)+||¢|(2))2a||V||L2(O,T;L3(Q)):(/0 ||V|3,ndt> ;

Nl

T
1
IV llo = (Illg +nllel5)2, IV llzzo,;22, 0)) = </0 IIVI?J,n*dt>
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One can verify that these rescaled norms are well-defined and the standard trian-
gle and Cauchy—Schwarz inequalities are applied. Furthermore, by definition, one can
establish the norm equivalences for || - ||o, || - |0,y and || - ||o,,+ stated in the following
lemma.

LEMMA 4.7. Norms || -|lo, ||-

0> and ||+ |lo,n+ are connected with each other as

(4.16) CollUllon < 1Ulo < CH1U lo,1,
(4.17) CollUlloy+ < 1Tl < CHIU o,
(4.18) ColU o+ < U0,y < ClIU o,

where

1 1 1 1
Clzmin{l,},C’Q:max{L},C?’:min{ ,},C4zmax{ ,}.
n S n S n \/ﬁ\/ﬁ n \/77\/77

Define notations

ou 0 0
<at’V>f (Ge) +oGiw) BVl =) +ais o
oUu _ \" o 0 .
<at"”>f”<af’w>+<5§’”>» (E V), =nlfor) +(Fp.0)

Then, using equivalent arguments similar to those used for (2.10), (2.11), (2.12),
and (2.13), we can rewrite the continuous optimality system (3.16)—(3.18) as

<8U v> b a, (U V)= (F,V), YV € Xa,
n

(4.19) o’
U(-,00=Up in L*(Q),
—<6U* V>*+a*(U* V)=({U-U,V): VVeXg
(420) 3t ) . n 3 3 n divs
U*(-,T)=0 in L*(Q),
(4.21) UO:lU*(-,O).

gl

As mentioned previously, we intend to carry out the convergence analysis for
the data assimilation problem by the finite element convergence results from classical
PDEs. A key step is to introduce the following auxiliary equations:

(422) < 6t ,V>77—|— 77(I-J(Uovh)"/v) <F’V>?7 v‘/e)cdlvv
UUon)(0)=Uos in L*(Q),
(4.23) *
_<8U((9€J(JJ1),V> +a} (U*(Ugs), V)= (U —UUoys), V), ¥V € Xau,
U*(Uo)(T)=0 in L*(Q),
oUW N\ Lo o ) |
(4.24) _<8t’v>n+an(U Un),V)=(U ~Up, V), YV Xa,
U*(Up)(-,T)=0 in L*().
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Equations (4.22) and (4.23) are used to remove the concern from the initial condition
in (4.19). Equation (4.24) basically recovers the Galerkin orthogonality we lost be-
tween the continuous and discrete adjoint equations (4.20) and (4.11). Analyzing the
equations in the continuous optimality system and the auxiliary equations in pair, we
can establish the inequalities stated in the following lemma.

LEMMA 4.8. Let U(Uy 1), U*(Uo,1), U (U},) be solutions of (4.22), (4.23), and
(4.24), respectively, and let (U,U",Ug) and (U, U}y, Uq ) be solutions of the con-
tinuous and discrete optimality systems (4.19)—(4.21) and (4.11); then the following
estimates hold:

(4.25) U =UWon)llrz0,r:22(0)) < CarrlUo —=Uonllon,
(4.26) " - U*(U(Lh)HL?(O,T;Lf]* @) <Carr|UUon) = Ullr20,7:22(9))
(4.27) sup [[U*(Un) —U*Uon)llon < Corr|UUon) = UnllL20,1:L2 (@)
0<t<T n
(4.28) [|lU*(U) - U*(Uo,h)||L2(O,T;Li* @) <CarrllUWUon) = Unllr20,7;029)-

Proof. Subtracting (4.22) from (4.19), we have
< OU —U(Uo,n))

(4.29) ot
(U—-UUy))(-,0)=Uo —Uygy, in L*(Q).

Taking V =U — U(Uy ) on (4.29), using the coercive inequality (4.12) and norm
relation (4.16), we obtain

,V> tay (U-UUos),V)=(0,V), VYV € Xa,
n

d|U - UUon)l3
(4.30) R U - U U < GG~ U U R,
Applying the Gronwall inequality on (4.30) leads to
(4.31)

t
[(U—-UWUon)( 05, + CQ,F,T/ U —-UUon)lk < CarrllUo—Uonlli,,
0

where Cq r 1 is a generic emerged constant that depends on Q,I', T'. Inequality (4.31)
leads to

(4.32) U =UWon)llrz0,r:02(0) < CarxllUo —Uon
Again, we subtract (4.23) from (4.20) to obtain
ou*-U*U *
_ < ( - ( O’h)),v> +at (U —U*(Uy,), V)
"
= <U(U07h) — U, V>r] YV e Xdiva
(U*—U*Uou))(-,T)=0 in L*(Q).

Testing (4.33) with U* — U*(Uy ) and using the coercive inequality (4.13), the
Cauchy—Schwarz and Young’s inequalities, and (4.17)—(4.18), we deduce

0,m-

(4.33)

d|[U* —=U*(Ug )3, . .
- G 2, U - U (Uo) |k
(4.34) <203, [|lU* =U*(Uon)ll§ +21UUon) = Ulloy- [U* = U*(Uon) o
1
< (1+2C3,(CH)U* =U*Uon)lf. + WHU(UO,h) ~Ul3.,-
n
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Applying the Gronwall’s inequality on (4.34), we find out
(4.35) 10" =U"Uon)lL20.1:22. @) < Carr|UWUon) = Ullr2or:ez@)-
Finally, subtracting (4.24) from (4.20), we have
_/oUrUn) —U*(Uo,n))
ot
= <U(U0,h) 7Uhav>* VVGXdiv?

(U*(U) —U*(Uop))(-T)=0 in L*(Q).

,V>* +al (U*(Uy) —U*(Ug), V)
(4.36) !

Similarly, by choosing test function V =U*(U}) — U*(Uy ) in (4.36) and applying
the coercive inequality (4.13), the norm relations (4.17)—(4.18), the Cauchy—Schwarz
inequality, the Young’s inequality, and the Gronwall’s inequality, the following esti-
mates hold:

(4.37) S 1U*(Unr) =U*(Uon)llom <CarxllUUon) = Unllr20,7;02(0))

(4.38) [[U*(Un) =U"Uon)llL20.1522. (2)) < CorrlUUon) = UnllL2o,r:220)-

The proof is completed by putting (4.32), (4.35), (4.37), and (4.38) together. 0

By using the triangle inequality and inequality (4.25), ||U — Uh||L2(07T;L%(Q)) can
be estimated as

(4.39)
IU = Unllrzo,m220)) S NU =UWon)llz20,7:22(0) + IUWUon) = Unllzz 07522 ()
<CarrllUo—=Uonllon+ IUWUon) = Unllrzo,r;r2(9)-

Using inequalities (4.26), (4.28), and (4.25), one can also bound |U" —
UillL20,1:L2, (0)) as follows:

|U* — UZ"L?(O,T;Lf]*(Q))
<IN =U"Uon)lLzomicz. ) + U Uon) = U (Un)| 20,12, (2))
+ U (Un) - UZ||L2(0,T;L§* )
(440)  <Carr(lUUon) = Ullrz0,m:22(0)) + IUWon) = Unllz0,7,22(0)))
+IIU(Un) = UhllL20,1iz2, ()
<Corr(lUo—=Uonllon + UWUon) = Unllr20,7;02(2)))
+ U (Un) - U;;”LZ(O,T;LZ*(Q))-
Note that Uj, and U}, are the classical finite element approximations of U(Uy ) and
U*(Up). From (4.39) and (4.40), we observe that the bounds for the finite element

approximations depend on |[Ug—Ug,||0,,, Which is estimated in the following lemma
through two given equalities Uy = %U*(', 0) and U, = %U;‘LO.

LEMMA 4.9. Let Uy, Ug, U, U*(Ug4)(+,0) be functions defined in (3.16),
(4.11), and (4.23). Then the following error estimate holds:

Cq

v’F U (Uo)(,0) = U 0.0

(4.41) [Uo—Ubo,nllon <
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Proof. Using Uy = %U*(-,O) and Ugj, = %UZO we have

1 * *
Uy~ Ul = SO (.0~ U;,Uo—Uqgp)
1 * *
(4.42) = ;(U (,0) =U"(Uo,n)(-,0),Uog—Uyg,p)
1 * *
+ ;(U Uo)(-,0) = U, Uy — Uy p).

=~

Taking V=U"-U"(Uy) on (

[ (P80 e

.29) without the scalar 7, we obtain

(4.43) .
—|—/0 a(U—-UUyp), U —=U"(Up,p))dt =0.

Taking integration by parts with respect to ¢ on (4.43) results in

(U=UWon)(,T),(U" =U"(Uon)(-,T))
—(U-UUon))(0),[U" =U (Uo,n)(,0))

_ /OT <8(U* B [(;;*(Uo,h))7U B U(Uo,h)> u

T
+ / a(U—U(Uy,),U* —U*(Ug))dt =0.
0

Using (4.33) without the scalar n and the fact a(U —U(Ug ), U" —U*(Uyp)) =
a*(U* —=U"(Uyy),U—-U(Uy,y)), we simplify the previous equation as

T
(U-UWUon)(0),(U" =U"(Uo,n))(-0)) = —/O (U—-UUo,n),U—-U(Uo,))dt.

Based on the nonnegativity of fOT(U —U(Uyp),U—-U(Uygpp))dt, (4.16), (4.17), and
(4.42), we have

Car
Y

1Uo = Uonllon < IT*U0.4)(-,0) = Ui o

C
where Co r = ot O

SHIS N

Using (4.41) and the triangle inequality, |[Uo—Uog,nlo,, can be bounded as below:

(4.44)
C * *
1Uo —Uonlloy < —2EUG = U*(Uop)(-,0)lo,-
Y
CQ,F * * CQ,F * *
< LU U (UR)(,0) o + —=E U (UR)(-0) = U (Uop)(-,0)lo,n-
v
<L max (UK - USUR) G t) o + —25 sup [U*(U) —U*(Uop)llo,-
Y oo0<t<T

v 0<i<N-1

Cor wi _ pre Corr
< o, UL = U (Un) (- t)llog + THUh —UWUon)llr2(0,m:02(0))-
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Summarizing (4.39), (4.40), (4.44), and the classical FEM error estimates [19, Theo-
rem 4.4] and Remark 4.6, we finally arrive at the estimation
1Uo=Uonllom + U = UnllL2oriz ) + 1U" = Ugllz2o,r522. (2)
<Caorrl|Uo=Uonlloy+ (Caras+IUUon) = Unllr20,7;02(0)
+ U (Un) - UZHL?(O,T;Li*(Q))

Carr xi *
T, _ ey
- OSI%%EIHU}L U™ (Un) (- ti)lon +

+(Carr+DIUUoun) — UhHL2(0,T;L3](Q) +IU*(Ur) — UZ||L2(0,T;L§* Q)
<Cyorr(h™+1),

C
< Q.r,T

1Ur =UUon)llL2(0,7:22(2)

where r is the polynomial degree of the finite element basis function.

THEOREM 4.10. Let (Uo,U,U") and (Ugn,U}p,U},) be solutions of the continu-
ous optimality system (3.16)—(3.18) and the discrete optimality system (4.11), respec-
tively. Assuming the input data are smooth enough; then the following error estimate
holds:

1Uo = Uonllo + IU = Unllz20,7;22(0)) + U = U;;”L2(O,T;Li*(ﬂ))

(4.45)
<Cyarr(h"+1),

where Cy o1 is a constant proportional to % and also depends on Q, T, and T.

The inequality in (4.45) indicates that very small regularization parameter v may
have a negative impact on the numerical accuracy. Therefore, in practice, refined h
and 7 are needed to offset the impact from a small ~.

5. Iterative methods for solving the discrete optimality system. Due
to the complex structure of the Stokes—Darcy model and the forward-backward cou-
pled temporal nature in the optimality system, solving (4.11) directly results in an
extremely large coupled linear system [66], thereby being very computationally ex-
pensive. Hence we propose three iterative algorithms, the CG method, the BFGS
method, and the SD method, to decouple the discrete optimality system.

For a clear implementation of these gradient-based methods, we first show a
matrix-vector calculation of the gradient at each iteration based on the finite element
assembling. In the rest of the presentation, we define d € R™ as the vector represen-
tation of an element ® € H with respect to the given finite element base. Specifically,
we define ||®]2 = (B,®)y = ®TMP = ||®2, where M is the corresponding mass
matrix. Recalling (4.7)—(4.10) or the OptS (4.11), a vector form of the gradient

7x0(k)
- k = (k)  _=x0(k) = (k)
(5.1) VJh(UE)J)L) =Won—Uy, "=7Ug, - (2@0(@)
h

can be obtained by sequentially solving the following equations forward and backward
forn=1,2,...,N—1:

(5.2)
Zn+1(k “n(k 1k (k)
" n+1(k) gr® gpi® fon T
a ﬁn+1(k) _ ﬁn(k) +S ﬁn+1(k) _ | znti(k) 7° = Y
T Jll‘f‘l(k) 4@(1{:) JLL—&-l(k) ‘ffafi ’ h ﬁg(k) ’
by, by, Dy, 0
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xn+1(k) xn(k) xn(k)
M, [ +1(k) 2 (k) “n *)
(5.3) - a,ﬁﬂ(k) - ﬁh"(k) + 5 ah”(k)
—kn —kT —HT
DPp, Dy, by
on+1(k) “n+1(k)
_ ?.Z-s-l(k) M ?}fz-&-l(k) Ij*N(k)— 0
- ah - a uh_’ ) h - 6‘ .

0 0

Recalling the definition of the operators A, A*, B, B*, the matrices mentioned above
are assembled as

M,y 0 0
(5.4) My=| 0 M, 0], Mau:<M““ 0), prz(Mw 0 )

0 0 0 0 Mau 0 Mau
Sus Suo 0 Ses Sy 0
(55) S=Ssu SeutSuu Spu|. 5 =[St SeutSiu Spu|.
0 Sup 0 0 Sup 0

and the related matrices Ma¢,Mau,Sa¢,Spu,Sup,Sau,S¢u,Su¢7Suu,S;¢,S;u,5(’;u
+1 =2l =n+l
and other vectors f b f; ns ¢, ,andu,; are further assembled as follows:

My = |:/ %‘%dfﬂdy] s Mg = [/ Ujvidmdy‘| ’S‘w’ =
Qp Qf

Su —S’pu,Sau: [/Q 2vD (vj) :D(vi)dacdyl ,
s

/ Kij Vz/;l dl‘dy‘| s
QP

Spu: _/ qu-vid:Edy
L %

S¢u = /gd)fl)i TLde:| + |:/ OzPT (KVﬂ)J)PT’UzdS] ,Su¢ =— |:/ V4 TLf1Z)ldS:| 3
LT T r

Suu = /CMPT’UJ‘PT’U,'dS:| 7S’Z¢: |:/ gu; nfz/)zdS] + |:/ OéPT’UjPT (KVZ/%) dS:| y
LT r r

R /aPijPTv,-dS} (S = — [/ Vv, -nfds} ;};1 = V fo(tnsi1) wlda;dy]
LJT T

. -n+1
ff—;l = [/ I (tng1)vi dxdy] [/ O(tni1) %dxdy}

—n+1
ah+ = l/ﬂ ﬁ(tnﬂ)vidxdy} ;
s

where {1}, {v;} = (v;,v;)T, and {g;} are basis functions of the finite element spaces
X;}, X?, and Q", respectively.

5.1. The conjugate gradient method. The CG method is a powerful algo-
rithm for solving the VDA problem. It can achieve a linear or superlinear conver-
gence rate only considering the first order derivative. The main feature of CG is
that the current descent direction d¥ is conjugate orthogonal to all previous descent
directions d°,d*, d?,...d" !, which allows a finite iteration convergence for the finite-
dimensional optimization. A standard CG algorithm update is stated as follows:

o Initialize U} and d° =~V J,(UY)).
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e Update U, kH) = U(()’f;)L +nFdF with

(k)
o {th(U(o%) k=0, . (VJh( ), VI (U O.h ))
= ) k—1 - - ~1y\
RN L S (V@ ), v @)

e 7 can be simply chosen as {1, 2 ..}, or determined by using ex-

'3 1§ 16
act line search (n = argmin, cpJ(U 0?1 + ndk )), or using inexact line search
methods, such as the Armijo or Wolfe condition [50, 55].
The CG method [66, 67] is also interpreted as an accelerated SD method based
on the fixed point theorem, Wthh is naturally stated as follows:

e Initialize Ué })L and U0 e
e Update UL =U®) — c+v g, 00) + 9+ U] — U,
¢*Fand 9" are constants to be determined, and Uék,)L — Uékh Y is a momentum term
accounting for the acceleration.
We will adopt the first CG version as our presentation and provide an exact line
search method to optimally determine the step sizes n* and *. To begin with, we
recall that the CG method [49] was originally developed to solve the linear system

(5.6) Az =b, A is a positive definite operator (or matrix).

Our task is to rewrite the optimality condition of the data assimilation problem
n (5.6). For convenience, we will keep the discussion in the continuous level, and
solving the discrete data assimilation will be a straightforward discretization of the
continuous one. We revisit the optimization problem (3.1) as a reduced form

. IRVENPS vy .
(5.7) U;renlgadJ(Uo):ﬁfo 1 - Ul3dt + U6l subject to U =55,

where the operator Sg : L*(Q) — W (0,T) is defined by the Stokes-Darcy equation
(2.12) and the subscript F' corresponds to the source term. Since (2.12) is a linear
PDE, the operator Sg is an affine mapping. Hence, SgUj, the derivative of Sg at
Uy, does not depend on Uy and F, i.e.,

(5.8) (SpUg)z =Soz Vz € L*(Q), or SpUy = So.

We then denote by Sg = (SpUg)* : W(0,T) — L*(Q)’ the adjoint operator of Sp or
S;;‘Uo That iS,

(5.9) (@, Sr2) w0,y wo,r) = {(S6a:2) (12(y.12(0) Y(q,2) € W(0,T) x L*(Q).

Again, we derive the optimality condition of (5.7) by doing a calculus of variation
(I (Uo),2) = (40, 2) — (U = SpUo, SpUsz)

(YUo,2) — ((S%Uo)*(ﬁ - SFUO)7Z)

(WUo,2) — (sg(ﬁ - SFUO),z) =0Vze LX(Q).

(5.10)

We remind readers that the operator S§ acting on U-S rU) is equivalent to solving
the backward adjoint equation in (3.17) with source term U — SpU, which exactly
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gives U*(-,0). Also note that S§U is a known variable; therefore, we can write (5.10)
temporarily as

(5.11) YU+ SiSpUy = SiU.
For Sg, we decompose it as
(5.12) SrUG=8r0+ SoUy.

Apparently Sg is a linear operator and Sg0 is a known variable, which finally allows
us to rewrite (5.11) as

(5.13) YU+ SiSoU = SiU — SiSk0.

It is easy to show that the operator v+ SgSp is positive definite. First, (7+S8§So)* =
v+ 8§So is obviously true. Second, V0 # z € L*(Q), we have

(5.14)  ((v+8550)2,2) = (72, 2) + (S5S02, 2) = (2, 2) + (Soz,S02) > 7| 2.
Hence we are able to write the optimality condition (5.10) in form of (5.6),
(5.15) AU = (74 8580) U, b=S5U — SiSpO0.

We here clarify the operation of A acting on an element z € L*(Q). First, recall that
Soz is the state solution of the Stokes—Darcy equation solved with initial z and source
term 0. Second, the operator 8§ acting on Spz gives the solution of the backward
adjoint equation at ¢t =0 solved with initial 0 and source term Spz. Therefore, Az is
obtained by sequentially solving the following forward and backward equations:

(5.16) <(?,§,V>—|—a(<I’,V)—|—b(V,p):<O,V> b(®,q)=0, &(-,0) =z,

(5.17) — <‘9‘I’*,V> Lt (B V)4 b(V,p7) = (B, V) b(®*,q)=0, ®*(-T) =0,

ot
(5.18) Az =®*(-,0) +z.

At the discrete level, (5.16)—(5.18) are written in matrix-vector form as follows:
(5.19)

n4+1 e n+1
Mo ((Yhe ) (Yh Un ~0 Jo)
s —n s =
— oy — | oy +S gt | =0, @,=2,=("" |,
T n+1 -n n41 Uy,
qn an Ih
(5.20)
k41 Txn e B
(Vi i DAY A Y
—%T 3 * —%kT, '
- = vh — ’Uh +S ’Uh - bun+1 ) q’h = —x N :0’
T —n—+1 _xn (k) —xm h Uy,
h qy 0
(5.21)

—x0

- —
AZh: Qh + YZh,

where (Ewﬁ,ﬂ Ev?i“ 0)" = ([fo, vh ™ didady] o, vt vidady] 0)7.

(5.16)—(5.18) or (5.19)—(5.21) provide the key information to update the CG itera-
tion solving our data assimilation problem, which can be summarized in the following
algorithm.

Remark 5.1. Note that for the CG method with exact line search, s basically

the gradient of Jj, at U((f,z, ie., FT = Vﬁl(U((JkZ)
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Algorithm 1 Conjugate gradient algorithm

Input: fjéO})L and €;
Compute V.J, (U 0, })L) initialize ¥g = —VJh(U(()Oh) and d = —VJ,(U )) set

error = 1, and start the iteration step k= 0;

while error > ¢ do
-

Compute d* =Ad* by solving (5.19)—(5.21) sequentially;
1713
Compute n* = fo;

-k -k
(d.,d )MfL>
Compute 7" =7k — n* AdF;

L (k -k
Update Uy =Ty +ntd ;
||f"k+1||(2>
Compute BF = ||_’k||
0

k41
Compute d o et Bkd
Set k=k+1 and error = ||7°kle
end while

HO?

k+1
Output: U((),j),

5.2. The BFGS method. The BFGS method is a type of quasi-Newton al-
gorithm, which uses an approximated inverse Hessian operator Dy to determine the
descent direction d¥, i.e., d” = —DyJ}(Ug 1,), where Dy ~ (J}'(Uo,))~!. The iterates
of the BFGS method behave similarly to or slightly less efficiently than CG for linear-
quadratic optimization but outperform CG for the nonlinear cases. We introduce the
BFGS method in this section as an additional option to solve the data assimilation of
the Stokes—Darcy equation.

As mentioned, the inverse Hessian operator Dy is approximated in the BFGS
method; this is because the calculation of the Hessian operator and its inverse are
usually challenging or even impossible in practice due to the constraint complexity
and high dimensional unknowns. We here present the following way to find out Dy
pertaining to our problem:

(5.22) Dy, = (I-6"(s*®g") D1 (I - ® s")) + 0% (s @ s¥),

where s* =U") ~ UV, g* wh(Ug'f ) — Vi (ngh Yy, and % =
operator ® is defined as

(5.23) (a@b)c=(b,c)a, for a,be L*(Q), Vee L* ().

k) The

The update of Dy in (5.22) is based on a continuity assumption of the second order
derivative of the cost functional. We try to search a bounded operator Dy that is
close to the previous Dy _; in the sense of a weighted Hilbert—Schmidt norm [50, 86]:

k

(D — Dy— 1)G2 subject to DgF = s*.

min

DeZ£(L?(Q),L*(Q)) 2 H
Here, G is a weighted operator satisfying Gs* = gk, and the constraint Dg* = s*
comes from a secant approximation of the second order derivative of J,(Uy ) at

k
Uy
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Algorithm 2 BFGS algorithm
=0
Input: Ué%, a positive definite matrix Dy, and ;

Compute th( ©) +), the first descent direction —DOth(U(()?,)I), and the first

0 "
update Ué ,)1 = Ué ZL DOVJ(U(()?})L). Set error =1 and start the iteration step k= 1;

while error > € do
Compute Vj;l(ng,)L)
Compute 5° = UO w=Ugp @ =V US) - ViUl

g MT —k\T —’k A[T FkN\NT §>k; M gk; T
Compute Dk = (I — _,k(,T]\f;g)) Dk 1 <I - _"C(T]V[ g > + S_fk( ]\/[ g)k 3
= (k+1)  =(k)

Update Uy, =Uq, — n* DV (US);
Set k=Fk+ 1 and error = ||wh(Ug’f,1)||0,
end while

— (k41
Output: Uéyh );

The BFGS algorlthm can be briefly described as follows:
e Initialize U 0, h and a bounded positive definite operator Dy.

e Update U = U — 3t DV, (UL)) with

DOa k:07
D =
¥ {(I— 0% (sk @ g*)) D1 (I — 0% (g" ® s*)) + 6% (s* @ s%), k>1.

e 1% can be simply chosen as {1, é, i, é, 6>+ -} or determined by using exact

line search if possible, or by using inexact line search methods, such as the

Armijo and Wolfe condition [50, 55].
Next, we show how to explicitly compute the matrix form of the operator Dy in
coding implementation. Based on the definition in (5.23), for a,b € L*(Q2), we deduce

T - -
(524)  (a®b)e=(b,c)a=b Msyéa=(M],b)"éa=a(Mj,b) cvVece L*(Q).

Therefore, the matrix representation of a ® b acting on L*(Q) is &’(M;;E)T. Mean-
while, the calculation of 6% is straightforward:

- 1
= T k-
(sk.g%) 3 My,g

ok =

Now we can rewrite (5.22) or the matrix representation of Dy, still denoted as Dy, in
the form

-k T =k\T —k T ZkN\T -k T FkN\T

(5.25) Dp— (19 Mg )\ o (T MpS)T | F(ME)
. k= kT _k k-1 kT —k :
57" Mypg 5" My,g S

We summarize the BFGS iterative algorithm as follows.

5.3. The steepest descent method. The CG and BFGS methods can display
a fast convergence rate and solve the discrete optimality system (4.11) effectively in
most cases. However, their descent directions are sort of sensitive to the stability of
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Algorithm 3 Steepest descent algorithm

()
Input: nk,U((),,)I, and €;
Set error=1 and k =1;

while error > ¢ do
- (k:) —‘(k)

Compute VJh(UO, )=vUo 1

(5.2)-(5.3) forward and backward;
- (k - (k >

Update U(()JLH) = Ué}b - leVJh(Ugff)Lﬁ

Set k =k + 1 and error = ||th(Uék})1)||(2)v
end while

- (k41
Output: Ué7h );

- x0(k
-U, *) via sequentially solving

the data assimilation problem, which can hinder the convergence for a problem with
extreme low stability that might be caused by a small regularization parameter « in
the cost functional (4.2). This shortcoming motivates us to propose an SD method
[65] that gains more stability at the cost of a lower convergence rate.

Recalling (4.11) or (5.1),

(5.26) v (U$) =0l -ui?®

is the gradient of Jp, at U ék,)L of the kth iteration.
Based on (5.26) we can illustrate the SD method as follows:
o Initialize U},
e Compute VJh(Ugf})l) = WUE){C,)L - Uzo(k).
e Update USS™ =UG) —n* (U, —U,"™).
e 7 can be simply chosen as {1, %, %, %, 1—16, ...}, or determined by using exact
line search if possible, or determined with inexact line search methods, such
as the Armijo and Wolfe condition [50, 55].

The SD method shares the simplest iteration update and the best stability be-
havior among almost all of the gradient-based methods, which makes it popular for
a lot of optimization problems. Of course, such a benefit is accompanied by a slower
convergence speed, especially for problems with a lower stability.

We summarize this SD iteration as follows.

Remark 5.2. The superlinear, linear, or sublinear convergence rates for the CG,
BFGS, and SD methods are not universally guaranteed. The actual rate strongly
relies on the conditioning number k(A), where A is defined in (5.15). Although the
CG and BFGS methods have a lot of similarities, they are good at solving different
problems. In general, they both converge faster than the SD method, which is more
stable.

6. Numerical experiments. This section presents numerical results to demon-
strate the optimal convergence established in section 4 and the performance of the
state prediction using the algorithms developed in section 5. The Taylor-Hood fi-
nite elements are utilized for the spatial discretization of the Stokes equation and the
quadratic finite elements are utilized for the hydraulic head of the Darcy equation.

6.1. Verification of the finite element convergence rate. In this example,
welet K=1, a=1,9g=1, Q,=(0,7) x (0,1), Qf = (0,7) x (—1,0), T': 2 =0, and
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Ulsa = 0. Based on the numerical example in [37], whose analytic solutions satisfy
the Beavers—Joseph interface conditions, we choose the following initial functions and
source term functions:

Wi = ((2 — wsin(mz))(—y + cos(n(1 —y))),2%y? + e ¥, (=2/3)xy® + 2 — wsin(rz))T,
fp = cos(2mt) (72 (2cos(m(1 — y)) — 27 sin(rx) cos(m(1 — y)) + mysin(rx)))
— 2msin(27t) (2 — wsin(mx)) (—y + cos(w (1 — y))),
f1 = cos(2nt)(—2y? — 22% — e7¥ + 7 cos(mx) cos(2my))
— 2msin(27t) (2%y? + e~ ¥) sin(27t) (—27),
fa = cos(2nt) (4ay — 73 sin(mz) + 27m(2 — wsin(wx)) sin(27y))

— 27 sin(27t) ( oy 42— 7TSIH(7TSC))

To have a set of smooth observation data satisfying both the interface conditions and
homogeneous boundary conditions, we numerically solve the Stokes—Darcy model with
h =1/64, T = 1/4000, initial function Wy, and source term F = (f,, f1, f2)7 in the
time interval [0,0.75]. Then the numerical solution in the time interval (0.25,0.75] is
considered as the observation data U. The solution at ¢t = 0.25 is the Uy we intend
to reconstruct.

For the data assimilation problem, we use the mesh sizes of 1/8, 1/16, 1/32, 1/64
and time step sizes of 1/16, 1/128, 1/1024, 1/4000 to produce numerical solutions,
based on the CG method with stopping criteria e = 107°. For each +, the numerical
solution with A = 1/64,7 = 1/4000 is considered to replace the analytical solution
when computing the numerical errors. Tables 6.1-6.3 illustrate the convergence per-
formance. From Table 6.1 and Table 6.2, we can see that the L? norm errors for ¢ and
u appear to converge optimally. In addition, the relative errors in Table 6.3 become
larger when v decreases, which is consistent with the conclusion that the coeflicient
C, o7 in Theorem 4.10 is proportional to %

6.2. Iterative data assimilation methods. We first investigate the three it-

erative methods developed in section 5. Let K :(0(')8 102), vr=12 a=0.12, g=9.38,
Q,=(0,7) x (0,1), Q= (0,7) x (—=1,0), ':2 =0, Ulpo =0, and

TABLE 6.1
The finite element convergence rate of the recovered initial condition ¢q.

v lldo =&, 11lo [0 =g, 1 1lo Rate [0 =, 1 Ilo Rate
1 1.16 x 10~2 1.30 x 10—3 3.15 1.20 x 10— 3.44
% 419 x 102 4.90 x 103 3.09 4.70 x 10~4 3.38
50 9.83 x 10—2 1.22 x 1072 3.01 1.30 x 10~3 3.23
ﬁ 1.14 x 10~ 1 1.41 x 102 3.02 1.50 x 10—3 3.23
TABLE 6.2
The finite element convergence rate of the recovered initial condition wug.
5y ||u07u07%|\0 ||u07u0 ||0 Rate HUO*UO Ho Rate
1 2.10 x 1073 2.42 x 104 3.12 2.91 x 102 3.06
% 1.03 x 10~2 1.25 x 10~3 3.04 1.41 x 10~ 3.15
% 4.84 x 1072 6.00 x 1073 3.01 6.64 x 1074 3.17
L 6.69 x 102 8.65 x 103 2.95 9.81 x 10~4 3.14

[V
o
o
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TABLE 6.3
; ; bo _ l1$o—¢o.nllo uo _ [lwo—uo,nllo
Relative errors according to v, R,° = Toolle? and R, = Taolly -
v R%° R% R% RY° RY% R
8 16 32 8 16 32
1 0.2184 0.0247 0.0023 0.0972 0.0119 0.0013
% 0.2341 0.0278 0.0027 0.1167 0.0143 0.0016
= 0.2496 0.0314 0.0033 0.1649 0.0208 0.0023
= 0.2524 0.0313 0.0034 0.1811 0.0236 0.0027

[
f=3
(=}

F= (sin(27rt)(ﬂ' sin(z) 4+ 3 + 22(m — x)), sin(27t) (22 + y + cos(y) + 2),
sin(2t) (sin(y) + 2z +y + 5/2)) T’

W= (z(m —2)y(1 —y), z(r — 2)y(1 — y)sin(rz), da(r — 2)y(1 — y) sin(mv))T.

To construct observation data, we numerically solve the Stokes—Darcy model
with initial function Wy and source term F = (f,, f1, f2)? in the time interval
[0,2], and then take 100 snapshots from the numerical solution in the time inter-
val (1,2] uniformly as the analytical solution U. The observation U is produced
by adding noise with multivariate Gaussian distribution AM(0,1/50) to U. The
solution at ¢ = 1 is the initial condition we intend to recover and will be used
for the state forecast. The L2(0,7) and L°°(0,7) norms, which are defined as

n n||2 n n
U~ Unlzz = /S0 b and U~ Unllgss = 00 r il
are used to estimate the data assimilation accuracy. In the rest of paper, without
special comment, e = 10~ will be the stopping criteria for all iterative methods, and
the descent step size n¥ =1 is considered for the BFGS and SD methods.

First, Table 6.4 shows that an accurate state forecast is achieved for various values
of v. As v decreases, the stability of the data assimilation problem decreases or the
conditioning number k(A) in (5.15) increases, based on Theorem 3.2. Hence, the
convergence of all iterative methods will become slower and slower; this can be verified
by the increasing number of iterations in Table 6.4. The number of iterations used for
each method indicates that the CG and BFGS methods converge much faster than
the SD method, especially for small v. The convergence rate can also be visualized
via Figure 6.1. The CG method achieves the superlinear or nearly linear convergence
rates for different regularization v. The BFGS method behaves similarly but with a
slower convergence rate. And the SD method shows the slowest sublinear convergence
rate especially when ~ is small. However, the SD method is always monotonically

N _TABLE 6.4
Data assimilation result: the L2- and L°°-norm errors between U and the numerical solution
Uy.
The CG method The BFGS method The SD method
v NUL=Ullz lUL=Ullgee UL =Ull;z lUL=Ullgee UL =Ull;z UL —Ullgs
1—10 0.327670 0.2087 0.32767 0.2087 0.327670 0.2087
ﬁ 0.05384 0.03838 0.053832 0.03838 0.05384 0.03838
Tloo 0.00596 0.00466 0.005941 0.00465 0.005938 0.00465
Wloo 0.00113 0.0008795 0.001126 0.0008914 0.001305 0.0009358
L 0.0004604 0.0003047 0.0004744 0.0003154 0.0004866 0.0003456
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Fic. 6.1. Convergence rate comparison for CG, BFGS, and SD methods with different .

TABLE 6.5
Comparison of the convergence rate and computational cost for the CG, BFGS, and SD meth-
ods; # iteration = number of iteration, # PDE solving = total number of PDE solvings.

The CG method The BFGS method The SD method
¥ # iteration # PDE solving # iteration # PDE solving # iteration # PDE solving
& 7 16 11 24 56 112
165 13 28 34 70 289 578
o056 23 48 64 130 841 1682
55 30 62 78 158 1178 2356
25550 31 64 91 184 1306 2612

decreasing, while the CG and BFGS methods both have oscillations when approaching
the minima for small «. This verifies the stability advantage of the SD method.

The convergence rate provides information about the computation cost of each
method, but very implicitly here. This is because the iteration cost of each method is
not the same due to different update procedures. To clearly compare the computation
efficiency, we notice that the PDE solving at each iteration is the main contribution to
the cost; therefore, we use the total number of PDE solvings to approximately evaluate
the computation cost. In Table 6.5, the CG method requires the small number of PDE
solvings, the BFGS method asks for a moderate number of PDE solvings, and the SD
method needs a large number of PDE solvings.

Another important convergence property of all iterative methods is that their
convergence rate is not sensitive to the mesh size h in our case, i.e., when the mesh
size is refined or the number of unknowns increases, the number of iterations does
not increase. We prove this statement by choosing a different mesh size in Figure 6.2,
where the convergence rate does not change much when refining h from 1—16 to ﬁ.

Last but not least, besides the convergence rate, the choice of stopping criteria e
also plays a critical role in balancing the computational cost. As shown in Figure 6.1,
the convergence speed slows down quickly as the derivative norm approaches a small
number, in which the computation cost is consumed dramatically. This situation is
getting even worse for the sublinear convergence method. In practice, a very small €
is unnecessary, since it may not help improve the data assimilation accuracy but only
increase the computation cost greatly.

In our case, based on the observation availability and quality, we empirically as-
sume that v =1/20000 is the regularization parameter to obtain the best assimilation
result. In Table 6.6, we observe that the stopping criteria ¢ = 10~2 and 10~* are not
small enough to be used. On the other hand, compared to € = 10~°, the simulation
results based on € = 107% and 10~7 are not improving noticeably anymore but are
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c6 rate BFGS rate ) rate

loglderivative J(Uy )|
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Fic. 6.2. Convergence rate comparison of different mesh size h for CG, BFGS, and SD methods.

TABLE 6.6
Comparison of the computational cost and data assimilation results of different stop criteria
for the CG, BFGS, and SD methods, # Ite/PDE:= the number of iterations and the number of
PDE solvings.

The CG method The BFGS method The SD method
€ HUh_UHEE # Ite/PDE HUh_UHEE # Ite/PDE ||Uh_UHE§ # Ite/PDE
10—2 0.01493 4/10 0.02073 6/14 0.04003 13/26
10~4 0.0003918 15/32 0.0006852 40/82 0.0007870 195/390
10-° 0.0004899 33/68 0.0004898 91/184 0.0004866 654,/1308
10-6 0.0004885 83/168 0.0004875 203/408 0.0004872 3600/7200
10~7 0.0004877 144/290 0.0004875 332/666 0.0004872 15343/30686

consuming significantly more iterations, especially for the SD method. This obser-
vation suggests using ¢ = 107° as the stopping criteria in our problem.

6.3. Data assimilation performance. In this section, we focus on verifying
the proposed data assimilation methods by testing against a more practical case. We
consider the situation in which observation is available only in limited windows. We
will use the following four observation windows for experimental tests: observation
window 1 (O1): [0,7] x [-0.75,0], [0,7] x [0,0.75]; O2: [0,7] x [-1,—0.25], [0, 7] X
[0.25,1]; O3: [0,7] x [—0.5,0], [0,7] x [0,0.5]; O4: [0,7] x [-1,—0.5], [0,7] x [0.5,1].

Set K :(0'06 0 ), v =0.2, « =0.28. Other parameters in the Stokes—Darcy model,
0 0.08

such as g,Q,,{2¢, I', and F, are the same as in subsection 6.2. In each scenario, the
observation is also provided the same way as in subsection 6.2 with Gaussian noise
N(0,1/50).

Using the given model parameters v, K, and «, we alter the observation windows
to compute numerical results with the proposed data assimilation methods. Assume
~=1/20000 is the regularization parameter to obtain the best assimilation result for
all cases. In Table 6.7, errors between data assimilation results U}y, and the analytical
solution U for all scenarios show that the methods proposed in this paper are applica-
ble to assimilate the state solution in general. Moreover, even the observational data
is only partially provided; the proposed methods can still provide useful predictions
on the entire domain. We also notice that the observations from different windows
have different impact on the assimilation performance.

In Table 6.8, the total number of iterations and PDE solvings used for each
method confirms again the convergence speed of CG, BFGS, and SD methods, re-
spectively. Overall, we believe that the CG method should take priority for most
of the data assimilation scenarios; the CG method is best for most applied to some
special cases such as nonlinear models, and the SD method is a backup for dealing
with extreme ill-conditioning problems.
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TABLE 6.7
Data assimilation result for fized model parameters with different observation windows.

The CG method The BFGS method The SD method
Obw ||Up—Ullzz IlUn=Ullgse WUr=Ullzz WUr—Ullgee UL =Ullzz IlUr-Ullg=
O1 0.001439 0.002177 0.001440 0.002164 0.002409 0.003065
02 0.002461 0.002969 0.002641 0.003219 0.003041 0.003839
03 0.01155 0.01508 0.011385 0.014879 0.01606 0.01960
04 0.007655 0.01045 0.0079556 0.010392 0.009523 0.014243
TABLE 6.8

The number of iterations and PDE solvings used for the CG, BFGS, and SD method.
# iteration=number of iteration, # PDE solving= total number of PDE solving.

The CG method The BFGS method The SD method
Obw  # Iteration # PDE solving # Iteration # PDE solving # Iteration # PDE solving
o1 103 208 193 388 1038 2076
02 107 216 202 406 1824 3648
03 124 250 226 454 2220 4440
04 90 182 194 390 2673 5346

7. Conclusion. In this paper, we proposed a variational method to solve a data
assimilation problem of the Stokes-Darcy model by using iterative algorithms. The
well-posedness of this problem was rigorously analyzed. For numerical computations,
we proposed a discretization using FEM and the backward Euler scheme, and analyzed
its convergence properties. The rescaling and auxiliary techniques played key roles
in proving the optimal convergence rate of the proposed numerical scheme. Three
decoupled iterative numerical algorithms, the CG method, the BFGS method, and
the SD method, were developed to reduce the computational cost. Various examples
were used to validate the proposed methods.
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