
INSTANT: A Runtime Framework to
Orchestrate In-Situ Workflows

Feng Li1[0000−0002−8505−5208] and Fengguang Song2,⋆[0000−0001−7382−093X]

1 Purdue University, Indianapolis, IN 46202, USA
li2251@purdue.edu

2 Indiana University Purdue University, Indianapolis, IN 46202, USA
fgsong@iupui.edu

Abstract. In-situ workflow is a type of workflow where multiple com-
ponents execute concurrently with data flowing continuously. The adop-
tion of in-situ workflows not only accelerates mission-critical scientific
discoveries but also enables responsive disaster predictions. Although
there are recent studies on the performance and efficiency aspects of in-
situ workflows, the support for portability and distributed computing
environments is limited. We present INSTANT, a runtime framework
to configure, plan, launch, and monitor in-situ workflows for distributed
computing environments. INSTANT provides intuitive interfaces to com-
pose abstract in-situ workflows, manages in-site and cross-site data trans-
fers with ADIOS2, and supports resource planning using profiled perfor-
mance data. We use two real-world workflows as use cases: a coupled
wildfire spreading workflow and a computational fluid dynamics (CFD)
workflow coupled with machine learning and visualization. Experiments
with the two real-world use cases show that INSTANT effectively stream-
lines the orchestration of complex in-situ workflows, and its resource
planning capability allows INSTANT to plan and carry out efficient in-
situ workflow executions under various computing resource availability.

Keywords: in-situ workflow · scientific computing · high-performance
computing · urgent computing.

1 Introduction

Workflows have been widely used to enable scientific discoveries in different do-
mains. A workflow describes the sequence of operations and the data/control de-
pendencies among the operations. Traditionally, data dependencies of workflows
are facilitated with offline file transfers, however with the increasing amount of
data in different scientific domains, there is a trend to pursue in-situ workflows,
where multiple components execute concurrently, with data flowing continuously
across the workflow’s lifespan. Although some researchers may use “in-situ” to
describe the situation where different components co-locate in the same comput-
ing environment to reduce data transfer overhead [1, 2], “in-situ” in this paper
refers to “processing data as it is generated” as discussed in [3].

⋆ Corresponding author.

2 F. Li and F. Song

There are continuous community efforts to support in-situ analysis for differ-
ent application domains, one of which is the ADIOS2 project. ADIOS2 (the sec-
ond generation of the Adaptable Input Output System [4]) provides applications
with a generic interface to switch among multiple file-based or streaming-based
data transport methods. Parallel applications can use ADIOS2 APIs to read or
write multi-dimensional data, and their choices of underlying I/O engines (trans-
port methods) can be delayed to the runtime, by providing an external XML
configuration file. This adaptive design makes it easier to conduct in-situ analy-
sis for traditional HPC applications. ADIOS2 allows a group of m MPI processes
each writing to a portion of multi-dimensional domain space, and another group
of n MPI processes reading concurrently with data layouts different from the
writer processes. There are also an increasing number of domain applications
that have recently adopted ADIOS2, such as OpenFOAM [5] (computational
fluid dynamics) and LAMMPS [6] (molecular dynamics).

Although the ADIOS2 library itself provides a universal interface to pair-
wisely connect various applications such as simulation, analysis, and visualiza-
tion, it lacks the ability to compose and manage complex in-situ workflows. The
loosely-couple model of ADIOS2 allows domain scientists to focus on each in-
dividual component’s performance and usability, however, there is no high-level
control or view of a workflow as a whole. As a result, the performance of in-situ
workflows cannot be properly captured, and the in-situ workflows have limited
portability and reproducibility due to the hardcoded and low-level ADIOS2 con-
figurations.

Cheetah is a software framework to create “campaigns” for coupled simulation-
analysis-reduction (SAR) computations [7]. Although Cheetah utilizes ADIOS2
to couple multiple component applications, it focuses on searching for good run-
time parameter combinations in a single site through parameter sweeping, and
it lacks the ability to compose workflows with a general DAG-like layout. Tra-
ditional workflow systems use the high-level DAG (Directed Acyclic Graph) ab-
straction to describe a workflow and allow the components of a workflow to be
executed orderly following the precedence specified in the DAG. However, unlike
traditional workflow, in-situ workflows feature in-situ data dependencies, which
require special handling from workflow systems [8]. The integration of in-situ
workflow and traditional task-based workflow has recently been explored in Py-
COMMPs and Pegasus workflow management systems [9, 10]. However, these
two integrations both rely on the Decaf library [11] for in-situ data transports,
such that the in-situ transfer is limited to a single HPC site.

In order to provide high-level composition and orchestration support for com-
plex in-situ workflows in distributed computing environments, we design and
implement a runtime framework called INSTANT. INSTANT takes in an ab-
stract workflow that consists of ADIOS2-enabled components, and generates
executable workflows for running on distributed computing resources. The re-
source planning capability of INSTANT allows an abstract in-situ workflow to
be mapped efficiently on different platforms, or across multiple platforms, based
on workflow characteristics gathered through performance monitoring. The exe-

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 3

cution engine of INSTANT then launches the components of the workflow to the
mapped computing environments and configures dataflow correspondingly. The
flexible configuration interface of INSTANT not only makes the in-situ work-
flows portable and easily reproducible, but also enables instant deployment of
critical pipelines.

In our experiments, we use two high-impact real-world workflow applications
as use cases: a wildfire spreading workflow, and a CFD workflow coupled with
real-time machine learning and visualization. Experiment results show that IN-
STANT realizes flexible configurations of in-situ workflows and allows efficient
executions of in-situ workflows under different resource availabilities.

To the best of our knowledge, this work makes the following contributions:

1. A runtime framework to compose, plan, launch, and monitor complex in-situ
workflows across multiple distributed environments.

2. An customized DataX I/O engine that supports flexible data interactions
for wide-area networks.

3. Use case studies and performance analysis of real-world in-situ workflows,
including a wildfire spreading workflow and a real-time “CFD + machine
learning/visualization” workflow.

In the rest of this paper, we introduce the general design of the INSTANT
runtime system in Section 2. We show the experiments with two real-world use
cases in Section 3 and discuss the related work in Section 4. We assess the
limitations and practical design decisions in Section 5, and then conclude the
paper in Section 6.

2 Methodology

INSTANT mainly includes two main components, a “mapper” and an “execu-
tion engine”, as shown in colored boxes in the Figure 1. The mapper takes in
an abstract workflow as input and decides how to map the components of the
workflow to a diverse set of sites. Such decisions are then instantiated as the
“executable workflow” in the figure. The executable workflow is launched by the
“execution engine” to the selected computing resources, which can be a grid,
a computer cluster, or the local execution environment. Besides orchestrating
remote jobs, the execution engine also sets up dataflows between workflow com-
ponents (either same-site or cross-site using ADIOS2), and collects performance
data which are used in turn for resource planning.

The separation of resource planning and execution engine are also seen in
traditional workflow systems. However components execute one-after-another
in a traditional task-based workflow system, and the data dependency is typi-
cally realized as offline file transfers. In comparison, INSTANT targets in-situ
workflows, where components execute concurrently and the data transfer is con-
tinuous data flow instead of one-time file transfers. INSTANT allows a workflow
described similarly to traditional workflows as DAG, and it intelligently decides
the placements of workflow components and sets up the ADIOS2-based dataflow.

4 F. Li and F. Song

Grid

Cluster

local

job orchestration

dataflow setup

performance monitoring
Site Catalog

Performance
Catalog

A

B C

D

Abstract
Workflow

Executable
Workflow

A

B C

D

resource planning
workflow

instantiation

Mapper Execution Engine

Fig. 1: Overview of the INSTANT runtime framework.

2.1 Mapper

The mapper takes in the abstraction of a workflow, site catalog and performance
catalog as input information and generates an “executable workflow” as the
intermediate result.

Workflow abstraction A workflow abstraction defines how each component is
invoked for execution, and how data flows between components. The abstraction
is resource independent, meaning that the same workflow can be executed on
a local computer, a remote cluster, or a grid consisting of several clusters. The
abstraction is designed in a way that a workflow user only needs to interact with
the locally-install toolkit interfaces provided by INSTANT, without the need for
preparing individual job scripts for remote submissions.

Listing 1 shows an abstract workflow description of a simple HeatTransfer
workflow, which solves a 2D passion equation for temperature in homogeneous
media using finite differences [12]. The HeatTransfer workflow contains two com-
ponents, and the data writer runs iteratively and sends data to the reader con-
tinuously. In the abstraction file, the “name” field is the unique identifier of
each component, and “exe” and the “args” fields describe the relative path of
the component executable files and the runtime arguments, respectively. In the
“dataflows” section, each entry describes a data flow between a pair of compo-
nents. In this simple example, there is only a single data flow, which is from
the “producer” component to the “consumer” component. The “IOFrom” and
“IOTo” fields are the names of ADIOS2 IOs, and these IO names allow each
component to initialize its IO engines based on the configuration of ADIOS2
XML configuration files provided later during runtime. As shown in Figure 2,
the two IOs only allocate a “virtual” communication channel of two components.
The corresponding engine choices for these IOs depend on the actual resource
planning, which we introduce below.

Resource planning The resource planning utility decides where (which sites)
and how (the number of processing units) to launch each component.

In an in-situ workflow, data continuously flows between components during
the workflow lifetime in a pipeline fashion, and the overall speed of the workflow

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 5

1 {
2 "components ": [
3 {
4 "name": "producer",
5 "exe":" heatTransfer_write_adios2",
6 "args": [" adios2.xml", heat.bp, ...],
7 "deployment ": "$INSTANT_PATH /"
8 },
9 {

10 "name": "consumer",
11 "exe": "heatTransfer_read",
12 "args": [" adios2.xml", heat.bp, ...],
13 "deployment ": "$INSTANT_PATH /"
14 }],
15 "dataflows ": [
16 {
17 "componentFrom ": "producer",
18 "componentTo ":" consumer",
19 "IOFrom ": "writer",
20 "IOTo": "reader",
21 "type": "Insitu"
22 }]
23 }

Listing 1: The abstract workflow file for an example
HeatTransfer workflow.

P

C

io="writer"

io="reader"

Fig. 2: The abstract
workflow represented in
Listing 1.

depends on the slowest segment [9, 13]. INSTANT utilizes existing site catalog,
collected performance data and resource planning to help an in-situ workflow to
achieve better efficiency. The site catalog contains two parts:

– Compute-capability information: number of processing units (e.g. CPU cores)
available at each site, and performance of each processing unit3.

– Connectivity information: latency and bandwidth matrices between available
sites.

The collected performance metrics mainly include the compute cost of each
component and transfer sizes between components.

Currently, we utilize CPLEX as our default resource planning method. CPLEX
together with its Optimization Programming Language (OPL) ([14,15]) allows
us to define and solve the in-situ workflow optimization problem using a syntax
similar to formal mathematical representations. The built-in optimization model
optimizes the “throughput”, which is the number of steps the whole workflow
can advance in a second. We first create the mathematical optimization model
using OPL, respecting the actual resource limits and the pipelined execution
constraints. Then CPLEX can build up a search space with reasonable combi-
nations of different decision variables and search for the best solution. We have
also developed a more efficient heuristic-based algorithm for the same optimiza-
tion goal of maximizing workflow throughput, however we mainly discuss the
CPLEX resource planning method in this paper for its simplicity.

3 The per-processing-unit performance is currently recorded in the form of giga-
floating-point operations per second (GFLOP/S).

6 F. Li and F. Song

The resulting resource plan is the decision on where to place each compo-
nent, and how much computing resource to allocate for each component. Listing
2 then shows a possible launching plan of the previous HeatTransfer workflow.
In the example workflow, the two components are assigned to two separate com-
puting environments (PSC Bridges2 and IU Bigred 200) with different numbers
of processing units respectively.

1 {
2 "plans ":[
3 {
4 "name": "producer",
5 "site": "bridges2",
6 "nprocs ": 4
7 },
8 {
9 "name": "consumer",

10 "site": "bigred200",
11 "nprocs ": 2
12 }
13]
14 }

Listing 2: An example workflow
plan file (cross-site plan).

launch/query/cancel interfaces

folder_bridges2 folder_bigred200

adios_xml

site.env

run_site_group.sh

adios_xml

site.env

run_site_group.sh

Fig. 3: Folder structure of an example
executable workflow.

Instantiation Once the planning utility decides how to map each component,
it can generate the “executable workflow”. The executable workflow is an in-
stantiation of the workflow plan and contains the required recipes to launch
the workflow. The executable workflow is generated by first grouping compo-
nents based on their site choices and then creating submission folders for each
site group. Listing 3 shows the user interfaces of instantiating the executable
workflow, where the “heat-transfer-dag.json” is the abstract workflow file, and
“chosen-plan.json” is the plan file (either manually configured or generated by
INSTANT resource planning utility). The output folder “testbed folder” stores
all generated contents of the executable workflow.

1 python3 scripts/instant_instantiate.py -c heat -transfer -dag.json -p chosen -
plan.json -o testbed_folder

Listing 3: User interface to create a excutable executable workflow.

Figure 3 shows the contents of the output folder, where users can use the
launch/query/cancel interfaces to orchestrate the remote executions of the in-
situ workflow. Two submission sub-folders are created for the two sites planned
for workflow execution. Specifically, each site submission sub-folder includes a job
script to invoke individual components assigned to the site (run site group.sh),
an ADIOS2 configuration file to specify the choices of I/O engines (adios xml),
and an environment setup script (site.env).

The generated ADIOS2 XML configuration file allows the dataflow cor-
rectly configured in the later execution stage. Figure 4 shows how the gener-

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 7

writer.engine="SST",
reader.engine="SST"

writer.engine="DataX",
reader.engine="DataX"

P C

P C

same-site plan

cross-site plan

abstract

workflow

P

C

io="writer"

io="reader"

Fig. 4: INSTANT sets up either same-site or cross-site dataflow based on the
plan.

ated ADIOS2 XML configuration file is used to prepare the workflows for same-
site and cross-site launching. The original abstract workflow only defines the
name of the ADIOS2 IOs, however, the actual transport method (the choice of
ADIOS2 engine) is not determined until the planning is finished. In Figure 4,
the “same-site” plan sets the engine type of both ends to “SST”, which is the
high-performance in-cluster transport provided by ADIOS2. In contrast, for a
cross-site plan, the engine type is then configured as “DataX”. The “DataX”
is our customized ADIOS2 engine type to enable flexible data coupling across
clusters, which we introduce later in this paper in Section 2.2.

2.2 Execution Engine

When the executable workflow is ready, the “execution engine” can launch the
components to the target sites. The execution engine has three main goals:

– Job orchestration: launch, monitor and control the execution of remote jobs.
– Dataflow setup: set up and maintain the data communication channel for

both in-site and cross-site dataflows.
– Performance monitoring: collect performance data which can then be used

for resource planning to further improve the workflow execution efficiency.

Job orchestration As previously shown in Figure 3, the executable workflow
exposes interfaces to launch, cancel and query the status of the workflow. The
“launch” interface first copies the site-specific submission folders to the target
sites, and then submits the site-specific job scripts (run site group.sh) to the
HPC batch system. The query and cancel interfaces work similarly by issuing
corresponding batch system job control commands. The submission folder copied
to the target sites also contains the ADIOS2 XML configuration file, which allows
components to set up different transports for its dataflow.

8 F. Li and F. Song

Dataflow setup At the start of remote execution, each component sets up its
dataflow by initializing its I/O engines based on the specification defined in the
ADIOS2 XML configuration file. Inside the ADIOS2 configuration file, each IO
has the engine type specified, and the Adaptive I/O design of ADIOS2 allows
the transports to be realized as either in-site or cross-site transfers.

The ADIOS2 library provides a universal view of scientific data and allows
easy gluing of different applications using provided high-level language bindings.
ADIOS2 provides several “engines” for different usage scenarios: the SST engine
that max out transfer performance using high-performance interconnect; the
DataMan engine that connects two endpoints across networks. We designed and
developed a new engine called “DataX”, which reuses the DataMan engine’s
ZeroMQ communication patterns, with the following features added:

1. Support arbitrary m-to-n process mapping.
2. Support scenarios that both sites are behind the firewall.

For feature #1, the current DataMan engine4 only supports 1-to-1 process
mapping (i.e., both DataMan producer and consumer have to use a single pro-
cess), and DataMan is mainly used for cross-site communication between data
transfer nodes of two clusters. In comparison, the more general ADIOS2 inter-
face supports m-to-n process mapping: producer and consumer components can
each be a group of MPI processes and have different access patterns of the global
space. To provide such universal m-to-n process mapping for cross-site commu-
nication, our “DataX” engine adds additional support for data aggregation and
redistribution for MPI ranks on both sides of the communication. This feature
enables the support of the same flexible m-to-n process mapping even across
wide-area networks, which allows a dataflow easily configured as same-site or
cross-site.

For feature #2, the current implementation of DataMan requires the IP
address and port of the reader to be accessible to the data writers, in order to
establish the ZeroMQ data communication channel. However, it is common that
HPC compute nodes are behind firewalls and not exposed to the outside of the
institution, which makes it difficult to enable cross-site communication for in-
situ workflows. For this reason, the INSTANT framework also includes a “relay”
service, which creates endpoints in an accessible place that both ends can connect
to. The relay service is implemented as an array of ZeroMQ “queue” devices5

allocated in cloud virtual machines, which allows both sender and receiver to get
connected even if they are both behind firewalls.

Performance monitoring Here we explain what information is needed for
INSTANT to support resource planning, and how the required performance data
is collected.

The resource planning utility mentioned in Section 2.1 requires several types
of performance data to conduct resource planning: the per-step compute work of

4 As of March 2023 when we submitted this work.
5 ZeroMQ queue device: http://api.zeromq.org/2-1:zmq-device.

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 9

each component, the per-step transfer size of each data communication pair, and
environment-related information such as latency/bandwidth between sites. We
have added customized hooks for the BeginStep and EndStep ADIOS2 APIs, so
that the ADIOS2 library automatically records the start and end time of each
ADIOS2 step. For each component, the actual time spent on computing can
be inferred from the elapsed time between the EndStep for reader operations
and the BeginStep of the next write operations. The inferred compute time
Tcompute and the documented performance data of the environments can then
be used to calculate the actual computation work size work = core speed ×
num cores × Tcompute. In the customized hooks, we also record the number of
bytes written for each variable in each step.For component pairs that transfer
multiple variables, the recorded transfer sizes are added together to obtain the
per-step transfer size between the two components. The addition of customized
hooks is transparent to workflow composers because the same set of ADIOS2
APIs are used. The bandwidth and latency information between HPC sites are
obtained using iperftools and Linux ping command.

Our experiments in Section 3.2 demonstrate that through performance data
collected from a previously-executed in-situ workflow, INSTANT can produce
efficient resource plans for same-environment and cross-environment executions.

3 Use Cases

In this section, we show two real-world use cases of INSTANT. In the first use
case we use WRF-SFIRE, a coupled atmosphere-fire model, and demonstrate
how INSTANT can help accelerate the model coupling, and at the same time
provide users with extensive flexibility/functionality. In the second use case, we
use a real-time “CFD + machine learning/visualization” workflow, and show the
advantage of INSTANT’s resource planning and launching capability especially
when computing resources are limited.

3.1 WRF-SFIRE

The first experiment uses WRF-SFIRE, which is a coupled atmosphere-fire
model that is used for urgent simulations and forecasting of wildfire propa-
gation [16]. WRF-SFIRE combines the state-of-the-art Weather Research and
Forecasting model (WRF) and a surface fire spreading model (SFIRE). The at-
mosphere properties from WRF (e.g. surface air temperate, humidity, and wind)
drive the SFIRE model, which then calculates the spreading of the fire line. The
default/baseline WRF-SFIRE is a tightly-coupled model: the SFIRE model is
implemented as one of the physics plugins of WRF, and WRF and SFIRE are
built into the same binary executable. During runtime, the executable alternates
between WRF and SFIRE models, which share the same memory space and CPU
resources (i.e., time-division).

We compare the baseline tightly-coupled WRF-SFIRE method with the other
two methods enabled by INSTANT, as shown in Figure 5a. Unlike the baseline

10 F. Li and F. Song

method where WRF and SFIRE are tightly coupled, the INSTANT-enabled
methods create decoupled in-situ workflows using ADIOS2. The “INSTANT
w/ 1fire” method has two executable binaries: a WRF model without SFIRE
component, and a standalone SFIRE executable. We developed the decoupled
method based on the recent ADIOS2 IO backend for WRF [17]6. Instead of uti-
lizing the NetCDF for periodical variable output, the output data from WRF are
sent out through ADIOS2 format for data streaming. For the data receiver side,
we added ADIOS2 support for the standalone SFIRE by changing the default
NetCDF I/O routines to corresponding ADIOS2 I/O routines. The “INSTANT
w/ 2fires” method uses the same two executable binaries, but the WRF model
sends data streams to two separate SFIRE simulations. This allows the workflow
to use the same WRF output data to predict fire lines under different ignition
conditions.

F

W ADIOS2 F

W
ADIOS2 F

FADIOS2

Baseline
(Tightly-coupled)

INSTANT

w/ 2fires

INSTANT

w/ 1fire

W

(a) Launching plans for WRF-SFIRE.

208.3

201.3

199.1

422.6

206.5

205.1

0 200 400 600

Baseline

INSTANT
w/ 1fire

INSTANT
w/ 2fires

Time in seconds

sfire_model

end2end

(b) Time comparison.

Fig. 5: Time comparison of the WRF-SFIRE workflow w/ and w/o INSTANT
support.

For all three methods, we use the “hill” example included in the WRF-SFIRE
repository, which simulates 5 minutes of the fire propagation in a 60m×60m hill
area. Figure 5b shows the time comparison with different execution methods.
For each method, we plot the total end-to-end time (from the first step of the
WRF model to the last step of the SFIRE model), and also the sfire model
time (elapsed time used for the SFIRE model execution). From Figure 5b, we
can see that the default tightly-coupled method has the longest end-to-end time
of 422.6 seconds. This lengthy time is caused by the time-division pattern of
tightly-coupled execution: the same processors need to be time-sliced to alternate
through WRF and SFIRE executions.

In comparison, the decoupled executions enabled by INSTANT deploy the
WRF and SFIRE models in separate computing resources, and allow the data
transfer to happen asynchronously without blocking the WRF atmosphere exe-

6 The integration of ADIOS2 into the WRF is being added for future WRF releases
https://github.com/wrf-model/WRF/pull/1787.

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 11

cution. For “INSTANT w/ 1fire” and “INSTANT w/ 2fires” methods, the total
time is greatly reduced to 206.5 and 205.1 seconds, respectively, both resulting
in more than 2 times speedup. In both cases, the end-to-end time is close to the
time spent on the sfire model. Moreover, compared with the base 1fire method,
the 2fire method does more with similar time: two separate SFIRE models are
concurrently executed, which gives more insights for disaster monitoring/pre-
vention, without running the WRF atmosphere model multiple times. Overall,
INSTANT enables flexible composition of in-situ workflows by allowing simula-
tion connected with interchangeable analytics components.

3.2 Computational Fluid Dynamics with Real-time Machine
Learning/Visualization

In the second use case, we use a real-time “CFD + machine learning and visu-
alization” in-situ workflow application [18] to demonstrate how INSTANT can
process execution patterns through collected performance data, generate efficient
execution plans, and launch the proposed workflow to accelerate applications.

sampled_regions

divs_from_sampled

medoids

all_regions
all_regions

1

DivCal

3

AssignClusterIDs

4

CatalystVis

0
CFD

2

K-MedoidsClustering

(a) Workflow layout.

21.8 21.8

5.5

26.1 26.6

0

10

20

30

Th
ro

ug
hp

ut
 in

st
ep

s/
m

in
ut

e Predicted

Actual

0.48

0.83 0.81

0

0.5

1

baseline INSTANT
-1site

INSTANT
-distrib

Re
so

ur
ce

Effi
ci

en
cy

Efficiency

(b) Throughput and resource efficiency.

Fig. 6: A CFD simulation + machine learning/visualization in-situ workflow.
INSTANT achieves better throughput and resource efficiency through resource
planning.

Figure 6a shows the workflow layout of the CFD-based workflow. The first
CFD component application is a parallel icoFoam CFD simulation implemented
with the OpenFOAM package to simulate a 2-D lid-driven cavity flow problem.
Then the simulation output is partitioned into a number of 2D regions based on
the geometric information, and the task is to cluster the regions into different
categories based on the flow pattern. The DivCal component, to calculate the L2
divergences between a group of sampled regions. Then, the K-MedoidsClustering

12 F. Li and F. Song

component groups all the sampled regions using k-medoid with the calculated
divergence information. After that, the AssignClusterIDs component assigns a
label for each region, based on its divergence from the medoid regions. Finally
the CatalystVis component visualizes the clustering results using the ParaView
Catalyst in-situ visualization toolkit [19].

We configure a grid size of 1024× 1024 for the CFD simulation and a region
size of 16 × 16, which results in a total number of 4096 regions. We compare
the following three cases: baseline, INSTANT-1site, and INSTANT-distrib. The
baseline case is a reference execution plan, which uses small-size allocation just
to gather performance data for resource planning7. The two other methods use
the collected performance data from the baseline execution and generate plans
for two different resource availability scenarios. The INSTANT-1site method
assumes there is a total of 32 cores available on a single HPC site (IU Quartz
HPC); while the INSTANT-distrib method assumes there are 32 cores available
in a distributed environment (two HPC systems: IU Quartz and Bridges2, each
with 16 cores).

We use throughput and resource efficiency as the metrics to compare the
above three methods. Throughput is measured in “steps per minute”, which
corresponds to the speed the workflow can advance in a pipelined fashion. The
resource efficiency, on the other hand, is calculated by:

Eresource =

∑
ci∈C ncipciTcompute(ci)

(
∑

ci∈C ncipci)Tstep

Here C is the set of all components of the workflow, nci is the number of pro-
cessing units allocated to component ci, and pci denotes the performance of each
assigned processing unit. The Tstep is the workflow step time, which indicates the
time required for the whole workflow to advance a step in the pipelined fashion.
The Tcompute(ci) is the time a component ci uses for compute work instead of
idling caused by pipeline stall. Overall, a higher resource efficiency indicates that
components are assigned with the proper amount of computing resources, and
the whole workflow experiences less idling.

Figure 6b shows the throughput and resource efficiency of the CFD workflow
of the three methods. The upper part of the figure shows the throughput of the
three methods, where the base case has a relatively low throughput of 5.5 steps
per minute. With the performance gathered from the base case, the INSTANT
creates plans for the INSTANT-1site and INSTANT-distrib methods. For those
two methods, INSTANT can first give rough predictions of the throughput even
before the execution, based on the results of resource planning. After the actual
launching, INSTANT achieves 4.75 and 4.83 times better throughput for the 1-
site and distributed setups, respectively, compared with the baseline. SNL-based
methods also achieve better resource efficiency than the baseline, as shown in
the bottom part of Figure 6b. Overall, INSTANT can help workflow users con-
veniently gather performance data from historical runs, and generate adequate
resource plans for efficient executions at different resource availabilities.

7 We have used 4,2,1,2,1 processes for the 5 components, respectively.

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 13

4 Related Work
Traditional workflow management systems such as Pegasus [20] and Kepler [21]
provide interfaces for workflow users to compose, launch and collect results for
task-based workflows. In these works, the data dependencies are carried out
through file transfers, and each task can only start only after all its predecessors
finish. Resource planning methods have also largely been developed following
such assumptions of execution precedence. Our INSTANT framework, however,
assumes a different pipelined execution pattern, and allows for special resource
planning methods to target the emerging in-situ workflows.

The Cheetah/Savanna workflow environment [7] is a toolset to automate per-
formance studies of coupled simulation-analysis-reduction HPC computations.
Cheetah is used to compose a campaign of workflows, considering large configu-
ration space such as process placement and I/O choices, and Savanna is a run-
time engine that orchestrates individual workflows on target platforms. Although
Cheetah/Savanna workflow environment supports different HPC platforms, it fo-
cuses on the fine-grained performance study on each individual platform, and
the effect of collaboration of multiple platforms is largely unexplored.

BeeFlow [8] is a workflow management system that supports traditional
workflows and also workflows with in-situ data dependencies. It utilizes event-
synchronization primitives to enforce in-situ workflow logic. BeeFlow replies on
Docker containers for application deployment, and the execution is constrained
to one site for a single run. In comparison, INSTANT allows native parallel com-
ponent applications, and the applications can be planned and deployed across
multiple sites for efficient executions.

5 Discussion

5.1 Co-allocation of Computation Resources & Queue Time Waste

Currently, different site groups of a workflow are submitted subsequently to the
planned sites, and we assume the components can start execution at around the
same time. In the case when an HPC site experiences long job queue waiting
time, the job submitted to the other sites will wait during the ADIOS2 environ-
ment initialization until the delayed job starts. For mission-critical applications,
allocation reservation or increasing job queue priority can also better ensure that
applications be launched and started around the same time.

5.2 Application Deployment in Distributed Computing
Environments

One challenge in supporting the flexible execution of in-situ workflows on vari-
ous platforms is the software deployment of component applications on different
computing environments. To let components have the flexibility to be placed
on either of the available sites, executables of the components should also be
either available or deployable on those sites. Workflow systems such as Pega-
sus maintain a “transformation catalog”, to locate the executables for workflow

14 F. Li and F. Song

components. Other systems use container technologies to deploy applications
before execution. In our current implementation, we deploy component appli-
cations on the target sites using Spack environment [22]. INSTANT specifies a
list of required software packages (e.g., OpenFOAM and ParaView) as a Spack
environment file, which allows the same set of software environments to be easily
installed/reproduced on various platforms.

6 Conclusion

We design and implement a runtime framework called INSTANT, which allows
for easy configuration, planning, and deployment of in-situ workflows across
multiple execution environments. The INSTANT framework contains a mapper
component and an execution engine. The mapper can generate efficient execu-
tion plans based on available computing environments and workflow character-
istics, and the execution engine allows the execution workflow to be deployed
either on one site or across multiple sites. We conduct our experiments with a
wildfire-spreading workflow and a real-time “CFD with machine learning and
visualization” workflow. Experiment results show that INSTANT allows easier
composition of in-situ workflows and built-in resource planning functionality
improves the workflow throughput and resource efficiency. Future work includes
supporting more applications from various domains. This will also allow for a
more thorough performance study for a broad set of applications and workflows.

Acknowledgements This work is supported by the National Science Foun-
dation Award #1835817. We want to thank Greg Eisenhauer who provided
useful suggestions and clarifications on ADIOS2 cross-site in-situ data trans-
port, and also Michael Laufer who offered generous help and guidance on the
WRF-ADIOS2 integration.

References

1. Janine C Bennett, Hasan Abbasi, Peer-Timo Bremer, et al. Combining in-situ and
in-transit processing to enable extreme-scale scientific analysis. In SC’12: Proceed-
ings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–9. IEEE, 2012.

2. Christopher Sewell, Katrin Heitmann, Hal Finkel, et al. Large-scale compute-
intensive analysis via a combined in-situ and co-scheduling workflow approach.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2015.

3. Hank Childs, Sean D. Ahern, James Ahrens, et al. A terminology for in situ
visualization and analysis systems. The International Journal of High Performance
Computing Applications, 34(6):576–691, August 2020.

4. William F. Godoy, Norbert Podhorszki, RuonanWang, et al. ADIOS 2: The Adapt-
able Input Output System. A framework for high-performance data management.
SoftwareX, 12:100561, July 2020.

INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows 15

5. Hrvoje Jasak, Aleksandar Jemcov, and Zˇeljko Tukovic. OpenFOAM: A C++
Library for Complex Physics Simulations. In International Workshop on Coupled
Methods in Numerical Dynamics, page 20, IUC, Dubrovnik, Croatia, 2007.

6. Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal of Computational Physics, 117(1):1–19, 1995.

7. Kshitij Mehta, Bryce Allen, Matthew Wolf, et al. A codesign framework for on-
line data analysis and reduction. Concurrency and Computation: Practice and
Experience, 34(14):e6519, 2021.

8. Jieyang Chen, Qiang Guan, Zhao Zhang, et al. BeeFlow: A Workflow Management
System for In Situ Processing across HPC and Cloud Systems. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS), pages
1029–1038. IEEE, July 2018.

9. Tu Mai Anh Do, Löıc Pottier, Orcun Yildiz, Karan Vahi, Patrycja Krawczuk, Tom
Peterka, and Ewa Deelman. Accelerating Scientific Workflows on HPC Platforms
with In Situ Processing. In 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pages 1–10, May 2022.

10. Orcun Yildiz, Jorge Ejarque, Henry Chan, Subramanian Sankaranarayanan,
Rosa M. Badia, and Tom Peterka. Heterogeneous Hierarchical Workflow Com-
position. Computing in Science Engineering, 21(4):76–86, July 2019.

11. M. Dreher and T. Peterka. Decaf: Decoupled dataflows for in situ high-performance
workflows. (ANL/MCS-TM-371), July 2017.

12. ORNL. ADIOS2 HeatTransfer workflow. https://github.com/ornladios/

ADIOS2/blob/release_28/examples/heatTransfer/ReadMe.md.
13. Y. Fu, F. Li, F. Song, and Z. Chen. Performance analysis and optimization of

in-situ integration of simulation with data analysis: Zipping applications up. In
Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC’18, pages 192–205. ACM, June 2018.

14. IBM. IBM ILOG CPLEX Optimization Studio OPL Language User’s Manual.
Technical Report Version 12 Release 8, 2017.

15. Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Viĺım. IBM ILOG CP
optimizer for scheduling. Constraints, 23(2):210–250, 2018.

16. J. Mandel, J. D. Beezley, and A. K. Kochanski. Coupled atmosphere-wildland
fire modeling with WRF 3.3 and SFIRE 2011. Geoscientific Model Development,
4(3):591–610, July 2011.

17. Michael Laufer and Erick Fredj. High performance parallel i/o and in-situ analysis
in the wrf model with adios2. arXiv preprint arXiv:2201.08228, 2022.

18. Feng Li and Fengguang Song. Building a scientific workflow framework to en-
able real-time machine learning and visualization. Concurrency and Computation:
Practice and Experience, 31(16):e4703, 2019.

19. Nathan Fabian, Kenneth Moreland, et al. The ParaView Coprocessing Library: A
scalable, general purpose in situ visualization library. In 2011 IEEE Symposium
on Large Data Analysis and Visualization, pages 89–96, October 2011.

20. Ewa Deelman, Karan Vahi, et al. Pegasus, a workflow management system for
science automation. Future Generation Computer Systems, 46:17–35, May 2015.

21. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, et al. Scientific Workflow Man-
agement and the Kepler System. Concurrency and Computation: Practice and
Experience, 18(11):1039–1065, 2006.

22. Todd Gamblin, Matthew LeGendre, Michael R Collette, et al. The spack package
manager: bringing order to hpc software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2015.

