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Abstract. The two-phase ferrohydrodynamics model consisting of Cahn--Hilliard equations,
Navier--Stokes equations, magnetization equations, and magnetostatic equations is a highly nonlin-
ear, coupled, and saddle point structural multiphysics PDE system. While various works exist to
develop fully decoupled, linear, second-order in time, and unconditionally energy stable methods
for simpler gradient flow models, existing ideas may not be applicable to this complex model or
may be only applicable to part of this model. Therefore, significant challenges remain in developing
corresponding efficient fully discrete numerical algorithms with the four above-mentioned desired
properties, which will be addressed in this paper by dynamically incorporating several key ideas,
including a reformulated weak formulation with special test functions for overcoming two major
difficulties caused by the magnetostatic equation, the decoupling technique based on the ``zero-
energy-contribution"" property to handle the coupled nonlinear terms, the second-order projection
method for the Navier--Stokes equations, and the invariant energy quadratization (IEQ) method for
the time marching. Among all these ideas, the reformulated weak formulation serves as a key bridge
between the existing techniques and the challenges of the target model, with all of the four desired
properties kept in mind. We demonstrate the well-posedness of the proposed scheme and rigorously
show that the scheme is unconditionally energy stable. Extensive numerical simulations, including
accuracy/stability tests, and several 2D/3D benchmark Rosensweig instability problems for ``spiking""
phenomena of ferrofluids are performed to verify the effectiveness of the scheme.

Key words. ferrohydrodynamics, two-phase, fully decoupled, unconditional energy stability,
second-order accuracy
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1. Introduction. Ferrofluids are colloidal suspensions formed by infusing small
monodomain magnetic particles into a nonmagnetic carrier fluid. They have a ``zero-
magnetic-remanence"" property; i.e., they can be magnetized by an external magnetic
field, but their magnetization properties disappear completely in the absence of the
applied magnetic field. This unique property enables ferrofluids to be widely used
in many scientific and engineering fields requiring precise control, including assem-
bly of micro-/nanoparticles [5, 11], ferrofluid jet [10, 19], fluid transport and control
[34], sorting of biological cells [63], and microchannel flows [46]. Two versions of

*Submitted to the journal's Computational Methods in Science and Engineering section May 31,
2022; accepted for publication (in revised form) December 29, 2022; published electronically June 1,
2023.

https://doi.org/10.1137/22M1499376
Funding: The first author's research partially supported by the National Science Foundation of

China under grants 12171415 and 12271468. The second author's research was partially supported
by the U.S. National Science Foundation under grant DMS-1818642. The third author's research
partially supported by the U.S. National Science Foundation under grants DMS-1818783 and DMS-
2012490.

\dagger 
School of Mathematics and Information Sciences, Yantai University, Yantai, 264005, Shandong,

People's Republic of China (gdzhang@ytu.edu.cn).
\ddagger 
Department of Mathematics, Missouri University of Science \& Technology, Rolla, MO 65409

USA (hex@mst.edu).
\S 
Corresponding author. Department of Mathematics, University of South Carolina, Columbia,

SC 29208 USA (xfyang@math.sc.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B253

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1499376
mailto:gdzhang@ytu.edu.cn
mailto:hex@mst.edu
mailto:xfyang@math.sc.edu


B254 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

mathematical models describing ferrohydrodynamics (FHD) were originally devel-
oped by Rosensweig (cf. [37, 38]) and Shliomis (cf. [48, 49]), respectively. The two
models have both similarities and differences. For example, they both treat ferrofluid
as a homogeneous single-phase fluid. But they are quite different in explaining the
motion of particles. For example, the Rosensweig model establishes a partial differen-
tial equation of the angular velocity to calculate the spin of nanoparticles, while the
Shliomis model treats the spin as a magnetic torque. Recently, both of these mod-
els have been applied to solve engineering applications involving two-phase ferrofluid
models (one phase has magnetic properties and the other does not), such as mag-
netic manipulation of microchannel flows [27, 32], microvalves [30, 50], drag targeted
therapy [31, 47], magnetically guided transport [1], etc.

In recent years, the phase-field type model has been extensively applied to sim-
ulate multiphase fluid flow systems. Due to the high stiffness it carries, the model
provides a formidable challenge to the design of numerical methods, where numerical
approaches satisfying energy stability are recognized as being more effective for solv-
ing the model [29, 62]. Existing numerical methodologies include the convex-splitting
strategy [3, 7, 20, 21, 26, 36, 40, 53], the stabilization method [13, 14, 23, 44, 52], the
invariant energy quadratization approach [9, 51, 58, 59, 60, 61, 67], the scalar auxil-
iary variable approach [2, 7, 12, 15, 25, 28, 35, 41], and the zero-energy-contribution
framework [54, 55, 56, 57, 64, 66]. The FHD system, which is a specific instance of
a multiphase flow system, is also being modeled using the phase-field method, and
some initial progress has been made in algorithm design and simulation.

However, to the best of the authors' knowledge, the current work on numerical
algorithm development and analysis of two-phase FHD models is still in its infancy,
especially for models constructed using the phase-field (diffusive-interface) method.
In the pioneering work of [33], the authors used the phase-field method to establish a
two-phase ferrofluid mathematical model coupling the monophase Shliomis model and
the Cahn--Hilliard equation. The authors also proposed an unconditionally energy
stable scheme and proved the convergence. The numerical algorithm developed in
[33] is the first energy stable scheme for the two-phase FHD model, which lays a solid
foundation for the development of numerical methods for the phase-field type FHD
model. However, the numerical scheme developed in [33] is nonlinear, coupled, and
first-order accurate in time, and the space is discretized by using the hybrid finite
element discretizations (discontinuous and continuous finite element discretizations
are combined). Recently, a linear, decoupled, unconditionally energy stable scheme
has been developed in [65] where the space is discretized by using the continuous
finite element method, which is simpler to implement. However, the scheme in [65]
is still of first-order temporal accuracy and partially decoupled. Also, the numerical
experiments in both [33, 65] are limited to two dimensions. Furthermore, even though
the magnetostatic equation looks like the easiest equation in the whole system, the
fact is quit the opposite, and it actually caused two major drawbacks of the algorithm
in [65]. One is a stability problem when one tries to decouple the magnetic potential
from the magnetization, which is actually the reason why the scheme in [65] is not
fully decoupled. The other one is the introduction of an auxiliary variable when
one tries to use continuous finite elements instead of discontinuous Galerkin for the
magnetization equation.

Therefore, in this paper, our goal is to develop a fully discrete numerical scheme
with second-order time accuracy, linearity, unconditional energy stability, and fully
decoupled structure based on the continuous finite element method and also perform
simulations in both two and three dimensions. Meanwhile, we will also overcome the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

29
.2

52
.3

3.
20

1 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B255

above two drawbacks caused by the magnetostatic equation in [65]. To achieve these
goals, we incorporate the following five key ideas.

First, to decouple the magnetic potential from the magnetization, we reformu-
late the weak formulation of the magnetostatic equation by combining some special
structural features of the magnetostatic equation and the magnetization equation.
Specifically, we test appropriately chosen functions on the magnetostatic equation, its
temporal derivative equation, and the magnetization equation. Then we combine the
resulted equations to cancel the original coupling term in the magnetostatic equation
and derive a new equivalent weak formulation with several extra terms. This recon-
struction not only helps us to achieve fully decoupled structures but also enables us to
naturally apply the continuous finite element method to discretize the magnetization
equations, rather than introducing an auxiliary magnetic field in continuous finite
element space as in [65] or using the discontinuous finite element method as in [33].

Second, to further decouple the magnetic fields, flow field, and phase-field vari-
able completely while maintaining the unconditional energy stability, we adopt the
recently developed decoupling framework using a nonlocal scalar auxiliary variable
for the nonlinear coupling terms satisfying the so-called ``zero-energy-contribution""
feature; see [54, 55]. The key idea is to further reformulate the system into an equiv-
alent form coupled with some special ordinary differential equation (ODE) consisting
of those terms satisfying the ``zero-energy-contribution"" feature. The main motiva-
tion for defining a nonlocal variable and developing an equivalent system is that the
unconditional stability and fully decoupled linearized structure can be simultaneously
obtained by explicit treatments of nonlinear terms. More importantly, under this
fully decoupled linearized structure of unconditional stability, this idea provides a
great chance to achieve second-order accuracy for temporal discretization. This is a
well-known challenge in the efficiency, accuracy, and stability of numerical methods
for this type of sophisticated model, for which the extra cost paid in the above two
intermediate reformulations is worthwhile. The design of the particular ODE is en-
tirely dependent on the characteristics of the model. Hence its design requires careful
consideration, especially when the model studied in this paper is very complex, in-
volving many complicated nonlinear terms coupled to the magnetic, magnetization,
and velocity fields.

Third, two critical ideas will be utilized to deal with three nonlinear terms ob-
tained from the above first reformulated model in an efficient way. On one hand,
two nonlinear terms happen to satisfy the ``zero-energy-contribution"" characteristic
and hence can also be naturally incorporated in the nonlocal scalar variable Q. This
is another major difference from the existing works on constructing the ODE for Q.
On the other hand, since the third nonlinear term possesses a positive definite struc-
ture, it can be decoupled by an appropriate two-step implicit-explicit scheme while
maintaining unconditional stability.

Fourth, we use the second-order accurate projection method [18, 39] to decouple
the calculation of the pressure from the momentum equation.

Fifth, the nonlinear double-well potential contained in the phase-field equation is
treated by using the recently developed invariant energy quadratization (IEQ) method
(cf. [59, 60]) to ensure the unconditional energy stability, second-order temporal
accuracy, and linearity.

With the ideas described above, we construct a desired efficient scheme, which
is a continuous finite element scheme and has the characteristics of fully decoupling,
second-order accuracy in time, unconditional energy stability, and linearity. These
advantages are our main motivation to reconstruct the original model at the cost
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B256 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

of constructing a more complex (but equivalent) formalism. The final numerical
implementation of the reconstructed model only requires the solution of several in-
dependent elliptic equations without increasing the computational complexity of the
final algorithm at all. It is worthwhile to concentrate on the process of reformulation
to improve the stability, efficiency, and accuracy of the numerical implementation of
such complex models. In addition, the developed algorithm transforms the nonlinear
coupled, saddle-point structure multiphysics two-phase FHD problem into multiple
independent elliptic type problems, resulting in a very convenient solution process.
We further establish the well-posedness of the proposed scheme and rigorously prove
the unconditional energy stability. Through various numerical simulations, including
the accuracy test, energy stability verification, and some 2D/3D benchmark problems,
the effectiveness of the proposed scheme is verified, and some iconic ``spiking"" phe-
nomena of two-phase ferrofluid are simulated. To the best of the authors' knowledge,
the developed scheme is the first second-order accurate in time and fully decoupled
scheme for the two-phase FHD phase-field model.

We organize the rest of the article in the following way. In section 2, we present
the two-phase FHD phase-field model and reformulate it as an equivalent weak form
that facilitates numerical discretization. In section 3, we construct our numerical
scheme and prove its unconditional energy stability and well-posedness. In section 4,
we present various 2D and 3D numerical simulations to verify the effectiveness of the
scheme. Some concluding remarks are made in section 5.

2. Two-phase FHD phase-field system and its energy law.

2.1. The two-phase FHD model. Let \Omega \subset Rd with d= 2 or 3 be a bounded
convex polygon or polyhedron domain. The Shliomis model for a viscous, homoge-
neous, nonconducting ferrofluid flow system reads as follows [33, 49]:\left\{                   

\bfitu t  - \nu \Delta \bfitu + (\bfitu \cdot \nabla )\bfitu +\nabla p= \mu (\bfitm \cdot \nabla )\bfith +
\mu 

2
\nabla \times (\bfitm \times \bfith ),

\nabla \cdot \bfitu = 0,

\bfitm t + (\bfitu \cdot \nabla )\bfitm  - 1

2
\nabla \times \bfitu \times \bfitm = - 1

\tau 
(\bfitm  - \chi 0\bfith ) - \beta \bfitm \times (\bfitm \times \bfith ),

 - \Delta \varphi =\nabla \cdot (\bfitm  - \bfith a),

\bfitu | \partial \Omega = 0, \partial n\varphi | \partial \Omega = (\bfith a  - \bfitm ) \cdot \bfitn 
\partial \Omega 
, \bfitu (0,\bfitx ) =\bfitu 0, \bfitm (0,\bfitx ) =\bfitm 0.

(2.1)

Here \bfitu is the velocity field, p is the pressure, \bfitm is the magnetization field, \bfith (:=\nabla \varphi )
is the effective magnetic field, \varphi is the magnetic potential, \bfith a is a smooth harmonic
applied magnetic field (\nabla \times \bfith a = 0,\nabla \cdot \bfith a = 0), \nu is the kinematic fluid viscosity, \chi 0 is
magnetic susceptibility, \mu is permeability of free space, \tau is relaxation time constant,
\beta = 1

6\nu \vargamma , \vargamma is volume fraction of dispersed solid phase, \bfitn 
\partial \Omega 

is the outward normal on
the boundary \partial \Omega , and the term (\bfitm \cdot \nabla )\bfith is the so-called Kelvin force.

In the framework of the phase-field approach, to simulate the immiscible mixture
consisting of the ferrofluid and nonferromagnetic viscous fluid, a labeling variable \Phi 
is defined as

\Phi (t,\bfitx ) =

\Biggl\{ 
1 ferrofluid phase,

0 nonferromagnetic viscous fluid

with a thin smooth transition layer of thickness \epsilon connecting the two fluids. Then the
interface of the mixture can be recorded using \Gamma = \{ \bfitx : \Phi (t,\bfitx ) = 1/2\} . We assume
that the evolution of the phase-field variable follows the Cahn--Hilliard dynamics that
read as
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B257\left\{     
\Phi t +\nabla \cdot (\bfitu \Phi )=M\Delta W,

W = - \lambda \epsilon \Delta \Phi + \lambda f(\Phi ),

\Phi (0,\bfitx ) =\Phi 0, \partial n\Phi | \partial \Omega = 0, \partial nW | \partial \Omega = 0,

(2.2)

where M > 0 is the mobility parameter, W is the chemical potential, \lambda accounts
as the surface tension parameter, and f(\Phi ) = F \prime (\Phi ), F (\Phi ) = 1

4\epsilon \Phi 
2(\Phi  - 1)2 is the

Ginzburg--Landau double-well potential.
The two-phase FHD model coupling the Shiliomis model (2.1) and the Cahn--

Hilliard system (2.2) are given as follows (cf. the detailed modeling work given in [33,
49, 65]):

\Phi t +\nabla \cdot (\bfitu \Phi )=M\Delta W,(2.3)

W = - \lambda \epsilon \Delta \Phi + \lambda f(\Phi ),(2.4)

\bfitu t  - \nabla \cdot \nu (\Phi )D(\bfitu ) + (\bfitu \cdot \nabla )\bfitu +\nabla p+\Phi \nabla W = \mu (\bfitm \cdot \nabla )\bfith +
\mu 

2
\nabla \times (\bfitm \times \bfith ),(2.5)

\nabla \cdot \bfitu = 0,(2.6)

\bfitm t + (\bfitu \cdot \nabla )\bfitm  - 1

2
\nabla \times \bfitu \times \bfitm + \beta \bfitm \times (\bfitm \times \bfith ) = - 1

\tau 
(\bfitm  - \chi (\Phi )\bfith ) ,(2.7)

 - \Delta \varphi =\nabla \cdot (\bfitm  - \bfith a),(2.8)

\partial n\Phi | \partial \Omega = 0, \partial nW | \partial \Omega = 0, \bfitu | \partial \Omega = 0, \partial n\varphi | \partial \Omega = (\bfith a  - \bfitm ) \cdot \bfitn 
\partial \Omega 
,(2.9)

\Phi (0,\bfitx ) =\Phi 0, \bfitu (0,\bfitx ) =\bfitu 0, \bfitm (0,\bfitx ) =\bfitm 0.(2.10)

Here \nu (\Phi ) = \nu w+(\nu f - \nu w) 1
1+e - (2\Phi  - 1)/\epsilon , \nu f and \nu w are viscosities for the ferrofluid phase

and nonferromagnetic viscous mediums, respectively, \chi (\Phi ) = \chi 0
1

1+e - (2\Phi  - 1)/\epsilon (another

choice of \chi (\Phi ) = \Phi 2\chi 0 can also be used for simplicity), D(\bfitu ) = 1
2 (\nabla \bfitu + (\nabla \bfitu )

\prime 
), and

the term \Phi \nabla W is the induced elastic stress by the mixing energy [33, 43, 44].
Hereafter, for two vector functions \bfitx ,\bfity , we denote the L2 inner product as (\bfitx ,\bfity ) =\int 

\Omega 
\bfitx \cdot \bfity dx and L2-norm \| \bfitx \| 2 = (\bfitx ,\bfitx ). We use H1(\Omega ) to denote the usual Sobolev

space, and we define H1
0 (\Omega ) = \{ \phi \in H1(\Omega ) : \phi | \partial \Omega = 0\} , L2

0(\Omega ) = \{ \phi \in L2(\Omega ) :
\int 
\Omega 
\phi dx=

0\} , \bfitH 1(\Omega ) =H1(\Omega )d, and \bfitH 1
0(\Omega ) =H1

0 (\Omega )
d.

The two-phase FHD system (2.3)--(2.10) satisfies the following energy stabil-
ity/dissipation law.

Lemma 2.1 (Theorem 2.1 in [65]). Assuming \chi (\Phi )\leq \chi 0, the system (2.3)--(2.10)
satisfies the following energy stability:

d

dt
E(\Phi ,\bfitu ,\bfith ,\bfitm ) +D(W,\bfitu ,\bfith ,\bfitm )\leq \mu 

\tau 
\| \bfith a\| 2 + \tau \mu \| \bfith b\| 2,

where \bfith b = \partial t\bfith a and

E(\Phi ,\bfitu ,\bfith ,\bfitm ) = \lambda 
\Bigl( \epsilon 
2
\| \nabla \Phi \| 2 + (F (\Phi ),1)

\Bigr) 
+

1

2
\| \bfitu \| 2 + \mu 

2
\| \bfith \| 2 + \mu 

2\chi 0
\| \bfitm \| 2,(2.11)

D(W,\bfitu ,\bfith ,\bfitm ) =M\| \nabla W\| 2 + \| 
\sqrt{} 
\nu (\Phi )D(\bfitu )\| 2 + \mu 

2\tau 
\| \bfith \| 2(2.12)

+ \mu \beta \| \bfitm \times \bfith \| 2 + 3\mu 

4\tau \chi 0
\| \bfitm \| 2.

For the case of no applied magnetic field (\bfith a = 0), the following energy dissipation
law holds:

d

dt
E(\Phi ,\bfitu ,\bfith ,\bfitm ) +D(W,\bfitu ,\bfith ,\bfitm )\leq 0.
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B258 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

Remark 2.1. Normally the magnetostatic equation (2.8) seems to be very simple,
and its solvability is taken for granted. However, this equation poses two unexpected
difficulties in designing numerical methods, especially when a numerical scheme with a
decoupled structure is expected. First, note that there exists a linear coupling between
the magnetic potential \varphi and magnetization field \bfitm , and it is difficult to decouple
them under the premise of unconditional stability. This leads to the coupled type
scheme developed in [33, 65]. Second, the definition of \bfith =\nabla \varphi implies that if a direct
implicit discretization is adopted for (2.8), a hybrid finite element method is required,
e.g., the discontinuous Galerkin method for \bfith and the continuous Galerkin method
for \varphi (see [33]), which is not easy to implement as well. Or one may adopt the indirect
discretization method, such as introducing one auxiliary magnetic variable \~\bfith (see the
details in our previous work [65]), which makes it possible to use the continuous finite
element method. However, the indirect discretization can only achieve first-order
accuracy in time. In the following subsections, we will perform a new reformulation
of the magnetostatic equation (2.8) to obtain an equivalent form, which facilitates
the simultaneous development of schemes with decoupling structure and second-order
time accuracy.

2.2. Reformulated formulation. To facilitate the design of numerical algo-
rithms, we convert the system (2.3)--(2.10) into an equivalent form.

First, we deal with the magnetic potential equation (2.8) by constructing its weak
form: find \varphi \in H1(\Omega )\cap L2

0(\Omega ), such that

1

\tau 
(\nabla \varphi ,\nabla \psi ) + 1

\tau 
(\bfitm ,\nabla \psi ) = 1

\tau 
(\bfith a,\nabla \psi ) \forall \psi \in H1(\Omega )\cap L2

0(\Omega ).(2.13)

By taking the time derivative of (2.8) and formulating the obtained equation in the
weak form, we obtain

(\nabla \varphi t,\nabla \psi ) + (\bfitm t,\nabla \psi ) = (\bfith b,\nabla \psi ).(2.14)

By taking the L2 inner product of the magnetization equation (2.7) with \nabla \psi , we
derive

1

\tau 
(\chi (\Phi )\nabla \varphi ,\nabla \psi ) - ((\bfitu \cdot \nabla )\bfitm ,\nabla \psi ) + 1

2
(\nabla \times \bfitu \times \bfitm ,\nabla \psi ) + \beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi )

= (\bfitm t,\nabla \psi ) +
1

\tau 
(\bfitm ,\nabla \psi ).

(2.15)

Summing up (2.13)--(2.15), we get a new magnetostatic equation which will be used
to replace (2.8) and reads as

(\nabla \varphi t,\nabla \psi ) +
1

\tau 
(\nabla \varphi ,\nabla \psi ) + 1

\tau 
(\chi (\Phi )\nabla \varphi ,\nabla \psi ) + \beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi ) - ((\bfitu \cdot \nabla )\bfitm ,\nabla \psi )

+
1

2
(\nabla \times \bfitu \times \bfitm ,\nabla \psi ) = 1

\tau 
(\bfith a,\nabla \psi ) + (\bfith b,\nabla \psi ).

(2.16)

Remark 2.2. The above reconstruction process gives us a new magnetostatic
equation (2.16) that appears to be more complex than the original magnetostatic
equation (2.8). In practice, however, the new magnetostatic equation (2.16) actually
makes it easier for us to design numerical schemes with unconditional stability and a
fully decoupled structure for the following two reasons:
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B259

\bullet First, in (2.16), the linear coupling of magnetic potential \varphi and magnetiza-
tion \bfitm disappears, thus offering the possibility to develop a fully decoupled
algorithm. Although several nonlinear terms appear, e.g., the two terms
1
2 (\nabla \times \bfitu \times \bfitm ,\nabla \psi )  - ((\bfitu \cdot \nabla )\bfitm ,\nabla \psi ), they actually satisfy the property of
``zero-energy-contribution."" Hence they can be decoupled by applying the de-
coupling technique through the nonlocal auxiliary variable; see the details in
section 2.3. Another additional nonlinear coupling term \beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi )
does not satisfy the ``zero-energy-contribution"" property, but note that it
owns the positive definite structure. Therefore, it can be handled by the two-
step implicit-explicit discretization to achieve the decoupling calculation; see
section 3.2.

\bullet Second, the disappearance of the linear coupling between the magnetic po-
tential \varphi and the magnetization \bfitm allows us to apply the continuous finite
element method to solve (2.7) and (2.16). Therefore, it is not necessary to
use discontinuous finite elements for \bfitm as [33], nor to introduce additional
auxiliary variable \~\bfith as [65].

Second, we apply the IEQ method [59, 60] to recast the Cahn--Hilliard equation.
Denote

U =

\sqrt{} 
F (\Phi ) - S

2\epsilon 
\Phi 2 +B, H(\Phi ) =

f(\Phi ) - S
\epsilon \Phi \sqrt{} 

F (\Phi ) - S
2\epsilon \Phi 

2 +B
,

where S is an adjustable positive parameter that works as a stabilization term (see
Remark 2.4), and B is a chosen constant such that F (\Phi ) - S

2\epsilon \Phi 
2+B > 0. With these

formulas, we obtain the equivalent phase-field equations as follows:

\Phi t +\nabla \cdot (\bfitu \Phi )=M\Delta W, W = - \lambda \epsilon \Delta \Phi + \lambda H(\Phi )U +
S\lambda 

\epsilon 
\Phi , Ut =

1

2
H(\Phi )\Phi t.

The corresponding weak form can be written as follows: find \Phi \in H1(\Omega ), W \in H1(\Omega )
such that for all \Lambda \in H1(\Omega ), X \in H1(\Omega ), the following hold:

(\Phi t,\Lambda ) - (\bfitu \Phi ,\nabla \Lambda )= - M(\nabla W,\nabla \Lambda ),(2.17)

(W,X) = \lambda \epsilon (\nabla \Phi ,\nabla X) + \lambda (H(\Phi )U,X) +
S\lambda 

\epsilon 
(\Phi ,X),(2.18)

Ut =
1

2
H(\Phi )\Phi t.(2.19)

Third, we recast the Kelvin force term in the momentum equation (2.5). By taking
the L2 inner product of (2.5) with a test function \bfitv \in \bfitH 1

0(\Omega ), the Kelvin force term
becomes \mu ((\bfitm \cdot \nabla )\bfith ,\bfitv ). Since \bfith = \nabla \varphi , this term will bring boundary integrations
involving jump and average terms across interior boundaries when applying the finite
element method for spatial discretization; cf. [33]. We solve this issue by rewriting
this term as

\mu ((\bfitm \cdot \nabla )\bfith ,\bfitv ) = \mu ((\bfitv \cdot \nabla )\bfith ,\bfitm ) = - \mu ((\bfitv \cdot \nabla )\bfitm ,\bfith ) - \mu ((\nabla \cdot \bfitv )\bfitm ,\bfith ),(2.20)

where the fact that\nabla \times \bfith = 0 and integration by parts are used. In this way, first-order
spatial derivatives only exert on \bfitv , \bfitm , \varphi in (2.20), instead of \bfith .

From (2.20), we obtain the weak form of (2.5)--(2.6) that reads as follows: find
\bfitu \in \bfitH 1

0(\Omega ), p\in L2
0(\Omega ), such that for all \bfitv \in \bfitH 1

0(\Omega ), q \in L2
0(\Omega ), the following hold:

(\bfitu t,\bfitv ) + (\nu (\Phi )D(\bfitu ),D(\bfitv )) + ((\bfitu \cdot \nabla )\bfitu ,\bfitv ) - (p,\nabla \cdot \bfitv ) + (\Phi \nabla W,\bfitv )(2.21)
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B260 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

= - \mu ((\bfitv \cdot \nabla )\bfitm ,\bfith ) - \mu ((\nabla \cdot \bfitv )\bfitm ,\bfith ) +
\mu 

2
(\bfitm \times \bfith ,\nabla \times \bfitv ),

(\nabla \cdot \bfitu , q) = 0.(2.22)

Fourth, by applying the test function \bfitn \in \bfitH 1(\Omega ) for (2.7), we obtain

(\bfitm t,\bfitn ) + ((\bfitu \cdot \nabla )\bfitm ,\bfitn ) - 1

2
(\nabla \times \bfitu \times \bfitm ,\bfitn )(2.23)

 - \beta (\bfitm \times \bfith ,\bfitm \times \bfitn ) +
1

\tau 
(\bfitm ,\bfitn ) =

1

\tau 
(\chi (\Phi )\bfith ,\bfitn ).

Finally, by combining (2.16), (2.17)--(2.19), (2.21)--(2.22), and (2.23), we obtain a
reformulated equivalent system in the weak form that reads as follows: find (\Phi ,W )\in 
H1(\Omega )2, \bfitu \in \bfitH 1

0(\Omega ), p \in L2
0(\Omega ), \varphi \in H1(\Omega ) \cap L2

0(\Omega ), \bfitm \in \bfitH 1(\Omega ), such that for all
(\Lambda ,X)\in H1(\Omega )2, \bfitv \in \bfitH 1

0(\Omega ), q \in L2
0(\Omega ), \psi \in H1(\Omega )\cap L2

0(\Omega ), \bfitn \in \bfitH 1(\Omega ), the following
hold:

(\Phi t,\Lambda ) - (\bfitu \Phi ,\nabla \Lambda )= - M(\nabla W,\nabla \Lambda ),

(2.24)

(W,X) = \lambda \epsilon (\nabla \Phi ,\nabla X) + \lambda (H(\Phi )U,X)+
S\lambda 

\epsilon 
(\Phi ,X),

(2.25)

Ut =
1

2
H(\Phi )\Phi t,

(2.26)

(\bfitu t,\bfitv ) + (\nu (\Phi )D(\bfitu ),D(\bfitv )) + ((\bfitu \cdot \nabla )\bfitu ,\bfitv ) - (p,\nabla \cdot \bfitv ) + (\Phi \nabla W,\bfitv )
(2.27)

= - \mu ((\bfitv \cdot \nabla )\bfitm ,\nabla \varphi ) - \mu ((\nabla \cdot \bfitv )\bfitm ,\nabla \varphi ) + \mu 

2
(\bfitm \times \nabla \varphi ,\nabla \times \bfitv ),

(\nabla \cdot \bfitu , q) = 0,
(2.28)

(\nabla \varphi t,\nabla \psi ) +
1

\tau 
(\nabla \varphi ,\nabla \psi ) + 1

\tau 
(\chi (\Phi )\nabla \varphi ,\nabla \psi ) + \beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi ) - ((\bfitu \cdot \nabla )\bfitm ,\nabla \psi )

(2.29)

+
1

2
(\nabla \times \bfitu \times \bfitm ,\nabla \psi ) = 1

\tau 
(\bfith a,\nabla \psi ) + (\bfith b,\nabla \psi ),

(\bfitm t,\bfitn ) + ((\bfitu \cdot \nabla )\bfitm ,\bfitn ) - 1

2
(\nabla \times \bfitu \times \bfitm ,\bfitn ) - \beta (\bfitm \times \bfith ,\bfitm \times \bfitn ) +

1

\tau 
(\bfitm ,\bfitn )

(2.30)

=
1

\tau 
(\chi (\Phi )\bfith ,\bfitn ).

2.3. The augmented system using the ``zero-energy-contribution"" fea-
ture. It can be seen that the (2.24)--(2.30) form a highly coupled system. In order
to develop an easy-to-implement numerical algorithm, the key issue is to process the
nonlinear coupling terms to obtain the desired decoupling type scheme, while obtain-
ing second-order accuracy in time and maintaining energy stability unconditionally.
To this end, we will exploit an obvious and therefore easily overlooked feature, the so-
called zero-energy-contribution property that is satisfied by many nonlinear coupling
terms. Details are shown below.

By setting \Lambda =W in (2.24), \bfitv = \bfitu in (2.27), \psi = \mu \varphi in (2.29), and \bfitn = \mu 
\chi 0

\bfitm in
(2.30), using \nabla \cdot \bfitu = 0, \bfitu | \partial \Omega = 0, \bfitm \times \bfitm = 0, and integration by parts, the following
five equalities hold:
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B261\left\{               

 - (\bfitu \Phi ,\nabla W ) + (\Phi \nabla W,\bfitu ) = 0,

((\bfitu \cdot \nabla )\bfitu ,\bfitu ) = 0,

\mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi ) + \mu ((\nabla \cdot \bfitu )\bfitm ,\nabla \varphi ) - \mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi ) = 0,

 - \mu 
2 (\bfitm \times \nabla \varphi ,\nabla \times \bfitu ) + \mu 

2 (\nabla \times \bfitu \times \bfitm ,\nabla \varphi ) = 0,
\mu 
\chi 0

((\bfitu \cdot \nabla )\bfitm ,\bfitm ) - \mu 
\chi 0

1
2 (\nabla \times \bfitu \times \bfitm ,\bfitm ) - \mu 

\chi 0
\beta (\bfitm \times \bfith ,\bfitm \times \bfitm ) = 0.

(2.31)

These equations imply that the inner products formed by these nonlinear coupling
terms and some special test functions are all zero. And these test functions are those
special functions that must be used to obtain the total energy of the system. In other
words, the contributions of these coupling terms to the total energy actually add up
to zero; i.e., they satisfy the so-called zero-energy-contribution characteristic.

Inspired by [54, 55], which consider simpler phase-field type models coupled with
hydrodynamics, e.g., no magnetic field case, we define a nonlocal auxiliary variable
Q(t) and its associated ODE system as

(2.32)\left\{                   

Qt = ((\bfitu \cdot \nabla )\bfitu ,\bfitu ) - (\bfitu \Phi ,\nabla W ) + (\Phi \nabla W,\bfitu ) + \mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi )
+ \mu ((\nabla \cdot \bfitu )\bfitm ,\nabla \varphi ) - \mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi )

 - \mu 

2
(\bfitm \times \nabla \varphi ,\nabla \times \bfitu ) +

\mu 

2
(\nabla \times \bfitu \times \bfitm ,\nabla \varphi )

+
\mu 

\chi 0
((\bfitu \cdot \nabla )\bfitm ,\bfitm ) - \mu 

\chi 0

1

2
(\nabla \times \bfitu ,\bfitm \times \bfitm ) - \mu 

\chi 0
\beta (\bfitm \times \bfith ,\bfitm \times \bfitm ),

Q| t=0 = 1.

Using the five equalities in (2.31) and the initial data, we find Qt = 0 and Q| t=0 = 1.
The ODE (2.32) actually defines a trivial solution of Q(t)\equiv 1.

Then, by multiplying the Q to those nonlinear terms contained in (2.32) (note:
those terms will not change since Q(t) \equiv 1), we obtain an augmented equivalent
system: find (\Phi ,W ) \in H1(\Omega )2, \bfitu \in \bfitH 1

0(\Omega ), p \in L2
0(\Omega ), \varphi \in H1(\Omega ) \cap L2

0(\Omega ), \bfitm \in 
\bfitH 1(\Omega ), such that for all (\Lambda ,X)\in H1(\Omega )2, \bfitv \in \bfitH 1

0(\Omega ), q \in L2
0(\Omega ), \psi \in H1(\Omega )\cap L2

0(\Omega ),
\bfitn \in \bfitH 1(\Omega ), the following hold:

(\Phi t,\Lambda ) - Q(\bfitu \Phi ,\nabla \Lambda )= - M(\nabla W,\nabla \Lambda ),

(2.33)

(W,X) = \lambda \epsilon (\nabla \Phi ,\nabla X) + \lambda (H(\Phi )U,X)+
S\lambda 

\epsilon 
(\Phi ,X),

(2.34)

Ut =
1

2
H(\Phi )\Phi t,

(2.35)

(\bfitu t,\bfitv ) + (\nu (\Phi )D(\bfitu ),D(\bfitv )) +Q((\bfitu \cdot \nabla )\bfitu ,\bfitv ) - (p,\nabla \cdot \bfitv ) +Q(\Phi \nabla W,\bfitv )
(2.36)

= - Q\mu ((\bfitv \cdot \nabla )\bfitm ,\nabla \varphi ) - Q\mu ((\nabla \cdot \bfitv )\bfitm ,\nabla \varphi ) +Q
\mu 

2
(\bfitm \times \nabla \varphi ,\nabla \times \bfitv ),

(\nabla \cdot \bfitu , q) = 0,
(2.37)

(\nabla \varphi t,\nabla \psi ) +
1

\tau 
(\nabla \varphi ,\nabla \psi ) + 1

\tau 
(\chi (\Phi )\nabla \varphi ,\nabla \psi ) - Q((\bfitu \cdot \nabla )\bfitm ,\nabla \psi )

(2.38)
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B262 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

+Q
1

2
(\nabla \times \bfitu \times \bfitm ,\nabla \psi ) + \beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi ) = 1

\tau 
(\bfith a,\nabla \psi ) + (\bfith b,\nabla \psi ),

(\bfitm t,\bfitn ) +Q((\bfitu \cdot \nabla )\bfitm ,\bfitn ) - Q
1

2
(\nabla \times \bfitu \times \bfitm ,\bfitn ) - Q\beta (\bfitm \times \bfith ,\bfitm \times \bfitn ) +

1

\tau 
(\bfitm ,\bfitn )

(2.39)

=
1

\tau 
(\chi (\Phi )\bfith ,\bfitn ),

Qt = ((\bfitu \cdot \nabla )\bfitu ,\bfitu ) - (\bfitu \Phi ,\nabla W ) + (\Phi \nabla W,\bfitu )
(2.40)

+ \mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi ) + \mu ((\nabla \cdot \bfitu )\bfitm ,\nabla \varphi ) - \mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi )

 - \mu 

2
(\bfitm \times \nabla \varphi ,\nabla \times \bfitu ) +

\mu 

2
(\nabla \times \bfitu \times \bfitm ,\nabla \varphi )

+
\mu 

\chi 0
((\bfitu \cdot \nabla )\bfitm ,\bfitm ) - \mu 

\chi 0

1

2
(\nabla \times \bfitu ,\bfitm \times \bfitm ) - \mu 

\chi 0
\beta (\bfitm \times \bfith ,\bfitm \times \bfitm ),

Q| t=0 = 1.
(2.41)

Remark 2.3. Note that although the system (2.33)--(2.41) seems to be more
complex than the original model (2.3)--(2.10), it is an ``algorithm-friendly"" form. That
is, we will eventually find that the new system obtained after reformulation has at least
two advantages for numerical discretization: (i) the discretization of many nonlinear
terms in the new system will be very simple and convenient, and hence we no longer
need to determine which terms are implicit or explicit (since every term with the ``zero-
energy-contribution"" feature can be simply discretized explicitly); (ii) the numerical
implementation of the final scheme will be very simple; that is, we only need to solve
a few independent decoupled elliptic equations at each time step, without adding
any computational complexity to the algorithm at all. It is worth spending two
intermediate steps (in sections 2.2 and 2.3) to reconstruct the original system at the
PDE level, making it relatively easy to obtain an effective numerical algorithm for
such a complex model, in which the computational cost can be reduced in practical
numerical implementation.

In the following theorem, we show that the newly reformulated system (2.33)--
(2.41) admits the energy estimate.

Theorem 2.1. Assuming \chi (\Phi )\leq \chi 0, the system (2.33)--(2.41) satisfies the energy
stability

d

dt
Emod(\Phi ,U,\bfitu ,\bfith ,\bfitm ,Q) +D(W,\bfitu ,\bfith ,\bfitm )\leq \mu 

\tau 
\| \bfith a\| 2 + \tau \mu \| \bfith b\| 2.(2.42)

For the case of no applied magnetic field (\bfith a = 0), the following energy dissipation
law holds:

d

dt
Emod(\Phi ,U,\bfitu ,\bfith ,\bfitm ,Q) +D(W,\bfitu ,\bfith ,\bfitm )\leq 0.(2.43)

Here

Emod(\Phi ,U,\bfitu ,\bfith ,\bfitm ,Q) = \lambda 

\biggl( 
\epsilon 

2
\| \nabla \Phi \| 2+ S

2\epsilon 
\| \Phi \| 2 + \| U\| 2

\biggr) 
+

1

2
\| \bfitu \| 2

+
\mu 

2
\| \bfith \| 2 + \mu 

2\chi 0
\| \bfitm \| 2 + 1

2
| Q| 2  - \lambda B| \Omega |  - 1

2
.

(2.44)

Proof. By setting \Lambda = W in (2.33), X = \Phi t in (2.34), and taking the L2 inner
product of (2.35) with 2\lambda U , we get
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B263

(\Phi t,W ) - Q(\bfitu \Phi ,\nabla W ) +M\| \nabla W\| 2 = 0,

(W,\Phi t) =
\lambda \epsilon 

2

d

dt
\| \nabla \Phi \| 2 + \lambda (H(\Phi )U,\Phi t)+

S\lambda 

2\epsilon 

d

dt
\| \Phi \| 2, \lambda 

d

dt
\| U\| 2 = \lambda (H(\Phi )\Phi t,U).

We combine the above obtained equations to get

\lambda \epsilon 

2

d

dt
\| \nabla \Phi \| 2+S\lambda 

2\epsilon 

d

dt
\| \Phi \| 2 + \lambda 

d

dt
\| U\| 2  - Q(\bfitu \Phi ,\nabla W ) +M\| \nabla W\| 2 = 0.(2.45)

By taking \bfitv =\bfitu in (2.36), q= p in (2.37), we derive

(2.46)

1

2

d

dt
\| \bfitu \| 2 +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi )D(\bfitu )

\bigm\| \bigm\| \bigm\| \bigm\| 2 +Q((\bfitu \cdot \nabla )\bfitu ,\bfitu ) +Q(\Phi \nabla W,\bfitu )

= - Q\mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi ) - Q\mu ((\nabla \cdot \bfitu )\bfitm ,\nabla \varphi ) +Q
\mu 

2
(\bfitm \times \nabla \varphi ,\nabla \times \bfitu ).

By taking \psi = \mu \varphi in (2.38), and noting that \bfith =\nabla \varphi , we have

(2.47)

\mu 

2

d

dt
\| \bfith \| 2 + \mu 

\tau 
\| \bfith \| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfith \bigm\| \bigm\| \bigm\| \bigm\| 2  - Q\mu ((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi ) +Q
\mu 

2
(\nabla \times \bfitu \times \bfitm ,\nabla \varphi )

+ \beta \mu \| \bfitm \times \bfith \| 2 = \mu (\bfith b,\bfith ) +
\mu 

\tau 
(\bfith a,\bfith ).

By taking \bfitn = \mu 
\chi 0

\bfitm in (2.39), we get

(2.48)
1

2

\mu 

\chi 0

d

dt
\| \bfitm \| 2 +Q

\mu 

\chi 0
((\bfitu \cdot \nabla )\bfitm ,\bfitm ) - Q

\mu 

\chi 0

1

2
(\nabla \times \bfitu ,\bfitm \times \bfitm )

 - Q
\mu 

\chi 0
\beta (\bfitm \times \bfith ,\bfitm \times \bfitm )

+
\mu 

\chi 0

1

\tau 
\| \bfitm \| 2 = \mu 

\chi 0

1

\tau 
(\chi (\Phi )\bfith ,\bfitm ).

By multiplying Q for both sides of (2.40), we obtain

(2.49)
1

2

d

dt
| Q| 2 =Q((\bfitu \cdot \nabla )\bfitu ,\bfitu ) - Q(\bfitu \Phi ,\nabla W ) +Q(\Phi \nabla W,\bfitu ) + \mu Q((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi )

+ \mu Q((\nabla \cdot \bfitu )\bfitm ,\nabla \varphi ) - \mu Q((\bfitu \cdot \nabla )\bfitm ,\nabla \varphi )

 - \mu 

2
Q(\bfitm \times \nabla \varphi ,\nabla \times \bfitu ) +

\mu 

2
Q(\nabla \times \bfitu \times \bfitm ,\nabla \varphi )

+
\mu 

\chi 0
Q((\bfitu \cdot \nabla )\bfitm ,\bfitm ) - \mu 

\chi 0

1

2
Q(\nabla \times \bfitu ,\bfitm \times \bfitm ) - \mu 

\chi 0
\beta Q(\bfitm \times \bfith ,\bfitm \times \bfitm ).

By combining (2.45)--(2.49), we arrive at

(2.50)

d

dt

\biggl( 
\lambda \epsilon 

2
\| \nabla \Phi \| 2+S\lambda 

2\epsilon 
\| \Phi \| 2 + \lambda \| U\| 2 + 1

2
\| \bfitu \| 2 + \mu 

2
\| \bfith \| 2 + \mu 

2\chi 0
\| \bfitm \| 2 + 1

2
| Q| 2

\biggr) 
+M\| \nabla W\| 2 +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi )D(\bfitu )

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu 

\tau 
\| \bfith \| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfith \bigm\| \bigm\| \bigm\| \bigm\| 2
+ \beta \mu \| \bfitm \times \bfith \| 2 + \mu 

\tau \chi 0
\| \bfitm \| 2

=
\mu 

\tau 
(\bfith a,\bfith ) + \mu (\bfith b,\bfith ) +

\mu 

\tau \chi 0
(\chi (\Phi )\bfith ,\bfitm ).
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B264 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

Moreover, by applying the Cauchy--Schwarz inequality, we derive

(2.51)

\mu 

\tau \chi 0
(\chi (\Phi )\bfith ,\bfitm )\leq \mu 

\tau \chi 0

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfith \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfitm \bigm\| \bigm\| \bigm\| \bigm\| \leq \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfith \bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu 

4\tau \chi 2
0

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfitm \bigm\| \bigm\| \bigm\| \bigm\| 2
\leq \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi )\bfith \bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu 

4\tau \chi 2
0

\chi 0\| \bfitm \| 2

and

\mu 

\tau 
(\bfith a,\bfith ) + \mu (\bfith b,\bfith )\leq 

\mu 

\tau 
\| \bfith a\| \| \bfith \| + \mu \| \bfith b\| \| \bfith \| (2.52)

\leq \mu 

4\tau 
\| \bfith \| 2 + \mu 

\tau 
\| \bfith a\| 2 +

\mu 

4\tau 
\| \bfith \| 2 + \tau \mu \| \bfith b\| 2.

Finally, by combining (2.50), (2.51), and (2.52), we obtain

d

dt

\biggl( 
\lambda \epsilon 

2
\| \nabla \Phi \| 2+S\lambda 

2\epsilon 
\| \Phi \| 2 + \lambda \| U\| 2 + 1

2
\| \bfitu \| 2 + \mu 

2
\| \bfith \| 2 + \mu 

2\chi 0
\| \bfitm \| 2 + 1

2
| Q| 2

\biggr) 
+M\| \nabla W\| 2 +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi )D(\bfitu )

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu 

2\tau 
\| \bfith \| 2 + \beta \mu \| \bfitm \times \bfith \| 2 + 3\mu 

4\tau \chi 0
\| \bfitm \| 2

\leq \mu 

\tau 
\| \bfith a\| 2 + \tau \mu \| \bfith b\| 2,

which completes the proof.

Remark 2.4. First, we explain why an adjustable quadratic term S
2\epsilon \Phi 

2 is extracted
from the nonlinear term F (\Phi ) when we define the new variable U . From the form
of the original energy E(\Phi ,\bfitu ,\bfith ,\bfitm ) given in (2.11), we find that H1-stability \Phi is
guaranteed since the L2-norm of \Phi is always bounded by the L4-norm, which is
contained in the term F (\Phi ). Thus, when designing the numerical scheme, to guarantee
the H1-stability of the numerical solution, we extract the quadratic term S

2\epsilon \Phi 
2 from

the nonlinear potential F (\Phi ). In this way, this term, together with the gradient
potential of \| \nabla \Phi \| 2, can guarantee the H1-stability of \Phi in the modified energy. Since
the special feature of the IEQ method is that the nonlinear term F (\Phi ) is replaced by
the new variable U , this form of replacement will result in the loss of the L2-norm
of the variable \Phi . That is, if S = 0 in (2.44), then the H1-stability of \Phi cannot be
guaranteed, leading to instabilities in actual computations while using larger time
steps.

Second, we explain how to set the magnitude of S in practice. Since the magnitude
of the L4-norm of \Phi from the original energy (2.11) is about 1/\epsilon , and hence in the
modified energy, the magnitude of the L2-norm caused by the stabilizer S should
also be the same scale as the original L4-norm. That is, S \sim O(1). Such a linear
stabilization technique has been extensively used to construct numerical schemes for
solving various nonlinear models, such as IEQ, SAV, convex splitting methods, etc.;
cf. [8, 41, 42, 45].

Third, it is easy to see that the modified energy (2.44) is equivalent to the original
energy (2.11) after we add two constants  - \lambda B| \Omega |  - 1

2 in (2.44).

3. Numerical scheme. So far, we have made sufficient preparations for the con-
struction of the linear, second-order, fully decoupled, unconditionally energy stable,
continuous finite element scheme for the two-phase FHD system (2.3)--(2.10).
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B265

3.1. Fully discrete scheme. Assume that the polygonal/polyhedral domain \Omega 
is discretized by a conforming and shape regular triangulation/tetrahedron mesh \scrT h
that is composed by open disjoint elements K such that \=\Omega =

\bigcup 
K\in \scrT h

\=K. We use \scrP l

to denote the space of polynomials of total degree at most l. We introduce several
conforming finite element spaces as follows:

Yh =
\bigl\{ 
X \in H1(\Omega ) :X| K \in \scrP l1(K)\forall K \in \scrT h

\bigr\} 
,

\bfitV h =
\bigl\{ 
\bfitv \in \bfitH 1

0(\Omega ) : \bfitv | K \in \scrP l2(K)d \forall K \in \scrT h
\bigr\} 
,

Qh =
\bigl\{ 
q \in H1(\Omega )\cap L2

0(\Omega ) : q| K \in \scrP l2 - 1(K)\forall K \in \scrT h
\bigr\} 
,

\Psi h =
\bigl\{ 
\psi \in H1(\Omega )\cap L2

0(\Omega ) :\psi | K \in \scrP l3(K)\forall K \in \scrT h
\bigr\} 
,

\bfitN h =
\bigl\{ 
\bfitn \in \bfitH 1(\Omega ) :\bfitn | K \in \scrP l3 - 1(K)d \forall K \in \scrT h

\bigr\} 
.

(3.1)

We assume the pair of spaces (\bfitV h,Qh) satisfy the inf-sup condition [16]: \beta 0\| q\| \leq 
sup\bfitv \in \bfitV h

(\nabla \cdot \bfitv ,q)
\| \nabla \bfitv \| for all q \in Qh, where the constant \beta 0 only depends on \Omega . Some inf-sup

stable pairs (\bfitV h,Qh) are known in [16].
Let N > 0 denote the total number of time steps, define the uniform time step size

as \delta t= [ TN ], and set tn = n\delta t. For convenience, we define the first-order temporal dis-

cretization operator as dtw
n+1 = wn+1 - wn

\delta t , the second-order temporal discretization

operator as Dtw
n+1 = 3wn+1 - 4wn+wn - 1

2\delta t , and the second-order explicit extrapolation
operator as w\ast = 2wn  - wn - 1 for any variable w.

Then the fully discrete numerical scheme for (2.33)--(2.41) reads as follows: find
(\Phi n+1,Wn+1) \in Y 2

h , \~\bfitu 
n+1 \in \bfitV h, p

n+1 \in Qh, \bfitu 
n+1 \in \bfitV h +\nabla Qh, \varphi 

n+1 \in \Psi h, \bfitm 
n+1 \in 

\bfitN h, and Q
n+1 \in R such that

(
a\Phi n+1  - b\Phi n + c\Phi n - 1

2\delta t
,\Lambda ) - Qn+1(\bfitu \ast \Phi \ast ,\nabla \Lambda )+M(\nabla Wn+1,\nabla \Lambda )= 0,

(3.2)

(Wn+1,X) = \lambda \epsilon (\nabla \Phi n+1,\nabla X) + \lambda (H(\Phi \ast )Un+1,X)+
S\lambda 

\epsilon 
(\Phi n+1,X),

(3.3)

aUn+1  - bUn + cUn - 1 =
1

2
H(\Phi \ast )(a\Phi n+1  - b\Phi n + c\Phi n - 1),

(3.4)

\biggl( 
a\~\bfitu n+1  - b\bfitu n + c\bfitu n - 1

2\delta t
,\bfitv 

\biggr) 
+ (\nu (\Phi \ast )D(\~\bfitu n+1),D(\bfitv )) + (\nabla pn,\bfitv )

(3.5)

+Qn+1((\bfitu \ast \cdot \nabla )\bfitu \ast ,\bfitv ) +Qn+1(\Phi \ast \nabla W \ast ,\bfitv )

= - Qn+1\mu ((\bfitv \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast ) - Qn+1\mu ((\nabla \cdot \bfitv )\bfitm \ast ,\nabla \varphi \ast )

+Qn+1\mu 

2
(\bfitm \ast \times \nabla \varphi \ast ,\nabla \times \bfitv ),

(\nabla pn+1,\nabla q) = - a

2\delta t
(\nabla \cdot \~\bfitu n+1, q) + (\nabla pn,\nabla q),

(3.6)

\bfitu n+1 = \~\bfitu n+1  - 2\delta t

a
\nabla pn+1 +

2\delta t

a
\nabla pn,

(3.7)

\biggl( 
a\nabla \varphi n+1  - b\nabla \varphi n + c\nabla \varphi n - 1

2\delta t
,\nabla \psi 

\biggr) 
+

1

\tau 
(\nabla \varphi n+1,\nabla \psi ) + 1

\tau 
(\chi (\Phi \ast )\nabla \varphi n+1,\nabla \psi )

(3.8)
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B266 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

 - Qn+1((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \psi ) +Qn+1 1

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\nabla \psi )

+ \beta (\bfitm \ast \times \nabla \varphi n+1,\bfitm \ast \times \nabla \psi )

= (\bfith n+1
b ,\nabla \psi ) + 1

\tau 
(\bfith n+1

a ,\nabla \psi ),

\biggl( 
a\bfitm n+1  - b\bfitm n + c\bfitm n - 1

2\delta t
,\bfitn 

\biggr) 
+Qn+1((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitn ) - Qn+1 1

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\bfitn )

(3.9)

 - Qn+1\beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitn ) +
1

\tau 
(\bfitm n+1,\bfitn ) =

1

\tau 
(\chi (\Phi \ast )\bfith n+1,\bfitn ),

aQn+1  - bQn + cQn - 1

2\delta t
= ((\bfitu \ast \cdot \nabla )\bfitu \ast , \~\bfitu n+1) - (\bfitu \ast \Phi \ast ,\nabla Wn+1) + (\Phi \ast \nabla W \ast , \~\bfitu n+1)

(3.10)

+ \mu ((\~\bfitu n+1 \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast ) + \mu ((\nabla \cdot \~\bfitu n+1)\bfitm \ast ,\nabla \varphi \ast ) - \mu ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \varphi n+1)

 - \mu 

2
(\bfitm \ast \times \nabla \varphi \ast ,\nabla \times \~\bfitu n+1) +

\mu 

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\nabla \varphi n+1)

+
\mu 

\chi 0
((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitm n+1) - \mu 

\chi 0

1

2
(\nabla \times \bfitu \ast ,\bfitm \ast \times \bfitm n+1)

 - \mu 

\chi 0
\beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitm n+1)

for all (\Lambda ,X) \in Y 2
h , \bfitv \in \bfitV h, q \in Qh, \psi \in \Psi h, and \bfitn \in \bfitN h, where a = 3, b = 4,

c= 1, and \bfith n =\nabla \varphi n. Several remarks are in order to explain the details of the above
scheme.

Remark 3.1. We use the second-order pressure projection method [18, 39] to de-
couple the linear coupling between the velocity field \bfitu and the pressure p in the fluid
momentum equation. All temporal derivatives are discretized using the second-order
backward differential formula (BDF2). All nonlinear coupling terms that satisfy the
``zero-energy-contribution"" characteristic are discretized explicitly, while the multi-
plier Q of these terms is implicitly discretized. The positive definite nonlinear term
\beta (\bfitm \times \nabla \varphi ,\bfitm \times \nabla \psi ) is handled by an appropriate two-step implicit-explicit format.

Remark 3.2. From (3.4), one can rewrite Un+1 as follows:

Un+1 =
1

2
H(\Phi \ast )\Phi n+1  - 2

3
H(\Phi \ast )\Phi n +

1

6
H(\Phi \ast )\Phi n - 1 +

4

3
Un  - 1

3
Un - 1.(3.11)

The above form (3.11) can be substituted into (3.3). In this way, once \Phi n+1 is
obtained, then Un+1 will be updated by (3.11) later.

Remark 3.3. The marching of the scheme (3.2)--(3.10) needs the solution of the
first time step t = \delta t, which can be easily obtained from the first-order scheme by
setting a= 2, b= 2, c= 0, and w\ast =wn for w=\Phi , \bfitu , W , \varphi , and \bfitm in (3.2)--(3.10).

Remark 3.4. It can be verified that the final velocity field \bfitu n+1 in the above
scheme (3.2)--(3.10) satisfies the following weakly discrete divergence-free condition:

(\bfitu n+1,\nabla q) = 0 \forall q \in Qh.(3.12)

In the following, we show that the scheme (3.2)--(3.10) holds the unconditional
energy law.
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B267

Theorem 3.1. Assuming \chi (\Phi ) \leq \chi 0, the scheme (3.2)--(3.10) satisfies the fol-
lowing energy stability unconditionally:

dt \widetilde En+1 + \widetilde Dn+1 \leq \mu 

\tau 
\| \bfith n+1

a \| 2 + \tau \mu \| \bfith n+1
b \| 2;

if the applied magnetic field \bfith a = 0, then the scheme (3.2)--(3.10) holds the following
energy dissipation law unconditionally:

dt \widetilde En+1 + \widetilde Dn+1 \leq 0,

where\widetilde En+1 =
\lambda \epsilon 

4
(\| \nabla \Phi n+1\| 2 + \| 2\nabla \Phi n+1  - \nabla \Phi n\| 2)+S\lambda 

4\epsilon 
(\| \Phi n+1\| 2 + \| 2\Phi n+1  - \Phi n\| 2)

+
\lambda 

2
(\| Un+1\| 2 + \| 2Un+1  - Un\| 2) + 1

4
(\| \bfitu n+1\| 2 + \| 2\bfitu n+1  - \bfitu n\| 2)

+
\mu 

4
(\| \bfith n+1\| 2 + \| 2\bfith n+1  - \bfith n\| 2) + \mu 

4\chi 0
(\| \bfitm n+1\| 2 + \| 2\bfitm n+1  - \bfitm n\| 2)

+
1

4
(| Qn+1| 2 + | 2Qn+1  - Qn| 2) + \delta t2

3
\| \nabla pn+1\| 2

(3.13)

and

\widetilde Dn+1 =M\| \nabla Wn+1\| 2 +
\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi \ast )D(\~\bfitu n+1)

\bigm\| \bigm\| \bigm\| \bigm\| 2 + 3\mu 

4\tau \chi 0
\| \bfitm n+1\| 2

+
\mu 

2\tau 
\| \bfith n+1\| 2 + \mu \beta \| \bfitm \ast \times \bfith n+1\| 2.

Proof. By taking \Lambda = Wn+1 in (3.2), X = Dt\Phi 
n+1 in (3.3), and the L2 inner

product of (3.4) with \lambda 
\delta tU

n+1, we derive

(Dt\Phi 
n+1,Wn+1) - Qn+1(\bfitu \ast \Phi \ast ,\nabla Wn+1) +M\| \nabla Wn+1\| 2 = 0,(3.14)

(Wn+1,Dt\Phi 
n+1) = \lambda \epsilon (\nabla \Phi n+1,\nabla Dt\Phi 

n+1) + \lambda (H(\Phi \ast )Un+1,Dt\Phi 
n+1)(3.15)

+
S\lambda 

\epsilon 
(\Phi n+1,Dt\Phi 

n+1)

and

(3.16)

2\lambda (DtU
n+1,Un+1) = \lambda (H(\Phi \ast )Dt\Phi 

n+1,Un+1).

Combining (3.14)--(3.16) together, we get

\lambda \epsilon 

4\delta t
(\| \nabla \Phi n+1\| 2  - \| \nabla \Phi n\| 2

(3.17)

+ \| 2\nabla \Phi n+1  - \nabla \Phi n\| 2  - \| 2\nabla \Phi n  - \nabla \Phi n - 1\| 2 + \| \nabla \Phi n+1  - \nabla \Phi \ast \| 2)

+
S\lambda 

4\delta t\epsilon 
(\| \Phi n+1\| 2  - \| \Phi n\| 2 + \| 2\Phi n+1  - \Phi n\| 2  - \| 2\Phi n  - \Phi n - 1\| 2 + \| \Phi n+1  - \Phi \ast \| 2)

+
\lambda 

2\delta t
(\| Un+1\| 2  - \| Un\| 2 + \| 2Un+1  - Un\| 2  - \| 2Un  - Un - 1\| 2 + \| Un+1  - U\ast \| 2)

 - Qn+1(\bfitu \ast \Phi \ast ,\nabla Wn+1) +M\| \nabla Wn+1\| 2 = 0,

where we use the following identity:

2(3a - 4b+ c, a) = a2  - b2 + (2a - b)2  - (2b - c)2 + (a - 2b+ c)2.(3.18)
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B268 GUO-DONG ZHANG, XIAOMING HE, AND XIAOFENG YANG

Taking \bfitv = \~\bfitu n+1 in (3.5), we get

(3.19)

1

2\delta t
(3\~\bfitu n+1  - 4\bfitu n +\bfitu n - 1, \~\bfitu n+1) +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi \ast )D(\~\bfitu n+1)

\bigm\| \bigm\| \bigm\| \bigm\| 2 + (\nabla pn, \~\bfitu n+1)

+Qn+1((\bfitu \ast \cdot \nabla )\bfitu \ast , \~\bfitu n+1) +Qn+1(\Phi \ast \nabla W \ast , \~\bfitu n+1) +Qn+1\mu ((\~\bfitu n+1 \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast )

+Qn+1\mu ((\nabla \cdot \~\bfitu n+1)\bfitm \ast ,\nabla \varphi \ast ) - Qn+1\mu 

2
(\bfitm \ast \times \nabla \varphi \ast ,\nabla \times \~\bfitu n+1) = 0.

Taking \psi = \mu \varphi n+1 in (3.8), and noticing \bfith n =\nabla \varphi n, we get

(3.20)
\mu 

4\delta t
(\| \bfith n+1\| 2  - \| \bfith n\| 2 + \| 2\bfith n+1  - \bfith n\| 2  - \| 2\bfith n  - \bfith n - 1\| 2 + \| \bfith n+1  - \bfith \ast \| 2)

+
\mu 

\tau 
\| \bfith n+1\| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfith n+1

\bigm\| \bigm\| \bigm\| \bigm\| 2  - Qn+1\mu ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \varphi n+1)

+Qn+1\mu 

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\nabla \varphi n+1) + \mu \beta \| \bfitm \ast \times \bfith n+1\| 2

= \mu (\bfith n+1
b ,\bfith n+1) +

\mu 

\tau 
(\bfith n+1

a ,\bfith n+1).

Taking \bfitn = \mu 
\chi 0

\bfitm n+1 in (3.9), we have

(3.21)
1

4\delta t

\mu 

\chi 0
(\| \bfitm n+1\| 2  - \| \bfitm n\| 2 + \| 2\bfitm n+1  - \bfitm n\| 2  - \| 2\bfitm n  - \bfitm n - 1\| 2 + \| \bfitm n+1  - \bfitm \ast \| 2)

+
\mu 

\chi 0

1

\tau 
\| \bfitm n+1\| 2 +Qn+1 \mu 

\chi 0
((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitm n+1)

 - Qn+1 \mu 

\chi 0

1

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\bfitm n+1)

 - Qn+1 \mu 

\chi 0
\beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitm n+1) =

\mu 

\chi 0

1

\tau 
(\chi (\Phi \ast )\bfith n+1,\bfitm n+1).

Multiplying Qn+1 on (3.10), we obtain

(3.22)
1

4\delta t
(| Qn+1| 2  - | Qn| 2 + | 2Qn+1  - Qn| 2  - | 2Qn  - Qn - 1| 2 + | Qn+1  - Q\ast | 2)

=Qn+1((\bfitu \ast \cdot \nabla )\bfitu \ast , \~\bfitu n+1) - Qn+1(\bfitu \ast \Phi \ast ,\nabla Wn+1) +Qn+1(\Phi \ast \nabla W \ast , \~\bfitu n+1)

+Qn+1\mu ((\~\bfitu n+1 \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast ) +Qn+1\mu ((\nabla \cdot \~\bfitu n+1)\bfitm \ast ,\nabla \varphi \ast )

 - Qn+1\mu ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \varphi n+1) - Qn+1\mu 

2
(\bfitm \ast \times \nabla \varphi \ast ,\nabla \times \~\bfitu n+1)

+Qn+1\mu 

2
(\nabla \times \bfitu \ast \times \bfitm \ast ,\nabla \varphi n+1) +Qn+1 \mu 

\chi 0
((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitm n+1)

 - Qn+1 \mu 

\chi 0

1

2
(\nabla \times \bfitu \ast ,\bfitm \ast \times \bfitm n+1) - Qn+1 \mu 

\chi 0
\beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitm n+1).

The combination of (3.17) and (3.19)--(3.22) leads to
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(3.23)
\lambda \epsilon 

4\delta t
(\| \nabla \Phi n+1\| 2  - \| \nabla \Phi n\| 2 + \| 2\nabla \Phi n+1

 - \nabla \Phi n\| 2  - \| 2\nabla \Phi n  - \nabla \Phi n - 1\| 2 + \| \nabla \Phi n+1  - \nabla \Phi \ast \| 2)

+
S\lambda 

4\delta t\epsilon 
(\| \Phi n+1\| 2  - \| \Phi n\| 2 + \| 2\Phi n+1  - \Phi n\| 2  - \| 2\Phi n  - \Phi n - 1\| 2 + \| \Phi n+1  - \Phi \ast \| 2)

+
\lambda 

2\delta t
(\| Un+1\| 2  - \| Un\| 2 + \| 2Un+1  - Un\| 2  - \| 2Un  - Un - 1\| 2 + \| Un+1  - U\ast \| 2)

+
1

2\delta t
(3\~\bfitu n+1  - 4\bfitu n +\bfitu n - 1, \~\bfitu n+1) +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi \ast )D(\~\bfitu n+1)

\bigm\| \bigm\| \bigm\| \bigm\| 2 + (\nabla pn, \~\bfitu n+1)

+
\mu 

4\delta t
(\| \bfith n+1\| 2  - \| \bfith n\| 2 + \| 2\bfith n+1  - \bfith n\| 2  - \| 2\bfith n  - \bfith n - 1\| 2 + \| \bfith n+1  - \bfith \ast \| 2)

+
1

4\delta t

\mu 

\chi 0
(\| \bfitm n+1\| 2  - \| \bfitm n\| 2

+ \| 2\bfitm n+1  - \bfitm n\| 2  - \| 2\bfitm n  - \bfitm n - 1\| 2 + \| \bfitm n+1  - \bfitm \ast \| 2)

+M\| \nabla Wn+1\| 2 + \mu 

\tau 
\| \bfith n+1\| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfith n+1

\bigm\| \bigm\| \bigm\| \bigm\| 2
+ \mu \beta \| \bfitm \ast \times \bfith n+1\| 2 + \mu 

\tau \chi 0
\| \bfitm n+1\| 2

+
1

4\delta t
(| Qn+1| 2  - | Qn| 2 + | 2Qn+1  - Qn| 2  - | 2Qn  - Qn - 1| 2 + | Qn+1  - Q\ast | 2)

= \mu (\bfith n+1
b ,\bfith n+1) +

\mu 

\tau 
(\bfith n+1

a ,\bfith n+1) +
\mu 

\chi 0

1

\tau 
(\chi (\Phi \ast )\bfith n+1,\bfitm n+1).

From (3.7) and (3.12), we derive the following orthogonal identity:

(\bfitu n+1  - \~\bfitu n+1,\bfitu n+1) = - 2

3
\delta t(\nabla pn+1  - \nabla pn,\bfitu n+1) = 0.(3.24)

Using (3.24), we derive

(3\~\bfitu n+1  - 4\bfitu n +\bfitu n - 1, \~\bfitu n+1)

= (3\bfitu n+1  - 4\bfitu n +\bfitu n - 1, \~\bfitu n+1) + (3\~\bfitu n+1  - 3\bfitu n+1, \~\bfitu n+1)

= (3\bfitu n+1  - 4\bfitu n +\bfitu n - 1,\bfitu n+1) + (3\~\bfitu n+1  - 3\bfitu n+1, \~\bfitu n+1 +\bfitu n+1)

=
1

2
(\| \bfitu n+1\| 2  - \| \bfitu n\| 2 + \| 2\bfitu n+1  - \bfitu n\| 2  - \| 2\bfitu n  - \bfitu n - 1\| 2 + \| \bfitu n+1  - \bfitu \ast \| 2)

+ 3\| \~\bfitu n+1\| 2  - 3\| \bfitu n+1\| 2

(3.25)

and

\| \~\bfitu n+1\| 2  - \| \bfitu n+1\| 2 = (\~\bfitu n+1  - \bfitu n+1, \~\bfitu n+1 +\bfitu n+1) = (\~\bfitu n+1  - \bfitu n+1, \~\bfitu n+1  - \bfitu n+1)

(3.26)

= \| \~\bfitu n+1  - \bfitu n+1\| 2.

We rewrite (3.7) as

\bfitu n+1 +
2

3
\delta t\nabla pn+1 = \~\bfitu n+1 +

2

3
\delta t\nabla pn.(3.27)

By taking the L2 inner product of the above equation with itself, and using (3.12),
we derive

(\~\bfitu n+1,\nabla pn) = 3

4\delta t
\| \bfitu n+1\| 2  - 3

4\delta t
\| \~\bfitu n+1\| 2 + \delta t

3
\| \nabla pn+1\| 2  - \delta t

3
\| \nabla pn\| 2.(3.28)
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The combination of (3.25), (3.26), and (3.28) leads to

1

2\delta t
(3\~\bfitu n+1  - 4\bfitu n +\bfitu n - 1, \~\bfitu n+1) + (\~\bfitu n+1,\nabla pn)

=
1

4\delta t
(\| \bfitu n+1\| 2  - \| \bfitu n\| 2 + \| 2\bfitu n+1  - \bfitu n\| 2  - \| 2\bfitu n  - \bfitu n - 1\| 2 + \| \bfitu n+1  - \bfitu \ast \| 2)

+
3

4\delta t
\| \bfitu n+1  - \~\bfitu n+1\| 2 + \delta t

3
\| \nabla pn+1\| 2  - \delta t

3
\| \nabla pn\| 2.

(3.29)

Furthermore, we combine (3.23) and (3.29) to deduce

\lambda \epsilon 

4\delta t
(\| \nabla \Phi n+1\| 2  - \| \nabla \Phi n\| 2 + \| 2\nabla \Phi n+1  - \nabla \Phi n\| 2

(3.30)

 - \| 2\nabla \Phi n  - \nabla \Phi n - 1\| 2 + \| \nabla \Phi n+1  - \nabla \Phi \ast \| 2)

+
S\lambda 

4\delta t\epsilon 
(\| \Phi n+1\| 2  - \| \Phi n\| 2 + \| 2\Phi n+1  - \Phi n\| 2  - \| 2\Phi n  - \Phi n - 1\| 2 + \| \Phi n+1  - \Phi \ast \| 2)

+
\lambda 

2\delta t
(\| Un+1\| 2  - \| Un\| 2 + \| 2Un+1  - Un\| 2  - \| 2Un  - Un - 1\| 2 + \| Un+1  - U\ast \| 2)

+
1

4\delta t
(\| \bfitu n+1\| 2  - \| \bfitu n\| 2 + \| 2\bfitu n+1  - \bfitu n\| 2  - \| 2\bfitu n  - \bfitu n - 1\| 2 + \| \bfitu n+1  - \bfitu \ast \| 2)

+
\mu 

4\delta t
(\| \bfith n+1\| 2  - \| \bfith n\| 2 + \| 2\bfith n+1  - \bfith n\| 2  - \| 2\bfith n  - \bfith n - 1\| 2 + \| \bfith n+1  - \bfith \ast \| 2)

+
1

4\delta t

\mu 

\chi 0
(\| \bfitm n+1\| 2  - \| \bfitm n\| 2 + \| 2\bfitm n+1  - \bfitm n\| 2

 - \| 2\bfitm n  - \bfitm n - 1\| 2 + \| \bfitm n+1  - \bfitm \ast \| 2)

+
1

4\delta t
(| Qn+1| 2  - | Qn| 2 + | 2Qn+1  - Qn| 2  - | 2Qn  - Qn - 1| 2 + | Qn+1  - Q\ast | 2)

+
\delta t

3
\| \nabla pn+1\| 2  - \delta t

3
\| \nabla pn\| 2 + 3

4\delta t
\| \bfitu n+1  - \~\bfitu n+1\| 2 +

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi \ast )D(\~\bfitu n+1)

\bigm\| \bigm\| \bigm\| \bigm\| 2
+M\| \nabla Wn+1\| 2 + \mu 

\tau 
\| \bfith n+1\| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfith n+1

\bigm\| \bigm\| \bigm\| \bigm\| 2
+ \mu \beta \| \bfitm \ast \times \bfith n+1\| 2 + \mu 

\tau \chi 0
\| \bfitm n+1\| 2

= \mu (\bfith n+1
b ,\bfith n+1) +

\mu 

\tau 
(\bfith n+1

a ,\bfith n+1) +
\mu 

\tau \chi 0
(\chi (\Phi \ast )\bfith n+1,\bfitm n+1).

The terms on the right-hand side can be estimated as

\mu 

\tau \chi 0
(\chi (\Phi \ast )\bfith n+1,\bfitm n+1)\leq \mu 

\tau 
\| 
\sqrt{} 
\chi (\Phi \ast )\bfith n+1\| 2 + \mu 

4\tau \chi 0
\| \bfitm n+1\| 2(3.31)

and

(3.32)
\mu 

\tau 
(\bfith n+1

a ,\bfith n+1) + \mu (\bfith n+1
b ,\bfith n+1)

\leq \mu 

4\tau 
\| \bfith n+1\| 2 + \mu 

\tau 
\| \bfith n+1

a \| 2 + \mu 

4\tau 
\| \bfith n+1\| 2 + \tau \mu \| \bfith n+1

b \| 2.

Thus, using (3.31) and (3.32), and dropping several unnecessary positive terms, we
finish the proof.
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DECOUPLED SCHEME FOR TWO-PHASE FHD MODEL B271

3.2. Fully decoupled implementation. Formally, the scheme (3.2)--(3.10)
seems to be a coupled algorithm, but in fact it can achieve a fully decoupled manner
by splitting the variables using the scalar variable Q, as discussed below.

We split the unknowns \Phi , W , \~\bfitu , \varphi , and \bfitm into the following form:

(3.33) \left\{     
\Phi n+1 =\Phi n+1

1 +Qn+1\Phi n+1
2 ,Wn+1 =Wn+1

1 +Qn+1Wn+1
2 ,

\~\bfitu n+1 = \~\bfitu n+1
1 +Qn+1\~\bfitu n+1

2 ,

\varphi n+1 =\varphi n+1
1 +Qn+1\varphi n+1

2 ,\bfitm n+1 =\bfitm n+1
1 +Qn+1\bfitm n+1

2 ,

where (\Phi n+1
i ,Wn+1

i )\in Y 2
h , \~\bfitu 

n+1
i \in \bfitV h, \varphi 

n+1
i \in \Psi h, and \bfitm n+1

i \in \bfitN h for i= 1, 2.
By substituting (3.4) into (3.3), and using (3.33) and the scalar feature of Qn+1,

we can split (3.2)--(3.3) into the following two substeps.
Step 1. Find (\Phi n+1

1 ,Wn+1
1 )\in Y 2

h such that for all (\Lambda ,X)\in Y 2
h ,

(3.34)\Biggl\{ 
3
2\delta t (\Phi 

n+1
1 ,\Lambda )+M(\nabla Wn+1

1 ,\nabla \Lambda )= (f11 ,\Lambda ),

(Wn+1
1 ,X) = \lambda \epsilon (\nabla \Phi n+1

1 ,\nabla X) + \lambda 
2

\bigl( 
H(\Phi \ast )\Phi n+1

1 ,H(\Phi \ast )X
\bigr) 
+S\lambda 

\epsilon (\Phi n+1
1 ,X) + (f12 ,X),

where

(f11 ,\Lambda )=
1

2\delta t
(4\Phi n  - \Phi n - 1,\Lambda ),

(f12 ,X) = - 2

3
\lambda 
\bigl( 
H(\Phi \ast )2\Phi n,X

\bigr) 
+
\lambda 

6

\bigl( 
H(\Phi \ast )2\Phi n - 1,X

\bigr) 
+

4

3
\lambda (H(\Phi \ast )Un,X)

 - \lambda 

3

\bigl( 
H(\Phi \ast )Un - 1,X

\bigr) 
.

Step 2. Find (\Phi n+1
2 ,Wn+1

2 )\in Y 2
h such that for all (\Lambda ,X)\in Y 2

h ,

(3.35)\Biggl\{ 
3
2\delta t (\Phi 

n+1
2 ,\Lambda )+M(\nabla Wn+1

2 ,\nabla \Lambda )= (\bfitu \ast \Phi \ast ,\nabla \Lambda ),

(Wn+1
2 ,X) = \lambda \epsilon (\nabla \Phi n+1

2 ,\nabla X) + \lambda 
2

\bigl( 
H(\Phi \ast )\Phi n+1

2 ,H(\Phi \ast )X
\bigr) 
+S\lambda 

\epsilon (\Phi n+1
2 ,X).

By taking (3.33) into (3.5), then (3.5) can be decomposed into two substeps as
follows.

Step 3. Find \~\bfitu n+1
1 \in \bfitV h such that for all \bfitv \in \bfitV h,

3

2\delta t
(\~\bfitu n+1

1 ,\bfitv ) + (\nu (\Phi \ast )D(\~\bfitu n+1
1 ),D(\bfitv )) = (\bfitf 3,\bfitv ),(3.36)

where (\bfitf 3,\bfitv ) = 1
2\delta t (4\bfitu 

n  - \bfitu n - 1,\bfitv ) - (\nabla pn,\bfitv ).
Step 4. Find \~\bfitu n+1

2 \in \bfitV h such that for all \bfitv \in \bfitV h,

3

2\delta t
(\~\bfitu n+1

2 ,\bfitv ) + (\nu (\Phi \ast )D(\~\bfitu n+1
2 ),D(\bfitv )) = (\bfitf 4,\bfitv ),(3.37)

where (\bfitf 4,\bfitv ) = - ((\bfitu \ast \cdot \nabla )\bfitu \ast ,\bfitv ) - (\Phi \ast \nabla W \ast ,\bfitv ) - \mu ((\bfitv \cdot \nabla )\bfitm \ast ,\bfith \ast ) - \mu ((\nabla \cdot \bfitv )\bfitm \ast ,\bfith \ast )+
\mu 
2 (\bfitm 

\ast \times \bfith \ast ,\nabla \times \bfitv ).
By taking (3.33) into (3.8), we decouple the obtained equation into two substeps

as follows.
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Step 5. Find \varphi n+1
1 \in \Psi h such that for all \psi \in \Psi h

3

2\delta t
(\nabla \varphi n+1

1 ,\nabla \psi ) + 1

\tau 
(\nabla \varphi n+1

1 ,\nabla \psi ) + 1

\tau 
(\chi (\Phi \ast )\nabla \varphi n+1

1 ,\nabla \psi )

+ \beta (\bfitm \ast \times \nabla \varphi n+1
1 ,\bfitm \ast \times \nabla \psi ) = (\bfitf 5,\nabla \psi ),

(3.38)

where (\bfitf 5,\nabla \psi ) = (\bfith n+1
b ,\nabla \psi ) + 1

\tau (\bfith 
n+1
a ,\nabla \psi ) + 1

2\delta t (4\nabla \varphi 
n  - \nabla \varphi n - 1,\nabla \psi ).

Step 6. Find \varphi n+1
2 \in \Psi h such that for all \psi \in \Psi h,

(3.39)
3

2\delta t
(\nabla \varphi n+1

2 ,\nabla \psi ) + 1

\tau 
(\nabla \varphi n+1

2 ,\nabla \psi ) + 1

\tau 
(\chi (\Phi \ast )\nabla \varphi n+1

2 ,\nabla \psi )

+ \beta (\bfitm \ast \times \nabla \varphi n+1
2 ,\bfitm \ast \times \nabla \psi ) = (\bfitf 6,\nabla \psi ),

where (\bfitf 6,\nabla \psi ) = ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \psi ) - 1
2 (\nabla \times \bfitu \ast ,\bfitm \ast \times \nabla \psi ).

By taking (3.33) into (3.9), and using \bfith n+1
i = \nabla \varphi n+1

i , i = 1,2, (3.9) can be
partitioned into two substeps as follows.

Step 7. Find \bfitm n+1
1 \in \bfitN h such that for all \bfitn \in \bfitN h,

3

2\delta t
(\bfitm n+1

1 ,\bfitn ) +
1

\tau 
(\bfitm n+1

1 ,\bfitn ) = (\bfitf 7,\bfitn ),(3.40)

where (\bfitf 7,\bfitn ) = 1
\tau (\chi (\Phi 

\ast )\bfith n+1
1 ,\bfitn ) + 1

2\delta t (4\bfitm 
n  - \bfitm n - 1,\bfitn ).

Step 8. Find \bfitm n+1
2 \in \bfitN h such that for all \bfitn \in \bfitN h,

3

2\delta t
(\bfitm n+1

2 ,\bfitn ) +
1

\tau 
(\bfitm n+1

2 ,\bfitn ) = (\bfitf 8,\bfitn ),(3.41)

where (\bfitf 8,\bfitn ) =  - ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitn ) + 1
2 (\nabla \times \bfitu \ast ,\bfitm \ast \times \bfitn ) + \beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitn ) +

1
\tau (\chi (\Phi 

\ast )\bfith n+1
2 ,\bfitn ).

To solve Qn+1, we use (3.33) to rewrite (3.10) as the following step.
Step 9.

Qn+1 =
2\delta t\eta 1 + 4Qn  - Qn - 1

3 - 2\delta t\eta 2
,(3.42)

where for i= 1,2,

\eta i = ((\bfitu \ast \cdot \nabla )\bfitu \ast , \~\bfitu n+1
i ) - (\bfitu \ast \Phi \ast ,\nabla Wn+1

i ) + (\Phi \ast \nabla W \ast , \~\bfitu n+1
i )

+ \mu ((\~\bfitu n+1
i \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast ) + \mu ((\nabla \cdot \~\bfitu n+1

i )\bfitm \ast ,\nabla \varphi \ast ) - \mu ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \varphi n+1
i )

 - \mu 

2
(\bfitm \ast \times \nabla \varphi \ast ,\nabla \times \~\bfitu n+1

i ) +
\mu 

2
(\nabla \times \bfitu \ast ,\bfitm \ast \times \nabla \varphi n+1

i ) +
\mu 

\chi 0
((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitm n+1

i )

 - \mu 

\chi 0

1

2
(\nabla \times \bfitu \ast ,\bfitm \ast \times \bfitm n+1

i ) - \mu 

\chi 0
\beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitm n+1

i ).

After solving Steps 1--9, we could update all unknowns by the following step.
Step 10. The variables \Phi n+1, Wn+1, \~\bfitu n+1, \varphi n+1, and \bfitm n+1 can be updated

by using (3.33); the pressure pn+1 can be updated by (3.6), and \bfitu n+1 is updated by
using (3.7); the auxiliary variable Un+1 is finally updated by using (3.11).

In the following theorem, we show the well-posedness of the decoupled problems
(3.34)--(3.42).

Theorem 3.2. The decoupled problems (3.34)--(3.42) in Steps 1--10 are uniquely
solvable.

Proof. The uniquely solvability of (3.34)--(3.35) in Steps 1--2 can be shown by
using the Lax--Milgram theorem; cf. [60]. The well-posedness of (3.36)--(3.37) in Steps
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3--4 can be obtained using Korn's inequality; cf. [4]. The well-posedness of (3.38)--
(3.39) in Steps 5--6 involves the property of symmetric positive definite operator, which
is easily obtained. The coercivity of (3.40)--(3.41) in Steps 7--8 can be derived using
the inverse inequality (cf. [4]), that is,

3

2\delta t
(\bfitm ,\bfitm ) +

1

\tau 
(\bfitm ,\bfitm ) =

\biggl( 
3

2\delta t
+

1

\tau 

\biggr) 
\| \bfitm \| 2 \geq ch2

\biggl( 
3

2\delta t
+

1

\tau 

\biggr) 
\| \bfitm \| 21,(3.43)

which deduces the well-posedness.
We finally prove the solvability of Step 9 as follows by showing 3 - 2\delta t\eta 2 \not = 0. By

taking \Lambda =Wn+1
2 , X = 3

2\delta t\Phi 
n+1
2 in (3.35), we obtain

(3.44)\left\{     
3

2\delta t
(\Phi n+1

2 ,Wn+1
2 ) +M\| \nabla Wn+1

2 \| 2 = (\bfitu \ast \Phi \ast ,\nabla Wn+1
2 ),

3

2\delta t
(Wn+1

2 ,\Phi n+1
2 ) =

3

2\delta t
\lambda \epsilon \| \nabla \Phi n+1

2 \| 2 + 3

2\delta t

\lambda 

2
\| H(\Phi \ast )\Phi n+1

2 \| 2 + 3

2\delta t

S\lambda 

\epsilon 
\| \Phi n+1

2 \| 2,

which yields

A1 = (\bfitu \ast \Phi \ast ,\nabla Wn+1
2 ) =M\| \nabla Wn+1

2 \| 2 + 3

2\delta t
\lambda \epsilon \| \nabla \Phi n+1

2 \| 2

+
3

2\delta t

\lambda 

2
\| H(\Phi \ast )\Phi n+1

2 \| 2 + 3

2\delta t

S\lambda 

\epsilon 
\| \Phi n+1

2 \| 2 \geq 0.

By taking \~\bfitu n+1
2 in (3.37), we have

A2 = - ((\bfitu \ast \cdot \nabla )\bfitu \ast , \~\bfitu n+1
2 )

 - (\Phi \ast \nabla W \ast , \~\bfitu n+1
2 ) - \mu ((\~\bfitu n+1

2 \cdot \nabla )\bfitm \ast ,\bfith \ast ) - \mu ((\nabla \cdot \~\bfitu n+1
2 )\bfitm \ast ,\bfith \ast )

+
\mu 

2
(\bfitm \ast \times \bfith \ast ,\nabla \times \~\bfitu n+1

2 ) =
3

2\delta t
\| \~\bfitu n+1

2 \| 2 +
\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \nu (\Phi \ast )D(\~\bfitu n+1

2 )

\bigm\| \bigm\| \bigm\| \bigm\| 2 \geq 0.

By taking \psi = \mu \varphi n+1
2 in (3.39), we get

A3 = \mu 
\Bigl( 
(\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \varphi n+1

2 ) - \mu 

2
(\nabla \times \bfitu \ast ,\bfitm \ast \times \nabla \varphi n+1

2

\Bigr) 
=

3\mu 

2\delta t
\| \nabla \varphi n+1

2 \| 2 + \mu 

\tau 
\| \nabla \varphi n+1

2 \| 2 + \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\nabla \varphi n+1
2

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu \beta \| \bfitm \ast \times \nabla \varphi n+1
2 \| 2.

By taking \bfitn = \mu 
\chi 0

\bfitm n+1
2 in (3.41), we get

(3.45)

A4 = - \mu 

\chi 0

\bigl( 
(\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitm n+1

2

\bigr) 
+

\mu 

\chi 0

1

2

\bigl( 
\nabla \times \bfitu \ast ,\bfitm \ast \times \bfitm n+1

2

\bigr) 
+

\mu 

\chi 0
\beta 
\bigl( 
\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitm n+1

2

\bigr) 
=

\mu 

\chi 0

3

2\delta t
\| \bfitm n+1

2 \| 2 + \mu 

\chi 0

1

\tau 
\| \bfitm n+1

2 \| 2  - \mu 

\chi 0

1

\tau 

\bigl( 
\chi (\Phi \ast )\bfith n+1

2 ,\bfitm n+1
2

\bigr) 
.

Using the Cauchy--Schwarz inequality, we estimate the last term of A4 as

\mu 

\tau \chi 0
| 
\bigl( 
\chi (\Phi \ast )\bfith n+1

2 ,\bfitm n+1
2

\bigr) 
| \leq \mu 

\tau \chi 0

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfith n+1
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfitm n+1
2

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq \mu 

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \sqrt{} \chi (\Phi \ast )\bfith n+1
2

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \mu 

4\tau \chi 0
\| \bfitm n+1

2 \| 2.

Thus, we derive
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A3 +A4 \geq 
3\mu 

2\delta t
\| \nabla \varphi n+1

2 \| 2 + \mu 

\tau 
\| \nabla \varphi n+1

2 \| 2 + \mu \beta \| \bfitm \ast \times \nabla \varphi n+1
2 \| 2

+
\mu 

\chi 0

3

2\delta t
\| \bfitm n+1

2 \| 2 + 3\mu 

4\chi 0\tau 
\| \bfitm n+1

2 \| 2 \geq 0.

Therefore, we obtain  - \eta 2 = A1 +A2 +A3 +A4 \geq 0, which implies the solvability of
(3.42) in Step 9. The proof of unique solvability of Steps 1--10 is completed.

So far, we have constructed the desired scheme (3.2)--(3.10) for the two-phase
FHD model (2.3)--(2.10); i.e., a linear, fully decoupled, second-order accurate in time,
unconditionally energy stable numerical algorithm based on the continuous finite ele-
ment discretizations is obtained. Furthermore, our algorithm is very efficient because
it decomposes the coupled nonlinear saddle point system into multiple independent
elliptic problems.

4. Numerical simulations. In this section, we carry out a series of 2D and 3D
numerical simulations to verify the accuracy and stability of our scheme and exhibit
some interesting and iconic ``spiking"" phenomena of ferrofluids under some specific
applied magnetic fields. The continuous (conforming) finite elements are applied for
spatial discretization, where the first-order (linear) polynomials are used for Yh, Qh,
and \bfitN h and second-order (quadratic) polynomials are used for \bfitV h and \Psi h.

We denote ew = w(tn,\bfitx ) - wn, which is the approximation error at t = tn, and
``\lesssim "" the relation of a \leq Cb for some constant C. Using the selected finite element
spaces, the scheme we developed expects the following error estimates:

(4.1)

\| e\Phi \| L2 + \| e\bfith \| L2 + \| e\bfitm \| L2 \lesssim \delta t2 + h2, \| e\bfitu \| L2 \lesssim \delta t2 + h3, \| e\Phi \| H1 \lesssim \delta t2 + h.

Meanwhile, note that the L2 error of p and the H1 error of \bfitu are not full second-
order accuracy using the pressure projection method due to the artificial Neumann
boundary condition imposed on the pressure; see [39].

The applied magnetic field \bfith a is generated by a linear combination of dipoles that
reads as

\bfith a =
\sum 
s

\alpha s\nabla \phi s(\bfitx ), \phi s(\bfitx ) =
\bfitd \cdot (\bfitx s  - \bfitx )

| \bfitx s  - \bfitx | 2
,

where | \bfitd | = 1 indicates the direction of the dipole, and \bfitx s is the dipole's position. It
is easy to verify that \bfith a is a harmonic field (i.e., \nabla \times \bfith a = 0, \nabla \cdot \bfith a = 0); cf. [33].

4.1. Accuracy tests. We first verify the order of accuracy of our developed
scheme in this subsection. We set the domain as \Omega = [0,1]2 and assume that the
exact solution of the FHD system (2.3)--(2.10) is\left\{         

\Phi (t,\bfitx ) = 0.5 sin(t) cos(\pi x) cos(\pi y) + 0.5,

\bfitu (t,\bfitx ) =
\bigl( 
sin(t) sin(\pi x) sin(\pi (y+ 0.5)), sin(t) cos(\pi x) cos(\pi (y+ 0.5))

\bigr) 
,

p(t,\bfitx ) = sin(t)(2x - 1)(2y - 1),\varphi (t,\bfitx ) = (x - 0.5)y sin(t),

\bfitm (t,\bfitx ) =
\bigl( 
sin(t+ y), sin(t+ x)

\bigr) 
.

The model parameters are set as

\epsilon = 0.05, M = 0.05, \nu f = 2, \nu w = 1, \mu = \tau = \beta = \chi 0 = \lambda = 1, S = 1, B = 1+
S

2\epsilon 
.
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Fig. 4.1. Numerical errors computed by \delta t= 1
2
h, where (a) \| e\Phi \| , \| e\bfitu \| , \| e\bfith \| , \| e\bfitm \| , and | 1-Q| ,

(b) \| e\Phi \| 1, \| e\bfitu \| 1, and \| ep\| .

To observe the convergent orders, we set \delta t = 1
2h. From (4.1), the optimal error

estimates in term of h are expected to be

\| e\Phi \| L2 + \| e\bfith \| L2 + \| e\bfitm \| L2 + \| e\bfitu \| L2 \lesssim h2, \| e\Phi \| H1 \lesssim h.

In Figure 4.1, the results of numerical errors and convergent orders at T = 0.5 are
plotted. We observe that the L2 errors of \Phi , \bfitu , \bfith , and \bfitm are second-order accurate,
and the H1 error of \Phi is asymptotically first-order accurate, which are in line with the
expected order. The orders of the L2 error of p and the H1 error of \bfitu are higher than
first-order accuracy, but not full second-order accuracy due to the artificial Neumann
boundary condition for p, and the scalar variable Q approximates 1 with second-order
accuracy as well.

4.2. Stability tests. In this subsection, we carry out the simulation of a bench-
mark problem of coarsening effects of two bubbles of the Cahn--Hilliard dynamics; cf.
[6, 60]. The computational domain is set as \Omega = [0,2\pi ]2, and the initial condition of
\Phi 0 is set as

\Phi 0(\bfitx )= 1 - 1

2
tanh

\Biggl( \sqrt{} 
(x - x1)2 + (y - y1)2  - r1

1.2\epsilon 

\Biggr) 

 - 1

2
tanh

\Biggl( \sqrt{} 
(x - x2)2 + (y - y2)2  - r2

1.2\epsilon 

\Biggr) 
,

where (x1, y1) = (\pi  - 0.7, \pi  - 0.6), r1 = 1.5, (x2, y2) = (\pi +1.65, \pi +1.6), r2 = 0.7. All
other variables including the applied magnetic field \bfith a are all set zeros. The model
parameters are set as

\epsilon = 0.05,M = 5, \nu f = 2, \nu w = 1, \mu = \tau = \beta = \chi 0 = \lambda = 1, S = 1,

B =
S

2\epsilon 
+ 10, h=

1

256
, \delta t=

1

100
.

To illustrate the effectiveness of our developed scheme, we also com-
pare with another implicit-explicit type scheme, which reads as follow: find
(\Phi n+1,Wn+1,\bfitu n+1, pn+1,\varphi n+1,\bfitm n+1)\in Y 2

h \times \bfitV h \times Qh \times \Psi h \times \bfitN h such that
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(a) t = 0 (b) t = 0.6 (c) t = 0.7 (d) t = 1.0 (e) t = 1.5

Fig. 4.2. The profiles of the phase-field variable \Phi at various times computed by \delta t= 0.01 and
h= 1

256
.

(4.2)\left\{                                               

(Dt\Phi 
n+1,\Lambda ) - (\bfitu \ast \Phi \ast ,\nabla \Lambda )+M(\nabla Wn+1,\nabla \Lambda )= 0,

(Wn+1,X) = \lambda \epsilon (\nabla \Phi n+1,\nabla X) + \lambda (f(\Phi \ast ),X),

(Dt\bfitu 
n+1,\bfitv ) + (\nu (\Phi \ast )D(\bfitu n+1),D(\bfitv )) - (pn+1,\nabla \cdot \bfitv )
+ ((\bfitu \ast \cdot \nabla )\bfitu \ast ,\bfitv ) + (\Phi \ast \nabla W \ast ,\bfitv )

= - \mu ((\bfitv \cdot \nabla )\bfitm \ast ,\nabla \varphi \ast ) - \mu ((\nabla \cdot \bfitv )\bfitm \ast ,\nabla \varphi \ast ) + \mu 
2 (\bfitm 

\ast \times \nabla \varphi \ast ,\nabla \times \bfitv ),

(\nabla \cdot \bfitu n+1, q) = 0,

(\nabla Dt\varphi 
n+1,\nabla \psi ) + 1

\tau (\nabla \varphi 
n+1,\nabla \psi ) + 1

\tau (\chi (\Phi 
\ast )\nabla \varphi n+1,\nabla \psi ) - ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\nabla \psi )

+ 1
2 (\nabla \times \bfitu \ast \times \bfitm \ast ,\nabla \psi ) + \beta (\bfitm \ast \times \nabla \varphi n+1,\bfitm \ast \times \nabla \psi )

= (\bfith n+1
b ,\nabla \psi ) + 1

\tau (\bfith 
n+1
a ,\nabla \psi ),

(Dt\bfitm 
n+1,\bfitn ) + ((\bfitu \ast \cdot \nabla )\bfitm \ast ,\bfitn ) - 1

2 (\nabla \times \bfitu \ast \times \bfitm \ast ,\bfitn )

 - \beta (\bfitm \ast \times \bfith \ast ,\bfitm \ast \times \bfitn ) + 1
\tau (\bfitm 

n+1,\bfitn )

= 1
\tau (\chi (\Phi 

\ast )\bfith n+1,\bfitn )

for all (\Lambda ,X,\bfitv , q,\psi ,\bfitn )\in Y 2
h \times \bfitV h \times Qh \times \Psi h \times \bfitN h. The idea behind developing this

particular scheme is to explicitly discretize all nonlinear terms and implicitly discretize
linear terms; see a similar scheme given in [24] for a relatively simple hydrodynamic
coupled phase-field model (for viscous Newtonian fluid).

In Figure 4.2, we show snapshots of the phase-field variable \Phi at different times,
where the coarsening effect drives the gradual absorption of the small circle by the
larger circle, and the total absorption occurs around t= 0.7. In Figure 4.3(a), we plot
the temporal evolution of the original energy E(\Phi ,\bfitu ,\bfith ,\bfitm ) given in (2.11) computed
by using the implicit-explicit scheme (4.2), where different time steps are used. We
observe that the implicit-explicit scheme is energy stable conditionally. That is, for
smaller time steps \delta t \leq 1/2000, it is energy stable, while for larger time steps, the
energy curve explodes, meaning the energy evolution is unstable. In Figure 4.3(b),
we plot the temporal energy evolution of \widetilde En+1 given in (3.13) computed by our
developed scheme for different time step sizes, where the black dashed line is the
original energy computed by the implicit-explicit scheme (4.2) with \delta t = 1/2000 as
a reference. All computed energy curves of \widetilde En+1 show decays monotonically, which
numerically confirms that our algorithm is unconditionally energy stable.

4.3. Rosensweig instability in two and three dimensions. In this subsec-
tion, we simulate the unique ``spiking"" phenomenon of the FHD system, also known
as ``Rosensweig instability"" or ``normal field instability""; see [17, 22, 33]. To do so, we
consider a mixture of ferrofluids and the ambient viscous fluids (nonferrofluid) with
different viscosities and nearly matching densities. We add the gravity as a forcing
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(a) The implicit-explicit scheme (4.2).
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(b) The developed scheme (3.2)-(3.10).

Fig. 4.3. Energy evolution computed by different time steps, (a) implicit-explicit scheme (4.2),
(b) our scheme (3.2)--(3.10).

(a) t = 0.8 (b) t = 0.9 (c) t = 1 (d) t = 1.4

Fig. 4.4. Snapshots of the phase-field variable \Phi are taken at various times.

term \bfitf g in the fluid momentum equation (2.5) using the Boussinesq approximation,
i.e., \bfitf g = (1 + r

1+e
1 - 2\Phi 

\epsilon 

)\bfitg , where r is a positive constant that depends on the fluid

density, and | \bfitg | stands for the magnitude of gravity.
We first carry out the simulations in two dimensional and set the computational

domain as \Omega = [0,1]\times [0,0.6]. The initial conditions are set as

\bfitu (0,\bfitx ) = 0,\bfitm (0,\bfitx ) = 0,\Phi (0,\bfitx ) =

\Biggl\{ 
1, y\leq 0.2,

0, y > 0.2.
(4.3)

The model parameters are set as\left\{   \epsilon = 0.0075,M = 0.0002, \nu f = 2, \nu w = 1, \mu = 1, \tau = 1e - 4, \beta = 1, \chi 0 = 0.5,

\lambda = 1, r= 0.1, S = 1,B =
S

2\epsilon 
+ 10,\bfitg = (0, - 6e4), \delta t= 1e - 4, h=

1

128
.

To generate an analogous uniform applied magnetic field, we set \bfith a =\sum 5
s=1\alpha s\nabla \phi s(\bfitx ) by placing five dipoles far distant from the container \Omega . The po-

sitions \bfitx s of dipoles are ( - 0.5, - 15), (0, - 15), (0.5, - 15), (1, - 15), and (1.5, - 15),
and the direction \bfitd of the five dipoles are all (0,1). The intensities \alpha s, s= 1, . . . ,5, in-
crease linearly in time, starting from \alpha s = 0 at time t= 0 to maximum value \alpha s = 8000
at time t= 1.6, and from t= 1.6 the intensities are kept constant.

The profiles of the phase-field variable \Phi , velocity field \bfitu , magnetization \bfitm , and
effective magnetizing field \bfith are shown in Figures 4.4--4.7, respectively. Under the
competition of downward gravity, the upward uniform magnetic field, and the surface
tension, the interface profile of the two-phase ferrofluid is unstable and finally forms
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Fig. 4.5. The velocity field \bfitu (color represents magnitude, arrows represent vector field) at
various times.
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Fig. 4.6. The magnetization field \bfitm (color represents magnitude, arrows represent vector field)
at t= 0.8, 0.9, 1.0, and 1.3.
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Fig. 4.7. The effective magnetic field \bfith (color represents magnitude, arrows represent vector
field) at t= 0.8, 0.9, 1.0, 1.3.

a regular ``spiking"" or peak-valley steady state. Around t = 0.9, six peaks start to
appear within the domain and grow over time, shown in Figure 4.4. As the peaks
form, the velocity field develops 20 vortices, which are regularly arranged in two layers,
shown in Figure 4.5. In Figure 4.6, we find that the ferrofluid is magnetized by the
external magnetic field, whereas the magnetization of the nonmagnetic fluid is almost
zero. Figure 4.7 shows that the effective magnetic field \bfith exhibits a distinct difference
in the region of ferrofluid and nonmagnetic fluid.

We continue to carry out the simulations in three dimensions and set the com-
putational domain as \Omega = [0,1]\times [0,1]\times [0, 18 ]. The parameters are the same as the
2D simulation. The gravity force imposed in (2.5) takes the same form as the 2D
simulations but with \bfitg = (0,0, - 6e4). The initial conditions are set as

\bfitu (0,\bfitx ) = 0,\bfitm (0,\bfitx ) = 0, \Phi (0,\bfitx ) =

\left\{     
1, z \leq 1

24
,

0, z >
1

24
.

The analogous uniform applied magnetic field \bfith a in three dimensions is generated by
placing 25 dipoles with \bfith a =

\sum 25
s=1\alpha s\nabla \phi s(\bfitx ), where the direction \bfitd of all dipoles is

(0,0,1). The positions \bfitx s of dipoles are ( - 0.5+0.5i1, - 0.5, - 15), ( - 0.5+0.5i2,0, - 15),
( - 0.5+0.5i3,0.5, - 15), ( - 0.5+0.5i4,1, - 15), and ( - 0.5+0.5i5,1.5, - 15) for i1,2,3,4,5 =
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(a) t = 0 (b) t = 0.2 (c) t = 0.3 (d) t = 0.4

(e) t = 0.5 (f) t = 0.6 (g) t = 0.7 (h) t = 1.2

Fig. 4.8. Snapshots of the isosurface of \{ \Phi = 0.5\} are taken at various times.

0, . . . ,4. The intensity is fixed as \alpha s = 1000 for all dipoles. We set \delta t= 0.001, h= 1
64 .

The isosurface of the phase-field variable \{ \Phi = 0.5\} at various times is shown in
Figure 4.8. We observe that some peaks start to appear around t = 0.3. A very
regular peak-valley phenomenon is gradually formed over time, which is a typical
Rosensweig instability or ``spiking"" phenomenon of two-phase ferrofluids.

5. Concluding remarks. For the two-phase FHD phase-field model, with the
aid of a spatial discretization method using continuous finite elements, this paper aims
to construct a numerical scheme with the following desired properties: (i) linearity,
(ii) full decoupling, (iii) second-order time accuracy, and (iv) unconditional energy
stability. The key technique in the algorithm development is to first use two recon-
struction methods, including reforming the magnetostatic equation and introducing a
scalar variable based on the ``zero-energy-contribution"" property, to reformulate the
original system into a new but equivalent and algorithmically easy-to-implement sys-
tem. Several widely used numerical algorithms are then effectively grouped, including
the IEQ approach for linearization, the projection methods for fluid equations, the
explicit discretization for time marching, etc. The scheme is very efficient, requiring
only a few completely independent linear elliptic equations to be solved at each time
step. To the best of the authors' knowledge, this is the first fully discrete numerical
algorithm that satisfies this many desired properties, especially with a fully decoupled
structure for the two-phase FHD phase-field system.
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