
  

Deep Learning Model of Hiss Waves in the Plasmasphere and Plumes 1 
and Their Effects on Radiation Belt Electrons 2 

Sheng Huang1*, Wen Li1, Qianli Ma1,2, Xiao-Chen Shen1, Luisa Capannolo1, Miroslav 3 
Hanzelka1,5, Xiangning Chu3, Donglai Ma2, Jacob Bortnik2, and Simon Wing4 4 

1Center for Space Physics, Boston University, Boston, MA, USA. 5 
2Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, 6 
USA. 7 
3Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, 8 
USA. 9 
4Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD, USA. 10 
5Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, 11 
Prague, Czechia. 12 

* Correspondence:  13 
Sheng Huang (hs2015@bu.edu); Wen Li (wenli77@bu.edu) 14 

Keywords: total electron density, hiss, plasmasphere, plume, deep learning, radiation belt 15 
electrons, Fokker Planck simulation.  16 

Abstract 17 

Hiss waves play an important role in removing energetic electrons from Earth’s radiation belts by 18 
precipitating them into the upper atmosphere. Compared to plasmaspheric hiss that has been studied 19 
extensively, the evolution and effects of plume hiss are less understood due to the challenge of 20 
obtaining their global observations at high cadence. In this study, we use a neural network approach 21 
to model the global evolution of both the total electron density and the hiss wave amplitudes in the 22 
plasmasphere and plume. After describing the model development, we apply the model to a storm 23 
event that occurred on 14 May 2019 and find that the hiss wave amplitude first increased at dawn and 24 
then shifted towards dusk, where it was further excited within a narrow region of high density, 25 
namely a plasmaspheric plume. During the recovery phase of the storm, the plume rotated and 26 
wrapped around Earth, while the hiss wave amplitude decayed quickly over the nightside. Moreover, 27 
we simulated the overall energetic electron evolution during this storm event, and the simulated flux 28 
decay rate agrees well with the observations. By separating the modeled plasmaspheric and plume 29 
hiss waves, we quantified the effect of plume hiss on energetic electron dynamics. Our simulation 30 
demonstrates that, under relatively quiet geomagnetic conditions, the region with plume hiss can vary 31 
from L=4 to 6 and can account for up to an 80% decrease in electron fluxes at hundreds of keV at 32 
L>4 over three days. This study highlights the importance of including the dynamic hiss distribution 33 
in future simulations of radiation belt electron dynamics. 34 

1 Introduction 35 

Hiss waves are a type of whistler mode, broadband emission that typically exists in the Earth’s high 36 
density plasmasphere and plume regions (Chan & Holzer, 1976; Hayakawa et al., 1986; Larkina & 37 
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Likhter, 1982; Meredith, 2004; Ripoll et al., 2020; Thorne et al., 1973). Since their early discovery 38 
(Dunckel & Helliwell, 1969; Russell et al., 1969), hiss waves have been extensively studied, and 39 
many of their properties have been revealed (Hayakawa & Sazhin, 1992; Li et al., 2015a; Tsurutani et 40 
al., 2015).  41 

Through cyclotron resonant interactions, hiss can pitch-angle scatter electrons with energies ranging 42 
from tens of keV up to several MeV (Horne & Thorne, 1998; Li et al., 2007; Ma et al., 2016; Ni et 43 
al., 2014). They are responsible for creating the slot region between the inner and outer radiation 44 
belts and are believed to be the main driver of the outer belt electron decay during quiet times (Lam 45 
et al., 2007; Ma et al., 2015), thus playing an important role in controlling the structure and dynamics 46 
of the radiation belts.  47 

Hiss waves are believed to have multiple generation mechanisms, which are still under active 48 
research (e.g., Bortnik et al., 2009; Green, 2005; Liu et al., 2020). Lightning-generated whistlers 49 
from low altitudes can propagate and evolve into hiss (Bortnik et al., 2003; Sonwalkar & Inan, 1989), 50 
but they account for only a portion of the wave power at frequencies > 2 kHz at L < 3.5 (Meredith et 51 
al., 2006). In recent years, more and more observations and ray-tracing simulations have linked hiss 52 
waves with chorus waves propagating into the plasmasphere (Bortnik et al., 2008; Chen et al., 2012a, 53 
2012b; Church & Thorne, 1983; Santolík et al., 2006). This correlation is supported by statistical 54 
analyses of wave distribution (Agapitov et al., 2018; Meredith et al., 2013) as well as direct 55 
observations through event analyses (Bortnik et al., 2009; Li et al., 2015b). In addition to lightning-56 
generated whistlers and chorus waves propagating into the plasmasphere, electron cyclotron 57 
instability can also be a possible energy source for hiss by locally amplifying it to observable levels 58 
(Kennel & Petschek, 1966; Thorne et al., 1979). Although the wave growth rate is generally weak 59 
(Church & Thorne, 1983; C. Y. Huang et al., 1983), recent studies have shown that the high-60 
frequency hiss waves may be locally generated (Fu et al., 2021; Meredith et al., 2021). In addition, 61 
the sharp density gradient near the plasmapause and a fresh injection of anisotropic hot electrons 62 
drifting from the nightside plasma sheet can aid in generating intense low-frequency hiss, particularly 63 
favored when plasmaspheric plumes are present (Chen et al., 2014; Li et al., 2013; Su et al., 2018; 64 
Wu et al., 2022). Plume hiss is thus gaining more and more attention due to its potential role in 65 
controlling radiation belt dynamics (Summers et al., 2008). In the era of Van Allen Probes, hiss is 66 
found to be prevalent inside plumes (Shi et al., 2019; W. Zhang et al., 2019), and both observations 67 
and simulations recognize its importance in precipitating electrons in the outer radiation belt (Li et 68 
al., 2019; Ma et al., 2021; Millan et al., 2021; Qin et al., 2021). However, the observation of plume 69 
hiss is highly limited during individual events due to a lack of global coverage, and simulations are 70 
usually performed based on the statistical properties of plume hiss. Therefore, the spatiotemporal 71 
evolution of plume hiss and its effects on energetic electron dynamics remain elusive, though they 72 
are believed to critically affect the loss rate of energetic electrons in radiation belts.  73 

In this study, we propose a deep learning approach to model the global evolution of hiss and total 74 
electron density, inspired by Bortnik et al. (2016; 2018). Deep learning techniques have shown 75 
promising results in space weather modeling by analyzing information from large datasets (Chu et 76 
al., 2017a, b; 2021; Ma et al., 2022, Wing et al., 2005, 2022). We present the methodology for our 77 
model in section 2. In section 3, we analyze the model performance and apply it to a geomagnetic 78 
storm event where the complete evolution of plume hiss is predicted. Then, we simulate the energetic 79 
electron evolution based on the modeled hiss and total electron density, and quantify the effects of 80 
plume hiss. In section 4, we discuss our findings, followed by our conclusions in section 5. 81 

2 Data and Deep Learning Model 82 
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2.1 Van Allen Probes Data 83 

We train the model using observations from the twin Van Allen Probes (also known as RBSP; Mauk 84 
et al., 2013) throughout the majority of their operational time (2013–2019). The Electric and 85 
Magnetic Field Instrument Suite and Integrated Science (EMFISIS; Kletzing et al., 2013) suite 86 
onboard RBSP provides in-situ measurements of the field and waves with a time resolution of ~6 s 87 
for the survey mode. Total electron density (Ne) is inferred from the upper hybrid resonance 88 
frequency (Kurth et al., 2015) based on the measurements from the High Frequency Receiver (HFR). 89 
The WaveForm Receiver (WFR) measures wave activity, which we use to calculate the amplitude of 90 
hiss waves following Li et al. (2015a) summarized as follows:  91 

1) wave ellipticity > 0.7;  92 

2) wave planarity > 0.2;   93 

3) spectral frequency range over 20 – 4000 Hz.  94 

When the satellites are outside the plasmasphere or plume (according to the wave power of electron 95 
cyclotron harmonic waves; Shen et al., 2019), the wave amplitude is set to 0.2 pT to indicate no hiss 96 
wave. The whole hiss wave dataset has a similar trend to the statistics by Li et al. (2015a) that hiss 97 
wave tends to occur on the dayside during enhanced levels of substorm activity (not shown here). 98 
The satellite location is also used for training purposes, including L shell, magnetic local time 99 
(MLT), and magnetic latitude (MLAT). The MLT is converted into sin(MLT/12*p) and 100 
cos(MLT/12*p) to account for the discontinuity at MLT=24. Additionally, the spin-averaged electron 101 
fluxes measured by the Magnetic Electron Ion Spectrometer (MagEIS) instrument (Blake et al., 102 
2013) in the Energetic Particle Composition and Thermal Plasma (ECT) suite (Spence et al., 2013) 103 
are used to compare with the results of radiation belt simulations using our density and wave models. 104 

2.2 Geomagnetic Indices 105 

To model both the electron density and wave amplitude at a specific location observed by satellites, 106 
we use the geomagnetic indices SML, SMU, Hp30, and SYM-H, which measure the level of 107 
geomagnetic disturbance at different latitudes. The SML and SMU indices (Gjerloev, 2012; Newell 108 
& Gjerloev, 2011; from SuperMAG Web Service) provide better time coverage (to include recent 109 
year data) compared to the more commonly used AL and AU indices. The Hp30 index (Matzka et al., 110 
2021; from GFZ German Research Centre for Geosciences) is designed to improve the temporal 111 
resolution of Kp index from 3 h to 30 min. To capture the most variation in the data without 112 
introducing many artifacts from interpolation, all satellite observations and geomagnetic indices are 113 
interpolated to a time resolution of 1 minute. 114 

2.3 Deep Learning Model 115 

We adopt a similar model structure to that of Huang et al. (2022), as illustrated in Figure 1. In this 116 
framework, geomagnetic indices are used as the inputs to a neural network module, known as Long 117 
Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 1997). LSTM is well-suited for modeling 118 
data sequences in time-series format and can effectively capture the temporal evolution within the 119 
data (Karim et al., 2018; Siami-Namini et al., 2019). The extracted output feature 𝐻 at time 𝑡! can be 120 
viewed as a representation of the inner magnetospheric state at time 𝑡! , described solely based on the 121 
geomagnetic indices. Subsequently, 𝐻 is used to fit the satellite observations (both total electron 122 
density and hiss wave amplitude), with corresponding satellite location as an input (see Section 2.4). 123 
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By employing LSTM to process geomagnetic indices alone (without any RBSP data), the temporal 124 
evolution is decoupled from the location information, which enables our model to simultaneously 125 
learn the complex spatial dependence and the smooth transition along the satellite orbital 126 
observations over time. 127 

As hiss wave amplitude varies significantly in different regions, models tend to estimate the average 128 
activity while treating the variation as noise, thus underestimating the wave activity (trained with the 129 
same model structure as Huang et al. (2022) on hiss wave; not shown here). To better capture the 130 
dynamic nature of hiss wave activity, instead of directly predicting a quantity in a deterministic 131 
approach, we use a neural network module that estimates the wave probability distribution (modeling 132 
both the mean µ and standard deviation s) at a specific location and time. This approach essentially 133 
introduces an estimation of the uncertainty (Blundell et al., 2015) in the data and is critical to model 134 
quantities with large variations (Tasistro‐Hart et al., 2021). We avoid applying significant smoothing 135 
to the RBSP data to retain the full information carried in the variation. We sample a prediction 𝑦" 136 
from the modeled mean and standard deviation and calculate the negative log likelihood  137 

𝑛𝑙𝑙 ='(log,2𝜋𝜎# +
(𝑦$ − 𝜇)#

2𝜎# )
$

 138 

between the observation and model prediction. This process essentially maximizes the possibility of 139 
measuring the observed quantity given the estimated distribution. The calculated loss is then used to 140 
update the model parameters through the standard backpropagation procedure.  141 

To address the issue of an unbalanced dataset in training the hiss wave model, we have implemented 142 
a weighted sampler. While we dedicate considerable attention to geomagnetically active times, it is 143 
important to note that quiet times are more common and generally exhibit low wave activities. When 144 
the model is trained on the entire dataset, it tends to learn more efficiently from weaker waves, 145 
resulting in an underestimation of wave activity. To mitigate this imbalance, we use a weighted 146 
sampler that selects training samples based on a probability proportional to the largest wave 147 
amplitude within the subsequent 1-hour period. Consequently, periods with stronger wave activity 148 
are more likely to be included in the training process than those with weak wave activity, leading to a 149 
model with improved performance during geomagnetically active times. 150 

We include more details of the model structure and optimization procedure in Appendix A. 151 
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 152 

Figure 1. Model structure and workflow. Purple line: data flow at time 𝑡!; Green box: model input; 153 
Blue box: neural network model modules; Red box: (intermediate) model output; Yellow box: data 154 
operation. After the hidden state 𝐻 is encoded by LSTM from the geomagnetic indices, a probability 155 
distribution is estimated at the satellite location, and a prediction 𝑦" is sampled from this distribution. 156 
The negative log likelihood (nll) is calculated between the prediction 𝑦" and satellite observation 𝑦, 157 
and is further used to update the model parameters through backpropagation. 𝑦 denotes either total 158 
electron density or hiss wave amplitude. 159 

2.4 Data Processing 160 

The data from 2013 to 2019 is divided into 7-day blocks, with 70% randomly assigned as the training 161 
set, 20% as the validation set, and 10% as the test set. The period 13-19 May 2019 is also kept in the 162 
test set for further simulation (see Section 3.2). This division into 7-day blocks is chosen to avoid 163 
data leakage that is common in time-series modeling, and is short enough to allow for a large number 164 
of blocks, and long enough to prevent information leakage, while also considering long-term 165 
seasonal and solar cycle variations. After the training time range is settled (7-day blocks that belong 166 
to the training set combined), during each runtime we generate training samples with a weighted 167 
sampler using the following procedure. 1) Before the training starts, both Van Allen Probe A and B 168 
observations that fall within these 7-day blocks are assigned with a sequence of weights. Each weight 169 
that corresponds to a certain timestamp is calculated to be proportional to the largest wave amplitude 170 
within the subsequent 1-hour period. The resulting weight sequence has the same length as satellite 171 
observations. 2) During the training, starting times of the satellite observations are randomly picked 172 
given the weight sequence, and for each selected time, a period of 10-hour that follows the selected 173 
time is used in the training process. Each 10-hour period of observation is then paired with the 174 
corresponding 10 hours of geomagnetic indicies and the preceding 24 hours of historical 175 
geomagnetic indices at 1-min resolution to provide information on the state of the inner 176 
magnetosphere. In summary, for each 10-hour period, the model takes 24 hours of historical 177 
geomagnetic indices as inputs, followed by another 10 hours of geomagnetic indices and satellite 178 
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location (L, sin(MLT/12*p), cos(MLT/12*p), MLAT) at the same time. The model predicts the total 179 
electron density and hiss wave amplitude within the 10-hour period. The negative log likelihood is 180 
calculated between observation and model prediction over each 10-hour period. Loss is accumulated 181 
over a number of sequences trained at the same time, until it backpropagates to update the neural 182 
network parameters. 183 

3 Results 184 

3.1 Model Performance 185 

The overall model performance is shown in Figure 2 for total electron density (A-C) and hiss wave 186 
amplitude (D-F) for different datasets, respectively. The x-axis represents the observed quantity 𝑦 187 
(density or hiss wave amplitude), while the y-axis represents the corresponding modeled quantity 𝑦". 188 
The color represents how many y-yp pairs are located in that region. The red dashed diagonal line 189 
indicates a perfect model prediction (y=yp). The darker areas, concentrated near the red line, indicate 190 
good model performance for the majority of the data. This is also quantified by the correlation 191 
coefficient between log&' 𝑦 and log&' 𝑦" denoted by “r” in each panel. The model performance for 192 
electron density is similar to that of Huang et al. (2022), where the Pearson correlation coefficient for 193 
the test dataset (Figure 2C) is about 0.9, close to that of the validation set (Figure 2B) indicating that 194 
the model generalization ability is good. The mean square error (mse) is 0.16, indicating that the 195 
model generalizes and performs very well in modeling electron density. For the hiss wave amplitude, 196 
there is more spread of the darker areas (Figure 2F) with r=0.74, mse=0.53 for the test dataset, which 197 
suggests that the model performance is worse for the hiss amplitude than electron density. This is 198 
partly because the wave activity is highly dynamic, exhibiting fluctuations on short timescales, and 199 
thus is less predictable compared to the cold plasma density. Nevertheless, by adopting a probability-200 
based approach, our model reproduces the general global wave evolution fairly well, as presented in 201 
the following section.  202 

 203 



 

 
7 

Figure 2. Overall model performance of electron density (A-C) and hiss wave amplitude (D-F) for 204 
different datasets. X-axis: observed quantity; Y-axis: modeled quantity. The correlation coefficient is 205 
calculated and labeled as “r”. The Red dashed line denotes the data pair where the model prediction 206 
matches the observed value perfectly. 207 

3.2 Event Study 208 

We present a case study focusing on the global evolution of hiss waves and evaluate their effects on 209 
the energetic electron dynamics during a storm event on 14 May 2019, which is intentionally 210 
excluded from the training set. RBSP observations reveal the formation of a plasmaspheric plume 211 
and intensification of hiss waves over 13-19 May 2019, as shown in Figure 3. The SYM-H and SML 212 
indices (Figure 3A) peaked on May 14 when RBSP was on the dayside and observed a clear 213 
signature of the plasmaspheric plume (first by RBSP-A and later by RBSP-B, marked with black 214 
arrows in Figure 3B and 3C, respectively). Hiss wave amplitude intensified during the event (Figures 215 
3D and 3E). Panels (F)–(H) show binned satellite observations of energetic electron fluxes at 216 
energies of 132 keV, 235 keV, and 470 keV, respectively. The electron flux increased by an order of 217 
magnitude from L~ 5 to L~3 within several hours during the main phase of the storm, which 218 
occurred at 7 UT on May 14. After the storm main phase, the electron flux decayed gradually over 219 
the subsequent days due to radial diffusion and pitch-angle scattering by waves that we will model 220 
later. We plot the modeled electron density and hiss wave amplitude in panels (B)–(E) and show a 221 
line-by-line comparison between the model (orange) and the observation (blue) during the event. 222 
Overall, the model accurately captures the evolution of the plasmapause location, especially during 223 
the latter half of the event when SYM-H and SML were very quiet while Kp varied. There were 224 
instances when RBSP measured very low density (<10 cm-3), but the model predicted slightly higher 225 
density (~30 cm-3). Although the relative error is significat, the absolute error remains relatively low. 226 
The modeled hiss wave amplitude generally follows the observations, successfully capturing most of 227 
the peak values. 228 
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 229 

Figure 3. Overview of the geomagnetic storm during 13 – 19 May 2019. (A) SYM-H, SML, and Kp 230 
indices during the event. (B-C) Comparison between modeled electron density (orange) and satellite 231 
observation (blue) for RBSP-A and -B, respectively. Black arrows indicate plume features observed 232 
by the satellites. (D-E) Same as (B-C), but for hiss wave amplitude. (F-H) Measured spin-averaged 233 
electron flux at different energy channels.  234 

Figure 4 provides several snapshots illustrating the modeled global evolution of both electron density 235 
and hiss waves, allowing for a more comprehensive understanding of their dynamics during and 236 
following the storm event. As indicated by SYM-H and SML in panel (A), we select six specific 237 
times (1-6) to examine the modeled electron density (B) and hiss wave amplitude (C) before, during, 238 
and after the storm. Before the storm onset (1), the plasmasphere was relatively quiet and extended 239 
up to L=6 on the dusk side. Correspondingly, hiss wave activity was low, which is expected during 240 
quiet conditions (Kim et al., 2015; Li et al., 2015). As the storm intensified (2) with higher Kp and 241 
decreased SYM-H, the plasmasphere was pushed to the dayside due to the enhanced convection 242 
electric field, and hiss waves were intensified in the dawn-to-noon sector, probably related to the 243 
enhanced injection from the nightside plasma sheet. As the storm progressed (3), the plasmaspheric 244 
plume was formed, and the region with strong hiss waves shifted to the dusk side. The intensified 245 
waves predominantly occurred at high L, showing a good spatial correlation with the plume, in 246 
agreement with the statistical results of plume hiss (Shi et al., 2019). During the recovery phase from 247 
(3) to (5), the model predicted a rotating and narrowing plume, consistent with physical simulation 248 
results (De Pascuale et al., 2018), with hiss waves rotating and decaying simultaneously. After the 249 
storm, instances of persistent moderate hiss wave activity were observed (6). During the entire 250 
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period, the majority of the wave power was concentrated near the plasmapause, in agreement with 251 
statistical results (Malaspina et al., 2017). 252 

 253 

Figure 4. Snapshots of a geomagnetic storm event during 13 – 19 May 2019. (A) SYM-H, SML, and 254 
Kp indices during the event. (B) Modeled total electron density on the equatorial plane at different 255 
times, indicated by red dashed lines in panel (A). The contour of electron density of 50 cm-3 is 256 
overplotted as a red line to indicate the plasmapause. White dashed circles represent L=2, 4, and 6. 257 
(C) Same as panel (B), but for hiss wave amplitude. 258 

3.3 Event Simulation 259 

We use the UCLA 3-D diffusion code (Ma et al., 2015, 2018) to simulate the energetic electron 260 
evolution, considering radial diffusion and local resonant interactions with hiss waves. The 261 
simulation starts at 00 UT on May 15, following a period of significant local electron acceleration 262 
period and the extension of the plasmapause beyond L = 4. During the following four quiet days, the 263 
electron flux gradually decayed, providing a unique opportunity to model the effects of pitch angle 264 
scattering caused by hiss waves. The observed electron fluxes at 00 UT on May 15 are used as the 265 
initial condition for all L shells, as well as the time-varying boundary conditions at L=2.6 and L=6. 266 
The energy range in the simulation is set from 374 keV to 4.5 MeV at L=2.6 and from 40 keV to 1 267 
MeV at L=6, maintaining the conservation of the first adiabatic invariant. The pitch angle gradients 268 
of phase space density at α=0° and α=90° are set to be 0. The modeling results of energetic electron 269 
fluxes are not sensitive to the energy boundary condition assumptions because the energy diffusion 270 
coefficients due to hiss are much smaller than the pitch angle diffusion coefficients (e.g., Ni et al., 271 
2013; Thorne et al., 2013). Radial diffusion coefficients are calculated using the formulation by Liu 272 
et al. (2016) with pitch angle dependence from Schulz (1991, p229). The pitch angle, momentum, 273 
and their mixed diffusion coefficients are computed based on the total plasma density and hiss wave 274 
amplitude obtained from the deep learning model with a time cadence of 5 min. The wave frequency 275 
spectrum is derived from the Van Allen Probes statistics (Li et al., 2015), and wave normal angles are 276 
assumed to be quasi field-aligned near the magnetic equator, gradually becoming highly oblique at 277 
higher latitudes (Ni et al., 2013). The deep learning model provides the time-varying total electron 278 
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density and hiss wave amplitude as functions of L shell and MLT at the equator, which are used as 279 
inputs to the 3-D diffusion code. 280 

Figure 5 shows the modeled MLT-averaged hiss wave amplitude (A) and the simulated energetic 281 
electron flux evolution (B-D) in the same energy channels as shown in Figure 3. At the start of the 282 
simulation on May 15, the energetic electron fluxes were initially high in the outer radiation belt. As 283 
a result of both radial diffusion and scattering by hiss waves, the electron flux gradually decayed over 284 
the following 1-3 days. Instances of faster decay and slumps in the electron flux were successfully 285 
reproduced by the simulation at 0 and 18 UT on May 17, consistent with the RBSP observations. 286 
These slumps can be attributed to the enhanced wave activity, which causes stronger pitch angle 287 
scattering. To quantify the role of plume hiss in energetic electron dynamics, we divided the modeled 288 
global distribution of hiss waves into plume hiss and plasmaspheric hiss based on the modeled total 289 
electron density. We defined the plume as the region with a total electron density in the range 20–200 290 
cm-3, as identified from the global maps of modeled electron density, in agreement with typical 291 
plume statistics (Darrouzet et al., 2008; Moldwin, 2004). Although this definition may include the 292 
outer plasmasphere, as well as attached or detached plumes, it serves our purpose as this region 293 
exhibits similar characteristics that allow access for energetic electrons, potentially providing a 294 
source of free energy for whistler mode wave intensification (e.g., Li et al., 2013; Shi et al., 2019). 295 
Figure 5E displays the modeled plume hiss, characterized by an MLT-averaged wave amplitude of 296 
~10-20 pT. The majority of the plume hiss was located at L ~ 5, although the coverage was 297 
sometimes extended to L > 6. Despite its high variability, a clear trend emerged during the first three 298 
days, indicating that the inner edge of the plume hiss moved from L = 4 to 5 due to the refilling of the 299 
plasmasphere after the storm.  300 

To assess the impact of plume hiss on energetic electron flux, we conducted simulations considering  301 
only plasmaspheric hiss and compared them with simulations that included the effects of both 302 
plasmaspheric and plume hiss (the simulated electron fluxes are denoted as 𝐽&	and 𝐽#, respectively). 303 
The difference in electron fluxes between these simulations, quantified by (𝐽& − 𝐽#) 𝐽&⁄ , represents the 304 
sole effect of plume hiss, as shown in panels (F-H). When the plume hiss effect was included, there 305 
was a consistent decrease in electron fluxes over the 100–500 keV energy range. After a few days of 306 
simulation, the plume hiss accounted for an ~80% decrease in 132 keV electron flux and a ~40% 307 
decrease in 470 keV electron flux at L~4.5, near the heart of the outer radiation belt. At higher L, the 308 
plume hiss also contributed significantly to electron losses, resulting in a ~30%-70% decrease in 309 
electron flux at L~5.5. It is worth noting that the hiss wave activity depicted in Figure 5A is relatively 310 
modest, but the peak wave amplitude reached up to ~100pT. The averaged value of hiss wave 311 
amplitude during the recovery phase of this event is lower than the averaged statistical wave 312 
amplitude (~100 pT) on the dayside during strong geomagnetic conditions with AL* < -500nT (Li et 313 
al., 2015). It is interesting to note that there have been instances where hiss wave amplitudes in 314 
plumes exceeded 1000 pT (Su et al., 2018). Therefore, we expect that plume hiss waves would have a 315 
much stronger impact during periods of higher geomagnetic activity. 316 
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 317 

Figure 5. Simulated energetic flux evolution during a quiet period. (A) MLT-averaged hiss wave 318 
amplitude as a function of L and time from the deep learning model. (B) Simulated electron flux 319 
evolution for 132 keV electrons as a function of L and time, starting at L>4. (C) Same as panel (B) 320 
but for 235 keV electrons. (D) Same as panel (B) but for 470 keV electrons. (E) Modeled MLT-321 
averaged plume hiss wave amplitude. (F) Difference in simulated electron flux with and without 322 
plume hiss for 132 keV electrons. (G) Same as panel (F) but for 235 keV electrons. (H) Same as 323 
panel (F) but for 470 keV electrons. 324 

Figure 6 presents a comparison between the simulated (dashed line) and the observed electron flux 325 
evolution (solid line) at L=4.4. This L shell is located in the heart of the outer radiation belt, where 326 
the electron flux decay is most prominent. Moreover, choosing L=4.4 ensures that it is sufficiently 327 
distant from the simulation boundary, thus the change at this distance is mostly from the simulation 328 
itself, minimizing the potential impact of using observations as boundary conditions. In all three 329 
energy channels, the simulation exhibits a gradual flux decay from May 15 to 16, followed by a 330 
faster decay from 16 to 17. The simulation accurately captures the electron flux decay rate until the 331 
end of May 18, when the observation reveals a faster decay of higher-energy electrons. This faster 332 
decay could be attributed to the influence of waves other than hiss waves alone, as discussed below. 333 

 334 
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Figure 6. Comparison between the simulated (dashed line) and the observed electron flux evolution 335 
(solid line) at L=4.4. Each color represents a different energy channel.  336 

4 Discussion 337 

Although the simulated electron flux reproduced the observed flux for most of the period, there was a 338 
slightly faster decay rate in the observed flux on the last day of the simulation. Several potential 339 
factors could contribute to this discrepancy, which are discussed below. 340 

1. The presence of waves other than hiss waves can affect energetic electron dynamics. For 341 
example, chorus waves can also scatter electrons in the energy range of hundreds of keV, 342 
especially on the nightside where the plasmapause is often located at L < ~5. When performing 343 
simulations that include both chorus and hiss waves, the effects of these waves will be taken 344 
into consideration. However, this is beyond the scope of the present study, as we focus solely 345 
on modeling the hiss wave distribution in the plasmasphere and plume and their quantitative 346 
scattering effects on electrons.  347 

2. The presence of other waves may not scatter particles directly, but instead enhance the 348 
efficiency of hiss waves in scattering energetic electrons into the loss cone. Previous studies 349 
have shown that when electromagnetic ion cyclotron (EMIC) waves and hiss waves coexist at 350 
the same L shell, MeV electrons can be first scattered by hiss waves and subsequently scattered 351 
and precipitated by EMIC waves (Drozdov et al., 2020; Ma et al., 2015), resulting in a 352 
significant reduction in their lifetimes (Li et al., 2007; Zhang et al., 2017). Fast magnetosonic 353 
waves can induce additional scattering at intermediate pitch angles, leading to increased 354 
electron losses compared to scattering by hiss alone (Hua et al., 2018). Non-linear phase 355 
trapping by chorus waves can accelerate 300-500 keV electrons, which may then resonate with 356 
EMIC waves, resulting in their rapid scattering into the loss cone (Bashir et al., 2022). The 357 
combined effects of different wave modes on the radiation belt dynamics are beyond the scope 358 
of the present study and are left for future investigations. 359 

There are different ways to define plumes used in simulations. In our study, we define the plume 360 
region as an area with a total electron density ranging from 20 to 200 cm-3 at L < 6. This definition 361 
typically encompasses the outer plasmasphere or the plume, where energetic electrons (>~10s keV) 362 
can access, thus leading to highly variable wave activity over time and space. We have found a 363 
considerable amount of hiss wave power at L > 4, and the outermost extension of hiss waves has 364 
been observed to vary from L = 4 to 6, even during relatively quiet periods indicated by the 365 
geomagnetic indices. The commonly used density and wave statistical models, which are often 366 
expressed as simple functions of Kp and/or AE (Golden et al., 2012; O’Brien & Moldwin, 2003; 367 
Saikin et al., 2022; Spasojevic et al., 2015), do not capture such variability since the underlying 368 
geomagnetic indices might not exhibit strong variations during the period. These statistical models 369 
predict a constant wave power at a given location for a range of geomagnetic indices. Our findings 370 
demonstrate that even under relatively quiet conditions, hiss wave activity could exhibit dynamic 371 
evolution, and such spatial variation plays a crucial role in the evolution of energetic electron fluxes 372 
over time at different L shells, as shown in Figure 5. 373 

5 Conclusions 374 

We have developed a neural network model to simultaneously reconstruct the global evolution of 375 
both electron density and hiss wave amplitude in the Earth’s plasmasphere and plume. Unlike 376 
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traditional deterministic models, our approach estimates the distribution of these quantities, allowing 377 
for a better representation of variations in the data on both large and small scales.  378 

To quantify the evolution and effects of plume hiss, we focused on the storm event that occurred over 379 
13 – 19 May 2019, during which RBSP observed the formation of a plasmaspheric plume, followed 380 
by a gradual decay in the electron fluxes at a few hundred keV. Our model successfully captured the 381 
global evolution of the plume, as well as the plume hiss within it during the entire event. As 382 
geomagnetic activity increased, hiss wave power intensified and shifted from dawn to dusk, where 383 
the plume was formed later. The plume and plume hiss exhibited a strong spatial correlation and 384 
rotated together as the geomagnetic activity became weaker. The plume wrapped around the Earth 385 
and became thinner over the nightside, where hiss wave power diminished rapidly. During the 386 
recovery phase, the plasmasphere was gradually refilled, and hiss wave activity remained relatively 387 
low in general. Our model provided valuable insights into the relationship between the plume 388 
structure (as seen in the plasma density) and plume hiss on a global scale. 389 

To quantify the impact of plume hiss, we separated the modeled total hiss wave population into 390 
plasmaspheric hiss and plume hiss, and simulated the energetic electron flux evolution with and 391 
without plume hiss. By including both plasmaspheric and plume hiss, together with radial diffusion, 392 
the simulated electron flux decay reproduces the observation very well. The remaining differences in 393 
the electron flux decay may be attributed to scattering effects from other waves. Although the MLT-394 
averaged wave amplitude was ~10-20 pT, plume hiss alone was responsible for an additional ~80% 395 
decrease in 132 keV electron flux at L~4.5 within 3 days, and ~30% decrease in 470 keV electron 396 
flux at L~5.5. These results highlight the dynamic nature of hiss wave evolution even during 397 
geomagnetically quiet conditions, and emphasize the significant role played by plume hiss in shaping 398 
the energetic electron dynamics, especially in the outer radiation belt, which should be considered in 399 
future simulations of radiation belt dynamics. 400 

  401 
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 701 

11 Appendix A: Model structure and optimization procedure 702 

We optimize the hyperparameters in our model following the steps described by Huang et al. (2022). 703 

After careful tuning, we used the following set of optimal hyperparameters for our model: 704 

a) 2 LSTM layers, each with a size of 256. 705 
b) To output with an estimation of mean, 5 fully connected layers with each of size (260, 128, 128, 706 

128, 128, 1) and SELU as activation function are applied. 707 
c) To output with an estimation of standard deviation, 5 fully connected layers with sizes (260, 128, 708 

128, 128, 128, 1) and SELU as activation function are applied, with an additional soft-plus 709 
operation that converts the output to be positive. 710 

d) The encoder length is 24 hours. 711 
e) The decoder length is 10 hours. 712 

The detailed script that defines the model structure and weighted sampler can be found in the file 713 
uploaded in the figshare archive. 714 


