

1 Deep Learning Model of Hiss Waves in the Plasmasphere and Plumes 2 and Their Effects on Radiation Belt Electrons

3 **Sheng Huang^{1*}, Wen Li¹, Qianli Ma^{1,2}, Xiao-Chen Shen¹, Luisa Capannolo¹, Miroslav
4 Hanzelka^{1,5}, Xiangning Chu³, Donglai Ma², Jacob Bortnik², and Simon Wing⁴**

5 ¹Center for Space Physics, Boston University, Boston, MA, USA.

6 ²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
7 USA.

8 ³Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO,
9 USA.

10 ⁴Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD, USA.

11 ⁵Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences,
12 Prague, Czechia.

13 *** Correspondence:**

14 Sheng Huang (hs2015@bu.edu); Wen Li (wenli77@bu.edu)

15 **Keywords:** **total electron density, hiss, plasmasphere, plume, deep learning, radiation belt
16 electrons, Fokker Planck simulation.**

17 **Abstract**

18 Hiss waves play an important role in removing energetic electrons from Earth's radiation belts by
19 precipitating them into the upper atmosphere. Compared to plasmaspheric hiss that has been studied
20 extensively, the evolution and effects of plume hiss are less understood due to the challenge of
21 obtaining their global observations at high cadence. In this study, we use a neural network approach
22 to model the global evolution of both the total electron density and the hiss wave amplitudes in the
23 plasmasphere and plume. After describing the model development, we apply the model to a storm
24 event that occurred on 14 May 2019 and find that the hiss wave amplitude first increased at dawn and
25 then shifted towards dusk, where it was further excited within a narrow region of high density,
26 namely a plasmaspheric plume. During the recovery phase of the storm, the plume rotated and
27 wrapped around Earth, while the hiss wave amplitude decayed quickly over the nightside. Moreover,
28 we simulated the overall energetic electron evolution during this storm event, and the simulated flux
29 decay rate agrees well with the observations. By separating the modeled plasmaspheric and plume
30 hiss waves, we quantified the effect of plume hiss on energetic electron dynamics. Our simulation
31 demonstrates that, under relatively quiet geomagnetic conditions, the region with plume hiss can vary
32 from L=4 to 6 and can account for up to an 80% decrease in electron fluxes at hundreds of keV at
33 L>4 over three days. This study highlights the importance of including the dynamic hiss distribution
34 in future simulations of radiation belt electron dynamics.

35 **1 Introduction**

36 Hiss waves are a type of whistler mode, broadband emission that typically exists in the Earth's high
37 density plasmasphere and plume regions (Chan & Holzer, 1976; Hayakawa et al., 1986; Larkina &

38 Likhter, 1982; Meredith, 2004; Ripoll et al., 2020; Thorne et al., 1973). Since their early discovery
39 (Dunckel & Helliwell, 1969; Russell et al., 1969), hiss waves have been extensively studied, and
40 many of their properties have been revealed (Hayakawa & Sazhin, 1992; Li et al., 2015a; Tsurutani et
41 al., 2015).

42 Through cyclotron resonant interactions, hiss can pitch-angle scatter electrons with energies ranging
43 from tens of keV up to several MeV (Horne & Thorne, 1998; Li et al., 2007; Ma et al., 2016; Ni et
44 al., 2014). They are responsible for creating the slot region between the inner and outer radiation
45 belts and are believed to be the main driver of the outer belt electron decay during quiet times (Lam
46 et al., 2007; Ma et al., 2015), thus playing an important role in controlling the structure and dynamics
47 of the radiation belts.

48 Hiss waves are believed to have multiple generation mechanisms, which are still under active
49 research (e.g., Bortnik et al., 2009; Green, 2005; Liu et al., 2020). Lightning-generated whistlers
50 from low altitudes can propagate and evolve into hiss (Bortnik et al., 2003; Sonwalkar & Inan, 1989),
51 but they account for only a portion of the wave power at frequencies > 2 kHz at $L < 3.5$ (Meredith et
52 al., 2006). In recent years, more and more observations and ray-tracing simulations have linked hiss
53 waves with chorus waves propagating into the plasmasphere (Bortnik et al., 2008; Chen et al., 2012a,
54 2012b; Church & Thorne, 1983; Santolík et al., 2006). This correlation is supported by statistical
55 analyses of wave distribution (Agapitov et al., 2018; Meredith et al., 2013) as well as direct
56 observations through event analyses (Bortnik et al., 2009; Li et al., 2015b). In addition to lightning-
57 generated whistlers and chorus waves propagating into the plasmasphere, electron cyclotron
58 instability can also be a possible energy source for hiss by locally amplifying it to observable levels
59 (Kennel & Petschek, 1966; Thorne et al., 1979). Although the wave growth rate is generally weak
60 (Church & Thorne, 1983; C. Y. Huang et al., 1983), recent studies have shown that the high-
61 frequency hiss waves may be locally generated (Fu et al., 2021; Meredith et al., 2021). In addition,
62 the sharp density gradient near the plasmapause and a fresh injection of anisotropic hot electrons
63 drifting from the nightside plasma sheet can aid in generating intense low-frequency hiss, particularly
64 favored when plasmaspheric plumes are present (Chen et al., 2014; Li et al., 2013; Su et al., 2018;
65 Wu et al., 2022). Plume hiss is thus gaining more and more attention due to its potential role in
66 controlling radiation belt dynamics (Summers et al., 2008). In the era of Van Allen Probes, hiss is
67 found to be prevalent inside plumes (Shi et al., 2019; W. Zhang et al., 2019), and both observations
68 and simulations recognize its importance in precipitating electrons in the outer radiation belt (Li et
69 al., 2019; Ma et al., 2021; Millan et al., 2021; Qin et al., 2021). However, the observation of plume
70 hiss is highly limited during individual events due to a lack of global coverage, and simulations are
71 usually performed based on the statistical properties of plume hiss. Therefore, the spatiotemporal
72 evolution of plume hiss and its effects on energetic electron dynamics remain elusive, though they
73 are believed to critically affect the loss rate of energetic electrons in radiation belts.

74 In this study, we propose a deep learning approach to model the global evolution of hiss and total
75 electron density, inspired by Bortnik et al. (2016; 2018). Deep learning techniques have shown
76 promising results in space weather modeling by analyzing information from large datasets (Chu et
77 al., 2017a, b; 2021; Ma et al., 2022, Wing et al., 2005, 2022). We present the methodology for our
78 model in section 2. In section 3, we analyze the model performance and apply it to a geomagnetic
79 storm event where the complete evolution of plume hiss is predicted. Then, we simulate the energetic
80 electron evolution based on the modeled hiss and total electron density, and quantify the effects of
81 plume hiss. In section 4, we discuss our findings, followed by our conclusions in section 5.

82 2 Data and Deep Learning Model

83 **2.1 Van Allen Probes Data**

84 We train the model using observations from the twin Van Allen Probes (also known as RBSP; Mauk
85 et al., 2013) throughout the majority of their operational time (2013–2019). The Electric and
86 Magnetic Field Instrument Suite and Integrated Science (EMFISIS; Kletzing et al., 2013) suite
87 onboard RBSP provides in-situ measurements of the field and waves with a time resolution of \sim 6 s
88 for the survey mode. Total electron density (N_e) is inferred from the upper hybrid resonance
89 frequency (Kurth et al., 2015) based on the measurements from the High Frequency Receiver (HFR).
90 The WaveForm Receiver (WFR) measures wave activity, which we use to calculate the amplitude of
91 hiss waves following Li et al. (2015a) summarized as follows:

92 1) wave ellipticity > 0.7 ;
93 2) wave planarity > 0.2 ;
94 3) spectral frequency range over 20 – 4000 Hz.

95 When the satellites are outside the plasmasphere or plume (according to the wave power of electron
96 cyclotron harmonic waves; Shen et al., 2019), the wave amplitude is set to 0.2 pT to indicate no hiss
97 wave. The whole hiss wave dataset has a similar trend to the statistics by Li et al. (2015a) that hiss
98 wave tends to occur on the dayside during enhanced levels of substorm activity (not shown here).
99 The satellite location is also used for training purposes, including L shell, magnetic local time
100 (MLT), and magnetic latitude (MLAT). The MLT is converted into $\sin(\text{MLT}/12^*\pi)$ and
101 $\cos(\text{MLT}/12^*\pi)$ to account for the discontinuity at $\text{MLT}=24$. Additionally, the spin-averaged electron
102 fluxes measured by the Magnetic Electron Ion Spectrometer (MagEIS) instrument (Blake et al.,
103 2013) in the Energetic Particle Composition and Thermal Plasma (ECT) suite (Spence et al., 2013)
104 are used to compare with the results of radiation belt simulations using our density and wave models.

105 **2.2 Geomagnetic Indices**

106 To model both the electron density and wave amplitude at a specific location observed by satellites,
107 we use the geomagnetic indices SML, SMU, Hp30, and SYM-H, which measure the level of
108 geomagnetic disturbance at different latitudes. The SML and SMU indices (Gjerloev, 2012; Newell
109 & Gjerloev, 2011; from SuperMAG Web Service) provide better time coverage (to include recent
110 year data) compared to the more commonly used AL and AU indices. The Hp30 index (Matzka et al.,
111 2021; from GFZ German Research Centre for Geosciences) is designed to improve the temporal
112 resolution of Kp index from 3 h to 30 min. To capture the most variation in the data without
113 introducing many artifacts from interpolation, all satellite observations and geomagnetic indices are
114 interpolated to a time resolution of 1 minute.

115 **2.3 Deep Learning Model**

116 We adopt a similar model structure to that of Huang et al. (2022), as illustrated in Figure 1. In this
117 framework, geomagnetic indices are used as the inputs to a neural network module, known as Long
118 Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 1997). LSTM is well-suited for modeling
119 data sequences in time-series format and can effectively capture the temporal evolution within the
120 data (Karim et al., 2018; Siami-Namini et al., 2019). The extracted output feature H at time t_n can be
121 viewed as a representation of the inner magnetospheric state at time t_n , described solely based on the
122 geomagnetic indices. Subsequently, H is used to fit the satellite observations (both total electron
123 density and hiss wave amplitude), with corresponding satellite location as an input (see Section 2.4).

124 By employing LSTM to process geomagnetic indices alone (without any RBSP data), the temporal
125 evolution is decoupled from the location information, which enables our model to simultaneously
126 learn the complex spatial dependence and the smooth transition along the satellite orbital
127 observations over time.

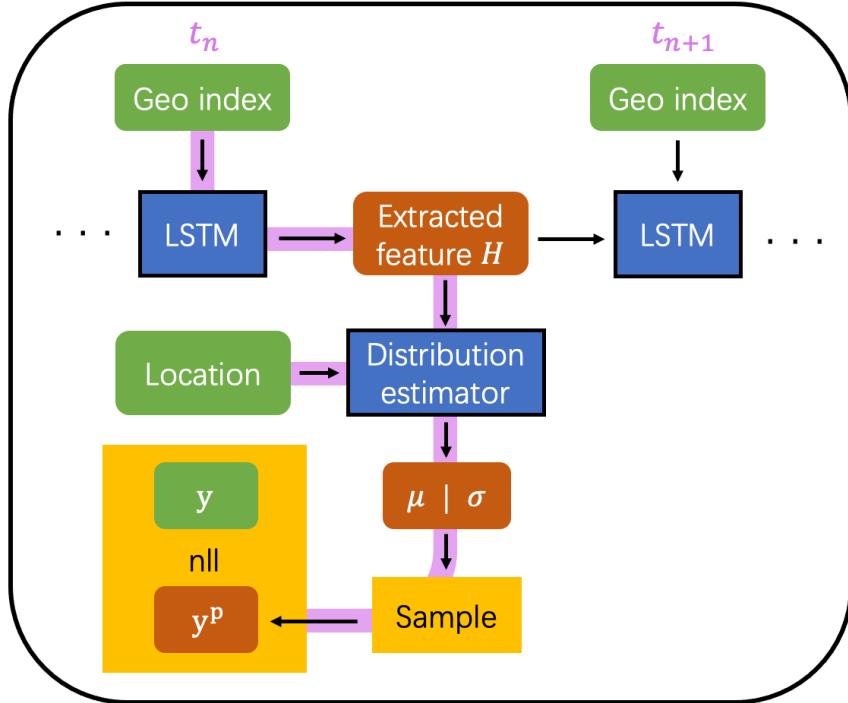
128 As hiss wave amplitude varies significantly in different regions, models tend to estimate the average
129 activity while treating the variation as noise, thus underestimating the wave activity (trained with the
130 same model structure as Huang et al. (2022) on hiss wave; not shown here). To better capture the
131 dynamic nature of hiss wave activity, instead of directly predicting a quantity in a deterministic
132 approach, we use a neural network module that estimates the wave probability distribution (modeling
133 both the mean μ and standard deviation σ) at a specific location and time. This approach essentially
134 introduces an estimation of the uncertainty (Blundell et al., 2015) in the data and is critical to model
135 quantities with large variations (Tasistro-Hart et al., 2021). We avoid applying significant smoothing
136 to the RBSP data to retain the full information carried in the variation. We sample a prediction y^p
137 from the modeled mean and standard deviation and calculate the negative log likelihood

$$138 \quad nll = \sum_i \left(\log \sqrt{2\pi\sigma^2} + \frac{(y_i - \mu)^2}{2\sigma^2} \right)$$

139 between the observation and model prediction. This process essentially maximizes the possibility of
140 measuring the observed quantity given the estimated distribution. The calculated loss is then used to
141 update the model parameters through the standard backpropagation procedure.

142 To address the issue of an unbalanced dataset in training the hiss wave model, we have implemented
143 a weighted sampler. While we dedicate considerable attention to geomagnetically active times, it is
144 important to note that quiet times are more common and generally exhibit low wave activities. When
145 the model is trained on the entire dataset, it tends to learn more efficiently from weaker waves,
146 resulting in an underestimation of wave activity. To mitigate this imbalance, we use a weighted
147 sampler that selects training samples based on a probability proportional to the largest wave
148 amplitude within the subsequent 1-hour period. Consequently, periods with stronger wave activity
149 are more likely to be included in the training process than those with weak wave activity, leading to a
150 model with improved performance during geomagnetically active times.

151 We include more details of the model structure and optimization procedure in Appendix A.



152

153 **Figure 1.** Model structure and workflow. Purple line: data flow at time t_n ; Green box: model input;
 154 Blue box: neural network model modules; Red box: (intermediate) model output; Yellow box: data
 155 operation. After the hidden state H is encoded by LSTM from the geomagnetic indices, a probability
 156 distribution is estimated at the satellite location, and a prediction y^p is sampled from this distribution.
 157 The negative log likelihood (nll) is calculated between the prediction y^p and satellite observation y ,
 158 and is further used to update the model parameters through backpropagation. y denotes either total
 159 electron density or hiss wave amplitude.

160 **2.4 Data Processing**

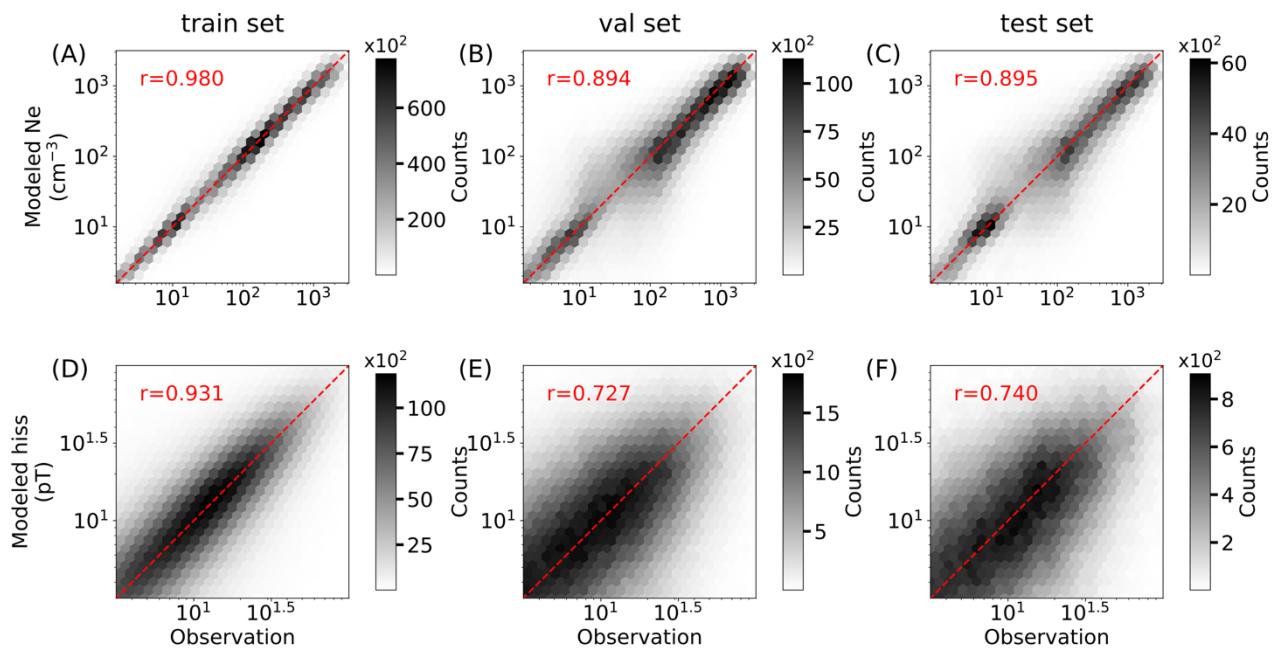
161 The data from 2013 to 2019 is divided into 7-day blocks, with 70% randomly assigned as the training
 162 set, 20% as the validation set, and 10% as the test set. The period 13-19 May 2019 is also kept in the
 163 test set for further simulation (see Section 3.2). This division into 7-day blocks is chosen to avoid
 164 data leakage that is common in time-series modeling, and is short enough to allow for a large number
 165 of blocks, and long enough to prevent information leakage, while also considering long-term
 166 seasonal and solar cycle variations. After the training time range is settled (7-day blocks that belong
 167 to the training set combined), during each runtime we generate training samples with a weighted
 168 sampler using the following procedure. 1) Before the training starts, both Van Allen Probe A and B
 169 observations that fall within these 7-day blocks are assigned with a sequence of weights. Each weight
 170 that corresponds to a certain timestamp is calculated to be proportional to the largest wave amplitude
 171 within the subsequent 1-hour period. The resulting weight sequence has the same length as satellite
 172 observations. 2) During the training, starting times of the satellite observations are randomly picked
 173 given the weight sequence, and for each selected time, a period of 10-hour that follows the selected
 174 time is used in the training process. Each 10-hour period of observation is then paired with the
 175 corresponding 10 hours of geomagnetic indices and the preceding 24 hours of historical
 176 geomagnetic indices at 1-min resolution to provide information on the state of the inner
 177 magnetosphere. In summary, for each 10-hour period, the model takes 24 hours of historical
 178 geomagnetic indices as inputs, followed by another 10 hours of geomagnetic indices and satellite

179 location (L , $\sin(\text{MLT}/12\pi)$, $\cos(\text{MLT}/12\pi)$, MLAT) at the same time. The model predicts the total
 180 electron density and hiss wave amplitude within the 10-hour period. The negative log likelihood is
 181 calculated between observation and model prediction over each 10-hour period. Loss is accumulated
 182 over a number of sequences trained at the same time, until it backpropagates to update the neural
 183 network parameters.

184 **3 Results**

185 **3.1 Model Performance**

186 The overall model performance is shown in Figure 2 for total electron density (A-C) and hiss wave
 187 amplitude (D-F) for different datasets, respectively. The x-axis represents the observed quantity y
 188 (density or hiss wave amplitude), while the y-axis represents the corresponding modeled quantity y^p .
 189 The color represents how many $y-y^p$ pairs are located in that region. The red dashed diagonal line
 190 indicates a perfect model prediction ($y=y^p$). The darker areas, concentrated near the red line, indicate
 191 good model performance for the majority of the data. This is also quantified by the correlation
 192 coefficient between $\log_{10} y$ and $\log_{10} y^p$ denoted by “ r ” in each panel. The model performance for
 193 electron density is similar to that of Huang et al. (2022), where the Pearson correlation coefficient for
 194 the test dataset (Figure 2C) is about 0.9, close to that of the validation set (Figure 2B) indicating that
 195 the model generalization ability is good. The mean square error (mse) is 0.16, indicating that the
 196 model generalizes and performs very well in modeling electron density. For the hiss wave amplitude,
 197 there is more spread of the darker areas (Figure 2F) with $r=0.74$, mse=0.53 for the test dataset, which
 198 suggests that the model performance is worse for the hiss amplitude than electron density. This is
 199 partly because the wave activity is highly dynamic, exhibiting fluctuations on short timescales, and
 200 thus is less predictable compared to the cold plasma density. Nevertheless, by adopting a probability-
 201 based approach, our model reproduces the general global wave evolution fairly well, as presented in
 202 the following section.

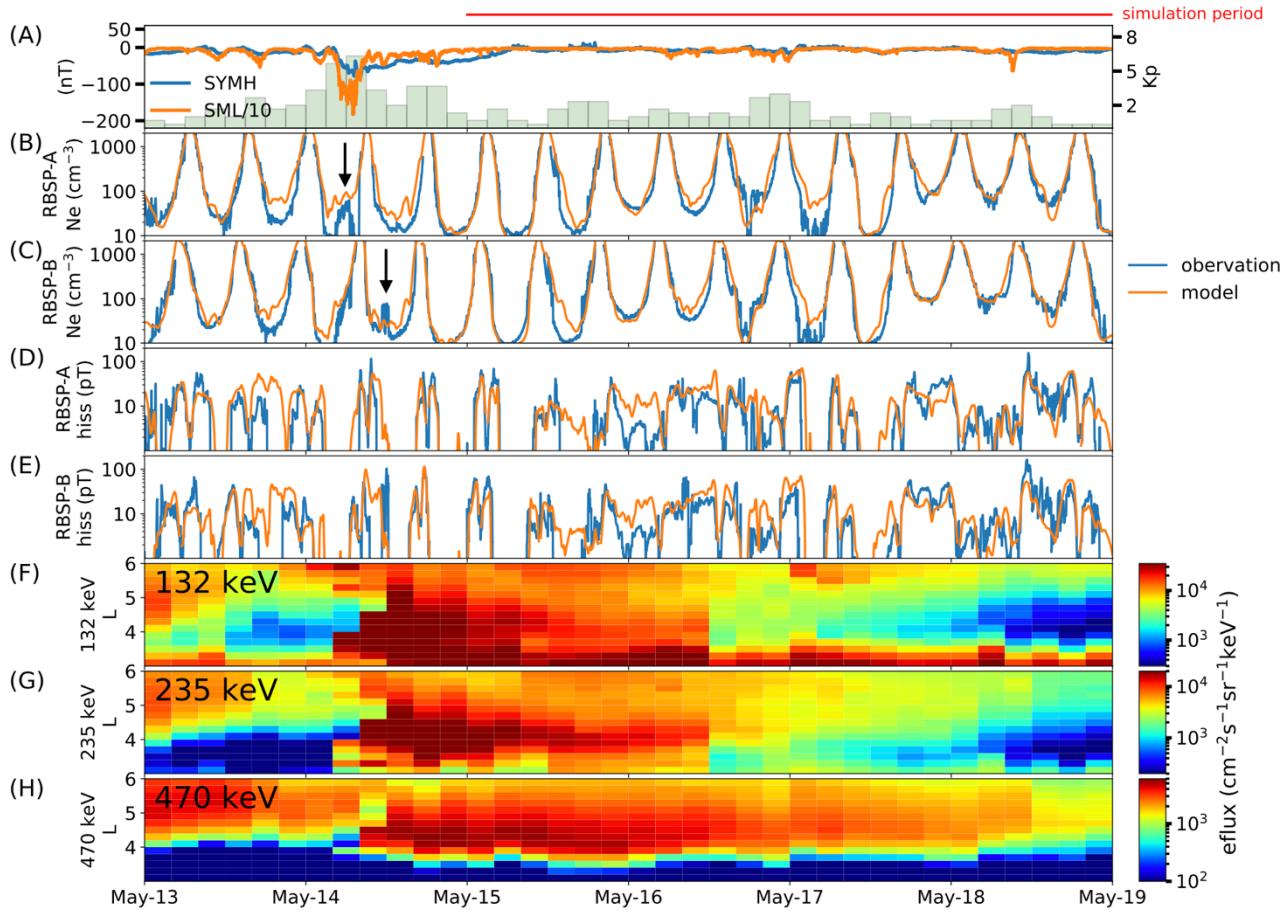


203

204 **Figure 2.** Overall model performance of electron density (A-C) and hiss wave amplitude (D-F) for
205 different datasets. X-axis: observed quantity; Y-axis: modeled quantity. The correlation coefficient is
206 calculated and labeled as “r”. The Red dashed line denotes the data pair where the model prediction
207 matches the observed value perfectly.

208 **3.2 Event Study**

209 We present a case study focusing on the global evolution of hiss waves and evaluate their effects on
210 the energetic electron dynamics during a storm event on 14 May 2019, which is intentionally
211 excluded from the training set. RBSP observations reveal the formation of a plasmaspheric plume
212 and intensification of hiss waves over 13-19 May 2019, as shown in Figure 3. The SYM-H and SML
213 indices (Figure 3A) peaked on May 14 when RBSP was on the dayside and observed a clear
214 signature of the plasmaspheric plume (first by RBSP-A and later by RBSP-B, marked with black
215 arrows in Figure 3B and 3C, respectively). Hiss wave amplitude intensified during the event (Figures
216 3D and 3E). Panels (F)–(H) show binned satellite observations of energetic electron fluxes at
217 energies of 132 keV, 235 keV, and 470 keV, respectively. The electron flux increased by an order of
218 magnitude from $L \sim 5$ to $L \sim 3$ within several hours during the main phase of the storm, which
219 occurred at 7 UT on May 14. After the storm main phase, the electron flux decayed gradually over
220 the subsequent days due to radial diffusion and pitch-angle scattering by waves that we will model
221 later. We plot the modeled electron density and hiss wave amplitude in panels (B)–(E) and show a
222 line-by-line comparison between the model (orange) and the observation (blue) during the event.
223 Overall, the model accurately captures the evolution of the plasmapause location, especially during
224 the latter half of the event when SYM-H and SML were very quiet while K_p varied. There were
225 instances when RBSP measured very low density ($< 10 \text{ cm}^{-3}$), but the model predicted slightly higher
226 density ($\sim 30 \text{ cm}^{-3}$). Although the relative error is significant, the absolute error remains relatively low.
227 The modeled hiss wave amplitude generally follows the observations, successfully capturing most of
228 the peak values.

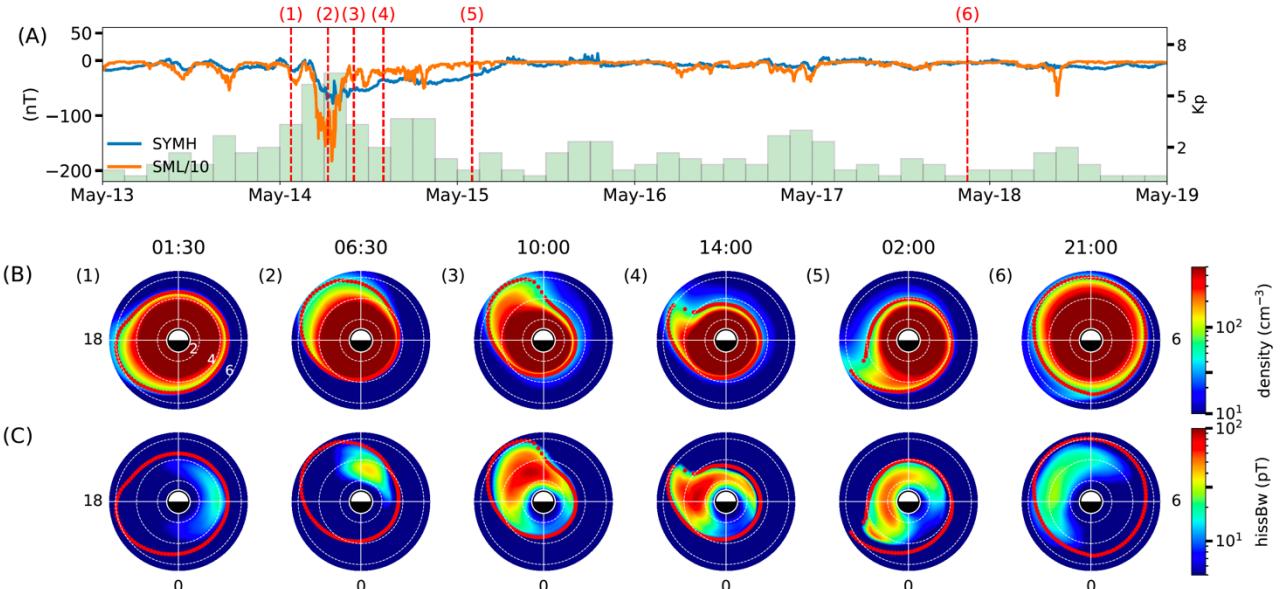


229

230 **Figure 3.** Overview of the geomagnetic storm during 13 – 19 May 2019. (A) SYM-H, SML, and Kp
 231 indices during the event. (B-C) Comparison between modeled electron density (orange) and satellite
 232 observation (blue) for RBSP-A and -B, respectively. Black arrows indicate plume features observed
 233 by the satellites. (D-E) Same as (B-C), but for hiss wave amplitude. (F-H) Measured spin-averaged
 234 electron flux at different energy channels.

235 Figure 4 provides several snapshots illustrating the modeled global evolution of both electron density
 236 and hiss waves, allowing for a more comprehensive understanding of their dynamics during and
 237 following the storm event. As indicated by SYM-H and SML in panel (A), we select six specific
 238 times (1-6) to examine the modeled electron density (B) and hiss wave amplitude (C) before, during,
 239 and after the storm. Before the storm onset (1), the plasmasphere was relatively quiet and extended
 240 up to $L=6$ on the dusk side. Correspondingly, hiss wave activity was low, which is expected during
 241 quiet conditions (Kim et al., 2015; Li et al., 2015). As the storm intensified (2) with higher Kp and
 242 decreased SYM-H, the plasmasphere was pushed to the dayside due to the enhanced convection
 243 electric field, and hiss waves were intensified in the dawn-to-noon sector, probably related to the
 244 enhanced injection from the nightside plasma sheet. As the storm progressed (3), the plasmaspheric
 245 plume was formed, and the region with strong hiss waves shifted to the dusk side. The intensified
 246 waves predominantly occurred at high L , showing a good spatial correlation with the plume, in
 247 agreement with the statistical results of plume hiss (Shi et al., 2019). During the recovery phase from
 248 (3) to (5), the model predicted a rotating and narrowing plume, consistent with physical simulation
 249 results (De Pascuale et al., 2018), with hiss waves rotating and decaying simultaneously. After the
 250 storm, instances of persistent moderate hiss wave activity were observed (6). During the entire

251 period, the majority of the wave power was concentrated near the plasmapause, in agreement with
 252 statistical results (Malaspina et al., 2017).



253

254 **Figure 4.** Snapshots of a geomagnetic storm event during 13 – 19 May 2019. (A) SYM-H, SML, and
 255 Kp indices during the event. (B) Modeled total electron density on the equatorial plane at different
 256 times, indicated by red dashed lines in panel (A). The contour of electron density of 50 cm^{-3} is
 257 overplotted as a red line to indicate the plasmapause. White dashed circles represent $L=2, 4$, and 6 .
 258 (C) Same as panel (B), but for hiss wave amplitude.

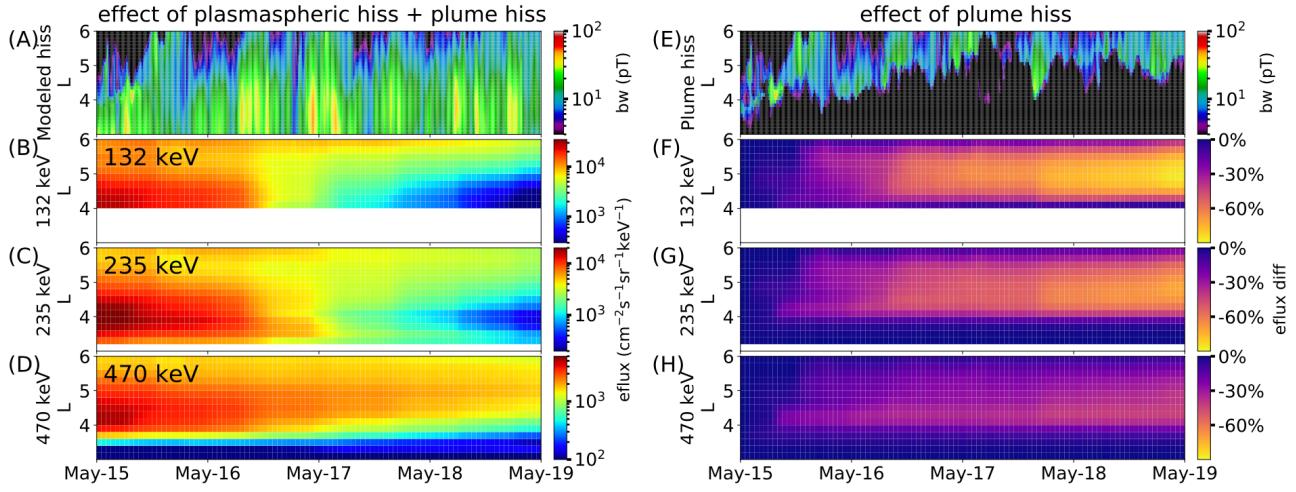
259 3.3 Event Simulation

260 We use the UCLA 3-D diffusion code (Ma et al., 2015, 2018) to simulate the energetic electron
 261 evolution, considering radial diffusion and local resonant interactions with hiss waves. The
 262 simulation starts at 00 UT on May 15, following a period of significant local electron acceleration
 263 period and the extension of the plasmapause beyond $L = 4$. During the following four quiet days, the
 264 electron flux gradually decayed, providing a unique opportunity to model the effects of pitch angle
 265 scattering caused by hiss waves. The observed electron fluxes at 00 UT on May 15 are used as the
 266 initial condition for all L shells, as well as the time-varying boundary conditions at $L=2.6$ and $L=6$.
 267 The energy range in the simulation is set from 374 keV to 4.5 MeV at $L=2.6$ and from 40 keV to 1
 268 MeV at $L=6$, maintaining the conservation of the first adiabatic invariant. The pitch angle gradients
 269 of phase space density at $\alpha=0^\circ$ and $\alpha=90^\circ$ are set to be 0. The modeling results of energetic electron
 270 fluxes are not sensitive to the energy boundary condition assumptions because the energy diffusion
 271 coefficients due to hiss are much smaller than the pitch angle diffusion coefficients (e.g., Ni et al.,
 272 2013; Thorne et al., 2013). Radial diffusion coefficients are calculated using the formulation by Liu
 273 et al. (2016) with pitch angle dependence from Schulz (1991, p229). The pitch angle, momentum,
 274 and their mixed diffusion coefficients are computed based on the total plasma density and hiss wave
 275 amplitude obtained from the deep learning model with a time cadence of 5 min. The wave frequency
 276 spectrum is derived from the Van Allen Probes statistics (Li et al., 2015), and wave normal angles are
 277 assumed to be quasi field-aligned near the magnetic equator, gradually becoming highly oblique at
 278 higher latitudes (Ni et al., 2013). The deep learning model provides the time-varying total electron

279 density and hiss wave amplitude as functions of L shell and MLT at the equator, which are used as
280 inputs to the 3-D diffusion code.

281 Figure 5 shows the modeled MLT-averaged hiss wave amplitude (A) and the simulated energetic
282 electron flux evolution (B-D) in the same energy channels as shown in Figure 3. At the start of the
283 simulation on May 15, the energetic electron fluxes were initially high in the outer radiation belt. As
284 a result of both radial diffusion and scattering by hiss waves, the electron flux gradually decayed over
285 the following 1-3 days. Instances of faster decay and slumps in the electron flux were successfully
286 reproduced by the simulation at 0 and 18 UT on May 17, consistent with the RBSP observations.
287 These slumps can be attributed to the enhanced wave activity, which causes stronger pitch angle
288 scattering. To quantify the role of plume hiss in energetic electron dynamics, we divided the modeled
289 global distribution of hiss waves into plume hiss and plasmaspheric hiss based on the modeled total
290 electron density. We defined the plume as the region with a total electron density in the range 20–200
291 cm⁻³, as identified from the global maps of modeled electron density, in agreement with typical
292 plume statistics (Darrouzet et al., 2008; Moldwin, 2004). Although this definition may include the
293 outer plasmasphere, as well as attached or detached plumes, it serves our purpose as this region
294 exhibits similar characteristics that allow access for energetic electrons, potentially providing a
295 source of free energy for whistler mode wave intensification (e.g., Li et al., 2013; Shi et al., 2019).
296 Figure 5E displays the modeled plume hiss, characterized by an MLT-averaged wave amplitude of
297 ~10-20 pT. The majority of the plume hiss was located at L ~ 5, although the coverage was
298 sometimes extended to L > 6. Despite its high variability, a clear trend emerged during the first three
299 days, indicating that the inner edge of the plume hiss moved from L = 4 to 5 due to the refilling of the
300 plasmasphere after the storm.

301 To assess the impact of plume hiss on energetic electron flux, we conducted simulations considering
302 only plasmaspheric hiss and compared them with simulations that included the effects of both
303 plasmaspheric and plume hiss (the simulated electron fluxes are denoted as J_1 and J_2 , respectively).
304 The difference in electron fluxes between these simulations, quantified by $(J_1 - J_2)/J_1$, represents the
305 sole effect of plume hiss, as shown in panels (F-H). When the plume hiss effect was included, there
306 was a consistent decrease in electron fluxes over the 100–500 keV energy range. After a few days of
307 simulation, the plume hiss accounted for an ~80% decrease in 132 keV electron flux and a ~40%
308 decrease in 470 keV electron flux at L~4.5, near the heart of the outer radiation belt. At higher L, the
309 plume hiss also contributed significantly to electron losses, resulting in a ~30%-70% decrease in
310 electron flux at L~5.5. It is worth noting that the hiss wave activity depicted in Figure 5A is relatively
311 modest, but the peak wave amplitude reached up to ~100pT. The averaged value of hiss wave
312 amplitude during the recovery phase of this event is lower than the averaged statistical wave
313 amplitude (~100 pT) on the dayside during strong geomagnetic conditions with $AL^* < -500$ nT (Li et
314 al., 2015). It is interesting to note that there have been instances where hiss wave amplitudes in
315 plumes exceeded 1000 pT (Su et al., 2018). Therefore, we expect that plume hiss waves would have a
316 much stronger impact during periods of higher geomagnetic activity.



317

318 **Figure 5.** Simulated energetic flux evolution during a quiet period. (A) MLT-averaged hiss wave
 319 amplitude as a function of L and time from the deep learning model. (B) Simulated electron flux
 320 evolution for 132 keV electrons as a function of L and time, starting at L>4. (C) Same as panel (B)
 321 but for 235 keV electrons. (D) Same as panel (B) but for 470 keV electrons. (E) Modeled MLT-
 322 averaged plume hiss wave amplitude. (F) Difference in simulated electron flux with and without
 323 plume hiss for 132 keV electrons. (G) Same as panel (F) but for 235 keV electrons. (H) Same as
 324 panel (F) but for 470 keV electrons.

325 Figure 6 presents a comparison between the simulated (dashed line) and the observed electron flux
 326 evolution (solid line) at L=4.4. This L shell is located in the heart of the outer radiation belt, where
 327 the electron flux decay is most prominent. Moreover, choosing L=4.4 ensures that it is sufficiently
 328 distant from the simulation boundary, thus the change at this distance is mostly from the simulation
 329 itself, minimizing the potential impact of using observations as boundary conditions. In all three
 330 energy channels, the simulation exhibits a gradual flux decay from May 15 to 16, followed by a
 331 faster decay from 16 to 17. The simulation accurately captures the electron flux decay rate until the
 332 end of May 18, when the observation reveals a faster decay of higher-energy electrons. This faster
 333 decay could be attributed to the influence of waves other than hiss waves alone, as discussed below.

compare simulated eflux with observation at L=4.4



334

335 **Figure 6.** Comparison between the simulated (dashed line) and the observed electron flux evolution
336 (solid line) at $L=4.4$. Each color represents a different energy channel.

337 **4 Discussion**

338 Although the simulated electron flux reproduced the observed flux for most of the period, there was a
339 slightly faster decay rate in the observed flux on the last day of the simulation. Several potential
340 factors could contribute to this discrepancy, which are discussed below.

341 1. The presence of waves other than hiss waves can affect energetic electron dynamics. For
342 example, chorus waves can also scatter electrons in the energy range of hundreds of keV,
343 especially on the nightside where the plasmapause is often located at $L < \sim 5$. When performing
344 simulations that include both chorus and hiss waves, the effects of these waves will be taken
345 into consideration. However, this is beyond the scope of the present study, as we focus solely
346 on modeling the hiss wave distribution in the plasmasphere and plume and their quantitative
347 scattering effects on electrons.

348 2. The presence of other waves may not scatter particles directly, but instead enhance the
349 efficiency of hiss waves in scattering energetic electrons into the loss cone. Previous studies
350 have shown that when electromagnetic ion cyclotron (EMIC) waves and hiss waves coexist at
351 the same L shell, MeV electrons can be first scattered by hiss waves and subsequently scattered
352 and precipitated by EMIC waves (Drozdov et al., 2020; Ma et al., 2015), resulting in a
353 significant reduction in their lifetimes (Li et al., 2007; Zhang et al., 2017). Fast magnetosonic
354 waves can induce additional scattering at intermediate pitch angles, leading to increased
355 electron losses compared to scattering by hiss alone (Hua et al., 2018). Non-linear phase
356 trapping by chorus waves can accelerate 300-500 keV electrons, which may then resonate with
357 EMIC waves, resulting in their rapid scattering into the loss cone (Bashir et al., 2022). The
358 combined effects of different wave modes on the radiation belt dynamics are beyond the scope
359 of the present study and are left for future investigations.

360 There are different ways to define plumes used in simulations. In our study, we define the plume
361 region as an area with a total electron density ranging from 20 to 200 cm^{-3} at $L < 6$. This definition
362 typically encompasses the outer plasmasphere or the plume, where energetic electrons ($> \sim 10$ s keV)
363 can access, thus leading to highly variable wave activity over time and space. We have found a
364 considerable amount of hiss wave power at $L > 4$, and the outermost extension of hiss waves has
365 been observed to vary from $L = 4$ to 6, even during relatively quiet periods indicated by the
366 geomagnetic indices. The commonly used density and wave statistical models, which are often
367 expressed as simple functions of K_p and/or AE (Golden et al., 2012; O'Brien & Moldwin, 2003;
368 Saikin et al., 2022; Spasojevic et al., 2015), do not capture such variability since the underlying
369 geomagnetic indices might not exhibit strong variations during the period. These statistical models
370 predict a constant wave power at a given location for a range of geomagnetic indices. Our findings
371 demonstrate that even under relatively quiet conditions, hiss wave activity could exhibit dynamic
372 evolution, and such spatial variation plays a crucial role in the evolution of energetic electron fluxes
373 over time at different L shells, as shown in Figure 5.

374 **5 Conclusions**

375 We have developed a neural network model to simultaneously reconstruct the global evolution of
376 both electron density and hiss wave amplitude in the Earth's plasmasphere and plume. Unlike

377 traditional deterministic models, our approach estimates the distribution of these quantities, allowing
378 for a better representation of variations in the data on both large and small scales.

379 To quantify the evolution and effects of plume hiss, we focused on the storm event that occurred over
380 13 – 19 May 2019, during which RBSP observed the formation of a plasmaspheric plume, followed
381 by a gradual decay in the electron fluxes at a few hundred keV. Our model successfully captured the
382 global evolution of the plume, as well as the plume hiss within it during the entire event. As
383 geomagnetic activity increased, hiss wave power intensified and shifted from dawn to dusk, where
384 the plume was formed later. The plume and plume hiss exhibited a strong spatial correlation and
385 rotated together as the geomagnetic activity became weaker. The plume wrapped around the Earth
386 and became thinner over the nightside, where hiss wave power diminished rapidly. During the
387 recovery phase, the plasmasphere was gradually refilled, and hiss wave activity remained relatively
388 low in general. Our model provided valuable insights into the relationship between the plume
389 structure (as seen in the plasma density) and plume hiss on a global scale.

390 To quantify the impact of plume hiss, we separated the modeled total hiss wave population into
391 plasmaspheric hiss and plume hiss, and simulated the energetic electron flux evolution with and
392 without plume hiss. By including both plasmaspheric and plume hiss, together with radial diffusion,
393 the simulated electron flux decay reproduces the observation very well. The remaining differences in
394 the electron flux decay may be attributed to scattering effects from other waves. Although the MLT-
395 averaged wave amplitude was \sim 10-20 pT, plume hiss alone was responsible for an additional \sim 80%
396 decrease in 132 keV electron flux at $L\sim$ 4.5 within 3 days, and \sim 30% decrease in 470 keV electron
397 flux at $L\sim$ 5.5. These results highlight the dynamic nature of hiss wave evolution even during
398 geomagnetically quiet conditions, and emphasize the significant role played by plume hiss in shaping
399 the energetic electron dynamics, especially in the outer radiation belt, which should be considered in
400 future simulations of radiation belt dynamics.

401

402 **6 Data Availability Statement**

403 The Van Allen Probes data from the EMFISIS instrument were obtained from
404 <http://emfisis.physics.uiowa.edu/Flight/>. Data from the ECT instrument were obtained from
405 https://rbsp-ect.newmexicoconsortium.org/data_pub/. The geomagnetic indices used in the model
406 training are available at https://omniweb.gsfc.nasa.gov/form/omni_min.html (SYM-H);
407 <https://supermag.jhuapl.edu> (SML and SMU); <https://www.gfz-potsdam.de/en/hpo-index/> (Hp30).
408 All data used to produce figures, as well as the Python script defining the model structure, are
409 publicly available at <https://doi.org/10.6084/m9.figshare.22817531>

410 **7 Author Contributions**

411 SH and WL developed the study concept and lead the project. SH designed, implemented, and
412 trained the neural network model, and performed the event analysis. QM performed the Fokker-
413 Planck simulation and produced Figure 5. XS processed the wave spectrum data from EMFISIS and
414 generated the dataset of hiss. LC contributed to the model design and event analysis. XNC, DM, JB,
415 MH, and SW contributed to the model design. SH wrote the first draft of the manuscript. All authors
416 contributed to the discussion of the project and edited the manuscript.

417 **8 Funding**

418 This research at Boston University is supported by the NASA grants 80NSSC19K0845,
419 80NSSC20K0196, 80NSSC20K0704, and 80NSSC21K1312, and the NSF grants AGS-1847818 and
420 AGS-2225445. SH gratefully acknowledges the NASA FINESST Grant 80NSSC21K1385. SW
421 acknowledges the support of NASA grant 80NSSC20K0704. JB and DM gratefully acknowledge
422 support from subgrant no. 1559841 to the University of California, Los Angeles, from the University
423 of Colorado Boulder under NASA Prime Grant agreement no. 80NSSC20K1580.

424 **9 Acknowledgments**

425 We gratefully acknowledge the Van Allen Probes Mission, especially EMFISIS and ECT teams, for
426 the use of their data. We also acknowledge the OMNI team, SuperMAG collaborators, GFZ
427 collaborators, and the PyTorch team.

428 **10 Reference styles**

429 Agapitov, O., Mourenas, D., Artemyev, A., Mozer, F. S., Bonnell, J. W., Angelopoulos, V., et al.
430 (2018). Spatial Extent and Temporal Correlation of Chorus and Hiss: Statistical Results From
431 Multipoint THEMIS Observations. *Journal of Geophysical Research: Space Physics*,
432 123(10), 8317–8330. <https://doi.org/10.1029/2018JA025725>

433 Bashir, M. F., Artemyev, A., Zhang, X., & Angelopoulos, V. (2022). Energetic Electron Precipitation
434 Driven by the Combined Effect of ULF, EMIC, and Whistler Waves. *Journal of Geophysical
435 Research: Space Physics*, 127(1). <https://doi.org/10.1029/2021JA029871>

436 Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemons, J. H., Crain, W. R., Dotan, Y., et al.
437 (2013). The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation
438 Belt Storm Probes (RBSP) Spacecraft. *Space Science Reviews*, 179(1–4), 383–421.
439 <https://doi.org/10.1007/s11214-013-9991-8>

440 Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, May 21). Weight Uncertainty in
441 Neural Networks. arXiv. Retrieved from <http://arxiv.org/abs/1505.05424>

442 Bortnik, J. (2003). Frequency-time spectra of magnetospherically reflecting whistlers in the
443 plasmasphere. *Journal of Geophysical Research*, 108(A1), 1030.
444 <https://doi.org/10.1029/2002JA009387>

445 Bortnik, J., Thorne, R. M., & Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss
446 from discrete chorus emissions. *Nature*, 452(7183), 62–66.
447 <https://doi.org/10.1038/nature06741>

448 Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J., et al. (2009). An
449 Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions. *Science*,
450 324(5928), 775–778. <https://doi.org/10.1126/science.1171273>

451 Bortnik, Jacob, Thorne, R. M., & Meredith, N. P. (2009). Plasmaspheric hiss overview and relation
452 to chorus. *Journal of Atmospheric and Solar-Terrestrial Physics*, 71(16), 1636–1646.
453 <https://doi.org/10.1016/j.jastp.2009.03.023>

454 Chan, K.-W., & Holzer, R. E. (1976). ELF hiss associated with plasma density enhancements in the
455 outer magnetosphere. *Journal of Geophysical Research*, 81(13), 2267–2274.
456 <https://doi.org/10.1029/JA081i013p02267>

457 Chen, L., Bortnik, J., Li, W., Thorne, R. M., & Horne, R. B. (2012a). Modeling the properties of
458 plasmaspheric hiss: 1. Dependence on chorus wave emission. *Journal of Geophysical
459 Research: Space Physics*, 117(A5), n/a-n/a. <https://doi.org/10.1029/2011JA017201>

460 Chen, L., Bortnik, J., Li, W., Thorne, R. M., & Horne, R. B. (2012b). Modeling the properties of
461 plasmaspheric hiss: 2. Dependence on the plasma density distribution. *Journal of Geophysical
462 Research: Space Physics*, 117(A5), n/a-n/a. <https://doi.org/10.1029/2011JA017202>

463 Chen, L., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G. D., et al. (2014). Generation of
464 unusually low frequency plasmaspheric hiss. *Geophysical Research Letters*, 41(16), 5702–
465 5709. <https://doi.org/10.1002/2014GL060628>

466 Church, S. R., & Thorne, R. M. (1983). On the origin of plasmaspheric hiss: Ray path integrated
467 amplification. *Journal of Geophysical Research*, 88(A10), 7941.
468 <https://doi.org/10.1029/JA088iA10p07941>

469 Darrouzet, F., De Keyser, J., Décréau, P. M. E., El Lemdani-Mazouz, F., & Vallières, X. (2008).
470 Statistical analysis of plasmaspheric plumes with Cluster/WHISPER observations. *Annales
471 Geophysicae*, 26(8), 2403–2417. <https://doi.org/10.5194/angeo-26-2403-2008>

472 De Pascuale, S., Jordanova, V. K., Goldstein, J., Kletzing, C. A., Kurth, W. S., Thaller, S. A., &
473 Wygant, J. R. (2018). Simulations of Van Allen Probes Plasmaspheric Electron Density
474 Observations. *Journal of Geophysical Research: Space Physics*, 123(11), 9453–9475.
475 <https://doi.org/10.1029/2018JA025776>

476 Drozdov, A. Y., Usanova, M. E., Hudson, M. K., Allison, H. J., & Shprits, Y. Y. (2020). The Role of
477 Hiss, Chorus, and EMIC Waves in the Modeling of the Dynamics of the Multi-MeV
478 Radiation Belt Electrons. *Journal of Geophysical Research: Space Physics*, 125(9).
479 <https://doi.org/10.1029/2020JA028282>

480 Dunckel, N., & Helliwell, R. A. (1969). Whistler-mode emissions on the OGO 1 satellite. *Journal of
481 Geophysical Research*, 74(26), 6371–6385. <https://doi.org/10.1029/JA074i026p06371>

482 Fu, H., Yue, C., Ma, Q., Kang, N., Bortnik, J., Zong, Q., & Zhou, X. (2021). Frequency - Dependent
483 Responses of Plasmaspheric Hiss to the Impact of an Interplanetary Shock. *Geophysical
484 Research Letters*, 48(20). <https://doi.org/10.1029/2021GL094810>

485 Gjerloev, J. W. (2012). The SuperMAG data processing technique: TECHNIQUE. *Journal of*
486 *Geophysical Research: Space Physics*, 117(A9), n/a-n/a.
487 <https://doi.org/10.1029/2012JA017683>

488 Golden, D. I., Spasojevic, M., Li, W., & Nishimura, Y. (2012). Statistical modeling of plasmaspheric
489 hiss amplitude using solar wind measurements and geomagnetic indices: MODELING HISS
490 WITH SOLAR WIND. *Geophysical Research Letters*, 39(6), n/a-n/a.
491 <https://doi.org/10.1029/2012GL051185>

492 Green, J. L. (2005). On the origin of whistler mode radiation in the plasmasphere. *Journal of*
493 *Geophysical Research*, 110(A3), A03201. <https://doi.org/10.1029/2004JA010495>

494 Hayakawa, M., Ohmi, N., Parrot, M., & Lefevre, F. (1986). Direction finding of ELF hiss emissions
495 in a detached plasma region of the magnetosphere. *Journal of Geophysical Research*, 91(A1),
496 135. <https://doi.org/10.1029/JA091iA01p00135>

497 Hayakawa, M., & Sazhin, S. S. (1992). Mid-latitude and plasmaspheric hiss: A review. *Planetary*
498 *and Space Science*, 40(10), 1325–1338. [https://doi.org/10.1016/0032-0633\(92\)90089-7](https://doi.org/10.1016/0032-0633(92)90089-7)

499 Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. *Neural Computation*, 9(8),
500 1735–1780. <https://doi.org/10.1162/neco.1997.9.8.1735>

501 Horne, R. B., & Thorne, R. M. (1998). Potential waves for relativistic electron scattering and
502 stochastic acceleration during magnetic storms. *Geophysical Research Letters*, 25(15), 3011–
503 3014. <https://doi.org/10.1029/98GL01002>

504 Hua, M., Ni, B., Fu, S., Gu, X., Xiang, Z., Cao, X., et al. (2018). Combined Scattering of Outer
505 Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic
506 Waves. *Geophysical Research Letters*, 45(19). <https://doi.org/10.1029/2018GL079533>

507 Huang, C. Y., Goertz, C. K., & Anderson, R. R. (1983). A theoretical study of plasmaspheric hiss
508 generation. *Journal of Geophysical Research*, 88(A10), 7927.
509 <https://doi.org/10.1029/JA088iA10p07927>

510 Huang, S., Li, W., Shen, X., Ma, Q., Chu, X., Ma, D., et al. (2022). Application of Recurrent Neural
511 Network to Modeling Earth's Global Electron Density. *Journal of Geophysical Research: Space*
512 *Physics*, 127(9). <https://doi.org/10.1029/2022JA030695>

513 Imhof, W. L., Voss, H. D., Walt, M., Gaines, E. E., Mobilia, J., Datlowe, D. W., & Reagan, J. B.
514 (1986). Slot region electron precipitation by lightning, VLF chorus, and plasmaspheric hiss.
515 *Journal of Geophysical Research*, 91(A8), 8883. <https://doi.org/10.1029/JA091iA08p08883>

516 Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). LSTM Fully Convolutional Networks for
517 Time Series Classification. *IEEE Access*, 6, 1662–1669.
518 <https://doi.org/10.1109/ACCESS.2017.2779939>

519 Kennel, C. F., & Petschek, H. E. (1966). Limit on stably trapped particle fluxes. *Journal of*
520 *Geophysical Research*, 71(1), 1–28. <https://doi.org/10.1029/JZ071i001p00001>

521 Kim, K., Lee, D., & Shprits, Y. (2015). Dependence of plasmaspheric hiss on solar wind parameters
522 and geomagnetic activity and modeling of its global distribution. *Journal of Geophysical*
523 *Research: Space Physics*, 120(2), 1153–1167. <https://doi.org/10.1002/2014JA020687>

524 Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al.
525 (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
526 on RBSP. *Space Science Reviews*, 179(1–4), 127–181. <https://doi.org/10.1007/s11214-013-9993-6>

528 Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., &
529 Wygant, J. R. (2015). Electron densities inferred from plasma wave spectra obtained by the
530 Waves instrument on Van Allen Probes. *Journal of Geophysical Research: Space Physics*,
531 120(2), 904–914. <https://doi.org/10.1002/2014JA020857>

532 Lam, M. M., Horne, R. B., Meredith, N. P., & Glauert, S. A. (2007). Modeling the effects of radial
533 diffusion and plasmaspheric hiss on outer radiation belt electrons. *Geophysical Research
534 Letters*, 34(20), L20112. <https://doi.org/10.1029/2007GL031598>

535 Larkina, V. I., & Likhter, Ja. I. (1982). Storm-time variations of plasmaspheric ELF hiss. *Journal of
536 Atmospheric and Terrestrial Physics*, 44(5), 415–423. [https://doi.org/10.1016/0021-9169\(82\)90048-4](https://doi.org/10.1016/0021-
537 9169(82)90048-4)

538 Li, W., Shprits, Y. Y., & Thorne, R. M. (2007). Dynamic evolution of energetic outer zone electrons
539 due to wave-particle interactions during storms. *Journal of Geophysical Research: Space
540 Physics*, 112(A10), n/a-n/a. <https://doi.org/10.1029/2007JA012368>

541 Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., et al. (2013). An
542 unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere
543 associated with substorm-injected electrons: AMPLIFICATION OF LOW-FREQUENCY
544 HISS. *Geophysical Research Letters*, 40(15), 3798–3803. <https://doi.org/10.1002/grl.50787>

545 Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., et al. (2015a). Statistical
546 properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on
547 radiation belt electron dynamics. *Journal of Geophysical Research: Space Physics*, 120(5),
548 3393–3405. <https://doi.org/10.1002/2015JA021048>

549 Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C. A., et al. (2015b). First
550 evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss:
551 Coordinated THEMIS and Van Allen Probes observation. *Geophysical Research Letters*,
552 42(2), 241–248. <https://doi.org/10.1002/2014GL062832>

553 Li, W., Shen, X. -C., Ma, Q., Capannolo, L., Shi, R., Redmon, R. J., et al. (2019). Quantification of
554 Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss,
555 and Exohiss. *Geophysical Research Letters*, 46(7), 3615–3624.
556 <https://doi.org/10.1029/2019GL082095>

557 Liu, N., Su, Z., Gao, Z., Zheng, H., Wang, Y., Wang, S., et al. (2020). Comprehensive Observations
558 of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation.
559 *Geophysical Research Letters*, 47(2). <https://doi.org/10.1029/2019GL086040>

560 Liu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., et al. (2016). On the calculation of
561 electric diffusion coefficient of radiation belt electrons with in situ electric field
562 measurements by THEMIS. *Geophysical Research Letters*, 43(3), 1023–1030.
563 <https://doi.org/10.1002/2015GL067398>

564 Lyons, L. R., Thorne, R. M., & Kennel, C. F. (1972). Pitch-angle diffusion of radiation belt electrons
565 within the plasmasphere. *Journal of Geophysical Research*, 77(19), 3455–3474.
566 <https://doi.org/10.1029/JA077i019p03455>

567 Ma, Q., Li, W., Thorne, R. M., Ni, B., Kletzing, C. A., Kurth, W. S., et al. (2015). Modeling inward
568 diffusion and slow decay of energetic electrons in the Earth's outer radiation belt.
569 *Geophysical Research Letters*, 42(4), 987–995. <https://doi.org/10.1002/2014GL062977>

570 Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., et al. (2016).
571 Characteristic energy range of electron scattering due to plasmaspheric hiss. *Journal of*
572 *Geophysical Research: Space Physics*, 121(12). <https://doi.org/10.1002/2016JA023311>

573 Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., et al. (2018). Quantitative
574 Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge
575 Events. *Journal of Geophysical Research: Space Physics*, 123(3), 1938–1952.
576 <https://doi.org/10.1002/2017JA025114>

577 Ma, Q., Li, W., Zhang, X. -J., Bortnik, J., Shen, X. -C., Connor, H. K., et al. (2021). Global Survey
578 of Electron Precipitation due to Hiss Waves in the Earth's Plasmasphere and Plumes. *Journal*
579 *of Geophysical Research: Space Physics*, 126(8). <https://doi.org/10.1029/2021JA029644>

580 Malaspina, D. M., Jaynes, A. N., Hospodarsky, G., Bortnik, J., Ergun, R. E., & Wygant, J. (2017).
581 Statistical properties of low-frequency plasmaspheric hiss. *Journal of Geophysical Research:*
582 *Space Physics*, 122(8), 8340–8352. <https://doi.org/10.1002/2017JA024328>

583 Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The Geomagnetic
584 *K_p* Index and Derived Indices of Geomagnetic Activity. *Space Weather*, 19(5).
585 <https://doi.org/10.1029/2020SW002641>

586 Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2013).
587 Science Objectives and Rationale for the Radiation Belt Storm Probes Mission. *Space Science*
588 *Reviews*, 179(1–4), 3–27. <https://doi.org/10.1007/s11214-012-9908-y>

589 Meredith, N. P. (2004). Substorm dependence of plasmaspheric hiss. *Journal of Geophysical*
590 *Research*, 109(A6), A06209. <https://doi.org/10.1029/2004JA010387>

591 Meredith, N. P., Horne, R. B., Clilverd, M. A., Horsfall, D., Thorne, R. M., & Anderson, R. R.
592 (2006). Origins of plasmaspheric hiss. *Journal of Geophysical Research*, 111(A9), A09217.
593 <https://doi.org/10.1029/2006JA011707>

594 Meredith, N. P., Horne, R. B., Glauert, S. A., & Anderson, R. R. (2007). Slot region electron loss
595 timescales due to plasmaspheric hiss and lightning-generated whistlers: SLOT REGION
596 ELECTRON LOSS TIMESCALES. *Journal of Geophysical Research: Space Physics*,
597 112(A8), n/a-n/a. <https://doi.org/10.1029/2007JA012413>

598 Meredith, N. P., Horne, R. B., Bortnik, J., Thorne, R. M., Chen, L., Li, W., & Sicard-Piet, A. (2013).
599 Global statistical evidence for chorus as the embryonic source of plasmaspheric hiss.
600 *Geophysical Research Letters*, 40(12), 2891–2896. <https://doi.org/10.1002/grl.50593>

601 Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., & Shen, X. (2021). Statistical Investigation of the
602 Frequency Dependence of the Chorus Source Mechanism of Plasmaspheric Hiss. *Geophysical*
603 *Research Letters*, 48(6). <https://doi.org/10.1029/2021GL092725>

604 Millan, R. M., Ripoll, J.-F., Santolík, O., & Kurth, W. S. (2021). Early-Time Non-Equilibrium Pitch
605 Angle Diffusion of Electrons by Whistler-Mode Hiss in a Plasmaspheric Plume Associated
606 with BARREL Precipitation. *Frontiers in Astronomy and Space Sciences*, 8, 776992.
607 <https://doi.org/10.3389/fspas.2021.776992>

608 Moldwin, M. B. (2004). Plasmaspheric plumes: CRRES observations of enhanced density beyond the
609 plasmapause. *Journal of Geophysical Research*, 109(A5), A05202.
610 <https://doi.org/10.1029/2003JA010320>

611 Newell, P. T., & Gjerloev, J. W. (2011). Evaluation of SuperMAG auroral electrojet indices as
612 indicators of substorms and auroral power: SUPERMAG AURORAL ELECTROJET

613 INDICES. *Journal of Geophysical Research: Space Physics*, 116(A12), n/a-n/a.
614 <https://doi.org/10.1029/2011JA016779>

615 Ni, B., Bortnik, J., Thorne, R. M., Ma, Q., & Chen, L. (2013). Resonant scattering and resultant pitch
616 angle evolution of relativistic electrons by plasmaspheric hiss. *Journal of Geophysical
617 Research: Space Physics*, 118(12), 7740–7751. <https://doi.org/10.1002/2013JA019260>

618 Ni, B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., Chen, L., et al. (2014). Resonant scattering of
619 energetic electrons by unusual low-frequency hiss. *Geophysical Research Letters*, 41(6),
620 1854–1861. <https://doi.org/10.1002/2014GL059389>

621 O'Brien, T. P., & Moldwin, M. B. (2003). Empirical plasmapause models from magnetic indices.
622 *Geophysical Research Letters*, 30(4), 2002GL016007.
623 <https://doi.org/10.1029/2002GL016007>

624 Qin, M., Li, W., Ma, Q., Woodger, L., Millan, R., Shen, X., & Capannolo, L. (2021). Multi-Point
625 Observations of Modulated Whistler-Mode Waves and Energetic Electron Precipitation.
626 *Journal of Geophysical Research: Space Physics*, 126(12).
627 <https://doi.org/10.1029/2021JA029505>

628 Ripoll, J.-F., Denton, M., Loridan, V., Santolík, O., Malaspina, D., Hartley, D. P., et al. (2020). How
629 whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts
630 electrons following a geomagnetic storm. *Journal of Physics: Conference Series*, 1623,
631 012005. <https://doi.org/10.1088/1742-6596/1623/1/012005>

632 Russell, C. T., Holzer, R. E., & Smith, E. J. (1969). OGO 3 observations of ELF noise in the
633 magnetosphere: 1. Spatial extent and frequency of occurrence. *Journal of Geophysical
634 Research*, 74(3), 755–777. <https://doi.org/10.1029/JA074i003p00755>

635 Saikin, A. A., Drozdov, A. Y., & Malaspina, D. M. (2022). Low Frequency Plasmaspheric Hiss
636 Wave Activity Parameterized by Plasmapause Location: Models and Simulations. *Journal of
637 Geophysical Research: Space Physics*, 127(9). <https://doi.org/10.1029/2022JA030687>

638 Santolík, O., Chum, J., Parrot, M., Gurnett, D. A., Pickett, J. S., & Cornilleau-Wehrlin, N. (2006).
639 Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured
640 ELF hiss. *Journal of Geophysical Research*, 111(A10), A10208.
641 <https://doi.org/10.1029/2005JA011462>

642 Schulz, M. (1991). The Magnetosphere. In *Geomagnetism* (pp. 87–293). Elsevier.
643 <https://doi.org/10.1016/B978-0-12-378674-6.50008-X>

644 Shen, X., Li, W., Ma, Q., Agapitov, O., & Nishimura, Y. (2019). Statistical Analysis of Transverse
645 Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations.
646 *Geophysical Research Letters*, 46(11), 5725–5734. <https://doi.org/10.1029/2019GL083118>

647 Shi, R., Li, W., Ma, Q., Green, A., Kletzing, C. A., Kurth, W. S., et al. (2019). Properties of Whistler
648 Mode Waves in Earth's Plasmasphere and Plumes. *Journal of Geophysical Research: Space
649 Physics*, 124(2), 1035–1051. <https://doi.org/10.1029/2018JA026041>

650 Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in
651 Forecasting Time Series. In *2019 IEEE International Conference on Big Data (Big Data)* (pp.
652 3285–3292). Los Angeles, CA, USA: IEEE.
653 <https://doi.org/10.1109/BigData47090.2019.9005997>

654 Sonwalkar, V. S., & Inan, U. S. (1989). Lightning as an embryonic source of VLF hiss. *Journal of*
655 *Geophysical Research: Space Physics*, 94(A6), 6986–6994.
656 <https://doi.org/10.1029/JA094iA06p06986>

657 Spasojevic, M., Shprits, Y. Y., & Orlova, K. (2015). Global empirical models of plasmaspheric hiss
658 using Van Allen Probes. *Journal of Geophysical Research: Space Physics*, 120(12).
659 <https://doi.org/10.1002/2015JA021803>

660 Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., et al. (2013).
661 Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle,
662 Composition, and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission. *Space*
663 *Science Reviews*, 179(1–4), 311–336. <https://doi.org/10.1007/s11214-013-0007-5>

664 Su, Z., Liu, N., Zheng, H., Wang, Y., & Wang, S. (2018). Multipoint Observations of Nightside
665 Plasmaspheric Hiss Generated by Substorm-Injected Electrons. *Geophysical Research*
666 *Letters*, 45(20). <https://doi.org/10.1029/2018GL079927>

667 Summers, D., Ni, B., Meredith, N. P., Horne, R. B., Thorne, R. M., Moldwin, M. B., & Anderson, R.
668 R. (2008). Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes. *Journal*
669 *of Geophysical Research*, 113. <https://doi.org/10.1029/2007JA012678>

670 Tasistro-Hart, A., Grayver, A., & Kuvshinov, A. (2021). Probabilistic Geomagnetic Storm
671 Forecasting via Deep Learning. *Journal of Geophysical Research: Space Physics*, 126(1).
672 <https://doi.org/10.1029/2020JA028228>

673 Thorne, Richard M., Smith, E. J., Burton, R. K., & Holzer, R. E. (1973). Plasmaspheric hiss. *Journal*
674 *of Geophysical Research*, 78(10), 1581–1596. <https://doi.org/10.1029/JA078i010p01581>

675 Thorne, R.M., Church, S. R., & Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The
676 importance of wave propagation and the plasmapause. *Journal of Geophysical Research*,
677 84(A9), 5241. <https://doi.org/10.1029/JA084iA09p05241>

678 Thorne, R. M., et al. (2013). Evolution and slow decay of an unusual narrow ring of relativistic
679 electrons near $L \sim 3.2$ following the September 2012 magnetic storm, *Geophys. Res. Lett.*, 40,
680 3507–3511, doi:10.1002/grl.50627.

681 Tsurutani, B. T., Falkowski, B. J., Pickett, J. S., Santolik, O., & Lakhina, G. S. (2015). Plasmaspheric
682 hiss properties: Observations from Polar. *Journal of Geophysical Research: Space Physics*,
683 120(1), 414–431. <https://doi.org/10.1002/2014JA020518>

684 Wing, S., Johnson, J. R., Jen, J., Meng, C.-I., Sibeck, D. G., Bechtold, K., et al. (2005). Kp forecast
685 models: Kp FORECAST MODELS. *Journal of Geophysical Research: Space Physics*,
686 110(A4). <https://doi.org/10.1029/2004JA010500>

687 Wing, S., Turner, D. L., Ukhorskiy, A. Y., Johnson, J. R., Sotirelis, T., Nikoukar, R., & Romeo, G.
688 (2022). Modeling Radiation Belt Electrons With Information Theory Informed Neural
689 Networks. *Space Weather*, 20(8). <https://doi.org/10.1029/2022SW003090>

690 Wu, Z., Su, Z., Goldstein, J., Liu, N., He, Z., Zheng, H., & Wang, Y. (2022). Nightside
691 Plasmaspheric Plume-To-Core Migration of Whistler-Mode Hiss Waves. *Geophysical*
692 *Research Letters*, 49(16). <https://doi.org/10.1029/2022GL100306>

693 Zhang, W., Ni, B., Huang, H., Summers, D., Fu, S., Xiang, Z., et al. (2019). Statistical Properties of
694 Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons.
695 *Geophysical Research Letters*, 46(11), 5670–5680. <https://doi.org/10.1029/2018GL081863>

696 Zhang, X. -J., Mourenas, D., Artemyev, A. V., Angelopoulos, V., & Thorne, R. M. (2017).
697 Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV
698 electron loss. *Geophysical Research Letters*, 44(16), 8113–8121.
699 <https://doi.org/10.1002/2017GL073886>

700

701

702 **11 Appendix A: Model structure and optimization procedure**

703 We optimize the hyperparameters in our model following the steps described by Huang et al. (2022).

704 After careful tuning, we used the following set of optimal hyperparameters for our model:

705 a) 2 LSTM layers, each with a size of 256.
706 b) To output with an estimation of mean, 5 fully connected layers with each of size (260, 128, 128,
707 128, 128, 1) and SELU as activation function are applied.
708 c) To output with an estimation of standard deviation, 5 fully connected layers with sizes (260, 128,
709 128, 128, 128, 1) and SELU as activation function are applied, with an additional soft-plus
710 operation that converts the output to be positive.
711 d) The encoder length is 24 hours.
712 e) The decoder length is 10 hours.

713 The detailed script that defines the model structure and weighted sampler can be found in the file
714 uploaded in the figshare archive.