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Spontaneous locomotion of a symmetric
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The squirmer is a popular model to analyse the fluid mechanics of a self-propelled object,
such as a micro-organism. We demonstrate that some fore–aft symmetric squirmers can
spontaneously self-propel above a critical Reynolds number. Specifically, we numerically
study the effects of inertia on spherical squirmers characterised by an axially and
fore–aft symmetric ‘quadrupolar’ distribution of surface-slip velocity; under creeping-flow
conditions, such squirmers generate a pure stresslet flow, the stresslet sign classifying the
squirmer as either a ‘pusher’ or ‘puller’. Assuming axial symmetry, and over the examined
range of the Reynolds number Re (defined based upon the magnitude of the quadrupolar
squirming), we find that spontaneous symmetry breaking occurs in the puller case above
Re ≈ 14.3, with steady swimming emerging from that threshold consistently with a
supercritical pitchfork bifurcation and with the swimming speed growing monotonically
with Re.

Key words: propulsion, active matter, bifurcation

1. Introduction

The study of the motion of living matter in fluids is a cornerstone of biological fluid
mechanics, and important to the design of synthetic active matter (Childress 1981; Degen
2014; Alapan et al. 2018). Many cellular organisms exhibit some form of self-propulsion
(Bray 2000; Lauga 2020), which is usually achieved by flagella or cilia acting on the
surrounding fluid (Brennen & Winet 1977). The motion of microscopic organisms has
been widely studied (Lauga & Powers 2009; Marchetti et al. 2013). At this scale, inertial
forces are negligible, i.e. the Reynolds number Re is small. Swimming at large Re, where
inertia dominates, has also been extensively investigated (Becker et al. 2015; Maertens,
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Gao & Triantafyllou 2017). However, the swimming of mesoscale organisms, at Re of
order unity, is relatively unexplored (Klotsa 2019). This is due to the simplifications that
can be made in Stokes flows (Re � 1) and in Euler flows (Re � 1), by neglecting inertial
and viscous forces, respectively, being invalid at intermediate Re.
Simplified, or reduced-order, models have been proposed to analyse the locomotion of

swimming organisms. A popular example is the squirmer model developed by Lighthill
(1952) and Blake (1971), wherein self-propulsion is achieved by prescription of a surface
velocity, or swimming gait, at the instantaneous surface of the squirmer. Most studies
have focused on axisymmetric and impenetrable spherical squirmers, for which the fluid
velocity at the surface, and relative to it, can be represented by a modal expansion:

relative surface velocity = −2
∞∑
n=1

Bn

n(n + 1)
P1
n(cos θ)êθ , (1.1)

in which n denotes mode number, Bn the corresponding mode amplitude, θ the polar
angle (and êθ its associated unit vector) measured from an arbitrarily chosen ‘forward’
direction along the symmetry axis of the squirmer, and Pm

n (cos θ) the associated
Legendre polynomials. Note that n odd (even) implies fore–aft antisymmetric (symmetric)
squirming, e.g. P1

1(cos θ) = − sin θ , P1
2(cos θ) = −3 cos θ sin θ .

The squirmer model has been instrumental in examining various aspects of swimming
at zero Reynolds number, including hydrodynamic interactions (Llopis & Pagonabarraga
2010), locomotion in viscoelastic fluids (Zhu et al. 2011; Zhu, Lauga & Brandt 2012)
and nutrient uptake (Magar, Goto & Pedley 2003; Magar & Pedley 2005). In that
regime, the flow field and squirmer swimming velocity induced by the swimming-gait
modal expansion (1.1) can be obtained by superposing those motions induced by each
mode separately. Only the first ‘dipolar’ (fore–aft antisymmetric) mode contributes to a
non-zero swimming velocity (Blake 1971). The second ‘quadrupolar’ (fore–aft symmetric)
mode contributes a stresslet flow, whose sign distinguishes between ‘puller’ and ‘pusher’
swimmers (Ishikawa & Pedley 2007): pusher corresponds to negative B2 (relative surface
velocity from the equator to the symmetry axis, or poles), and puller to positive B2 (relative
surface velocity from the poles to the equator).
Beyond the Stokes-flow regime, the nonlinear nature of inertia implies that the above

superposition principle no longer holds. Previous studies of squirmers at non-zero Re
have focused on squirmers whose swimming gait involves only the first two, dipolar and
quadrupolar modes in (1.1). Wang & Ardekani (2012) developed an asymptotic expansion
through O(Re) for the swimming speed of a two-mode squirmer at small Re, which
Khair & Chisholm (2014) later extended to O(Re2). (In these works, Re is defined based
upon the magnitude of the dipolar squirming mode.) Chisholm et al. (2016) performed
numerical computations of such a two-mode squirmer for 0 < Re < 1000, bridging the
gap between Stokes and Euler flows. They found that, in contrast to the Stokes-flow
regime, the swimming speed for a given non-zero value of B1 is affected by the value
of B2. For B2 < 0 (pusher at zero Re), increasing Re leads to a monotonic increase in
the swimming speed and the axisymmetric flow remains stable to at least Re = 1000. For
B2 > 0 (puller at zero Re), the swimming speed has a non-monotonic dependence on Re
and the axisymmetric flow becomes unstable at sufficiently large Re.
The scenario considered by Chisholm et al. (2016) was the effect of inertia on a squirmer

that is motile at Re = 0, namely a fore–aft asymmetric squirmer with B1 /= 0. It is intuitive
that fore–aft asymmetric squirmers that are non-motile at Re = 0 (i.e. squirmers with
B1 = 0 but Bn /= 0 for at least one odd, non-unity value of n), generally become motile for
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Squirmer

velocity

(a) (b)

π πθ θ0 0

Figure 1. Schematic of spontaneous symmetry breaking of a fore–aft symmetric squirmer. (a) Symmetric
steady state, wherein the squirmer is stationary. (b) Symmetry-broken steady state, wherein the squirmer swims.
Blue arrows: symmetrically prescribed surface-slip velocity (we show poles-to-equator squirming as in the case
of a quadrupolar puller). Green arrows: induced flow in a frame comoving with the squirmer.

Re > 0, though with their swimming speed vanishing as Re ↘ 0; this is readily
demonstrable by adapting the small-Re analyses of Wang & Ardekani (2012) and Khair
& Chisholm (2014). Here, we ask whether inertia can also enable fore–aft symmetric
squirmers to swim via nonlinear symmetry breaking (figure 1). To this end, we shall
numerically study the effects of inertia on quadrupolar squirmers.
We were led to this question by analogy with recent discoveries of symmetry-breaking

locomotion of isotropically active droplets and particles (Michelin, Lauga & Bartolo 2013;
Izri et al. 2014) and Leidenfrost drops (Bouillant et al. 2018). While those examples rely on
nonlinear coupling between hydrodynamics and other physics, inertia alone is well known
to result in symmetry breaking in many flow scenarios (e.g. the axial asymmetry of wakes
downstream of a sufficiently fast-moving blunt body). In fact, spontaneous locomotion
enabled by inertial symmetry breaking has already been demonstrated for flapping bodies
at sufficiently high Reynolds numbers (Vandenberghe, Zhang & Childress 2004; Alben &
Shelley 2005; Vandenberghe, Childress & Zhang 2006).

2. Problem formulation

We consider a spherical, axisymmetric squirmer of radius a that is suspended in a
Newtonian, incompressible fluid of density ρ and viscosity η. Our goal is to study the
effects of inertia on a quadrupolar squirmer, whose swimming gait is described by just
the second mode in (1.1), with B2 constant. For the sake of demonstration, we include
in the formulation below the possibility to perturb the fore–aft symmetric squirmer
forwards/backwards by means of a time-localised dipolar-mode (n = 1) contribution in
(1.1). For simplicity, we assume axial symmetry, and that the squirmer is density matched
to the suspending fluid.
Henceforth, velocities are normalised by |B2|, the pressure and hydrodynamic stress

tensor by η|B2|/a and time by ρa2/η. These scales are associated with the Reynolds
number Re = ρa|B2|/η. We work in a frame moving with the particle, and employ
spherical coordinates (r, θ, φ) and associated unit vectors (êr, êθ , êφ), with the origin at
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the particle centre and θ the polar angle from the ‘forward’ ı̂ direction along the axis of
symmetry.
With these conventions, the fluid flow is governed by the continuity and momentum

equations

∇ · u = 0, (2.1a)

∂u
∂t

+ ı̂
dU
dt

+ Reu · ∇u + ∇p − ∇2u = 0, (2.1b)

in which u and p are the fluid-velocity and pressure fields, ı̂U is the squirmer velocity in
the laboratory frame of reference and t denotes time. The second term on the left-hand
side of (2.1b) represents the fictitious force due to the reference frame’s acceleration. With
reference to (1.1), the velocity on the squirmer’s boundary is

u = vsêθ at r = 1, where vs = ± sin θ cos θ + λ(t) sin θ. (2.2)

Here, the sign is that of B2 and thus indicates a pusher or puller, and λ(t) corresponds
to the time-localised dipolar perturbation. (The pusher–puller terminology is based on
Stokes-flow theory, where the sign of B2 determines the directionality of the induced force
dipole. We have numerically checked that in all cases presented herein inertia does not
affect that directionality.) Far from the squirmer,

u → −ı̂U as r → ∞. (2.3)

Lastly, the squirmer velocity is coupled to the induced flow via Newton’s second law

4π
3

dU
dt

= ı̂ ·
∮
r=1

N · êr dS, (2.4)

wherein N = −pI + ∇u + (∇u)T is the hydrodynamic stress tensor, I being the identity
tensor and the superscript T the tensor transpose, and dS is a dimensionless areal element.

3. Methodology

We next overview our numerical approach to solving the problem formulated in § 2. We
shall perform both time-dependent simulations – initial conditions will be specified later –
and steady-state calculations. Some readers may wish to skip to § 4, where we present and
discuss our results.

3.1. Stream function–vorticity formulation
It is convenient to represent the incompressible flow field u in terms of its stream function
ψ :

u = 1
r2 sin θ

∂ψ

∂θ
êr − 1

r sin θ

∂ψ

∂r
êθ , (3.1)

whereby the continuity equation (2.1a) is trivially satisfied. The momentum equation
(2.1b) can then be written as

∂ω

∂t
+ Re[u · ∇ω − ω · ∇u] − ∇2ω = 0, (3.2)
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wherein the vorticity field ω = ∇ × u is azimuthal, i.e. ω = êφω, the azimuthal
component ω being given in terms of the stream function as

ω = − 1
r sin θ

{
∂2ψ

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)}
. (3.3)

The boundary and far-field conditions, (2.2) and (2.3), become

ψ = 0 and
∂ψ

∂r
= −vs sin θ at r = 1, (3.4a)

∂ψ

∂r
∼ −Ur sin2 θ and

∂ω

∂r
→ 0 as r → ∞. (3.4b)

Lastly, the hydrodynamic-force integral in (2.4) can be expressed as

ı̂ ·
∮
r=1

N · êr dS = −4π
3

dU
dt

+ π

∫ π

0

[
Re
2

v2s sin(2θ) +
(

∂(rω)

∂r
− 2ω

)
sin2 θ

]
dθ.

(3.5)

The drag formula (3.5) has been adapted from Khair & Chisholm (2014). The first term
takes into account the fictitious force affecting the pressure due to a non-inertial frame of
reference. This term acts as an added mass in (2.4), effectively doubling the squirmer’s
inertia. The contribution proportional to v2s vanishes for a fore–aft symmetric squirmer,
thus in the absence of the dipolar perturbation in the present formulation.

3.2. Numerical scheme
Our method for solving the above formulation as an initial-value problem involves the
following two steps. The first consists of solving for the stream function and vorticity
fields at a given time, given the squirmer velocity and the vorticity field at a previous time.
The time derivative in (3.2) is discretised by the backward Euler method:

ω(t) = ω(t−	t) + 	t[∇2ω(t) − Re(u(t) · ∇ω(t) − ω(t) · ∇u(t))], (3.6)

where	t is a time step. Equations (3.3) and (3.4) are written at the present time, except that
the previous-time squirmer velocity is used in (3.4b). The resulting nonlinear flow problem
is solved by a spectral-element method adapted from Chisholm et al. (2016), which
employs the Galerkin method of weighted residuals (Karniadakis & Sherwin 2005). The
two-dimensional basis set is obtained from a tensor product of one-dimensional Lagrange
polynomials of order N = 8, leading to (N + 1)2 degrees of freedom per node, and we
make use of the Gauss–Lobatto quadrature to integrate over each parametric subdomain.
The mesh is generated using Gmsh (Geuzaine & Remacle 2009), employing a half-ring
configuration of inner radius Ri = 1 and outer radius Ro = 200. The number of nodes
is 282, with a radial geometric progression outwards with a factor of 1.25, while in the
polar direction, a factor of 1.1 is used and the progression direction is towards π/2. The
radial and polar progressions are implemented to handle sharp changes near the squirmer
and the wake that occur near the symmetry axis. The resulting set of nonlinear algebraic
equations is solved using the Newton–Raphson algorithm. For further details about the
discretisation, and validation of the method in different scenarios, the reader is referred to
Kailasham & Khair (2022) and Cobos & Khair (2023).
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In the second step, we update the squirmer speed according to (2.4),

U(t) = U(t−	t) + 3
8
	t

∫ π

0

[
Re
2

(v(t)
s )2 sin(2θ) +

(
∂

∂r
(rω(t)) − 2ω(t)

)
sin2 θ

]
dθ, (3.7)

where, consistently with the first step, we discretise the time derivative by the backward
Euler method. We choose this method since it is unconditionally stable, while maintaining
consistency with the first step mentioned above. The two steps are applied iteratively until a
given final time is reached (t = 100 in our simulations). This scheme was validated against
Lovalenti & Brady (1993) for the time dependent velocity of a sphere subject to a step
force at non-zero Re. The steady-state problem is solved similarly: the first step remains
the same, only that the time-derivative term is dropped from (3.2), while the second step
is replaced by a secant method to find the value of U that makes the hydrodynamic force
vanish.

4. Results and discussion

We have performed time-dependent simulations over the range 0 � Re � 50 of pusher
and puller quadrupolar squirmers. The squirmers are initially at rest, and begin to move in
response to a time-localised dipolar perturbation. The flow field at the initial time, t = 0,
is that obtained by the steady-state solver in the absence of the dipolar perturbation and
with fore–aft symmetry enforced; we identify that flow as a fore–aft symmetric steady base
state of the quadrupolar swimmer (see figure 1a), which constitutes a continuation of the
stresslet flow at Re = 0 to Re > 0. The dipolar perturbation is represented by the function
λ(t) in (2.2), which is chosen to be a Gaussian centred about t = 0.5, with amplitude
0.1 and standard deviation 0.1. (Since the function λ(t) is exceedingly small at the initial
time, the incompatibility between the perturbed surface velocity and the base-state flow is
negligible.)
Figure 2(a) shows the resulting time evolution of the squirmer velocity in the

pusher case, for Re = 0, 10 and 50. The swimming induced by the time-localised
dipolar perturbation attenuates for all examined Re, more slowly with increasing Re.
For Re = 0, the velocity nearly traces the perturbation function λ(t), as would be
expected from Stokes-flow theory (though not precisely owing to a linear inertial effect
associated with the rapid variation of the perturbation). For Re = 10 and Re = 50, the
attenuation of the swimming speed to zero exhibits overshoot; for Re = 50, the maximum
swimming speed in the initial forward-motion phase is actually smaller than that in the
later backwards-motion phase. The time evolution of the streamlines is presented in
figure 3(a,c,e,g), for Re = 20. Note the fore–aft symmetry at the initial and last times
(corresponding to the base state), versus the upstream recirculation in both the forward-
and backward-motion phases.
We conclude that for a quadrupolar pusher, the symmetric steady base state is stable, at

least up to Re = 50 and under the dipolar perturbations considered.
Figure 2(b) shows the time evolution of the squirmer velocity in the puller case, for

Re = 0, 10, 15, 20 and 25. The response of pullers to the dipolar perturbation is seen
to dramatically differ from that of pushers. Immediately following the attenuation of
the perturbation, the swimming velocity attenuates as well, more slowly with increasing
Re and without reversing direction as in the pusher case. For Re � 10, this attenuation
persists such that the swimming speed vanishes at long times. In contrast, for Re ≥ 15,
the swimming speed approaches a non-zero value, which increases with Re; for Re ≥ 20,
the approach to steady-state swimming is non-monotonic. The time evolution of the
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t

0

0.02

0.04

0.06

0.08

0.10

Re = 0

10

15

20

25

10–1 100 101 102 10–1 100 101 102

t

–0.05

0

0.05

0.10

U
Re = 0

10
50

λ(t)

(a) (b)

Figure 2. Dimensionless squirmer velocity from time-dependent simulations of initially stationary
quadrupolar (a) pushers and (b) pullers, for the indicated Re values. The squirmers are set into motion by
means of a time-localised dipolar perturbation represented by the Gaussian function λ(t) (cf. (2.2)), depicted
by the dashed curves.

streamlines is presented in figure 3(b,d, f ,h), for Re = 20. The downstream recirculation
generated by the squirmer’s motion, which contrasts the upstream recirculation observed
in the pusher case, is qualitatively similar to that generated by a translating no-slip sphere
at moderate Reynolds number.
We conclude that the symmetric steady base state of a quadrupolar puller is unstable

beyond a critical Reynolds number. Following a time-localised dipolar perturbation, the
dynamics are seen to approach a symmetry-broken steady state where the squirmer
exhibits self-sustained locomotion and the flow around the squirmer is fore–aft asymmetric
(figure 1b). While the spontaneous locomotion is ‘forward’ in our time-dependent
simulations, it is clear from the symmetry of the problem that a mirror-reflected swimming
state could be excited by flipping the sign of the dipolar perturbation.
From figure 2(b), we conclude that the critical Reynolds number for a quadrupolar

puller (at least under dipolar perturbations), say Rec, lies between 10 and 15. However,
pinning down the specific value of Rec with time-dependent computations is prohibitively
expensive because the steady swimming speed is asymptotically small as Re ↘ Rec.
Therefore, we turn to steady-state calculations. The resulting bifurcation diagram of U
as a function of Re is shown in figure 4. The critical Reynolds number is found to
be Rec ≈ 14.3, with the steady swimming speed beyond the bifurcation monotonically
growing with Re. As shown in the inset, |U| ∝ √

Re − Rec for Re near Rec, in agreement
with the canonical scaling expected for a pitchfork bifurcation. The figure also depicts
sample streamlines of the symmetric steady state at Re = 10 and Re = 20, and the
symmetry-broken swimming state at Re = 20.
It is interesting to contrast the observed scaling for U near the bifurcation threshold

with that for an isotropic autophoretic particle at Re = 0 (Michelin et al. 2013). In the
autophoretic problem, an instability leading to spontaneous locomotion is observed at a
sufficiently large dimensionless rate of solute emission, or intrinsic Péclet number Pe.
Instead of the canonical scaling for a pitchfork bifurcation, as found herein, the particle
speed is found to obey |U| ∝ Pe − Pec, for Pe near its critical value Pec (Morozov &
Michelin 2019; Saha, Yariv & Schnitzer 2021; Kailasham & Khair 2022; Schnitzer 2023).
This linear scaling can be traced to the fact that the base state for a spherical autophoretic
particle involves no flow, hence the effective Péclet number (indicating the true ratio of
advection to diffusion) near the bifurcation is actually small, such that nonlinear advection
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 3. Time evolution of streamlines corresponding to time-dependent simulations as in figure 2, for
Re = 20. The dipolar perturbation is maximum at t = 0.5 and negligible at the other times. The streamlines at
t = 100 are indicative of the steady-state flow patterns. (a) Pusher, t = 0; (b) puller, t = 0; (c) pusher, t = 0.5;
(d) puller, t = 0.5; (e) pusher, t = 2; ( f ) puller, t = 2; (g) pusher, t = 100; (h) puller, t = 100.

is to leading-order negligible except at large distances from the particle. Nonetheless, an
analogy can be drawn with the case of a fore–aft symmetric, yet non-isotropic autophoretic
particle, such as the homogeneous elliptical particles recently studied by Zhu & Zhu
(2023). In such cases, the base state involves a non-trivial fore–aft symmetric flow, as
herein, and indeed the bifurcation is canonical.
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|U |

10.0

0

0.02

0.04

0.06

0.08 0.5

1

10–1 100
10–3

10–2

10–10.10

12.5 17.515.0 22.520.0 27.525.0

Re

Re – Rec

Figure 4. Steady swimming velocity U versus Re for a quadrupolar-puller squirmer. Blue curves: steady-state
computations employing a fore–aft asymmetric (solid) and symmetric (dashed) initial guess. Red squares: final
velocity in the time-dependent simulations. The insets show the streamlines at the indicated Re and confirm the
|U| ∝ (Re − Rec)1/2 behaviour near the swimming threshold, which is canonical of a pitchfork bifurcation.

5. Concluding remarks

We have shown via axisymmetric numerical simulations of the Navier–Stokes equations
that quadrupolar-puller squirmers, which possess axial and fore–aft symmetry, are capable
of self-sustained locomotion above a moderate critical Reynolds number, Rec ≈ 14.3.
Beyond that threshold, the steady swimming speed monotonically increases with Re
over the range of Re examined, initially like (Re − Rec)1/2. Our simulations have further
demonstrated that the symmetric base state, in which the squirmer is stationary, becomes
unstable above the swimming threshold; in particular, when that state is disturbed by a
time-localised dipolar perturbation, the squirmer relaxes towards steady swimming. These
results together suggest that the spontaneous swimming emerges through a supercritical
pitchfork bifurcation.
As far as we are aware, this paper is the first to suggest, let alone demonstrate,

the possibility of spontaneous squirmer locomotion arising from an inertial symmetry
breaking. As such, our findings give rise to many intriguing questions, which call for more
extensive numerical investigations, as well as theoretical analyses.

(i) Besides quadrupolar pullers, it is clear that other, more general fore–aft symmetric
squirmers are also capable of spontaneous locomotion. How does the critical
Reynolds number and swimming speed depend on the combination of even modes
in the modal expansion (1.1)? Computationally optimising the swimming gait with
respect to some appropriate cost function, such as the swimming efficiency used
at low Reynolds numbers (Lauga & Powers 2009), would facilitate a comparison
between spontaneous and conventional swimming at moderate Reynolds numbers.

(ii) Our simulations were limited to moderate Re. Up to what Re can a quadrupolar
puller sustain stable locomotion, with a speed monotonically increasing with Re?
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A maximum with respect to the bifurcation parameter and arrest of the swimming
for values of that parameter sufficiently away from the onset of symmetry breaking
were found for active droplets and particles (Michelin et al. 2013; Izri et al. 2014),
and Leidenfrost drops (Bouillant et al. 2018).

(iii) In our simulations, the squirmer motion is collinear and the flow field is
axisymmetric. For what range of Re, if at all, do the spontaneous-swimming states
identified here remain stable under general three-dimensional perturbations? Even
if the axisymmetric swimming states are unstable, they may have stable variants
featuring axial-symmetry breaking, in addition to the fore–aft-symmetry breaking.
Furthermore, can some fore–aft symmetric squirmers also sustain swimming normal
to their axis of symmetry?

(iv) How would the spontaneous swimming of a symmetric squirmer be affected by
weak asymmetric perturbations, such as owing to a constant fore–aft asymmetric
swimming gait perturbation, gravity or interactions with other swimmers and with
boundaries? Given the nature of spontaneous swimming, we generally expect such
perturbations to significantly affect the squirmer’s dynamics – not directly, but rather
by slowly redirecting the motion. For example, studies of perturbed active colloids
(Saha et al. 2021; Kailasham & Khair 2022; Li & Koch 2022; Schnitzer 2023; Peng
& Schnitzer 2023; Zhu & Zhu 2023) have demonstrated that such perturbations
can introduce asymmetry between forward and backward locomotion manifested in
both speed and stability, and in some cases also promote meandering or curvilinear
spontaneous motion.

We conclude by noting two potential broader implications of this work. First, given
the biological context of the squirmer model, the uncovered inertial symmetry breaking
presents a possible mechanism for locomotion of moderate-Reynolds-number organisms.
Second, our findings may lead to new design strategies for robotic swimmers that
spontaneously undergo locomotion depending on the flow conditions they encounter, for
example the viscosity of the surrounding fluid.
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