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Abstract

We resolve three longstanding questions related to the large scale
geometry of the group of Hamiltonian diffeomorphisms of the two-
sphere, equipped with Hofer’s metric. Namely: (1) we resolve the
Kapovich-Polterovich question by showing that this group is not quasi-
isometric to the real line; (2) more generally, we show that the kernel
of Calabi over any proper open subset is unbounded; and (3) we show
that the group of area and orientation preserving homeomorphisms of
the two-sphere is not a simple group. We also obtain, as a corollary,
that the group of area-preserving diffeomorphisms of the open disc,
equipped with an area-form of finite area, is not perfect. Central to
all of our proofs are new sequences of spectral invariants over the two-
sphere, defined via periodic Floer homology.
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1 Introduction

It is a remarkable fact that the group of Hamiltonian diffeomorphisms of a
symplectic manifold admits a bi-invariant Finsler metric, known as Hofer’s
metric. The existence of such a metric on an infinite dimensional Lie group
is highly unusual, due to the lack of compactness, and stands in contrast
to the fact that a simple! finite dimensional Lie group admits a bi-invariant
Finsler metric only if it is compact; see [PR14, Prop. 1.3.15].

The theme of this article is the large-scale geometry of Hofer’s metric, on
Ham(S?,w), the Hamiltonian diffeomorphisms of the 2-sphere?. Our first
result, Theorem 1.4, settles two longstanding questions, presented below,
about the quasi-isometry type of Ham(S?,w). The first of the two questions
was posed by Kapovich and Polterovich in 2006.

Question 1.1. Is Ham(S?,w) quasi-isometric to the real line R?

The second question is due to Polterovich and dates back to the 2000s.
To state it, consider a connected, proper open set U C S? and denote by
Hamg (S?,w) the subgroup of Ham(S?, w) consisting of Hamiltonian diffeo-
morphisms supported in U. This subgroup carries a well-known group ho-
momorphism called the Calabi homomorphism:

Cal : Hamy (S?, w) — R,
whose definition we recall in Section 2.1; see Equation (7).

Question 1.2. Suppose® that Area(U) < SArea(S?). Is the kernel of Cal :
Hamy (S?,w) — R an unbounded subset of Ham(S?,w)?

"Ham (M, w) is simple for closed M, by a theorem of Banyaga [Ban78].

It is known that the group Ham(S?,w) is in fact the set of all diffecomorphisms of S?
which preserve the area form w.

*If Area(U) > 1Area(S?), then the question is known to have an affirmative answer by
Polterovich [Pol98].



The Hofer geometry of the two-sphere has long remained mysterious,
and these two basic questions have received much attention over the past
years. This is especially the case for Question 1.1, which appears as Prob-
lem 21 on the list of open problems of McDuff-Salamon [MS17, Sec. 14.2];
it is mentioned as one of the motivations behind the influential article of
Polterovich and Shelukhin [PS16, Sec. 1.3]; and it is highlighted in several
articles such as [Py08, EPP12, KS18, BS17].

We also continue the direction of research initiated in our recent article
[CGHS20]. In particular, we answer the following question from the 1980 ar-
ticle of Fathi [Fat80] on the algebraic structure of Homeog(S?, w), the group
of all area and orientation preserving homeomorphisms of the 2-sphere?.
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Question 1.3. Is the group Homeoy (S, w) simple?

Although at first glance this question might appear unrelated to Hofer’s
geometry, we will see that the large scale geometry of Hofer’s metric plays
a crucial role in the solution. The two-sphere is the only closed manifold
for which the question of simplicity of the component of the identity in
the group of volume-preserving homeomorphisms remained open; for other
closed manifolds this was settled by Fathi in the late 1970s.

1.1 The large-scale geometry of the kernel of Calabi

Let dg denote the Hofer metric on Ham(M,w), the group of Hamiltonian
diffeomorphisms of a closed and connected symplectic manifold (M,w); we
will review the definition of dp, and other basic notions from symplectic
geometry, in Section 2.1.

A fundamental notion in large-scale geometry is that of quasi-isometry,
which we now recall. A quasi-isometric embedding is a mapping @ :
(X1,d1) = (X2,d2) of metric spaces for which there exist constants A >
1, B > 0 such that

Sdi(2,9) ~ B < da(®(2), B(y)) < Ada(r,y) + B. 1)
The map P, satisfying the above, is said to be a quasi-isometry if it is quasi-
surjective, i.e. if there exists a constant C' > 0 such that every point in Xy
is within distance C' of the image ®(X7).

The large-scale geometry of Hofer’s metric, on general symplectic mani-
folds, has been studied extensively ever since Hofer’s discovery of the metric
in 1990 [Hof90]; see for example [Ost03, EP03, Ush13, Py08, Kha09, Hum12,
Sey14, Khal6, PS16, AGKK"19]. Usually, (Ham,dp) is a “large” metric

4The group Homeog (SQ, w) can alternatively be described as the connected component
of the group of area preserving homeomorphisms of S2. For any transformation group, the
simplicity question is only interesting for the component of the identity because it forms
a normal subgroup of the larger group.



space. For example, it is conjectured to be always unbounded, and this
has been proven for many manifolds [LM95b, Pol98, Sch00, Ost03, EP03,
McD10, Ush13]. Moreover, Usher [Ush13] has proven that, for a large class
of manifolds, including closed surfaces of positive genus,’ it admits a quasi-
isometric embedding of infinite-dimensional normed vector spaces; see also
Py’s article [Py08].

Despite all the above progress, a famous case that has been difficult to
understand is that of the two-sphere. All that is known is that Ham(S?,w),
and the subgroup Ham (S?, w), are unbounded and admit a quasi-isometric
embedding of the real line R; this was proven by Polterovich [Pol98]. As
for the kernel of Cal : Hamy (S%, w) — R, with Area(U) < Area(S?), it is
not even known if it is unbounded, i.e. whether it is quasi-isometric to the
point. It is our understanding that when Question 1.1 and Question 1.2
were posed, there were not even clear conjectures about what their answers
should be.

Our first point in the present work is that the kernel of Calabi is indeed
rather big, which we illustrate in two different ways.

Theorem 1.4. Let U C S?, with U # S?. Then:

(a) For any n € N, there ezists a quasi-isometric embedding of R™ into
(Ham(S?, w),dy) whose image is contained in the kernel of the Calabi
homomorphism Cal : Hamy (S?,w) — R.

(b) The kernel of Cal : Hamy (S, w) — R is not coarsely proper.

To review the terminology here, recall that a metric space (X, d) is said
to be coarsely proper if there exists Ry > 0 such that every bounded
subset of (X,d) can be covered by finitely many balls of radius Rp; see
[CdIH16, Definition 3.D.10]. Examples of coarsely proper spaces include
the Euclidean space R™ or any bounded spaces — in particular, part (b)
of Theorem 1.4 resolves Question 1.1 and Question 1.2 — but on the other
hand, an infinite-dimensional Banach space is not coarsely proper. Recall
also that a quasi-flat in a metric space (X,d) is the image of a quasi-
isometric embedding of R™; moreover, the quasi-flat rank of a metric space
(X,d) is the supremum, over all n, such that there exists a quasi-isometric
embedding of R™ into X. Thus, part (a) of Theorem 1.4 is equivalent to
the statement that the metric space (Ham(S?, w),dy) and the subset given
by the kernel of the Calabi homomorphism Cal : Hamy (S?,w) — R have
infinite quasi-flat rank. Now, it is known that the quasi-flat rank of R" is
n and so we see that part (a) of Theorem 1.4 also answers Questions 1.1
and 1.2. In fact, we will see in Example 1.5 below that Theorem 1.4 tells
us quite a bit more about the quasi-isometry type of the metric spaces in
question.

®As observed in [Py08], such results for surfaces of positive genus can be deduced from
the arguments in [LM95b, Pol98].



Example 1.5. Let (G, d) be a finite dimensional connected Lie group, with
a left invariant Finsler metric induced from a norm on its Lie algebra; we call
such a d a compatible metric. As was explained above, the existence of
Hofer’s metric dramatically contrasts the situation for finite dimensional Lie
groups; one might hope that the large-scale geometry also sees this. Indeed it
is known that any such (G, d) both has finite quasi-flat rank, and is coarsely
proper. So, our main theorem precludes this as a quasi-isometry type for
(Ham(S?), d) or for the kernel of Calabi. Similarly, any finitely generated
group, or more generally, any locally compact and compactly generated
group (here we refer the reader to [CAIH16] for the precise definition) is
coarsely proper, see [CdIH16, Proposition 3.D.29]. It would be interesting
to understand to what degree the quasi-isometry type of Ham(S?) is unique,
for example whether it differs® from that of Ham(S) for other surfaces S. <

Remark 1.6. Contemporaneously with our work, Polterovich-Shelukhin
have shown [PS], using very different methods, that there is an isometric
embedding of the space of even compactly supported functions on (—%, %)
into Ham(S?,w). This clearly answers the Kapovich-Polterovich question
and, moreover, implies that Ham(S?,w) is neither coarsely proper nor of
finite quasi-flat rank. It would be very interesting to relate our methods

here to the methods in [PS]. |

1.2 Non-simplicity of Homeoy(S? w)

We turn now to continuous symplectic geometry.

In our recent article [CGHS20], we proved that the group of com-
pactly supported area-preserving homeomorphisms of the disc is not sim-
ple. Our next theorem settles the simplicity question for the sphere. Recall
that Homeog(S?,w) denotes the identity component in the group of area-
preserving homeomorphisms of the two-sphere.

Theorem 1.7. Homeoy(S?,w) is not simple.

In fact, as in our previous article [CGHS20], this theorem implies a
stronger statement by appealing to a beautiful argument of Epstein and
Higman [Eps70, High4]. Recall that a group is perfect if it is equal to its
commutator subgroup.

Corollary 1.8. Homeog(S?,w) is not perfect.

Theorem 1.7 answers a question of Fathi” from the 70s [Fat80, Appendix
A.6], whose history we now briefly review. The question of simplicity of

5We have learned in recent conversation with Polterovich that this question is wide
open.

"In fact, Theorem 5.2, stated below, answers Fathi’s question for all compact genus
zero surfaces; see Remark 5.6.



groups of homeomorphisms and diffeomorphisms was studied extensively
in the 50s, 60s, and 70s and is fairly well-understood in most scenarios.
However, area-preserving homeomorphisms of surfaces have remained mys-
terious. For example, in the case of closed manifolds, the simplicity question
had been answered by the late 70s for all of the following groups: homeo-
morphisms, diffeomorphisms®, volume-preserving diffeomorphisms and sym-
plectomorphisms. And in the case of volume preserving homeomorphisms it
was answered by Fathi [Fat80] for every closed manifold other than the two
sphere. Fathi asked the aforementioned question answered by Theorem 1.7
in the work [Fat80)].

We remark that non-simplicity of Homeog (S?,w) is surprising as it stands
in dramatic contrast to the fact that on closed simply connected manifolds,
such as spheres of dimension greater than one, this is the only example of
the “usual” transformation groups known to be non-simple. For example,
it is known that for simply connected manifolds the identity component in
any of the groups mentioned in the previous paragraph is simple except, of
course, in our case of area-preserving homeomorphisms of the sphere.

The simplicity of the aforementioned groups was established through the
works of a long list of mathematicians who studied the question from the
30s to the late 70s. For a summary of the long history of the simplicity
question, we refer the interested reader to [CGHS20, Sec. 1].

1.2.1 The perfectness question for volume-preserving diffeomor-
phisms of R"

We now explain an application to the study of the algebraic structure of
diffeomorphism groups.

Let ©Q be a volume form on R™ and denote by Diff(R™, ) the group
of all diffeomorphisms of R™ which preserves 2. McDuff proved in 1980
that although Diff (R™, ) is non-simple?, it is always perfect for n > 3; see
[McD80]. There are two distinct cases of McDuff’s theorem, namely the
finite volume case, which is the same as the case of an open ball with its
standard volume form, and the infinite volume case. In both cases, however,
the 2-dimensional case has remained open. Theorem 1.7 allows us to settle
this question in the finite area case.

Corollary 1.9. Assume that [z, Q < +o00. Then, Diff(R?, Q) is not perfect.

We prove this corollary in Section 5.3.

8We are considering C™ diffeomorphims here. For C* diffeomorphisms, simplicity is
known for all k except when k& = dim(M) 4 1 which remains open to this date.

9In this case, non-simplicity follows from the fact that the compactly supported volume-
preserving diffeomorphisms form a proper normal subgroup.



1.3 New spectral invariants

We now discuss the main tools that we use and develop here for proving
the above theorems. We henceforth view S? as the unit sphere in standard
R? and equip it with the symplectic form w := ﬁd@ A dz, where (0, z) are
cylindrical coordinates. Note that this gives the sphere a total area of 1.

Periodic Floer homology and spectral invariants

To prove our results we use a version of Floer homology for area-preserving
diffeomorphisms called periodic Floer homology (PFH) which was intro-
duced by Hutchings [HS05]; we will review PFH in Section 2.3. As will be
reviewed in Section 3, one can use PFH to define a collection of invariants
of Hamiltonians on the sphere

car: C®(S' x §?) - R

which are indexed by d € N and k € Z with k having the same parity as d.

We show in Section 3 that these invariants have various useful properties;
see Proposition 3.2. In particular, we show that they can be used to define
invariants

Cdk : ITI_E;I/H(S2,W) — R,

cq - I—Tz;r/n(SQ,w) — R,

where ¢4 := c¢4_q, which are well-defined on the universal cover of
Ham(S?,w). Moreover, we show in Proposition 3.5, that if d is even then

Cd ;- I/{;r/n(S2, w) — R descends to Ham(S?, w) and so in particular we obtain
cq : Ham(S? w) — R,

defined for even d.

Homogenization

As is evident from the works of Entov-Polterovich [EP03, EP09], for the
purposes of applications to Hofer’s geometry, it is often beneficial to homog-
enize spectral invariants. This is true in our work as well and, in fact, we
prove Theorem 1.4 using the homogenizations of the invariants ¢y which we

now introduce. More precisely, we can define for ¢ € Ham(S?,w), and for
all d € N,

=N
alp) = limsup “4F). 2)
n—00 n

where ¢ € %(82, w) is any lift of ¢; we show in Proposition 3.6 that the
above lim sup is well defined and that pg(¢) does not depend on the choice



of p € %(827(,«)). We also define the related invariant ¢y : C®°(S?) — R
by
H
Ci(H) = limsup M. (3)

n—00 n

We will see that these two homogenized invariants are related by the formula

palerr) = Ca(H) — d . Huw.

A useful property of any g is that it coincides with (a multiple of)
the Calabi invariant for Hamiltonian diffeomorphisms with small supports.
More precisely, suppose that supp(¢), the support of ¢ € Ham(S?, w), is
contained in a topological disc D with Area(D) < ﬁll. Then, the following

equality holds
1
gHalp) = —Cal(p). (4)

The above properties of g4, (4 will be proven in Section 3.

Remark 1.10. The properties of the ug are reminiscent of the Calabi
quasimorphism of Entov-Polterovich [EP03]. It is an open question
whether Ham(S?, w) admits any Hofer continuous (homogeneous) quasimor-
phisms other than the one constructed by Entov-Polterovich. We plan to
investigate in future work whether the invariants pg are quasi-morphisms.
<

The Hofer Lipschitz property and monotone twists

A critical fact which we will show, and which is at the heart of all applications
to Hofer’s geometry is the Hofer Lipschitz property. For the invariants pg
this means that the following holds:

la(p) — pa(P)| < Cadu(p, )

for all ¢, € Ham(S?,w). The Lipschitz constant is Cy = d. In particular,
these invariants can be used to bound the Hofer distance from below.

In view of the Hofer Lipschitz property, to prove our results, we will have
to produce examples of Hamiltonian diffeomorphisms whose invariants we
can compute. This will be done by studying monotone twist Hamilto-
nians, that is autonomous Hamiltonians H : S — R of the form

H(z,0)= %h(z),

where ' > 0,h” > 0,h(—1) = h/(—1) = 0; we developed a combinatorial
model in our previous work [CGHS20] which can be used to compute the
cq for Hamiltonians like this under the additional technical assumption that
1/ (1) € N. For monotone twist Hamiltonians, the invariant {; has a beautiful
expression.



Proposition 1.11. For any Hamiltonian H as above we have

gd(H)Z;Zh<—1+diil).

=1

In other words, (y is the sum of the values of H on d equally dis-
tributed horizontal circles. We learn from the above proposition that
Ca(H) is at least as large as the value H takes on each of the d circles
Ci=A{(2,0):z2=-1+ d%fl , where i € {1,...,d}. This bears some resem-
blance to the notion of heaviness of equators introduced in the works of
Entov-Polterovich [EP09]. What is surprising is that the circles C; are all
displaceable for d > 2, while heaviness of a set, as defined in [EP09], implies
that the set is not diplaceable by Hamiltonian diffeomorphisms. Sensitivity
to the displaceable circles C; is the distinguishing feature of our invariant
1d, Cq which powers our applications to the Hofer geometry of the kernel of
Calabi.

C° continuity and non-simplicity of Homeo(S?, w)

To prove Theorem 1.7, we need invariants which are continuous with respect
to the C? topology. The invariants cq and p4, while useful, are not in general
C° continuous. We remedy this by taking certain linear combinations of the
cq to define C° continuous invariants

nq : Ham(S?, w) — R.

Not only are these invariants C° continuous, but also they extend con-
tinuously to Homeog(S?,w). Moreover, they are also Hofer Lipschitz. We
summarize the properties of the 74 in Proposition 3.9.

1.4 Relationship with previous work

As mentioned above, in our previous work we used PFH to define spec-
tral invariants for compactly supported area-preserving diffeomorphisms and
homeomorphisms of the two-disc. For all of the applications discussed here,
we need to rework this theory over the two-sphere. In the disc case, we
could assume that the maps were generated by a Hamiltonian that vanishes
near the boundary of the disc. This is no longer possible, so new ideas are
needed.

One idea here, familiar to specialists, see for example [EP03, Oh05,
Sch00], is to attempt to work with mean-normalized Hamiltonians. A care-
ful analysis shows that this gives invariants which are well-defined on I/{;_I/n;
then, after homogenization as in the previous section, we can obtain invari-
ants of Ham. These invariants would be enough to prove the theorems in
1.1. However, as stated above, they are not C° continuous, and so can not



be used to study the algebraic structure of the homeomorphism group. This
is where the 74, defined by taking a difference of spectral invariants, come
in. The crucial insight for this, which was initially surprising to us, is that
the ¢4 for even d descend from Ham to Ham.
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2 Preliminaries

In this section we fix our notation and introduce the necessary background
on symplectic geometry and periodic Floer homology.

2.1 Recollections

Here we recall some basic facts about symplectic geometry and the Hofer
distance.

Let (M,w) be a symplectic manifold. Let H € C*(S! x M) be a Hamil-
tonian; if M happens to be non-compact, then we consider only compactly
supported Hamiltonians. We can think of such H as a family of functions
H; on M, depending on time; we think of S' as parametrized by 0 < ¢ < 1.
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Such H gives rise to a possibly time-varying vector field Xpg, on M, called
the Hamiltonian vector field, defined by

w(Xm,, ) = dH;.

The flow of X, is called the Hamiltonian flow and is denoted ¢%;. The
set of time-1 maps of Hamiltonian flows is called the set of Hamiltonian
diffeomorphisms of M and denoted Ham(M,w); it forms a subgroup of
the symplectomorphisms of (M,w). We can define the Hofer norm ||¢|| of
any ¢ € Ham(M,w) as follows. First, to a Hamiltonian H € C*°(S! x M),
we associate the norm

1
| H||1,00 == /0 <1’I1]\2/}X(Ht) - mA}[n(Ht)> dt.
We then define
lipll -= inf {| Hll1,00 - ¢ = @i }-
The above quantity is invariant under conjugation, i.e. || ~tpy| = |l¢].

This follows from the fact that ¢, = P Lphab; see [HZ94, Sec. 5.1, Prop.
1], for example.
Finally, we can define a metric on Ham(M,w), the Hofer metric, by

di (o, 0) = [l o 9|

As mentioned above, this yields a nondegenerate, bi-invariant metric, which
is quite remarkable given the noncompactness of Ham. Non-degeneracy is
what is difficult to prove and it was established by Hofer for R?® [Hof90],
by Polterovich for rational symplectic manifolds [Pol93], and by Lalonde-
McDutff in full generality [LM95a).

The bi-invariance of Hofer’s distance also implies the following identities

dr (0102, 102) < d(p1,91) + du(p2,¥2), (5)
dp (@, o) < 2dy (1h,1d). (6)

Indeed (5) follows from (9) below and (6) is proved as follows:

d (e, v o) = o™ o < [l ol + |9l = 2dp (v, 1d).

Now let M = S? = {(z,y,2) € R3 : 22 + y? + 22 = 1}. This has a sym-
plectic form w := ;-df A dz, where (0, z) are cylindrical coordinates. We let
Diff (5%, w) denote the set of smooth diffeomorphisms ¢, such that p*w = w.
In fact, Diff(S?, w) = Ham(S?,w). The Hofer geometry of Diff(S? w), with
this identification implied, will be the topic of study in the present work.
We recall, for later use, that the fundamental group of Ham(S?, w) is Z/2Z
and is generated by Rot, the full rotation around the North-South axis of
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the sphere; for a proof of this see, for example, [Pol01]; the Hamiltonian
1

H(0,z) = 5z generates this full rotation.
We will denote the universal cover of Ham(S?,w) by }/15;1(82,(0). This
can be described as the set of Hamiltonian paths, considered up to homotopy
relative to endpoints; here, by a Hamiltonian path, we mean a path of
Hamiltonian diffeomorphisms {¢!,0 < ¢ < 1}. This is a two-fold covering,
by the discussion in the previous paragraph.
We next recall the displacement energy of a subset A C S%. This is

by definition the quantity
e(A) = inf{[¢] : $(A) N A = }.

It is known that for a disjoint union of closed discs, each with area a and
whose union covers less than half the area of the sphere, the displacement
energy is a. We will need the following lemma in Section 4.3.

Lemma 2.1. Let D, D' C S? be two disjoint closed discs of equal area.
Then,
inf{||¢[| : #(D) = D'} = Area(D).

Proof. Let us denote a := Area(D) and E := inf{||¢|| : ¢(D) = D'}. Tt
follows from the above discussion on displacement energy that E > a.

For the reverse inequality, note that the same discussion also implies
that for any ¢ > 0, there exists ¢ € Ham(S? w), with ||¢|| < a + ¢ and
Y(D)ND = (). Since y(D) and D’ have the same area and are both contained
in S?\ D, there exists a Hamiltonian diffeomorphism y, supported in S?\ D
which maps ¢(D) onto D’. The assumption on the support implies that
x YD) = D. We now pick ¢ = x»x~ . We see that ¢(D) = D’ and by

conjugation invariance of the Hofer norm we have ||¢|| = ||| < a+¢. Since
such a diffeomorphism ¢ may be found for any £ > 0, this shows the reverse
inequality F < a. O

Next, we review the definition of the Calabi homomorphism
Cal : Hamy (S, w) — R,

alluded to in the introduction. Recall that, for proper open U C S?, we de-
note by Hamy (S?,w) the subgroup of Ham(S?,w) consisting of Hamiltonian
diffeomorphisms which are supported in U. Given ¢ € Hamy (S?,w), define

Cal(p) = /S1 . H(t, )wdt, (7)

where H € C®°(S! x §?) is any Hamiltonian supported in U whose time-1
flow is ¢. It is well-known that Cal(y) does not depend on the choice of
H and, moreover, Cal : Hamy (S?,w) — R is a group homomorphism; see
[Cal70, MS17] for further details.
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In Section 5, we will also want to consider the group Homeog(S?,w)
of area and orientation preserving homeomorphisms of S?. This is
defined to be the group of homeomorphisms of S?, preserving the measure
induced by w, in the component of the identity. It has a distance dco,
called the C? distance, defined by picking a Riemannian metric d on S?, and
defining

dco(%i/)) = sup d(¢($)a¢($))
zeM
We remark for later use that Diff(S?, w) sits densely in the C? distance in
Homeog(S?, w).

2.2 The spectrum

We now recall the action spectrum, defined in [CGHS20, Section 2.5]. Let
H € C*®(S x §?). Recall the action functional associated to H

1
Ap(z,u) :/0 H<t72(t))dt+/132 urw, (8)

defined for capped loops (z,u). The critical points of Ay are pairs (z,u),
where z is a 1-periodic orbit of ¢}, and the set of associated critical values is
called the action spectrum Spec(H) of H. The forthcoming PFH spectral
invariants will take values in the order d action spectrum of H, defined by

Specq(H) := Up, 4. +k;=a Spec(H") + ... + Spec(H"),

where H* denotes the k-fold composition of H with itself. Here, the com-
position is defined by

20" (2t) H (21 (), if t € [0,1],
1

(G#H)(t, ) = {2p’(2t — 1)G -1y (), iftels 1]

where p : [0,1] — [0,1] is a fixed non-decreasing smooth function which is
equal to 0 near 0 and equal to 1 near 1. Note that we do not need H and G
to be one-periodic to define the composition, and even if they are not one-
periodic, G#H will still be, since it is zero for ¢ close to 0 and 1. The time
1-map of G#H is <p1G o go}{. Note that for any Hamiltonians G1, Go, H1, Ho,
we have

|G1#H1 — Go# Ha||1,00 = |G1 — Gal[1,00 + [ H1 — Ha2||1,00- (9)

We state here some of the properties of the order d action spectrum
which will be used in the following sections. Recall that H € C*(S! x §?)
is said to be mean-normalized if [, H(t,-)w = 0 for all ¢ € §*. Two
Hamiltonians Hy, H, are said to be homotopic if there exists a smooth
path of Hamiltonians connecting Hg to H; such that 4,0}{0 = gollqs = 4,0}{1 for
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all s € [0,1]. In other words, the Hamiltonian paths {¢ } and {¢};, }, for

0 <t < 1, coincide as elements of the universal cover ﬁz;;l(S?,w). Here is a
list of properties of Spec; which will be needed.

(i) Symplectic invariance: Specy(H o ) = Specy(H), for all H €
C>®(S! x §?) and v € Ham(S?, w).

(i) Homotopy invariance: If Hp, H; are mean-normalized and homo-
topic, then Specy(Hp) = Specy(Hi).

(iii) Measure zero: Spec,(H) is of measure zero.

The above properties are well-known in the case of Spec(H), that is when
d = 1; see for example [OhO5]. It is not difficult to see that the two initial
properties follow from the case d = 1: Symplectic invariance follows from
the identity (H ot)* = H¥ o1, for any k € N, and Homotopy invariance is a
consequence of the fact that H(])“, HY are mean-normalized and homotopic, for
any k € N, if Hy and H; are. As we will now explain, the third property also
follows from the d = 1 case. As a consequence of the definition of Spec,(H ),
it is sufficient to prove that the set Spec(H*)+...+Spec(H") is of measure
zero, for any choice of k1, ..., k; with the property that k1 +...+k; = d. To
that end, let (M,w@®...®w) be the symplectic manifold obtained by taking
the j—fold product of (S?,w) and consider the Hamiltonian F : S x M — R
defined by

F(t,xl,...,azj) = Hkl(t,azl)—i—...—i—ij(t,a:j).

We conclude that Spec(H*)+...+Spec(H"/) has measure zero by observing
that it coincides with the set Spec(F') which we know has measure zero.

2.3 Definition of PFH

We now recall the definition of periodic Floer homology (PFH), from for
example [HS05], which is a tool that will be central in our work. While PFH
can be defined over any surface, for simplicity we consider the case where
our surface is S?, which is the only case that is relevant for the present work.

We start with some preliminaries. Let ¢ € Diff(S?,w). Given ¢, we can
define the mapping torus

Y, = S?x[0,1]/ ~, (z,1) ~ (¢(z),0).

This has a natural vector field R := 9;, which we call the Reeb vector field,
a natural one form dt, and a natural two-form w,, induced from the area form
w. The pair (dt,w,) is a stable Hamiltonian structure in the sense of for
example [BEHT03, CM05, HT09b, Wen]. The manifold Y,, has a plane field
§ defined to be the vertical tangent bundle for the fibration m: Y, — St.
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We will be interested in closed integral curves
a:R/TZ =Y,

of R, modulo reparametrization of the domain, which we call closed orbits;
we can identify an embedded closed orbit with its image. A closed orbit «
has an integral degree d(«) := m.[a] € H1(S') = Z. The linearized return
map P, for a closed orbit « is defined for any p € a as the linearization
of the time T" flow of R on {|,. A closed orbit is called nondegenerate if
1 is not an eigenvalue of the linearized return map; a nondegenerate closed
orbit is called hyperbolic if the eigenvalues of P, are real and elliptic if
the eigenvalues lie on the unit circle; these definitions do not depend on the
choice of p.

Define an orbit set a := {(a;,m;)} to be a finite set, where the «;
are distinct embedded closed orbits of R, and the m; are positive integers.
The degree of the orbit set « is the sum of the degrees of the a;. The
map ¢ is d-nondegenerate if every closed orbit with degree at most d is
nondegenerate; this is a generic condition. A degree d orbit set for a d-
nondegenerate ¢ is called admissible if m; = 1 whenever «a; is hyperbolic.

Let X = Ry x Y. This has a natural symplectic form

w=dsANdt+w,.

The pair (X,w) is called the symplectization of Y,,. Recall that an almost
complex structure on X is a smooth bundle map J : TX — TX such
that J2 = —1. A J-holomorphic curve in X is amap u: (%,5) — (X, J),
satisfying the equation

duoj=Jodu.

Here, ¥ is a closed (possibly disconnected) Riemann surface, minus a finite
number of punctures, and the map u is assumed asymptotic to Reeb orbits
near the punctures, see for example [Hut14] for the precise definition.

The periodic Floer homology PFH(S? ¢,d) is the homology of a
chain complex PFC(S?,¢,d). The chain complex PFC(S?, ¢, d) is freely
generated over Zso by admissible orbit sets o of degree d > 0. The chain
complex differential 0 counts J-holomorphic curves in X, for generic ad-
missible J; here, an almost complex structure is called admissible if it
preserves &, is R-invariant, sends Js to R, and its restriction to £ is tamed
by w,. More precisely,

(Oa, B) = # M7 (e, B),

where I denotes the ECH index, defined below, we are considering curves in
X up to equivalence of currents and modulo translation in the R direction,
and # denotes the mod 2 count.
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It is shown in [HT07, HT09a] that!? that 92 = 0, so the homology is well-
defined; it is shown in [LT12] that it agrees with a version of Seiberg-Witten
Floer cohomology and in particular is independent of .

To define sge\c_t/ral invariants, we will want to use a twisted version of
PFH, denoted PFH(S?, ,d); as we will see in 3.1.1, the twisted PFH carries
a natural action filtration which we will use to define the spectral invariants.
To define twisted PFH, let v be any degree 1 cycle in Y, transverse to &;
choose a homotopy class of trivializations 79 on &|,,. The twisted PFH chain

complex PFC is generated by pairs («, Z), called twisted PFH gener-
ators, where « is a degree d admissible orbit set, and Z € H(Y,, o, d7).
The differential counts I =1 curves C from («, Z) to (3, Z’), namely curves
C € M7 (a, B), such that

Cl+Z =2Z.

For each d, there is a grading, defined below, which we call the k-grading.
The homology is an invariant, and so can be computed, with the result that
for d > 0 we have

Zo, if ¥ =d mod 2,

. (10)
0 otherwise.

PFH,(S?,p,d) = {
The above identity can be proven via a direct computation when ¢ is taken
to be an irrational rotation of the sphere; for more details see, for example,
[CGHS20, Sec. 3.3]. We now define the ECH index I, and the grading k.
The ECH index I depends only on the relative homology class A €
Hy(Y,, o, f) between two orbit sets. We have

I(4) = ¢;(A) + Q- (4) + CZL(A), (11)

where 7 denotes a homotopy class of trivializations of £ over all Reeb orbits,
¢+ (A) denotes the relative Chern class of ¢ restricted to A, @, (A) denotes
the relative self-intersection, and C'Z! denotes the total Conley-Zehnder
index. We will not need the precise definitions of these terms in the present
work, so we omit them for brevity, referring the reader to [Hut02] for the
details.

We can define the promised k£ grading. The definitions of the relative
Chern class and relative self-intersection extend verbatim to relative homol-
ogy classes A € Hy(Y,, a,dy), once a trivialization 7 over the simple orbits
in a and a trivialization 79 over v has been chosen. With the preceding
understood, we now define

k(a’ Z) = Cr,7g (2)7 +Q777'O(Z) + CZ{-(O‘)
To simplify the notation, we will denote k(«, Z) by I(Z) below.

"More precisely, [HT09a] proves that the differential in embedded contact homology
squares to zero. As pointed out in [HT07] and [LT12] this proof carries over, nearly
verbatim, to our setting.
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3 The spectral invariants

We now use the twisted PFH to define various invariants. We begin by
summarizing for the reader what will be done in this section.

To set the stage for what is coming, it is helpful to recall what was done
in [CGHS20, Sec. 3.4]. There, we defined spectral invariants cq(H) for
H € H where

H={H e C®(S' x$?) : ply(p-) =p_, H(t,p-) = 0,Vt € [0,1],
— 1 <rot({ely},po) < 1},

where rot({¢%},p-) is the rotation number of the isotopy {@%}icioq) at
p—. It was shown in addition that these invariants depend only on the time
1-map. Spectral invariants for compactly supported disc maps were then
defined by identifying the disc with the northern hemisphere.

Our goal now is to define spectral invariants for all H € C®(S! x S?)
and to find invariants that depend only on ¢ € Ham(S?,w), rather than on
a choice of generating Hamiltonian. Here is how we do this. First we extend
the procedure in [CGHS20] from H € H to arbitrary H to get invariants
cd k., defined when k and d have the same parity. These ¢4 extend the
cq ) from our previous work: that is, if H € H C C>(S' x §?), then the
definition of cq;(H) here agrees with that in [CGHS20]. Similarly to our
previous work, we can then define ¢4 := ¢4 _q. This choice of k = —d is
not quite canonical, see Remark 3.4, but is convenient and suffices for our
purposes: what is crucial is that ¢4(0) = 0.

As alluded to in the introduction, these ¢4 are in general not invariants
of the time 1-map, and so are not well-suited on their own for proving
our main theorems. However, we can use the ¢4 to form new invariants.
First, we show that the ¢; for even d are invariants when we restrict to
mean-normalized Hamiltonians; similarly, the homogenizations ug4,(y are
also invariants restricted to mean-normalized Hamiltonians. None of these
invariants are C¥ continuous, so we use a linear combination of the cg for d
even to define another sequence 7.

Thus, to summarize for the ease of the reader, the main product of this
section are invariants c¢q and ng defined for d even, and g, (4 defined for all
d, together with proofs of their properties that we will need. The pugz and
(g4 are related by the formula (25). The pg are used to prove Theorem 1.4,
while the ng are used to prove Theorem 1.7; the ¢4 are used to construct the
g and the ng.

3.1 Invariants for Hamiltonians

We begin by introducing PFH spectral invariants cqx(H) for Hamiltonians
H € C>™(S! x S?). This requires first recalling a construction of Hutchings
for assigning a spectral invariant to every nonzero twisted PFH class.

17



3.1.1 The nondegenerate case

A Hamiltonian H € C*®(S! x §?) is called d-nondegenerate if its time-1
flow p = cp}q is d-nondegenerate. We now explain how to define PFH spectral
invariants for d-nondegenerate Hamiltonians by extending the definition in
[CGHS20] in a natural way.

We begin by explaining the aforementioned construction of Hutchings
for assigning a spectral invariant to a nonzero twisted PFH class. A twisted
PFH generator has an action defined by

Ao, Z) = /Z%.

The differential decreases the action, see for example [CGHS20, Sec 3.3], so
the action induces a filtration on the twisted PFH chain complex: we can de-

L
fine PFC' to be the subcomplex generated by twisted PFH generators with

—~—L

action no more than L. Denote the homology of this complex by PFH .

For any nonzero class 0 € PFH(S?, p,d), we can now define ¢, (¢,7, 7o) to
be the smallest L such that o is in the image of the inclusion induced map

L
PFH — PFH.

We can think of this as the minimum action required to represent o.

The number ¢, (p,7,7) depends on the choice of reference cycle v and
trivialization 79 over v; we will now define the PFH spectral invariants
associated to a d-nondegenerate Hamiltonian H by using the Hamiltonian
flow to fix a natural reference cycle.

To make this precise, let H be a d-nondegenerate Hamiltonian and write
¢ = ¢};. Consider the trivialization

Uy St xS* =Y,
(t,2) = ((0) " (@), 1) -

Define vy = U (St x {p_}). This is trivialized by the pushforward 7 of an
S'-invariant trivialization over p_. We will now use the twisted PFH chain
complex for Y, with respect to the reference cycle v, to define the spectral
invariants.

Assume first that H vanishes at p_ for all time. For each d € N, we
define

(12)

cap(H) = co(@y,vu, 1), d=k mod 2,

where ¢ is the unique nonzero class in PFH(S?, ¢, d). We emphasize that,
even fixing the Hamiltonian diffeomorphism, this can and will depend on H,
since the trivialized reference cycle v does. We note that for such an H,

Cd,k(H) = A(a7 Z)? (13)
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for some twisted PFH generator (a, Z). Indeed, as explained in [CGHS20,
Sec. 3.3] this follows from the fact that the subset {A(«,Z2) : (o, 2) €

%(g@, d)} C R is discrete, as under our nondegeneracy assumption there
are only finitely many orbit sets of degree d.

Finally, for arbitrary H we reduce to the case of H vanishing at p by
demanding that the Shift property, stated in Proposition 3.2 below, hold.
This says that

1
can(H +h) = cap(H) +d /0 h(t)dt, (14)

when h : S — R is any function.
In principle, ¢4, (H) could depend on the choice of admissible .J, but we
will see by the Monotonicity property below that it does not.

3.1.2 Key properties

We now prove that the PFH spectral invariants have the following key prop-
erties and extend to all, possibly degenerate, Hamiltonians.

Theorem 3.1. The PFH spectral invariant cq(H) admits a unique exten-
sion to all H € C*°(S* x S?) such that the extended spectral invariant

cap: CP(S' x $?) - R
satisfies the following properties.

1. Continuity: For any H,G € C*®(S! x S?), we have

d [ min(H; — Gy)dt < cqp(H) —carx(G) <d max(H; — Gy) dt.
St st

2. Spectrality: cq,(H) € Specy(H).

Before giving the proof, we note that the second item of the theorem
implies that if H, G vanish at p_, then

Car(H) = car(G)| < d[|H = Gll1,00, (15)
which is an alternative variant of the Hofer continuity property.

Proof. The proof proceeds along similar lines as [CG-H-S, Thm. 3.6].

Step 1: Reducing to the d-nondegenerate case. We now assume that the
theorem has been proved for d-nondegenerate H, and explain how this im-
plies the result for all H. Given any H, take any sequence of d-nondegenerate
H; which C? converges to H, and define

cax(H) = lim cq(H;). (16)

11— 00
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This limit exists, and does not depend on the choice of approximating H;,
due to the Continuity property with H = H; and G = H;. The same in-
equality implies that the extension from d-nondegenerate H is unique as
claimed; the Continuity and Shift properties for d-nondegenerate H imply
these properties for all H. Spectrality for d-nondegenerate H implies Spec-
trality for all H by Arzela-Ascoli.

Step 2: Reducing to Hamiltonians that vanish at p_.

It remains to prove Continuity and Spectrality in the nondegenerate case.

We now show that by using the Shift property (14), it suffices to prove
these properties for Hamiltonians vanishing at p_. We begin with Continu-
ity. Consider arbitrary H,G. Then, we can write

H=H+h, G=G+y, (17)

where h and g are defined as the restriction of H, G to p_, and H, G vanish
on p_. Then, by the Shift property,

car(H) = caa(G) = car(T) = can(G) +d [ (h(t) = g(t) .
Thus, if Continuity holds for H and G, then we have
car(H) —car(G) <d max(H; — Gy) dt + d/ (h(t) — g(t)) dt.
St st

Now, since h, g only depend on ¢, we have
max(H; — Gy) = max(H, — Gy) + g(t) — h(t).

Combining this equality with the previous inequality proves the right-
most inequality required for Continuity. Similarly, if Continuity holds for H
and G, then we have

car(H) = cqp(G) >d | min(H; — Gy)dt + d/ (h(t) — g(t)) dt,
Sl Sl

and we know that
min(H; — G¢) = min(H; — Gy) + g(t) — h(t),

hence the leftmost inequality required for Continuity to hold.

Similarly, if Spectrality holds for H in (17), then it holds for H by the
Shift property, because the addition of h does not change the set of critical
points of Ay, hence by (8), Specy(H) = Spec,(H) + d Jou h(t)dt.

Thus, we can assume H and G vanish at p_.

Step 3. Continuity when H and G vanish at p_.
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Under (12), the stable Hamiltonian structure (dt,w,) is of the form
(dt,w + dH N dt), and R = 9; + Xg. The natural symplectic form on
the symplectization X =R x Y, under (12) is

wg =ds ANdt +w+ dH A dt,

where s is the coordinate on R. We henceforth identify Y, with St x §?
using (12), we implicitly identify orbit sets on Y, with the corresponding
orbit sets on S! x §2, and we identify the trivialized reference cycle (v, Ts)
with the S!-invariant trivialized cycle v over p_.

Given H and G, we pick a function 5, which is 0 for sufficiently small
s, 1 for s sufficiently large, and satisfies 1 + f'(H — G) > 0, we define
K = G+ B(s)(H — G) and we consider the form

wx =ds ANdt +w + d(Kdt),

which is symplectic and agrees with wp for sufficiently positive s and wg for
sufficiently negative s.

The general theory of (twisted) PFH cobordism maps, as developed by
Chen [Chel8], guarantees a chain map ¥y ¢ between the twisted PFH chain
complexes for H and G, counting ECH index zero Jx-holomorphic buildings
from (o, Z) to (B8, Z"), and inducing an isomorphism, where Jy is a fibration
compatible almost complex structure on X, in the sense that it preserves
the vertical tangent bundle and its wx-orthogonal complement.

So, given d > 1 and k € Z of the same parity, let (a1, Z1)+. ..+ (am, Zm)

be a cycle in %(gp}q, d) representing o4 with
CO'd,k ((P}—[) = «4(0&1, Zl) 2 st Z A(Oém, Zm)
and let (,Z’) be a generator in I/D}—é(cplG,d) with maximal action among
the support of ¥y (a1, 2Z1) + ... + (qum, Zm)).
Thus, we have a Jx-holomorphic building C from some («;, Z;), which we
will denote by («, Z), to (8,Z'). Since, just as in [CGHS20], our argument

only involves action and index considerations, we can assume that C consists
of a single level, and we know that

Z'+[C] = 2,

as elements of Hy(S' x S% a,dy). Hence, as I([C]) = 0, we must have
I(Z) =1(Z') = k, so that

car(w) = carles) 2 Ala, Z) — A(B, Z'). (18)

We now claim the identity

Alo, Z) — A8, 2') = / W+ dK A dt + K'ds A dt, (19)
C
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where K’ denotes the derivative with respect to s, and for the rest of this
section dK denotes the derivative in the S? direction.

The proof of this is just as in [CGHS20, Lem. 3.8]. Indeed, as in the
proof of [CGHS20, Lem. 3.8], we have

Ala, Z) = /Z Wt d(Hdt), A(B,7') = / W+ d(Gat),

fomfo- [

Moreover, [, d(Kdt) = [,d(Hdt)— [, d(Gdt), since H, G vanish on . So,
putting this all together, we have

and

Ala, Z) — A, Z') = / w+ d(Kdt),
C
hence (19).
Moreover, we have fc w+dK Adt > 0, since as in the proof of [CGHS20,
Lem. 3.8], the form w + dK A dt is pointwise nonnegative along C, and so
in fact we obtain

Ao, Z) — A(B, Z') > /C K'ds A dt, (20)

The argument in [CGHS20, Lem. 3.8] also shows that ds A dt is pointwise
nonnegative on C.
Now we have

/ K'ds N dt = / B'(s)(H — G)ds A\ dt > / B'(s) min(Hy — Gy)ds A dt,
C C C

since ds A dt is pointwise nonnegative along C. We can evaluate the right-
most integral in the above equation by projecting to the (s,t) plane; this
projection has degree d, and [ 8’ = 1, so the above inequality in combination
with (20) and (18) give the leftmost inequality required for Continuity.

To prove the other inequality, we switch the role of H and G in the above
argument, and again combine the corresponding versions of (18) and (20)
to get

car(o) = carlch) = [ F()(G — s,
hence
car(opr) —car(ps) < /C B(s)(H—G)dsAdt < /C B (s) max(Hy— Gy)dsAdt,
where in the rightmost inequality we have used the fact that ds A dt is

pointwise nonnegative. We then project to the (s,t) plane as above to
obtain the rightmost inequality required for Continuity.
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Step 4. Spectrality when H vanishes at p_.

Since H vanishes at p_, we know by (13) that any cqx(H) = A(a, Z)
for some twisted PFH generator («, 7).

Recall that A(«, Z) is the action of some relative homology class. We
first construct a particular homology class Z, from a periodic orbit «, and
show that the action of this class lies in the action spectrum. More precisely,
let = be a g periodic point of ¢ = go}{, and pick a capping disk u for the
orbit y(t) = (¢l (x))iefo,q) such that u(0,0) = p_. Equip the disc with polar
coordinates (0, p) with § € R/qZ, p < 1, and then consider the homology
class Z,, represented by

R/qZ x [0,1] — S' x S%, (6, p) — (6 mod 1,u(6, p)).

We now compute

A(B, Z.) = / (w+ dH A dt) = / (w + d(Hdt))

[e3 [e3

:/u*w—|— Hdt
0Zq
q
:/u*w—l—/ Hy(y(t))dt
0
= Au(v,u) € Spec,(H),

where, in the third equality above, we have used the fact that H vanishes
at p_.

Now, given an arbitrary (a, Z), write a = {(i,q)}. We can write
Z =3 Zn, +y[S?]. Then

Ala, Z) =y + Y Aloi, Za,).

The right hand side of the above formula is an element of Spec,;(H), since
we can for example absorb the y into the capping of any particular orbit.
Hence, cq,(H) € Specy(H). O

We now collect some additional useful properties of the cg .

Proposition 3.2. The spectral invariant
cak: CP(S' x $?) - R
satisfies:
1. Normalization: cq;(0) =0 for —d <k <d
2. Monotonicity: Suppose that H < G. Then,

cak(H) < car(G).
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3. Shift: Let h: S* — R be a function of time. Then,

can(H +h) = cap(H) +d /S h(r)dr.

4. Symplectic invariance: cqr(H o) = cqr(H) for any ¢ € Ham(S? w).

5. Homotopy invariance: If Hy, Hi are mean-normalized and homotopic,
then cq i (Ho) = cqr(Hi)

6. Support-control: If the support of H is contained in a topological disc D
with Area(D) < ﬁll, and —d < k < d, then |cqr(H)| < 2d Area(D).

Proof. Normalization follows from our previous work [CGHS20, Thm. 3.6],
since as mentioned previously the cqj extend the spectral invariants we
defined there. The Shift property is immediate from the definition. The
Monotonicity property follows formally from Continuity: indeed, by Conti-
nuity we have

Cd,k(H) - Cd7k(G) < d . max(Ht - Gt) dt,
S
and so if H < G then the integrand in the above inequality is nonpositive,
so that we obtain Monotonicity.

To prove Symplectic invariance, let 1, be a Hamiltonian isotopy such that
1o = 1Id, 41 = . It is sufficient to show that the function ¢t — cq,(H o)) is
constant. To see this, recall from Section 2.2 that Spec,(H o) = Specy(H)
and so the function ¢ — cq,(H o)), which is continuous by the Continuity
property of Theorem 3.1, takes values in the measure-zero set Spec,(H) and
so it must be constant.

The proof of Homotopy invariance is analogous. Let H,,0 < s <1, be a
smooth path of mean-normalized Hamiltonians connecting Hy to H;. Note
that, by the Homotopy invariance of the action spectrum from Section 2.2,
we have Specy(H;) = Specy(Hp) for all d € N and s € [0,1]. Then, the
continuous function s — ¢4, (H,) is constant because it takes values in the
measure zero set Specy(Hp). We conclude that cq,(Ho) = cqr(H1).

It therefore remains to prove Support-control. The proof will rely on the
following lemma. We will say that a set U is d-displaced by a map W if
the sets U, ¥(U), ..., ¥4(U) are all disjoint.

Lemma 3.3. Let F' be a Hamiltonian and let B be an open topological disc
which is d-displaced by gp};. Then, for any Hamiltonian G which is supported
in B, we have cq,(G#F) = cq(F).

A similar lemma was established in [CGHS20, Lemma 4.4] but only for
maps supported in the northern hemisphere. The argument presented here
is essentially the same and so we will be rather brief.
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Proof of Lemma 3.3. Let (KS)[O’H be a smooth one parameter family of
Hamiltonians such that for any s € [0, 1], the time-one map of K* is ¢f ¢l
and such that the isotopy of K* consists in following first the isotopy gen-
erated by F' and then that generated by sG(st,z). More precisely, we may
take K* = G*#F, where G*(z,t) := sG(x, st). It generates the isotopy

o P if ¢ € [0, 1],
S 2t—1 .
o Vol iftelL ).

Then, for all s € [0, 1], Specy(K?®) = Spec,(F): the argument for this is
exactly the same as the argument!! in [CGHS20, Lem. 4.4] and so we will
omit it. This implies that for any (d, k) the continuous map s +— cq 1 (K°)
take values in Spec,(F'); the fact that this map is continuous is a consequence
of Hofer continuity of cq, see (15). Since this set is totally discontinuous,
we deduce that these functions are all constant, and so cgx(K°) = cqr(K?).

Since K' = G#F, it is sufficient to show that cgx(K%) = cqr(F) to
finish the proof. To see this, note that the Hamiltonians flows (ptko and ¢l
are homotopic rel. endpoints and, moreover, [ [c K Owdt = Js1 Jeo Fwdt.
It then follows from the Homotopy invariance and Shift properties that
car(K°) = cap(F). O

We will now use Lemma 3.3 to establish the Support-Control inequality.

Proof of the Support-control inequality. Fix d > 0. Let H be a Hamiltonian
supported in a disc D of area smaller than ﬁ. This area condition implies
that we can find a Hamiltonian F' such that the disc D is d-displaced by go};.

Furthermore, for any ¢ > 0, we may assume that ||F||; o < Area(D)+e.
To see this, note that we can find an area preserving diffeomorphism
such that (D) is sandwiched between two meridians (that is, curves with
§ = constant) of S? which enclose a region of area Area(D) + 5. Sup-

pose that ¢ is so small that Area(D)+e < T-lu' Then, consider the
Area(D)+e¢
2

Hamiltonian K = z whose time-1 map ¢k is the horizontal ro-
tation of angle Area(D) + e, which d-displaces ¥(D). Then, we may set
F = K o), whose time-1 map, w_lcp}(zb, d-displaces the disc D. Clearly,
| F||1,00 = Area(D) + €.

By Lemma 3.3, we have cq (H#F') = cqi(F). Using this, and Equation
15, we obtain

|can(H)=car(F)| = [car(H#0)—car(H#F)| < d|H#O—H#F|1,00 = d[|F[|1,00-

"To orient a reader who reads [CGHS20, Lem. 4.4], note that the argument there
refers to the spectrum of the time 1 maps of K° and F rather than to the Hamiltonians
themselves; this is because in that proof, the Hamiltonians are all assumed zero on the
southern Hemisphere so we can refer to the spectrum in terms of the time 1-map; however
the argument for that Lemma extends to the case here with no changes.
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Hence, we have
|car(H)| < |cap(F)] + d[|Fll100 < 2d[|Fll1,00 = 2d Area(D) 4 2¢.
This completes the proof of support-control inequality.

We have now completed the proof of Proposition 3.2.

3.2 Invariants for Hamiltonian diffeomorphisms

The goal of this section is to introduce PFH spectral invariants, and other
related invariants, for Hamiltonian diffeomorphisms.

3.2.1 The ¢4

We begin by noting that we can now define the PFH spectral invariants on
the universal cover Ham(S?,w) as follows. Given ¢ € Ham(S? w), let H be
a mean-normalized Hamiltonian such that the Hamiltonian path {np’}{}, 0<
t <1, is a representative for ¢. Define

cdk(P) = car(H). (21)

The mapping o
car : Ham(S* w) — R

is well-defined as a consequence of the Homotopy invariance property in
Proposition 3.2. Note that for any (not necessarily normalized) Hamiltonian
H, the Shift property yields

can(@) = can(H) —d / Hywt, (22)
St Js2
where ¢ is the lift of ¢ given by the isotopy (¢%)icio,1)-

However, to prove our main theorems, we will want invariants of
Ham(S?,w) rather than Ham(S?, w).

To produce such invariants, we start by showing that, as mentioned
above, it turns out that we can use the cqj to define invariants that are
independent of the choice of mean normalized Hamiltonian. To get started
with this, let ¢ € Ham(S?,w). Define

ca(P) = ca,—a(P)-

Next, we will prove that, for even d, the map ¢4 : 135;1(82&)) - R
descends to Ham(S?, w). In other words, we will show that there is a well-
defined map

cq : Ham(S?,w) = R.

This is the content of Proposition 3.5.
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Remark 3.4. The ¢4 as defined here are not canonical. We could equally
well define
ca(p) = Cd,k(%lq)

for any —d < k < d with the same party as d. What is important for
the applications in our paper is to choose a k such that the cq satisfy the
Normalization property. It is also instructive to note that because addition
of the homology class of a fiber of the map Y,, — S' induces a canonical
bijection of the twisted PFH chain complex, we have

Cdptr2dr2(H) = car(H) + 1. (23)

In particular, as a function on C*°(S! x S?), any cq i differs by a constant
function from some cq ) with —d < k < d.

To summarize, then, there are essentially d+1 possible spectral invariants
corresponding to degree d, and we have made a non-canonical choice of one
of them moving forward, with the main goal of simplifying the notation. <«

For future use, we also define
ci(H) = cq—a(H),
for any H € C>°(S* x §?).

Proposition 3.5. For _any positive even integer d and any even integer
k, the invariant cqy : Ham(S?,w) — R descends to Ham(S?,w). In other
words, it does not depend on the choice of mean-normalized H .

In particular, we obtain a well-defined invariant ¢g : Ham(S?,w) — R for
any positive even integer d.

Proof. Let H be any Hamiltonian and K = (2 + 1). Note that the Hamil-
tonian K vanishes at p_ and its time 1 flow is rotation by 27 about the
z-axis. We will show below that for any positive integer d and integer k of
the same parity as d,

car(H#K) = cap(H) + 4. (24)

This implies Proposition 3.5, by the following argument. Let H; and Hy be
mean-normalized Hamiltonians generating the same time 1-map. We can
assume that H; and H, are not homotopic, or else the proposition holds
by Proposition 3.2, item 5. Then, Hi#(K — %) and Hs are homotopic, and
Hi#(K — }) is mean-normalized, hence

car(Hi#(K — 3)) = canr(Hz).
On the other hand, by the Shift property

d

cap(Hi#(K — %)) = cap(H1#K) — >
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so that the Proposition follows from (24).
It remains to prove (24). To prove this, we first note that

car(H#0) = cqr(H).

Indeed, H#0 and H are homotopic, with the same mean. Thus, it suffices
to show that p

cap(H#K) = cap(H#0) + 5.
To prove this, by the Shift property we can assume that H vanishes at p_.
Then, H# K and H#0 have the same time 1-map ¢, and the same reference
cycle vy C Y,. The only difference between them is the trivialization of V' over
~; more precisely, if 7/ denotes the trivialization over v induced by H#K
and 7 denotes the trivialization induced by H#0, then we have 7/ = 7 — 1.
Thus, since in this case the identity map is an isomorphism of the twisted
PFH chain complexes, which shifts the grading by d? + d by [Hut02, Eq. 6,
Lem. 2.5.b], we have

d
Cap(H#K) = cqprara(H#0) = cap(H#0) + 5
as desired; here, we have used (23) for the second equality above. O

3.2.2 Homogenized invariants

We introduced the homogenizations pg and (4 in the introduction (see Equa-
tions (2) and (3). The next proposition states that they are well-defined.

Proposition 3.6. There are well defined maps g : Ham(S?,w) — R and
Cq: C®(S?) — R given by
. I
tq(p) = lim sup ca(") and (4(H) = limsup M,

n—00 n n—00 n

for any ¢ € Ham(S?,w) and H € C™(S?).

Remark 3.7. One can more generally define (4(H) := limsup,, Cd(i{n)
for any (non necessarily autonomous) Hamiltonian H € C*°(S! x S§?). How-
ever, we choose to restrict (4 to C°°(S?) in analogy with [EP06], where a
similar map ( was defined and was proved to satisfy the properties of a
symplectic quasi-state. It would be interesting to see if our (; also has these
properties. <

Proof. The fact that both of the above lim sup exist follows directly from
the Continuity property of ¢4 := ¢4 —q in Theorem 3.1. This shows that (4
is well defined on C*°(S?) and that p4 is well-defined on the universal cover

ﬁz;?n(S?,w). It remains to show that ug descends to Ham(S?, w).
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To see this, let ¢ € Ham(S?,w). Let 3, @' be two lifts of ¢ to I’/IE;_I/D(SQ, w).
Recall that 71 (Ham(S?, w) has only two elements and that the non-trivial el-
ement is represented by the isotopy {¢%}, where R(6, z) = 3 is the Hamilto-
nian which generates a full 27 rotation around the z-axis. As a consequence,
for any n € N, since @" and ¢'™ are both lifts of the same diffeomorphism
©", we have either ¢" = @™ or " = ¢"¢g. In both cases, the Continuity
property of Theorem 3.1 gives an upper bound which does not depend on
n:

|ca(@") — ca(@™)| < d||IR
It then follows that

1,00-

=n ~n
lim sup ca($") = lim sup M

n—00 n n—00 n

)

which proves that g descends to Ham(S?, w). O

We next state some of the properties of g which will be used in our
arguments.

Proposition 3.8. The invariant g : Ham(S?,w) — R satisfies the follow-
1ng properties:

1. Normalization: pq(Id) = 0.

2. Hofer continuity: For all ¢, we have
a(p) = pa(¥)| < ddmu(e,v).

3. Calabi property: Suppose that supp(yp) is contained in a topological
disc D. If Area(D) < 717, then

%ud(sO) = —Cal(p),

where Cal : Ham.(D,w) — R denotes the Calabi invariant.

4. Relationship with (g: For any H € C*°(S?),
i) = GaleH) ~ [ Hos (25)

for allt € R.

Proof. The first item follows immediately from the definition of py combined
with the fact that ¢4(0) = 0.

To prove the second item, let o,1 € Ham(S? w) and H, K be mean-
normalized Hamiltonians with @}{ = ¢ and cp}{ = 1. We also denote by
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@, € %(SQ,w) the lifts of ¢, respectively given by H, K. Then, by
definition )
lea(@™) = ca(@™)| = lea(HF™) — ca(KF™),

for any n > 0. Here H#™ denotes the n-fold composition H# ...#H. By
the Continuity property of ¢4, we have

glealH™) = ca(K™)| < [HF? — K# |1 00 = 0| H = K |J1,00.
Note that this last equality follows from (9). From this inequality, we deduce

|1a(p) — pa(¥)| < dl[H = K][1,00-

Since this holds for any choices of Hamiltonians H, K, and since we can
restrict to mean-normalized Hamiltonians in computing the Hofer norm of
o~ 11, the Hofer continuity property follows.

The Calabi property is a consequence of the Support-control property
from Prop. 3.2. Indeed, given any Hamiltonian H with support in D, (22)
yields

cal@) = calH) — d/ Hywt,

St Js2

where @ is the lift of ¢ given by the isotopy (@%)te[o,l}- The integral in
the second term in the right hand side above is nothing but —Cal(¢p), while
the first term is bounded from above by 2d Area(D), by Support-control.
Applying this to ¢, for any n > 0, we get
[Lea(@") +dCal(p™)| = Llca(@") +d Cal(e™)| = Llca(H")| < L2d Area(D).
The Calabi property follows from this last inequality.

As for the last item, it follows from the definitions of pg and (4, and (22)
that

1a(e'y) = palety) = CatH) — cl/S1 /s2 tH wdt.

3.2.3 The invariants 74

Although we can use the invariants cq or ug to get invariants of the time-1
map, these invariants will not in general be C°-continuous, as they require
mean normalizing the Hamiltonian. We obtain C°-continuous invariants by
defining, for even d € N, the numbers

nq: Ham(S?, w) — R
d (26)

p = calp) = 5e2(p).

30



The fact that ng is well-defined is an immediate consequence of Proposi-
tion 3.5. Observe that, by Proposition 3.5 and the Shift property of Propo-

sition 3.2, we have
d

nalsp) = calH) = SealH), (27)

where H is any Hamiltonian with time-1 flow .
We now prove that 7y satisfies various properties, most notably C°-
continuity.

Proposition 3.9. The invariant ng is well-defined and satisfies the following
properties for all ¢, € Ham(S?,w).

1. Normalization: ny(Id) = 0.

2. Hofer continuity: |ng(¢) —na(¥)| < d dg(p, ).

3. Support-control: If the support of ¢ € Ham(S? w), is contained in a
topological disc D with Area(D) < ﬁ, then |nqa(p)| < 2d Area(D).

4. C° continuity: The mapping ng : Ham(S?,w) — R is continuous with
respect to the C° topology on Ham(S? w) and, moreover, it extends
continuously to Homeog(S?, w).

We recall in relation to the support-control inequality that the total area
of the sphere is assumed to be one.

Proof of Proposition 3.9. The first and third properties are immediate con-
sequences of the same properties of the invariants ¢4 ; see Theorem 3.1 and
Proposition 3.2. To prove the second, note first of all that if H and G are
any Hamiltonians, then by the Continuity property of Theorem 3.1, we have
d
(ca(H) = ca(G)) = 5 (e2(H) = e2(G)) < d||H — G].
Now let K be any Hamiltonian generating ¢4 and let G generate ¢. Then
H := G#K generates ¥ and hence by the above inequality

na(¥) — na(e) < d||K|], na(e) —na(¥) < d||K]],

hence the Hofer continuity property, since K was arbitrary.

We only have to establish the C°-Continuity property. This takes up
the remainder of this subsection. Our proof will follow the lines (and use
some of the intermediate steps) of [CGHS20, Section 4], which established
a similar result for the invariant c; restricted to maps supported in the
northern hemisphere. We fix some degree d > 0. The result will follow from
the next proposition.
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Proposition 3.10. For any h € Homeog(S?,w) and ¢ > 0, there eists
§ > 0 such that for all f,g € Ham(S? w) satisfying dco(f,h) < § and
dco(g,1d) < 8, the inequality |ng(gf) — na(f)| < € holds.

Let us temporarily assume this proposition and explain how it implies
the C%-Continuity property of ng. Let (f;)ien € Ham(S?,w) be a sequence
which C° converges to h € Ham(S? w). We may write f; in the form
gih, with dco(g;,Id) — 0 as ¢ goes to co. By the proposition we have
Ina(g:h) — na(h)| — 0, which proves the C°-continuity. To prove extension
to Homeog(S?,w) let h € Homeog(S?,w) and let (f;)ien € Ham(S?, w) be a
sequence which C%-converges to h. Then, dco(fi, f;) = dco(f; f;l,Id) be-
comes arbitrarily small when ¢, j are large enough and so Proposition 3.10
implies that [1a(fi) = na(f5)| = [na((fif; ') f;) — na(f;)| becomes arbitrar-
ily small for 4,j large enough so that 74(f;) converges. Proposition 3.10
also similarly implies that if (f/);en is another sequence converging to h,
then [n4(fi;) — na(f!)] — 0, hence the limit does not depend on the choice
of limiting sequence. This allows us to consistently define 7ny4(h) for any
h € Homeog(S?, w) by setting

na(h) == lim na(f:),

1—»00
for any sequence f; which C?-converges to h. O
We now prove Proposition 3.10.

Proof of Proposition 3.10. We give the proof of this proposition in two steps.

Step A. Continuity in the non-finite order case.

We first assume that h is not of finite order in the group Homeog(S?, w).
Then, there exists a point z € S? such that A% (z) # . For such a point and
for any integers 0 < p < ¢ < d, we have hi7P(z) # z. By composing with
hP, we also have hi(z) # hP(x). Therefore, the points x, h(z),...,h%(z) are
pairwise distinct. Let B be a small ball centered at x, such that the closure
B of B is d-displaced by h.

Let ¢ > 0. We choose ¢ > 0 so small that any map f such that
deo(f, h) < & must also d-displace B.

The next lemma says roughly that a C%-small element of Ham(S? w) is
Hofer-close to being supported in B.

Lemma 3.11. Let B be any open topological disc. For all € > 0, there
exists § > 0, such that for all g € Ham(S?, w) with dco(g,1d) < &, there is
¢ € Ham(S?,w) supported in B such that dg(¢,g) < €.

A similar result was proved in [CGHS20, Lemma 4.6] but only for maps
g supported in the northern hemisphere. By conjugating by an appropriate
area preserving map, this particular case implies that Lemma 3.11 holds for

maps g supported in any topological disk of area % In fact, the factor %
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here is not essential to the proof of [CGHS20, Lemma 4.6]: the exact same
argument, which we omit'? for brevity, shows that it also holds for maps
supported in an embedded disk of any area The general case then immedi-
ately follows from the next fragmentation lemma: indeed, given the lemma
below, and given g, we can first fragment g into maps supported on embed-
ded disks and then approximate each of these maps by maps supported in
B.

Lemma 3.12. [Sey13, Prop 3.1] There exists two open topological embedded
discs Dy, Dy which cover S%, such that for any o > 0, there exists 6 > 0
such that for any g € Ham(S?%,w) satisfying dco(g,1d) < 6, there exists
g1, 92 € Ham(S?,w), with supp(g;) C D; and deo(g;,1d) < a fori = 1,2,
such that g = g1 0 go.

Having established Lemma 3.11, we can now continue the proof of Propo-
sition 3.10. Let 0 > 0 be as provided by Lemma 3.11 for &’ = 5. We
may assume without loss of generality that § < ¢’. Then, by Lemma
3.11, for any Hamiltonian diffeomorphism g with dpo(g,Id) < 6, there
exists ¢ € Ham(S? w) supported in B satisfying dg(¢,g) < S. Now let
f,g € Ham(S?,w) be such that deo(f,h) < & and deo(g,1d) < 6. By Hofer
continuity of 7y and Lemma 3.3, it follows that

na(gf) = na(H| < a9 f) = nal@ )| + na(@f) = na(f)|

<
<ddg(gf,of) +0=ddu(g,¢) <e.

This concludes the proof in the case where h is not of finite order.

Step B. The finite-order case.

We will now conclude the argument by reducing to the case where h is of
finite order to the case where it is not. Let h be of finite order and let € > 0.
We may pick a Hamiltonian diffeomorphism ¢ such that |[4|| < § and h1) is
not of finite order'® Then, by Step A, there exists § such that for any f’, ¢
satisfying deo (f/, hip) < 0 and do(g', h) < 6, we have [ng(g'f') —na(f)| < §.

2To help the reader who reads the argument in [CGHS20, Lemma 4.6], we note that
the only change is that the factors of 1/2, which come from the fact that the northern
hemisphere has area 1/2, see the end of the second paragraph of the proof there, must be
changed to some number ¢ < 1. This change can be accommodated by choosing what are
called N and m in the proof to be such that ¢/N < area(B),¢/m < 1/2 and 402+ < ¢,
With the preceding changes understood, the argument can then be repeated verbatim.

13For the benefit of the reader, we briefly sketch why such a 1 exists. Since h has finite
order, all z € S? are periodic and we let £ be the maximal period of a point. Then, the
set of points of period £ is open, because it is {x € S* : hk () £ x,Vk=1,...,4—1}. It
follows that if we fix a point = of period ¢, there exists an open set U containing x such
that hf|y = Idy and U,...,h* "' (U) are all disjoint. Now, let ¢ be a C'-small (hence
Hofer small) map supported in U which coincides with an irrational rotation around x in
a smaller open subset V' C U. Then, hi does not have finite order. Indeed, for any n € N,
y € V\ {z}, we have (h))"(y) = »"/*(y) if £ divides n and (h))"(y) ¢ U otherwise. In
both cases, (ht))"(y) # y. Thus, such % suits our needs.
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Now take f, g as in the statement of the proposition. We now apply the
triangle inequality to obtain

1a(gf) —na(f)| < na(gf) —nalgfO)+nalgf) —na(fY) |+ na(f1¥) —na(f)l.

By Hofer continuity and the above estimate on |[¢||, we have

na(f1) —na(f)] <

na(gf) —nalgfy)| <

Wl m

€
g»
Thus, to finish the proof of the proposition, it remains to show that

na(gf¥) — na(fv)] < g.

This follows from the previous paragraph, since if dgo(f,h) < 6, then
dCO(fqu)a h¢) < 0. O

4 The quasi-isometry type of the kernel of Calabi

Equipped with our new spectral invariants, we now prove Theorem 1.4.

4.1 Homogenization and monotone twists
4.1.1 A combinatorial model

We begin by recalling the combinatorial model of Theorem 6.1 of [CGHS20],
which gives an explicit formula for cy(H) where H : S> — R is a monotone
twist, and which we will need below and for the proof of Theorem 1.7 as
well.

Here and below we use the notations of [CGHS20, Section 5.2]. To
summarize, recall that a lattice path P is the graph of a piecewise linear
function Y : [0,d] — R>o, such that the vertices of P are at integer lattice
points; the number d is called the degree of the path and is assumed an
integer below. A lattice path is called concave if it never crosses below any
of its tangent lines. We can think of a lattice path as a collection of maximal
line segments, called edges, joined end to end. We regard any edge as an
integer multiple m,, , of a primitive vector (g, p); these vectors are directed
with the convention that ¢ > 1.

To any concave lattice path, we associate a number j(P) as follows. We
form the region Ry bounded by the z-axis, the line x = d, and the part of P
above the z-axis, we form the region R_ bounded by the axes and the part
of P below the z-axis, we define j+ to be the number of lattice points in
R, not including lattice points on P, and we define j_ to be the number of
lattice points in R_, not including the lattice points on the x-axis. Finally,
we define j(P) := j+ — j—. See Figure 1. We define the combinatorial
index I(P) by

I(P) :=2j(P) —d.
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Figure 1: The lattice points which contribute to the count for j(P) are
circled. Here, j{(P) =5, j_(P) =5, d =6, thus j(P) =0 and I(P) = —6.

Now let H = 1h be a monotone twist. Assume that h(—1) = B'(—1) =
0,h” > 0, and /(1) is an integer. We call such a monotone twist nice. We
call a lattice path P compatible with A if for every edge my 4(g,p), there
exists some z,4 such that h'(z,4) = p/q. If P is a concave lattice path,
compatible with a nice monotone twist, then we define the action A(P) by
defining

(P(1 = 2pq) + a(2pq)) » (28)

N |

Alg,p) ==

and extending by linearity.

We can now state the formula from [CGHS20, Thm. 6.1] for computing
the invariants ¢4 . That is, for all degree d > 1 and all grading k, when H
is a nice monotone twist we have

can(H) = max{A(P) : 2j(P) — d = k}, (29)

where the maximum is over concave lattice paths that are compatible with h.
We are justified in invoking this formula because our nice monotone twists
are in M, and the cq defined here extend the definition from [CGHS20], see
the discussion at the beginning of Section 3.

4.1.2 (; of monotone twists

We now apply the combinatorial model from the previous section to compute
the invariants (4 in the case of monotone twists. In particular, we can now
give the promised proof of Proposition 1.11.

Proof of Proposition 1.11. First note that (; is Lipschitz continuous with
respect to the uniform norm on C*°(S?); this follows from Hofer continuity of
cq- Thus, both sides of the equation in Proposition 1.11 are continuous with
respect to uniform norm. Since any monotone twist H can be approximated
uniformly by nice monotone twists, we deduce that it is sufficient to prove
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Proposition 1.11 for nice monotone twists. For the rest of the proof, we
therefore assume that H is a nice monotone twist.

We note that the index I(P) = 2j(P)—d from 4.1.1 is equivalently given
by the following formula

I(P)=2A+y+w—e, (30)

where y and w are respectively the minimal and maximal vertical coordinate
of P, e is the number of edges in P and A is the (signed) area of the region
enclosed by P, the z-axis and the vertical line {d} x R. Indeed, by shifting
the path if necessary, it suffices to prove this when y = 0, in which case it
follows from Pick’s formula that this corresponds to the definition given in
4.1.1.

Let us introduce some notation. For any i € {1,...,d}, we set a; =
Y (i)—Y (i—1), where Y is the function [0, d] — R, such that P = graph(Y') =
{(z,Y(z)):xz €[0,d]}. Then,

2A = 2dy + a1 + (201 + a2) + -+ + (201 + -+ + 2a4-1 + aq)
=2dy + (2d — 1)a; + (2d — 3)ag + - - + aq

Using (30) and the relation w =y + aj + - - - + aq, the condition I(P) = —d
becomes

2dy + 2y + 2da; + (2d — 2)ag + -+ - + 2a4 — e = —d.

Therefore, under this condition, we may express y in terms of the a; as:

d

y=—gh(dai+(d—Daz+...ag+ %) = 555+ (—ai+ gizai). (31)
=1

Let us now turn our attention to the action. It is given by (28): we state

here a reformulated version with the a;, namely

d
AP) =y + Y 3(ai(1 — z) + h(=z)),

i=1
where z; is the unique point such that h'(z;) = a;. Using (31), we obtain

d

d
A(P) = Z Thra; — +Z%(ai(1 — 2) + h(z)),

)+ h(z)) (32)

Note that the term m belongs to (—3 1 0]. It vanishes when all edges in

P have horizontal displacement 1.
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By (29), cq = c4,—q is obtained by maximizing the value of A(P) over all
possible paths with I(P) = —d.
To compute this maximum, consider the function

d
Fltr,.ota) = (W) (-1 4+ 25 — ) + h(t:))

=1

defined on the set E of tuples (t1,...,t4) such that —1 <#; <... <ty < 1.
We have
A(P) = 3F (21, 2a) + o015y (33)

We may compute the partial derivatives of F',

oF
o = Clta

')h”(ti)v

and we see that it is positive for ¢; < —1 + di—il
—1+ AL - This implies that F' attains its maximum at (¢1,...,%,) such that
-1+ d+1’ for all ¢. Thus,

max I = Zh (—1+ 25). (34)
=1

Now it follows from the versions of (29), (33), (34) for nH, and the fact
that e — d < 0, that for all n,

d
lcdnH ) <3 h(-1+ 75 (35)
=1
To proceed, let a < ... < afj be sequences in %N which converge respec-
tively to —1 + ﬁ, -1+ di+17 v, 1= %. Set z! such that A/(z]") = al.
Then,
d
F(zp, ..., 2" =% maxF— 2Zh 1+d+1)
=1

Moreover, we can construct a lattice path, for nH, such that (33) holds with
the z; = 2, and e = d. We therefore deduce Lcq(nH) > SF(27,...,27)
and we conclude in combination with (35) that

1
1
hmn_woncd _a(nH) —55 h(— d+1

=1

as desired. O
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Remark 4.1. (i) It follows from the previous proposition that we have
the following Composition property for monotone twists: For any two
monotone twists ¢, we have

pa(d) = pa(o) + pa(i). (36)

Indeed, it follows from Proposition 1.11 that (4(H; + H2) = (4(H1) +
Ci(H2), hence (36).

(i) For any monotone twist ¢ € Ham(S?,w), it can easily be shown that
Ha(p) = limy, o0 “LLE)
©.

, 1.e. the limsup in (2) is in fact a limit for such
<

4.2 A family of Hamiltonians

We will now construct a certain family of Hamiltonian diffeomorphisms
which will be used to establish Theorem 1.4. Let U C S? be a proper
open set containing the North Pole py and let ¢ > 0 be an integer. For all
1 € N, we denote

Di:={(20)eS*:1-2 <2<1},

where d; = 2¢TF1,
We choose ¢ large enough so that all the D;’s are contained in U. Note
that each D; is an embedded disc and

Area(D;) = —.

The next lemma states the properties of our family of maps.

Lemma 4.2. There exist autonomous Hamiltonians (H;);en, such that H;
is supported in D; and the following properties are satisfied for all t > 0,
1€ N:

1. gofqi is a monotone twist, for all t € R,

2. Cal(pl) = L

3. dp(ply,,1d) <2t +2,

4. If § > i, then udi(gpgqj) — —t%

5. na,(¢y,) > —t% and if j <, then pa (9l ) > —t5%.

6. gp%ﬁp%j = cp%,j cp'}{i forallt,s € R.

38



Proof. Consider the functions f; : [-1,1] — R defined by

(0 zel-1,1- 2],
fi(z) = df(z—(l_%)>’ z €| _d%vl]‘

These functions are non smooth but to ensure that our future Hamiltonians
are smooth, we approximate them by smooth functions h; satisfying the
following conditions:

(i) hi(2),h!(z) =0 and |fi(z) — hi(2)] < d%- for all z € [-1,1],
(ii) The support of h; is contained in the interior of [1 — 7, 1].
(ii)) [, hi(z)dz =2.

Let H;(z,0) = $h;(2) and observe that H; is supported in D; and that
goﬁqi is a monotone twist for any ¢ > 0 (whence item 1 of the lemma).

The fact that Cal(goﬁqi) = L readily follows from Property (iii).

To prove the third item, we will need the following lemma, whose proof
we postpone to the end of this section. The idea behind this lemma goes
back to Sikorav, who implemented it in the case of R?" in [Sik90]; see also

[HZ94, Chap. 5 - 5.6].

Lemma 4.3. Let H : S*> — R denote an autonomous Hamiltonian such that
the support of H is contained in a disc D with the property that Area(D) <
+. Then, dg(pl,1d) < & max(H) + 2.

Since the support of H; is a disk of area less than d%, this lemma leads

to

1 1
di (¢, 1d) < Emax(tHi) +2< (1 + W) t+2<2t+2,
g )

which implies the third item.

Item 4 is a consequence of the Calabi property from 3.8, because cpﬁqj is
supported in D; and Area(D;) < ﬁ for j > 7. The last item of Lemma
4.2 is also easy to check. Indeed, since the Hamiltonians H; are functions of

z, they all Poisson commute, hence their flow commute.
There remains to prove item 5. Since

d;
Ca; (tHy) = pa,(9l,) + di /S2 tHjw = pa,(oly,) + to

we just need to prove that (g, (H;) > 0 and (q,(H;) > 31‘161' when i > j.
As already mentioned, the above conditions (i) and (ii) ensure that ap’}{j
is a monotone twist for all ¢t > 0. By Proposition 1.11,

di 2m
) =3 by (1 n ) |
1

d; +1



We can rewrite the above sum as

N
Hj)=1 ~1

where N is the largest integer such that —1 + 2(3 +iv) is in the support of

hj, that is —1 + (d N) >1-— %. A simple computation reveals that
J
d.
N+1= di. (37)

J
Consider the (non-smooth) function f;j(z). By the definition of h;, we
have h; > f; — % and so

[0

The first term on the right hand side in the above equation may be com-
puted explicitly. Indeed, fj(z) is linear in z and so the above is just an

IN+1

3 4 (38)

arithmetic sum. First note that —1 + 2(jﬂ:1k) 1 - d—H(k + 1), and so
Zk 0ofi < d +1 > Zk ofi ( 7 _H(k‘ + 1)) . Next, one can easily

check that f; (1 — 2kt 1)) — 2d; — 2% (k +1). Thus,

N 242
Zf]( (k:+1)> > 2dj—ﬁ(k+1)
7, k‘ 0 (a

247 (N +1)(N +2)

=2d;(N+1) - —2
d]( + ) d; +1 2
di +d;
=d; (2—-—-2).
( dm) (39)

For i = 7, (37), (38) and (39) yield

d; 1
(H;) = dl 1-— - — s
o, (H3) ( di+1 2d§> =0
as desired, which implies the first part of item 5.
For i > j, (37), (38) and (39) give

1 d; +d 1
H)>-d; [2-2"% -
2 d; 8 2 8 d; 16
4 <

where we used ﬁ < % for the second inequality and

J
inequality. This concludes the proof of item 5. O
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We end this section (and the proof of Lemma 4.2) with the proof of
Lemma 4.3.

Proof of Lemma 4.3. Since Area(D) < %, by Lemma 2.1, we can find
Y1, ...,N € Ham(S?, w) such that

L 4i(D)Ny;(D) =0,
2. dg(1;,1d) < %

1
Define the Hamiltonians F; = %Howfl and note that 4,0}71. = Yipy 1/1;1.

Let I = Zfil F;. Observe that, since F; is supported in v¢;(D), the F;’s
have disjoint supports, and so max(F) = max(F;) = 3 max(H). Hence,

1
dH(gp};, Id) < N max(H),

where the last line follows from the definition of the Hofer norm. Therefore,
to prove the claim it is sufficient to show that d (¢}, pk) < 2. This can be
proved using Identities (5) and (6) as follows:

N, N 1
A (i, oF) = du (H wﬁ,meﬁMl)

i=1 i=1

N L. N
<Y du(el o) < 2du (v, 1d) < 2.
=1 =1

4.3 Quasi-flats in the kernel of Calabi

We are now ready to present a proof of Theorem 1.4. First note that without
loss of generality we may assume that the open set U contains the North
pole p4. This allows us to use the constructions of the preceding section.

We begin by proving the first part of the theorem, regarding the quasi-
flat rank.

Proof of Theorem 1.4(a). Let R := {(t1,...,t,) : t; > 0}. We equip R}
with the distance induced by the sup norm, that is we define the distance
between (t1,...,t,),(s1,...,5,) € RY to be

|(t1, .oy tn) — (815« y Sn)lloo = max{|t; — s;| :i=1,...,n}.
The mapping
®: R" — Ham(S? w)

t tn _(t1+"'+t )
(tlw"?tn)'_)SO[;lO"'OSOHTLOSOHn_H nv
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takes values Hamy (S?,w). Moreover, since the H; all have the same integral
over S?, the mapping ® takes values in the kernel of the Calabi homomor-
phism.

We will show that there exists an invertible n x n matrix A such that ®
satisfies the following inequality.

1At = 8)lloe < du(@(t), D(s)) < 20 2llt — sl +1+7),  (40)

where t, s stand for (¢1,...,t,) and (s1,...,s,), respectively. As a conse-
quence,

1

W”t — 8[loo < du(®(t), 2(s)) < 4nflt — slloc +2n + 2,
op

where ||A7Y||op is the operator norm of A™!, as a linear map of the normed
space (R, | - o).

The above clearly implies that ® is a quasi-isometric embedding of
(R, ||  |loo) into (Ham(S?,w),dg). This establishes Theorem 1.4 because
(R™,]|+||oo) quasi-isometrically embeds into (R, || -||~); an explicit formula
for such a quasi-isometric embedding is given by

L:R" — R2"
(x1,...,zn) — (L(z1),..., L(x,)),

where L : R — ]R%r is defined as

L (07 —.ZU), € S 07
L) = {(1’,0), x> 0.

For a proof of the fact that L is a quasi-isometric embedding see [SZ18, Lem.
8.12].

We now turn our attention to (40), beginning with the following proof
of the inequality on its right-hand side:

- —s n—sn — 2.i(ti—=8;
dir (B(£), (s)) = [B(t) 0 B(s) || = [l ™" ... gy 7]

n
—2ilti—sq i Si
<= SN+ 30 el I < Y @it — sl +2) + 2
=1 =1

1
<2n <2||t —8loo + 1+ n) :
Above, the second equality on the first line is a consequence of the last
item in Lemma 4.2, the first inequality on the second line follows from trian-

gle inequality and the second inequality in the second line is a consequence
of Lemma 4.2, item 3. This proves the right hand side of (40).

42



It remains to prove the left hand side. Let us consider the following two
families of monotone twists.

n t1t-ttn
at) = gp%l ... goiqn, Bt) = cpg{iﬂ )

By definition ®(t) = a(t)3(t)~! and since monotone twists commute
dr(2(t), ®(s)) = [|B(t)a(t) " a(s)B(s) || = [I(a(t)B(s)) " als)B(t)]]
= du(a(t)5(s),a(s)B(t)).

Now, combining the previous equality with the second item of Proposition
3.8 gives

By the fourth item of Proposition 3.8 and (36), we can write,

n

Ha(a(6)8(s)) — maa($)8(6) = > (malehy)) = #alh,)) (5 = 55),

j=1

for any d. It follows from the above that the left hand side in (41) coincides
with the quantity
[A(t = 8)lloo;

where A is the matrix whose ij entry (for 1 <i,j < n) is

:U’di(@]l'{j) - Mdi(‘:ollr{n+1)
d; '

Aij =

The fourth item in Lemma 4.2 tells us that ,udz.(gp}qnﬂ) = ,udz.(go}gj) =

—%, for j > 4. It follows that A;; = 0 for j > i, i.e. the matrix A is
lower triangular. From the fifth item of the same lemma, we deduce that
the diagonal entries of A are non-zero. Hence, A is invertible which proves
(40). We have completed the proof of Theorem 1.4(a). O

4.4 The kernel of Calabi is not coarsely proper

In this section, we prove the remainder of Theorem 1.4, i.e. that the kernel of
the Calabi Homomorphism defined on Hamg(S?,w) is not coarsely proper.
Recall from the introduction that a metric space (X, d) is said to be coarsely
proper if there exists Ry > 0 such that every bounded subset of (X,d) can
be covered by finitely many balls of radius Ry.

Proof of Theorem 1.4(b). For any fixed r > 0 consider the set

X’!’ = {SDEIZQOTHQ,L Hi 2 1}7

where the H; are the Hamiltonians provided by Lemma 4.2.
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Claim 4.4. The set X, is % separated, i.e. for i # j we have

3r _ _

The above claim implies that the set X,., which is bounded by Lemma
4.2, cannot be covered by finitely many balls of radius {z. Since this holds
for every value of r, and since X, is included in ker(Cal), we conclude that
ker(Cal) is not coarsely proper, hence the Theorem.

It remains to prove Claim 4.4.

Proof of Claim 4.4. Suppose that i < j, pick k € N such that 2 < k < 2j
and consider dj, as in Lemma 4.2. By the Hofer continuity property of jg4, ,
from Proposition 3.8, we have

1 r _
jk‘ﬂdk (SD?;;[%) - /"Ldk (gp’;{%)‘ g dH(SOG‘IQZ? SD’;IQ]') = dH(SOHl (PTHQZ" SDH:SOTI-’IQJ)

By Lemma 4.2, we have ,udk(cpf%j) = —T%’C and fig, (P,,) = —r%. Thus,
i\ oy, (P, ) — udk(go"H2j)| > 3% which completes the proof. O
We have now proved Theorem 1.4(b). O

5 Non-simplicity of Homeoy(S?, w)

We conclude by proving Theorem 1.7.

5.1 Outline of the argument

To prove non-simplicity of Homeog(S?, w), we explicitly construct a proper
normal subgroup which we call the group of finite energy homeomor-
phisms and denote by FHomeo(S?,w). We introduced these homeomor-
phisms in [CGHS20] where we proved that they form a proper normal sub-
group of the compactly supported area-preserving homeomorphisms of the
disc. Here, we will give a slight variant of the definition in [CGHS20] which
is more natural from the point of view of Hofer’s geometry.

Definition 5.1. We say ¢ € Homeog(S?,w) is a finite-energy homeomor-
phism if there exists a sequence of Hamiltonian diffeomorphisms {¢;}ien
which is bounded with respect to Hofer’s distance and which converges uni-
formly to p. We denote by FHomeo(S?, w) the set of all finite-energy home-
omorphisms.

Theorem 1.7 follows immediately from the following result, which will
occupy the remainder of this section.
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Theorem 5.2. FHomeo(S?,w) 4s a proper normal subgroup of
Homeog(S?, w).

We prove the above using arguments similar to those given in [CGHS20].
Here is a brief outline. As we shall see, it is not hard to show that
FHomeo(S?,w) forms a normal subgroup of Homeog(S?,w); the main chal-
lenge is proving that it is proper.

To do this, we use the invariant 7y : Ham(S?,w) — R. We showed above
that this is continuous with respect to the C° topology on Ham(S?,w) and,
moreover, it extends continuously to Homeog(S?,w); see Proposition 3.9.
A straightforward argument shows that for any ¢ € FHomeo(S?, w) there
exists a constant C, depending on ¢, such that for all (even) d we have

(o) ¢ o (42)
d

We will then prove Theorem 5.2 by showing that certain so-called infi-

nite twist homeomorphisms 1 € Homeog(S?, w) satisfy the following;

lim na(1)

d—oo d

= 0. (43)

This violates (42). This last step requires estimating 74(¢)) for which we
rely on the combinatorial model from Section 4.1.1.

We end this section by highlighting the differences between our proof,
in this article, of non-simplicity of Homeon(S?,w) and the proof of non-
simplicity of Homeo.(D? w) given in [CGHS20]. In both articles we use
PFH spectral invariants cq : C*°(S* x §?) — R. Given an arbitrary Hamil-
tonian H, the value of ¢;(H) depends on H and so ¢4 does not yield a well-
defined invariant of Hamiltonian diffeomorphisms. However, in [CGHS20]
we overcome this problem by restricting the domain of ¢4 to a certain class of
Hamiltonians which is suitable for the purposes of that article; see [CGHS20,
Sec. 3.4]. In the current article, we do not have the possibility of restricting
the domain of ¢4. Instead, we work with 71y which is well-defined for all
Hamiltonian diffeomorphisms of the sphere as proved in Section 3.2.

Another difference between the two proofs is the manner in which we
show properness of FHomeo. In both articles this is achieved by exhibiting
area-preserving homeomorphisms 1 satisfying Equation (43). The proof of
this given in [CGHS20] involves verifying for certain smooth twist maps a
conjecture of Hutchings, concerning recovering the Calabi invariant from
the asymptotics of PFH spectral invariants, whereas our proof here, which
is shorter, uses the forthcoming Claim 5.4. The proof of this claim, however,
relies on the combinatorial model for PFH developed in [CGHS20, Sec. 5].
We should remark that part of the motivation for the somewhat longer
argument in [CGHS20] was that Hutchings’ conjecture is of independent
interest, hence useful to verify for twist maps.
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5.2 An infinite twist is not a finite energy homeomorphism

We now carry out the above outline. We begin by describing the infinite
twist homeomorphisms .

Denote by p; € S? the North Pole of the sphere, i.e. the point whose
z-coordinate is 1, in the cylindrical coordinate system introduced in Section
2.1. We say a function F : S\ {p;} — R is an infinite twist Hamiltonian
if it is of the form

1
F(2.0) = Lf(2) (a1)
where f:[—1,1) — R is a smooth function such that f' > 0, f” > 0 and
1 2
lim -~ f(1——— ] = 0. 4
dgzzdf( d+1) > (45)

Observe that F defines a smooth Hamiltonian on S? \ {p;} whose flow is
given by
P(0,2) = (0 + 21t f'(2), 2).

We extend the flow ¢h to S? by defining % (p+) = p4; this yields an
area-preserving flow on S? which is non-smooth at the point p,. We say
¥ € Homeoy(S?,w) is an infinite twist homeomorphism if it is of the
form

b= g (46)

for some F. We will call ¢y an adapted infinite twist if the corresponding
f satisfies the following technical hypothesis:

f (1 — dil> € (d+ 1N,

for all d > 2.
We can now give the promised proof of the remaining theorem.

Proof of Theorem 5.2. We begin by noting that the argument in [CGHS20,
Prop. 2.1], repeated verbatim, shows that FHomeo(S?,w) forms a normal
subgroup of Homeog(S?,w). It remains to show that it is proper.

Step 1. Linear growth in FHomeo.

We first show that for any ¢ € FHomeo(S?, w) the linear growth con-
dition (42) holds. This is an immediate consequence of the properties in
Proposition 3.9. Indeed, let ¢ € FHomeo(S? w) and choose a sequence

Vi C—0> o that is uniformly bounded with respect to Hofer’s distance. Since
the ¢; are bounded and 74(Id) = 0, the Hofer continuity property ensures a
bound of the form 74(¢;) < d- C for some uniform constant C; then, by C°
continuity, the same bound holds for ¢.

Step 2. Superlinear growth of some infinite twists.
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It remains to prove that FHomeo is proper. The structure of the remain-
der of our argument will now be to prove properness, assuming the technical
Claim 5.3 below which makes use of the adapted condition, and then prove
the Claim. From now until the end of the paper, we therefore assume that
F is an adapted infinite twist Hamiltonian whose support is contained in
the interior of the disc {(z,6) : z > £} which is of area {-. Imposing this as-
sumption enables us to apply the following promised technical claim. Recall
below that the n; are defined only for even d.

Claim 5.3. Fixz d > 4, define zg := 1 — %. Let H be a smooth monotone

twist Hamiltonian supported in a disc of area at most 1/12. Assume that
p:=Nh(z20) € (d+ 1)N. Then

d

na(ir) > H(zo) — 3

We defer the proof for the moment. Assuming it, we can produce super
linear growth of the ny as follows.

Claim 5.4. nq(¢L) > %f(l — ﬁ) - %, for d > 4.

Proof of Claim 5.4. For every i € N, let F; : S2 — R be a sequence of
smooth Hamiltonians of the form

1
Fi(zv 9) = ifz(z)a
where f; : [-1,1] — R is a smooth function such that f/ > 0, f > 0 and
fi(z) = f(2) for z € [-1,1 — 1]
0
Observe that @};Z_ <, oL, because (go};i)_l o pk is supported in the
disc {(z,6) : z > 1 — 1}. Hence, by the C” continuity of 74 established in
Proposition 3.9, we have

na(er) = lm na(ek,).

1—00

for every d. Applying Claim 5.3 to F;, for i sufficiently large with respect to
d, yields

nalok) > Fi (1= 21) — 8 =3 (1- %) - d=4r(1- %) - &
for d > 3. Hence, the claim. 0

It follows immediately from the previous claim that ¢ := go}; satisfies
Equation (43) which, as explained in Step 1, implies that an adapted infinite
twist go}; is not a finite-energy homeomorphism.

To complete the proof of Theorem 5.2, it therefore remains to prove
Claim 5.3.
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Proof of Claim 5.3. Recall, from Equation (27), that ng(¢) = cq(H) —
gCQ(H ). Hence, to prove the Claim, it is sufficient to show that the fol-
lowing two inequalities hold:

c2(H) < (47)

W =

calH) > H <1 - dil) . (48)

To prove (47), we invoke the Support-control inequality of Proposition
3.2, which gives co(H) < 2-2- 1—12, since the area of the support of H is
bounded by 1—12

Next, we prove (48). By the Continuity property of ¢4 from Theorem
3.1, we may perform a small perturbation of A, near z = 1, and assume that
(1) € N, in other words that our twist is nice. This allows us to apply
Theorem 6.1 of [CGHS20] whose statement we recalled in Section 4.1.1.

Recall the notation zp = 1 — %. By Theorem 6.1 of [CGHS20] we have

ca(H) = A(P),

for any degree d lattice path P of combinatorial index I(P) = —d; see
Section 4.1.1.

Recall the notation p := h'(2(), which is by assumption an integer. By
assumption, there exists an integer a > 0 such that p = a(d+ 1). Take P to
be the lattice path obtained by joining the lattice points (0, —a), (d—1, —a)
and (d,p —a). This is a concave lattice path made of two edges. It satisfies

AP) =201 z0) + 2h(z0) —a.

I(P)=2j(P)—d=2((p—a) — da) — d = —d.

Hence,
p 1 P 2 1
> (1 — - —a=C(1 - 2 -
ci(H) > 2(1 20) + 2h(zo) a=7 (1 20 d+1> + 2h(zo)
1 2
==h =H((l—-—].
3 z0) < d+ 1)
O
We have completed the proof of Theorem 5.2. O

Remark 5.5. The infinite twist Hamiltonian F', introduced above, gener-
ates a l-parameter subgroup ¢ of Homeog(S?,w). It follows immediately
from the above proof that ¢t ¢ FHomeo(S? w) for ¢t # 0. This yields
an injective group homomorphism from the real line R into the quotient
Homeog (S?, w)/FHomeo(S?,w). One can show that this injection is not a
surjection; see [PS]. However, we have not been able to determine whether
Homeop (S?, w)/FHomeo(S?, w) is isomorphic to R as an abelian group. <
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Remark 5.6. The group of finite energy homeomorphisms FHomeo(X:, w)
can be defined on any surface ¥; it forms a normal subgroup of Ham,(%,w),
the group of Hamiltonian homeomorphisms of (X, w) which coincide with
the identity near the boundary, if X # (). Recall that a Hamiltonian
homeomorphism is a homeomorphism which can be written as the C limit
of Hamiltonian diffeomorphisms. It is well-known that Ham, (X, w) coincides
with the kernel of the mass-flow homomorphism of Fathi [Fat80].

Suppose now that (3,w) is any compact surface of genus 0, with
boundary, and view it as embedded into (S?,w). There is an inclusion
FHomeo(Y¥,w) C FHomeo(S?,w). The infinite twist ¢ can be placed on
(X,w) and the fact that it is not a finite-energy homeomorphism of the
sphere implies that ¢ ¢ FHomeo(X,w). We conclude that Ham.(X,w) is
not simple. Moreover, as in the case of Corollary 1.8, one can conclude that
Ham,(X,w) is not perfect either. This answers a question of Fathi [Fat80,
Appendix A.6], concerning the simplicity of the kernel of the mass-flow ho-
momorphism, for compact genus-zero surfaces.

We remark that the infinite twist and FHomeo can be defined on any
symplectic manifold. However, our methods for proving properness of finite-
energy homeomorphisms are currently applicable to dimension two only. <«

5.3 Proof of Corollary 1.9
We now give the proof of Corollary 1.9.

Proof. We may assume without loss of generality that fRQ Q=1. As al-
luded to in the introduction, by a version of Moser’s argument for non-
compact manifolds, due to Greene and Shiohama [GS79], there exists a
smooth diffeomorphism ¢ : R? — S?\ {p} such that ¢*w = Q. Here p
denotes the North pole in S2. This gives rise to an injective group homo-
morphism W : Diff(R?, Q) — Homeog(S?,w), defined for any h € Diff(R?, Q)
by W(h)(x) := Yhyp~1(x) for + # p and ¥(h)(p) = p. The image of ¥
is the set of elements of Homeog(S?,w) that fix p and are smooth in the
complement of p.

In particular, the image of ¥ contains an adapted infinite twist home-
omorphism 7, which we showed above is not in FHomeo(S? w). By the
Epstein-Higman argument cited in the introduction, the commutator sub-
group of Homeog is contained in any non-trivial normal subgroup. In par-
ticular, 7 is not a product of commutators. This implies that ¥~1(7) is not
a product of commutators in Diff(R2, Q), which is therefore not perfect. [

Remark 5.7. The above argument similarly shows that Homeo(RR?,2), the
group of area-presrving homeomorphisms of the plane, is not perfect if
has finite total area. This holds more generally if €2 is only assumed to be
a good measure and not necessarily a smooth area form; being good means
that €2 is non-atomic and positive on non-empty open sets. In this case, one
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can repeat the above argument, using the classical Oxtoby-Ulam theorem
[OU41] instead of [GS79]. <

5.4 Remarks on Hofer’s geometry

We close by briefly discussing the large scale geometry of FHomeo.

It is possible to define Hofer’s distance for area-preserving homeomor-
phisms as follows. Given ¢ € FHomeo(S?,w), we define its Hofer distance
from the identity by

dp(p,1d) := liminf dy (;, Id), (49)

where the infimum is taken over all sequences {p;} C Ham(S? w) which
converge uniformly to ¢. Define dg (g, 1) := dg (o~ 4, 1d).

We leave it to the reader to check that this defines a bi-invariant distance
on FHomeo(S?,w).

It is a natural question to try to better understand this space. For
example, one could ask if FHomeo has infinite quasi-flat rank. We strongly
suspect that the answer is, in fact, positive as our tools are robust with
respect to the C° topology and so one can adapt the proof of Theorem 1.4
to prove that FHomeo does have infinite quasi-flat rank. Similarly, it can
be shown that FHomeo is not coarsely proper.

One could define dy(ip,1d), via (49), for arbitrary ¢ € Homeog(S?, w).

If ¢ is not a finite energy homeomorphism, i.e. if ¢ ¢ FHomeo(S?,w),
then we get 3

di(p,1d) = o0

Hence, we may view homeomorphisms which are not finite-energy as those
which are infinitely far from diffeomorphisms, in Hofer’s distance. This is the
point of view expressed in Le Roux’s article [LR10, Question 1]. Theorem
5.2 tells us that such homeomorphisms do exist.

A question which arises immediately as a consequence of our definition
of dyr is whether dg (g, 1)) coincides with the usual Hofer distance dg (¢, 1))
when ,1 € Ham(S?,w). We do not know the answer to this question.
Note that this is equivalent to asking if the (usual) Hofer distance is lower
semi-continuous with respect to the C° topology; this was posed as an open
question by Le Roux in [LR10].
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