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Key Points:

¢ A neural network model of lower-band chorus wave amplitude is developed using

imbalanced regression

e For the first time, a chorus model can predict the large amplitude of strong chorus waves
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Chorus' evolution is consistent with electron injection drift paths, peak equatorial

amplitude near midnight, and off-equator peaks at noon
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Abstract

Whistler-mode chorus waves play an essential role in the acceleration and loss of energetic
electrons in the Earth's inner magnetosphere, with the more intense waves producing the most
dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due
to the imbalanced nature of the dataset, i.e., there are many more non-chorus data points than
strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes
significantly during active times. Using an imbalanced regressive (IR) method, we develop a
neural network model of lower-band (LB) chorus waves using 7-year observations from the
EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the
auroral electrojet index alone captures most of the variations of chorus waves. The large
amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model
shows that the equatorial LB chorus's spatiotemporal evolution is similar to the drift path of
substorm-injected electrons. We also show that the chorus waves have a peak amplitude at the
equator in the source MLT near midnight, but toward noon, there is a local minimum in
amplitude at the equator with two off-equator amplitude peaks in both hemispheres, likely
caused by the bifurcated drift paths of substorm injections on the dayside. The IR-based chorus
model will improve radiation belt prediction by providing chorus wave distributions, especially
storm-time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and

other physical systems, imbalanced regressive methods deserve more attention in space physics.

Plain Language Summary

Whistler-mode chorus waves are essential in accelerating radiation belt electrons. However,

predicting the amplitude of strong chorus waves is difficult because of their imbalanced nature.
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In other words, there are many more observations of no-chorus waves than strong chorus waves.
A consequence is that these no-chorus wave data dominate traditional models, so these models
usually predict values that are too small for strong waves. Using an imbalanced regressive
method, we developed a machine learning (ML) model of lower-band chorus wave amplitude.
For the first time, the ML-chorus model can predict the amplitude of strong chorus waves. The
ML-chorus model shows the evolution of the chorus wave at the equator, similar to the drift path
of injected electrons, which brings electron anisotropy that generates chorus waves. The ML-
chorus model shows that the chorus waves are stronger at the equator near midnight, the source
region of plasma injection. Away from midnight, the chorus waves have an equatorial minimum
instead. Our chorus model will improve the forecast of the radiation belt environment by
providing chorus wave distributions, especially large-amplitude strong chorus during
geomagnetic storms. Because data imbalance is commonly seen in space physics and other

physical systems, imbalanced regressive methods require more attention.

1 Introduction
1.1 Radiation belt dynamics and chorus waves

The Earth's outer Van Allen radiation belt consists of trapped energetic electrons
(~MeV), the dynamics of which result from a delicate and competitive balance between
acceleration, loss, and transport processes (Baker et al., 2013, 2014a, 2014b; Lee et al., 2013; Li
etal., 2013; Ma et al., 2018; Meredith et al., 2003; Ni et al., 2013; Reeves et al., 1998, 2003;
Thorne et al., 2013a, 2013b). Local acceleration driven by whistler-mode chorus waves plays an

essential role in accelerating seed electrons to relativistic and ultra-relativistic energies (Horne
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and Thorne, 1998; Summers et al., 2002; Thorne et al., 2013b), and pitch angle scattering of
plasma sheet electrons by chorus leads to electron precipitation into the upper atmosphere to
produce diffuse aurora (Ni et al., 2008, 2016; Thorne et al., 2010) and pulsating aurora (Kasahara

et al., 2018; Nishimura et al., 2010).

Whistler-mode chorus waves are intense electromagnetic waves typically showing
discrete elements that are excited naturally in the low-density region outside the plasmapause
due to a cyclotron instability of anisotropic energetic electrons (Burtis and Helliwell, 1976;
Meredith et al., 2001, 2003a; Santolik et al., 2003; Tsurutani and Smith, 1974). These anisotropic
electrons are believed to form due to electrons injected from the plasma sheet into the inner
magnetosphere, conserving their first two adiabatic invariants (e.g., Katoh and Omura, 2007; Li
et al., 2010; Nunn, 1974). However, validating this theory using observations is not trivial since
it requires multi-point in-situ observations of the chorus waves and the electron velocity
distributions, with the observations taken such that they follow the electron drift path of the
injections. Chorus waves typically occur in the frequency range of 0.1-0.8 /.. (the equatorial
electron cyclotron frequency) and are organized into two distinct bands (lower and upper bands)
with a gap near 0.5 f.. (Li et al., 2019; Meredith et al., 2012; Santolik et al., 2003; Tsurutani and
Smith, 1977). Previous studies have shown that nightside chorus waves are peaked near the
equator, whereas dayside chorus waves can extend to higher magnetic latitudes (MLAT) (e.g.,
Agapitov et al., 2013, 2015; Bortnik et al., 2007; Bortnik and Thorne, 2007; Bunch et al., 2011;
Li et al., 2009). In addition, the chorus wave is believed to be one of the origins of plasmaspheric
hiss (Agapitov et al., 2018; Bortnik et al., 2008, 2009; Chen et al., 2009; Hartley et al., 2019;

Meredith et al., 2013Db).
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There have been many studies on modeling the properties of chorus waves. The average
wave amplitude is generally statistically modeled as a function of spatial location (L shell, MLT,
and MLAT), and parameters used to categorize the chorus wave amplitude include solar wind
parameters, geomagnetic indices, or a combination of these parameters (Aryan et al., 2014, 2016,
2020; Agapitov et al., 2015, 2018; Li et al., 2009, 2013, 2016; Meredith et al., 2012, 2018, 2020;
Wang et al., 2019). Chorus waves have also been modeled using neural networks (Guo et al.,
2022; Kim et al., 2013; Bortnik et al., 2018), performing better in errors than the statistically
averaged models. However, these models generally fail to predict the correct intensity of strong
chorus waves due to the highly imbalanced nature of the chorus database, which is discussed

below.
1.2 Imbalanced regression and shortcomings of standard regression models

Data imbalance is a ubiquitous problem inherent in the real world. Real-world data sets
are usually not uniformly distributed and generally exhibit skewed distributions with a long tail,
where specific values (typical of little interest) have much more data samples than the other
ranges with very few samples (but are of the most interest). Imbalanced datasets have been an
essential problem in machine learning (ML) (Buda et al., 2018; Liu et al., 2019). The challenge
of imbalanced data has been discussed and investigated in many studies in the field of machine
learning (Cao et al., 2019; Cui et al., 2019; Huang et al., 2019; Liu et al., 2019; Tang et al., 2020;
Yang et al., 2021). Nevertheless, most existing studies for learning from imbalanced data focus
on classification problems, i.e., targeted parameters with categorical values. However, many
real-world tasks are inherently regression problems, i.e., the target values are continuous across
the domain. For an example of regression, in the field of vision applications, a popular large-

scale image database is called IMDB-WIKI (Rothe et al., 2018). It is used to estimate the age of
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different people based on their visual appearance. The target parameter, people's age, is a
continuous target and highly imbalanced in the IMDB-WIKI database. The challenge of
imbalanced data also exists in medical applications. The target parameters of heart rate, blood
pressure, and oxygen saturation are continuous, and their distributions are usually skewed across
the patient populations, with the anomalous, elevated values (that are of most interest to patients)

occurring for only a small fraction of the data samples.

In space physics, most of the physical parameters, if not all, are imbalanced datasets. For
instance, the most popular geomagnetic indices, the auroral electrojet indices (4E, AU, and AL),
the ring current index Dst, and the Kp index are skewed toward low values due to the large
number of observations taken during quiet times rather than active times. The relativistic electron
fluxes in the Earth's radiation belt or measured at geosynchronous orbit are also skewed toward
the quiet time averages (e.g., Figure 1 in Baker et al. [2019]). Solar images, which are used to
predict solar flare events, Coronal Mass Ejections (CME), and solar wind speed, also capture
much quieter images far more often than solar irruptions [Al-Ghraibah et al., 2015; Nishizuka et

al., 2021; Wan et al., 2021]. Therefore, imbalanced data sets are also ubiquitous in space physics.

Successful applications of statistical and ML-based regression models improved our
understanding of the magnetospheric and ionospheric response to the solar wind drivers (see
summary in Camporeale (2019) and references therein). However, it was brought to scientists'
attention that the regression models provide poor predictions during active times (e.g.,
Chakraborty et al., 2020; Lazzus et al., 2017; Tan et al., 2018), especially during large to extreme
events due to the too-often-too-quiet problem (Camporeale, 2019). The traditional method of
regression, either statistical or ML-based, is fairly heuristic and suffers from the shortcomings of

imbalanced data. For instance, the error metrics, mean squared errors (MSE), are commonly used
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in previous studies (e.g., see discussion in [Temerin and Li, 2002]). In the case of imbalanced
data, the MSE is dominated by many quiet-time observations. To maintain a zero mean of the
errors, the large volume of quiet time data is usually slightly overestimated toward higher values.
On the other hand, the small volume of large values during active times (or large-to-extreme
events) is usually underestimated significantly toward lower values. Therefore, it usually leads to

unrealistic biases when predicting quiet time and active values.

Due to the imbalanced nature of the chorus waves, traditional statistical models cannot
reproduce the time-dependent variations of chorus waves, especially the strong wave amplitude
(see discussion in Guo et al. [2021]). Therefore, for the first time, we developed a neural network
model for the lower-band (LB) chorus wave amplitude using an imbalanced regressive (IR)
method, which can accurately predict both background noise and large wave amplitudes.
Furthermore, the model provides time-dependent and global variations of chorus wave amplitude

and is used to study the evolution of the LB chorus waves during a typical event.

2 Data Description

2.1 Database

In this study, chorus waves in the Earth's inner magnetosphere are modeled using an
imbalanced regressive (IR) neural network model. The primary dataset consists of the wave
amplitude of the lower band (LB) chorus waves taken from Van Allen Probes (RBSP) and
geomagnetic indices from the OMNI database and SuperMAG.

NASA's Van Allen Probes spacecraft consists of two identically equipped satellites in
near-equatorial orbits with an apogee of ~6 Rg and an orbit period of ~9 hours (Mauk et al.,
2013). The two spacecraft have almost identical orbits with varying spacecraft separation along

the track. The plasma density is obtained using the upper hybrid resonance frequency identified
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from the High-Frequency Receiver (HFR) on Electric and Magnetic Field Instrument Suite and
Integrated Science (EMFISIS) (Kletzing et al., 2013; Kurth et al., 2015). Chorus waves are
analyzed using measurements from the Waveform Receiver (WFR) on the EMFISIS wave
instrument (Kletzing et al., 2013). The LB chorus waves are identified using the following
criteria: (1) they occur outside the plasmapause, (2) within the frequency range of 0.05-0.5 fe.,
(3) they have planarity > 0.6, and (4) ellipticity > 0.7 (see detailed description in Li et al. (2016)
and Shen et al., (2019)). The plasmasphere could be identified using the intensity of the electron
cyclotron harmonic (ECH) waves (Meredith et al., 2004), and we follow the procedure by Shen
et al. (2019) to find the measurements outside the plasmapause along the Van Allen Probes orbit.
Using the above criteria, the wave amplitude of the LB chorus waves is obtained along Van
Allen Probes' trajectory from January 1, 2013, to the end of the mission (August 1, 2019 for
RBSP-A and July 16, 2019 for RBSP-B). For observations with no chorus waves, the wave
amplitude is filled by 0.1 pT as the lower threshold. Due to the satellite procession, the satellite
measurements covered all MLT sectors more than three times throughout the mission lifetime.
The dataset has more than 66 million data samples every ~6 seconds. This study reduces the
temporal resolution to 5 min averages while conserving the mean wave power (Bw?), which
results in ~1.4 million data samples.

The solar wind conditions and geomagnetic indices are obtained from the OMNI dataset

(https://omniweb.gsfc.nasa.gov/) (Papitashvili et al., 2020) and SuperMAG

(https://supermag.jhuapl.edu/) (Gjerloev et al., 2010), which are used as potential input

parameters to the neural network model.

2.2 Data distribution of chorus waves
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Figure 1 shows the statistical distribution of the dataset with respect to its locations and
several important factors. Figure 1a shows that the observations of Van Allen Probes are within
the L shell range of 2.0 and 7.0 and [IMLAT|<20°. The majority of observations are taken
between L~5.8 near the apogee of Van Allen Probes, with more observations taken near the
equator than at higher latitudes. Figure 1b shows that the observations are relatively evenly
distributed relative to MLTs. Figures 1c and 1d are in the same format as Figures 1a and 1b
when Bw>5pT. Note that these samples (Bw>5pT) are mostly located at high L shells. Figure le
shows that the dataset is highly imbalanced with respect to the chorus wave amplitude, where
quiet-time observations dominate the whole dataset. About 90.0% of the observations are below
3.5 pT, and 94.4% of the data are below 10.0 pT. Figure 1f shows that chorus waves are well
organized by plasma density. Chorus waves are usually observed at low-density regions (<00
cm?) outside the plasmapause, as expected [Hartley et al., 2022; Malaspina et al., 2016, 2018,
2020, 2021]. The statistical analysis above provides important information regarding the

development of the neural network model, which will be discussed below.

3 Methodology

3.1 Model description

In this study, an LB chorus wave model is developed using a feedforward neural network
following the workflow described by Chu et al. (2021). The neural network's architecture for the
chorus wave model is similar to that used in previous studies, which successfully modeled global
dynamic distributions of plasma density and electron and ion fluxes (Chu et al., 2017a, 2017b,
2021). It consists of a linear input layer, three hidden layers with a sigmoid activation function,

each followed by a batch normalization layer, and a linear output layer. The input parameters
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include the location of the measurements (i.e., L shell, MLT, and MLAT), the in-situ electron
density, and the time series of the solar wind parameters and geomagnetic indices from the
OMNI and SuperMAG dataset, which is discussed in greater detail below. The target parameter,
also referred to as the model output, is the base ten logarithms of the wave amplitude of the LB
chorus waves logo(By). The model inputs and output are normalized using each parameter's

mean and standard deviation before training and scaled back when making predictions.

It is essential to perform imbalanced regression since the dataset of chorus waves is
highly imbalanced, having more quiet-time background samples than the active-time, large-
amplitude chorus samples of interest. The chorus wave dataset is categorized by amplitude: quiet
background (Bw<2 pT), weak (2 pT<Bw<5 pT), and strong (Bw>5 pT). The integrated wave
amplitude of Bw~2 pT is roughly the noise level of the EMFISIS instrument (Kletzing et al.,
2013). Also, the amplitude of 2 pT is close to the local peak value in the histogram of the wave
amplitude (Figure 1e), the elbow point from a power law, suggesting two distinct distributions.
Thus, the quiet background values are chosen as Bw<2 pT and assigned a weight of 1.0. Another
elbow point is found at Bw~5 pT, shown as the slower decrease of sample number with
increasing Bw at Bw>5 pT than that at Bw<5 pT. Therefore, these weak chorus waves of 2
pT<Bw<) pT are assigned a weight of 10. These strong chorus waves (Bw>5 pT) are assigned a
weight of 20. The weights for each category are chosen empirically based on a number of
experiments when the data-model comparison is along the diagonal line, as shown in Figure 2.
The data-model comparison pairs show different degrees of biases (offset from the diagonal line)
in the range of different categories for different experiments, and we chose the experiment that
yields minimal biases in all ranges. In addition, without proper weights, the model prediction

exhibits a cutoff at large values around tens of pT for different experiments (see Figure 8 and
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Section 5 for discussion), and we chose the experiment without the cutoff. The loss function is

the weighted mean squared error (WMSE) of the logo(By).

Zrll Wi (Bwobs - BWmodel)2
nyyw;

WMSE =

where w; is the weight of each data sample. To minimize the loss function, the neural
network model is trained using the Nesterov-accelerated Adaptive Moment Estimation (Nadam)
optimizer (Dozat, 2016). To avoid data leakage, the whole dataset is split into daily segments.
This 1-day period is much longer than the typical time scale (1 hour) of chorus wave dynamics,
i.e., the substorm duration (~1 hour) (Chu et al., 2015) that is known to be the primary driver of
chorus waves. Then, 60% of the 1-day segments are randomly selected as the training data, 20%
as the validation set, and 20% as the test set. To avoid overfitting, we applied early stopping with
15 epochs, dropout layers after each hidden layer (Srivastava et al., 2014), and modified

stratified five-fold cross-validation (Chu et al., 2021).

To make global and time-dependent reconstructions of chorus wave amplitude, the
plasma density at every spatial location and time is required, but not available. Therefore, a pilot
neural-network-based electron density model has been developed using a 1-min electron density
obtained from EMFISIS, similar to our previous models (Bortnik et al., 2016; Chu et al., 2017a,

b). This model provides global distributions of electron density that are used as the input to the
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chorus model. Since we have introduced the plasma density model in our past studies (Bortnik et

al., 2016; Chu et al., 2017a, b), we do not elaborate on the details here.

3.2 Feature selection and hyperparameter optimization

We used the same feature selection and hyperparameter optimization (HPO) processes
discussed in Chu et al. (2021). It is based on the strategy of sequentially adding the most
informative predictors for the neural network model and assessing its performance (Kuhn et al.,
2013). First, the locations of each measurement (L shell, MLT, and MLAT) are used as input.
Second, the location plus the time series of one parameter from the OMNI and SuperMAG
database are used as the only inputs. We used 1 min resolution of the indices for the preceding
three hours and hourly averages for the preceding 24 hours, which are chosen empirically. We
used a modified stratified five-fold cross-validation approach for the training process

(https://scikit-learn.org/stable/modules/cross_validation.html). The input parameters include all

the parameters in the OMNI dataset (https://omniweb.gsfc.nasa.gov/) and the geomagnetic

indices from SuperMAG (SME/U/L/R). After looping through all the input parameters, the SME
index (SuperMAG auroral index) yields the best performance among all input parameters. The
SME index, the auroral electrojet indices reflective of the horizontal currents in the ionosphere,
indicates the plasma injections from the magnetotail. This result is expected since the chorus
waves are excited due to the electron anisotropy associated with plasma injections (Li et al.,

2010). Third, we repeat the second step by adding the time series of another parameter from the
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OMNI dataset as input. However, adding another parameter did not improve the model

performance further (i.e., the error does not decrease).

The hyperparameters of the neural network model, including the number of neurons in
each hidden layer and the dropout rates, are optimized using a Tree-structured Parzen estimator
algorithm (Bergstra et al., 2011, 2013) implemented in Optuna (Akiba et al., 2019). We use a
modified stratified 5-fold cross-validation, and the model yields the best performance on the
validation dataset chosen. The final model has three hidden layers with 180, 184, and 43 neurons

and dropout rates of 0.47, 0.22, and 0.20, respectively.

3.3 Model uncertainty

A second pilot model of the uncertainty of the chorus model was developed, following a
similar protocol to our previous work (Camporeale et al., 2019). The uncertainty is defined as the

absolute error between the observed and modeled LB chorus wave amplitude:

. Wop
uncertainty = |log;o(Bwyps) —10810(BWpmoger)| = | 10810 =

meodel

The uncertainty model takes the same input as the chorus model (see section 3.1 for details) and
predicts the absolute error of the predicted chorus wave amplitude /og;o(B.w), which is usually
close to a Gaussian distribution, as shown in Figure 16 in Camporeale et al., (2019). Thus, the
uncertainty denotes a relative error in the wave amplitude so that the ratios of Bw are symmetric
both above and below 1 (Morley et al., 2018). Finally, both the chorus wave amplitude and its
uncertainty can be provided by the two neural network models at any time and at any location,
i.e., time-dependent uncertainties. An example of the modeled chorus wave amplitude and its

uncertainty along the Van Allen Probe's trajectories are discussed in section 5 with Figure 5. The
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error bars represent the modeled chorus wave amplitudes plus and minus the modeled

uncertainties.

4 Model performance

The correlation between the observed and modeled chorus wave amplitude log;o(By)
above the background level is shown in the four panels in Figure 2 for the whole dataset, as well
as the training, validation, and test datasets separately. The probability density of occurrences in
each bin is indicated by its color. The red dashed diagonal line (y=x) represents where the model
predicts the wave amplitude perfectly, as expected. It should be noted that most observation-
model pairs are distributed around the diagonal line. This result suggests that the neural network
model reproduces the observations without much over- or under-estimation, regardless of the
chorus amplitude /og;o(B.,). Particular attention has been given to these large values, which are
also well-predicted. While this is intuitively correct and was relatively easy to obtain in previous
models (e.g., plasma density in Bortnik et al., 2016; Chu et al., 2017a, b; electron fluxes in Chu
et al., 2021; Ma et al., 2022), it has been challenging to achieve using highly imbalanced data
such as the chorus wave amplitude. Traditional statistical models of chorus wave distribution, or
any model based on an imbalanced dataset, are usually dominated by the frequently occurring
background values. Furthermore, the traditional models usually minimize the mean squared error
(MSE), with the assumption that each data point is equally important. As a result, these models
tend to regress to the means of quiet-time values, and cannot predict large values in the long tail
distribution. In the case of chorus waves, traditional statistical models usually underestimate the

amplitude of large chorus waves. In this study, we show that an imbalanced regressive technique
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is essential during model development using imbalanced datasets, and our chorus model is the

first model that can predict strong chorus waves.

Our chorus model can make accurate predictions of large chorus waves within a
reasonable uncertainty. The weighted root mean square errors (WRMSE) are shown on the
bottom right of the panels. The WRMSE on the test dataset is 0.53, which translates to an

uncertainty of a factor of 3.3 (=10%%3),

Figure 3 shows the probability density of the errors as a function of the L shell for the
four datasets, for direct comparison to Figure 2. The error is defined as the difference between
the logarithms of the observation and the model prediction error = logio(BWobs) — [0 10(BWmodel).
The color indicates the number of samples in each bin. The error bars represent the weighted
mean and WRMSE. The errors are much smaller at low L shells (<2.8) and gradually increase at
high L shells, reflecting the highly fluctuating chorus wave amplitudes at large L shells. This is
because the satellites are inside the plasmasphere at low L shells, where chorus waves are largely
absent (see Figure 1f). As a result, the observations and model predictions are close to
background noise, which results in small errors and bias. At higher L shells outside the
plasmasphere, the variation of the wave amplitude from the noise level to the strong wave
amplitude is large, resulting in a larger uncertainty. In the heart of the outer radiation belt (L~4-
5), where chorus waves play an essential role in the acceleration and loss of the relativistic
electrons, the uncertainty is about 0.5 in log;o(Bw), which translates to an uncertainty of a factor

of 3.0 (=10°5) in Bw.

Figure 4 shows the probability density of the errors as a function of the electron density

for the four datasets. The error indicates the number of samples in each bin. The error bars
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represent the weighted mean and WRMSE. The errors are much smaller in high-density regions
and suddenly become larger in low-density regions. At the density of 10'® cm™, which marks the
plasmapause, there is a sharp transition in the model error. This is consistent with the sharp
transition of 108 cm™ in Figure 2, where the chorus waves are mainly observed at low-density
regions. As discussed above, this is because chorus waves are observed outside the plasmapause,
thus resulting in quiet background noise inside the plasmapause and highly fluctuating chorus

amplitude outside the plasmapause.

5 Model application

For illustration purposes, the chorus model was applied to a three-day period over
October 24-27, 2017, which was held out as an out-of-sample test dataset. Therefore, this case
can represent the forecast capability of the chorus model on out-of-sample datasets, and the

results are shown in Figure 5.

The geomagnetic activity was quiet before 0800 UT on October 24, when a corotating
interaction region (CIR) arrived at the Earth's magnetopause. The solar wind speed increased
from 400 km/s to 650 km/s during the next two days, with a leading pressure enhancement
between 0800-1200 UT on October 24 (not shown). The CIR induced a two-day activity period,
which is similar to, but too weak to account for a geomagnetic storm. The Sym-H index in
Figure 5a shows a sudden commencement between 0800-1200 UT on October 24, then reached a
minimum of -36 nT around 2300 UT. Many magnetospheric substorms occurred subsequently,
with two strong substorms reaching more than 1100 nT in the AE index during the storm's main

phase. Another weak storm with a minimum Sym-H of -44 nT occurred on October 26.
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Figures 5b and 5c show the comparison between the observed (red) and model-predicted
(blue) LB chorus wave amplitude along the trajectories of the Van Allen Probes (RBSP-A and
RBSP-B), the apogees of which were on the dayside. The chorus model predicts the chorus wave
amplitude well along the trajectories, as the lines are very close. During the first orbit with no
chorus waves, the model predicted background values. During the successive few orbits, the
model predicted wave amplitude followed the trend of the observed value. For the first time, a
chorus model can predict the peak amplitude of the strong chorus wave (~100 pT) during every
orbit, including those of the second storm. In addition, the uncertainty of the model predictions is
provided by the uncertainty model described in section 3.3. The model uncertainties (green lines)
are larger for strong chorus waves and smaller for quiet times. For strong chorus waves, the
model uncertainties are roughly 0.3, which translates to a factor of 2 (10°?). For quiet times, the

model uncertainties are roughly 0.1, translating to a factor of 1.2.

Figure 5d shows the model-predicted chorus wave amplitude on the equatorial plane near
midnight (MLAT=0° and MLT=3). First, the chorus wave enhancements are closely related to
the substorm activity indicated by the SME index. For example, the chorus waves strengthened
during the first two strong substorms in the storm main phase. Second, the chorus wave
amplitude extended to lower L shells during strong substorms. This is because of the erosion of
the plasmasphere due to the electric fields brought by the substorm injections. Thus, the chorus
waves, excited right outside the plasmapause, also contracted to lower L shells [Hartley et al.,

2022; Malaspina et al., 2016, 2018, 2020, 2021].

One of the merits of the neural network model is that it can reconstruct the global
distribution of chorus wave amplitude at any time. The evolution of the chorus waves on the

equatorial plane (MLAT=0°) is shown in Figure 6a. The arrows indicate the six snapshots in
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Figure 5. There were no chorus waves during the quiet time at 2017-10-24/08:00:00. Right after
the substorm onset at 2017-10-24/13:00:00, the chorus waves were strengthened at high L shells
outside the nominal plasmapause indicated by the black line (n. =50cm™). The wave amplitude is
higher in the midnight and early morning region and lower toward noon. This distribution is
consistent with the drift path of the injected electrons. At the peak of the first substorm at 2017-
10-24/13:00:00, the chorus waves further strengthened and moved to the lower L shell as the
plasmapause contracted. Nevertheless, the model-predicted chorus waves were outside the
nominal plasmapause. At the peak of the second substorm at 2017-10-24/17:00:00, the chorus
waves were stronger and reached lower L shell and broader local times. This is because the
second substorm was stronger, and the plasmapause was more contracted. After the two
substorms at 2017-10-24/20:30:00, the chorus waves were observed at higher L shells while the
plasmapause remained contracted. During the second storm with an elevated SME index, similar
to steady magnetospheric convection (Kissinger et al., 2012; McPherron et al., 2005; O'Brien et
al., 2002; Sergeev et al., 1996), the chorus waves were stronger, extended to lower L shells, and

broader local times.

The evolution of the chorus waves in the meridian plane is investigated in Figure 6 at
four different MLTs (MLT=0, 3, 6, 9, and 12). Near midnight (MLT=0), the chorus waves
peaked at the equator (MLAT=0°), and the amplitude decreased toward higher latitudes due to
Landau damping of chorus waves (Bortnik et al., 2006). The chorus waves further strengthened
and covered an extensive range of latitudes when the substorm strengthened. Nevertheless, the
peak remained at the equator. In the dawn region (MLT=6), the chorus waves are strong and
located at higher L shells, yet still near the equator. However, note that a minimum wave

amplitude is found near the equator right outside the plasmapause, i.e., at the inner edge of the
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chorus wave region. The minimum in the wave amplitude is more pronounced toward the
dayside, except in the plume region where the plasmapause extended to a large L shell. The
equatorial minimum in chorus wave amplitude can be explained by two possible mechanisms:
wave propagation and a local minimum in magnetic field strength, which is further elaborated on

in the discussion section.

The temporal evolution of the chorus wave amplitudes versus MLAT at different L shells
and MLT is illustrated in Figure 7. First, similar to Figure 5d, the chorus amplitude strengthens
during substorms. Second, near the region of plasma injections (MLT=0), the chorus waves peak
at the equator throughout this period, regardless of L shell and geomagnetic activity phases. On
the other hand, toward the noon region, an equatorial minimum in wave amplitude was evident at
different L shells during this period. Figure 7 further validates the equatorial minimum near the

noon region during different activity and L shells, as shown in Figure 6.

The comparison between the IR chorus model and the traditional neural network model
in Figure 8 further demonstrates the importance of imbalanced regression. A traditional neural
network (NN) of the LB chorus amplitude is trained with an MSE loss function, which does not
consider the weights of the imbalanced dataset. The IR chorus model and the traditional NN
model are applied to the Van Allen Probe era (January 1, 2013 to June 1, 2019). The IR chorus
model (Figure 8c) shows good agreement with the observed chorus amplitude from both Van
Allen Probes (Figure 8b). Note that the IR chorus model could predict the strong chorus waves
1023 pT (300 pT). On the other hand, the traditional NN model (Figure 8d) is capped at about
10'3 pT (30 pT) and cannot predict strong chorus waves. Therefore, the traditional NN model
underestimates the strong chorus wave amplitude by a factor of 10. Furthermore, both models are

applied to the equatorial plane (MLAT=0°) at MLT=0300 throughout the Van Allen Probe era.
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The IR chorus model predicted many strong chorus wave events (red events in Figure 8e), while
the traditional NN severely underestimated the wave amplitudes (green color in Figure 8f).
Figures 8g and 8h show the zoomed-in view of the comparison during October 24-27, 2017, the
same time period as Figure 5. Note that the chorus waves were strong (~100 pT) during this
period, both in observations (Figure 5) and the IR model reconstructions (Figure 8g). However,
the traditional NN model underestimated the chorus wave amplitude and predicted the yellow
color at peaks rather than the red color from the IR chorus models, which is roughly a factor of
10 smaller. In summary, the IR chorus model can predict the strong amplitude of strong chorus
waves with an uncertainty of a factor of 3. On the other hand, the traditional model

underestimates these waves by a factor of 10.

5 Discussion and Conclusions

We develop a neural network-based model of the LB chorus wave amplitude in the inner
magnetosphere. The model uses a combination of the satellite location, in-situ plasma density,
and time series of the SME index as input and predicts the LB chorus wave amplitude in the
inner magnetosphere (L<7 and [MLAT|<20°). The model is trained using 7-year observations
(2013-2019) from the EMFISIS instrument onboard two Van Allen Probes. It was found that the
auroral electrojet index SME alone can fully represent the geomagnetic activity related to the
chorus waves. This is expected since the SME index indicates the strength of substorm
injections, which induce electron anisotropy and load to the cyclotron resonant interactions.

Furthermore, the neural network model can predict most of the chorus wave amplitude within an
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uncertainty of a factor of 2 and the chorus wave amplitude in the heart of the radiation belt (L~4-

5) within an uncertainty of 1.6-2.1.

Using imbalanced regressive methods to develop the chorus waves model is essential
because the database is highly imbalanced. About 90% of the observations are non-chorus
samples (Bw<3 pT), and only 5.6% of the data contains chorus waves (Bw>10 pT). Traditional
regression methods are usually dominated by non-chorus quiet data samples. As a result,
traditional models tend to underestimate strong chorus waves, which are the most important and
exciting to radiation belt physics. In this study, we utilized a loss function WMSE to account for
different weighting factors for data samples of different chorus wave amplitudes. Our results
demonstrate that this is a simple and effective way to deal with the imbalanced chorus wave
dataset. As a result, our model can predict the large amplitude chorus waves in statistical analysis
(Figure 2), event studies (Figure 5), and long-term predictions (Figure 8). Our study shows the
importance of imbalanced regression in model development, both for machine learning models
and traditional statistical models. Therefore, imbalanced regression (and classification) should be
emphasized in the space physics/weather community since most datasets in our fields are highly

imbalanced.

For the first time, the global temporal and spatial evolution of the chorus waves can now
be investigated. Taking advantage of the neural networks' predictive capability, we can
reconstruct the global distribution of chorus waves at a time instance within the coverage of the
database (L<7 and |[MLAT|<20°). The chorus waves are distributed in a region consistent with
the injected electron drift path, which agrees with theoretical expectations. The chorus waves are
typically distributed outside the nominal plasmapause regardless of MLT and levels of

geomagnetic activity. As substorms develop, the chorus waves move to the lower L shells along
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with the erosion of the plasmapause, especially on the nightside. They also extend to a much
broader region in MLT. On the other hand, the chorus waves in the noon-to-dusk region move to

high L shells due to the formation of plasmaspheric plumes.

The latitudinal distributions of chorus waves show interesting evolutions. Chorus waves
have their maximum amplitude near the equator and are confined to the plasma sheet region near
midnight (MLT=3), which is close to the source MLT of the injections. During substorms, the
amplitude and coverage of chorus waves can vary, expanding and contracting in MLT.
Regardless, the chorus waves have peaks in the plasma sheet near midnight, where substorm
injections are most frequent. Approaching the noon region, the chorus waves show a minimum at
the equator, with peak amplitudes at higher latitudes in both hemispheres. This feature is
consistent with statistical chorus wave distributions from multi-satellite observations (Meredith
et al., 2021). Two possible explanations exist for the equatorial minimum in the chorus wave
amplitude. First, chorus waves are excited near the equator, then propagate toward high latitudes
and become more oblique (Bortnik et al., 2008, 2009, 2011; Chen et al., 2013). Thus, the chorus
waves at higher latitudes at a specific L shell might originate from the equator at higher L shells.
This means there is little chorus wave power near the equator at the same lower L shell, thus
manifesting as a local equatorial minimum of chorus amplitude. This is consistent with a
statistical study showing that the minimum near the equator on the dayside disappears at large L
shells (Meredith et al., 2020), although beyond the range of the Van Allen Probes orbit (L~7).
Thus, it also supports the first explanation that the waves are excited near the equator at higher L
shells (L>6) and propagate to lower L shells at higher latitudes. Second, the magnetic field
strength exhibits local minimums off the equator in the dayside region (Tsurutani & Smith, 1977;

Keika et al., 2012). The substorm injections will drift along the magnetic field minimum, thus,
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following the bifurcation of the magnetic field lines to both hemispheres. In addition, the
excitation of the chorus waves is in favor of smaller electron gyrofrequency (fc.). Therefore, the
excitation of the chorus waves on the dayside shows the feature of bifurcation, i.e., off-equator
maximums of chorus amplitude in both hemispheres. A further investigation will be carried out
to distinguish the two explanations, which require observations from higher latitudes and
additional information on wave polarization properties, such as wave normal angle and Poynting

flux.

The Earth’s radiation belt belts, consisting primarily of energetic electrons and protons
with energies from a few keV to several MeV, are particularly hazardous to spacecraft and
astronauts. Thus, the specification and prediction of Earth’s radiation environment have been an
essential topic in space physics and space weather. To understand and predict radiation belt
dynamics, the traditional approach involves the integration of the Fokker-Planck (FP) equations
(e.g., Maetal., 2017; Kellerman et al., 2021). However, it requires three-dimensional time-
varying distributions of waves to calculate the diffusion coefficients. While chorus waves play an
essential role in the acceleration of relativistic electrons, previous empirical chorus models are
parameterized by geomagnetic activity and cannot provide such distributions. This is especially
important during geomagnetic storms due to their underestimation of large-amplitude chorus
waves. Therefore, the IR-based chorus model will address the problem by providing IR-based
modeled chorus distributions, especially these storm-time strong chorus waves, to the FP

simulation to better predict the radiation belt environment (Bortnik et al., 2018). In future
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505  studies, a comprehensive environment including waves and plasma conditions predicted by

506  machine learning models will be used as input to the FP simulation for prediction purposes.

507 We summarize the major conclusions as follows:

508 1. We develop a neural network model of the lower-band chorus wave amplitude using

509 imbalanced regressive methods.

510 2. Based on feature selection, the time series of the SME index can capture the variation of
511 the lower-band chorus waves.

512 3. Our IR chorus model can correctly predict the amplitude of the strong chorus waves, for
513 the first time. A pilot model is developed to provide the model uncertainties.

514 4. The IR chorus model can predict the strong wave amplitude (> 300 pT) with an

515 uncertainty of a factor of 3. On the other hand, the traditional neural network model’s
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prediction is capped by 30 pT, persistently underestimating the amplitude of strong

chorus waves by a factor of 10.

The equatorial evolution of the chorus waves is consistent with the electron drift path of

substorm injections.

The chorus waves peak at the equator (plasma sheet) in the source MLT near midnight.
They show a minimum at the equator toward noon, with two off-equator amplitude peaks

in two hemispheres.

Imbalanced regression methods require more attention since most datasets in space

physics, space weather, and real world are imbalanced.
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Open Research

The chorus wavs are analyzed using measurement from the EMFISIS instrument (Kletzing et al.,
2013) available at emfisis.physics.uiowa.edu onboard Van Allen Probe mission (Mauk et al.,
2013) available at rbspgway.jhuapl.edu. The solar wind parameters and geomagnetic indices are
obtained from the OMNI dataset (Papitashvili et al., 2020) available at omniweb.gsfc.nasa.gov

and SuperMAG (Gjerloev et al., 2010) available at https://supermag.jhuapl.edu/. The data set and

models of the chorus wave are available (Chu et al., 2023) at

https://doi.org/10.5281/zenodo.7894060. The neural network models are developed using the

TensorFlow package, which is open-source (TensorFlow Developers, 2023) and available at

www.tensorflow.org.
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957  Figure 1. Statistical properties of the LB chorus wave amplitude logio(Bw). The numbers of
958  data samples as a function of (a) L shell and MLAT, (b) L shell and MLT, (e) wave

959  amplitude, and (f) plasma density and wave amplitude. Panels (¢) and (d) are in the same
960  format as panels (a) and (b) but for Bw > 5 pT.
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981  Figure 5. An application of the chorus model during a three-day period 24-27 October

982 2017, which is held out for test purposes. (a) Geomagnetic indices Sym-H and SME. (b-c)
983  The comparison between the observed (red) and modeled (blue) LB chorus wave amplitude
984  for Van Allen Probes (RBSP-A and RBSP-B). The green lines represent the model

985  uncertainties. (d) The modeled LB chorus wave amplitude as a function of L shell on the
986  equatorial plane (MLAT=0°) at MLT=0300. Note that the apogees of the Van Allen Probes
987  were on the dayside (MLT~1200).
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1004  the imbalanced regressive and traditional neural network (NN) models. (a) Geomagnetic
1005  indices Sym-H and SME, (b) the observed LB chorus wave amplitude along the trajectories
1006  of both Van Allen Probes; (c-d) the LB chorus wave amplitude modeled by imbalanced

1007  regressive NN model (c¢) and traditional NN model (d) along the trajectories of both Van
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Allen Probes; (e-f) the LB chorus wave amplitude modeled by imbalanced regressive
chorus model (e) and traditional NN model (f) on the equatorial plane (MLAT=0°) at
MLT=0300. (g-h) Zoomed-in view of the LB chorus amplitude modeled by imbalanced
regressive NN model (g) and traditional NN model (h) between October 24-27, 2017, the

same period as Figure 5.



