

Distribution and evolution of chorus waves modeled by a neural network: the importance of imbalanced regression

3 **Xiangning Chu¹, Jacob Bortnik², Wen Li³, Xiao-Chen Shen³, Qianli Ma^{2,3}, Donglai Ma²,**
4 **David Malaspina¹, and Sheng Huang³**

⁵ ¹ Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder,
⁶ Colorado, USA

7 ² Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,
8 California, USA

⁹ ³ Center for Space Physics, Boston University, Boston, Massachusetts, USA

10

11 Corresponding author: Xiangning Chu (chuxiangning@gmail.com)

12

13

14 Key Points:

- A neural network model of lower-band chorus wave amplitude is developed using imbalanced regression
- For the first time, a chorus model can predict the large amplitude of strong chorus waves

20

21

22

23

24

25

26 **Abstract**

27 Whistler-mode chorus waves play an essential role in the acceleration and loss of energetic
28 electrons in the Earth's inner magnetosphere, with the more intense waves producing the most
29 dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due
30 to the imbalanced nature of the dataset, i.e., there are many more non-chorus data points than
31 strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes
32 significantly during active times. Using an imbalanced regressive (IR) method, we develop a
33 neural network model of lower-band (LB) chorus waves using 7-year observations from the
34 EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the
35 auroral electrojet index alone captures most of the variations of chorus waves. The large
36 amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model
37 shows that the equatorial LB chorus's spatiotemporal evolution is similar to the drift path of
38 substorm-injected electrons. We also show that the chorus waves have a peak amplitude at the
39 equator in the source MLT near midnight, but toward noon, there is a local minimum in
40 amplitude at the equator with two off-equator amplitude peaks in both hemispheres, likely
41 caused by the bifurcated drift paths of substorm injections on the dayside. The IR-based chorus
42 model will improve radiation belt prediction by providing chorus wave distributions, especially
43 storm-time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and
44 other physical systems, imbalanced regressive methods deserve more attention in space physics.

45

46 **Plain Language Summary**

47 Whistler-mode chorus waves are essential in accelerating radiation belt electrons. However,
48 predicting the amplitude of strong chorus waves is difficult because of their imbalanced nature.

49 In other words, there are many more observations of no-chorus waves than strong chorus waves.
50 A consequence is that these no-chorus wave data dominate traditional models, so these models
51 usually predict values that are too small for strong waves. Using an imbalanced regressive
52 method, we developed a machine learning (ML) model of lower-band chorus wave amplitude.
53 For the first time, the ML-chorus model can predict the amplitude of strong chorus waves. The
54 ML-chorus model shows the evolution of the chorus wave at the equator, similar to the drift path
55 of injected electrons, which brings electron anisotropy that generates chorus waves. The ML-
56 chorus model shows that the chorus waves are stronger at the equator near midnight, the source
57 region of plasma injection. Away from midnight, the chorus waves have an equatorial minimum
58 instead. Our chorus model will improve the forecast of the radiation belt environment by
59 providing chorus wave distributions, especially large-amplitude strong chorus during
60 geomagnetic storms. Because data imbalance is commonly seen in space physics and other
61 physical systems, imbalanced regressive methods require more attention.

62

63 **1 Introduction**

64 1.1 Radiation belt dynamics and chorus waves

65 The Earth's outer Van Allen radiation belt consists of trapped energetic electrons
66 (~MeV), the dynamics of which result from a delicate and competitive balance between
67 acceleration, loss, and transport processes (Baker et al., 2013, 2014a, 2014b; Lee et al., 2013; Li
68 et al., 2013; Ma et al., 2018; Meredith et al., 2003; Ni et al., 2013; Reeves et al., 1998, 2003;
69 Thorne et al., 2013a, 2013b). Local acceleration driven by whistler-mode chorus waves plays an
70 essential role in accelerating seed electrons to relativistic and ultra-relativistic energies (Horne

71 and Thorne, 1998; Summers et al., 2002; Thorne et al., 2013b), and pitch angle scattering of
72 plasma sheet electrons by chorus leads to electron precipitation into the upper atmosphere to
73 produce diffuse aurora (Ni et al., 2008, 2016; Thorne et al., 2010) and pulsating aurora (Kasahara
74 et al., 2018; Nishimura et al., 2010).

75 Whistler-mode chorus waves are intense electromagnetic waves typically showing
76 discrete elements that are excited naturally in the low-density region outside the plasmapause
77 due to a cyclotron instability of anisotropic energetic electrons (Burtis and Helliwell, 1976;
78 Meredith et al., 2001, 2003a; Santolik et al., 2003; Tsurutani and Smith, 1974). These anisotropic
79 electrons are believed to form due to electrons injected from the plasma sheet into the inner
80 magnetosphere, conserving their first two adiabatic invariants (e.g., Katoh and Omura, 2007; Li
81 et al., 2010; Nunn, 1974). However, validating this theory using observations is not trivial since
82 it requires multi-point in-situ observations of the chorus waves and the electron velocity
83 distributions, with the observations taken such that they follow the electron drift path of the
84 injections. Chorus waves typically occur in the frequency range of 0.1–0.8 f_{ce} (the equatorial
85 electron cyclotron frequency) and are organized into two distinct bands (lower and upper bands)
86 with a gap near 0.5 f_{ce} (Li et al., 2019; Meredith et al., 2012; Santolík et al., 2003; Tsurutani and
87 Smith, 1977). Previous studies have shown that nightside chorus waves are peaked near the
88 equator, whereas dayside chorus waves can extend to higher magnetic latitudes (MLAT) (e.g.,
89 Agapitov et al., 2013, 2015; Bortnik et al., 2007; Bortnik and Thorne, 2007; Bunch et al., 2011;
90 Li et al., 2009). In addition, the chorus wave is believed to be one of the origins of plasmaspheric
91 hiss (Agapitov et al., 2018; Bortnik et al., 2008, 2009; Chen et al., 2009; Hartley et al., 2019;
92 Meredith et al., 2013b).

93 There have been many studies on modeling the properties of chorus waves. The average
94 wave amplitude is generally statistically modeled as a function of spatial location (L shell, MLT,
95 and MLAT), and parameters used to categorize the chorus wave amplitude include solar wind
96 parameters, geomagnetic indices, or a combination of these parameters (Aryan et al., 2014, 2016,
97 2020; Agapitov et al., 2015, 2018; Li et al., 2009, 2013, 2016; Meredith et al., 2012, 2018, 2020;
98 Wang et al., 2019). Chorus waves have also been modeled using neural networks (Guo et al.,
99 2022; Kim et al., 2013; Bortnik et al., 2018), performing better in errors than the statistically
100 averaged models. However, these models generally fail to predict the correct intensity of strong
101 chorus waves due to the highly imbalanced nature of the chorus database, which is discussed
102 below.

103 1.2 Imbalanced regression and shortcomings of standard regression models

104 Data imbalance is a ubiquitous problem inherent in the real world. Real-world data sets
105 are usually not uniformly distributed and generally exhibit skewed distributions with a long tail,
106 where specific values (typical of little interest) have much more data samples than the other
107 ranges with very few samples (but are of the most interest). Imbalanced datasets have been an
108 essential problem in machine learning (ML) (Buda et al., 2018; Liu et al., 2019). The challenge
109 of imbalanced data has been discussed and investigated in many studies in the field of machine
110 learning (Cao et al., 2019; Cui et al., 2019; Huang et al., 2019; Liu et al., 2019; Tang et al., 2020;
111 Yang et al., 2021). Nevertheless, most existing studies for learning from imbalanced data focus
112 on classification problems, i.e., targeted parameters with categorical values. However, many
113 real-world tasks are inherently regression problems, i.e., the target values are continuous across
114 the domain. For an example of regression, in the field of vision applications, a popular large-
115 scale image database is called IMDB-WIKI (Rothe et al., 2018). It is used to estimate the age of

116 different people based on their visual appearance. The target parameter, people's age, is a
117 continuous target and highly imbalanced in the IMDB-WIKI database. The challenge of
118 imbalanced data also exists in medical applications. The target parameters of heart rate, blood
119 pressure, and oxygen saturation are continuous, and their distributions are usually skewed across
120 the patient populations, with the anomalous, elevated values (that are of most interest to patients)
121 occurring for only a small fraction of the data samples.

122 In space physics, most of the physical parameters, if not all, are imbalanced datasets. For
123 instance, the most popular geomagnetic indices, the auroral electrojet indices (*AE*, *AU*, and *AL*),
124 the ring current index *Dst*, and the *Kp* index are skewed toward low values due to the large
125 number of observations taken during quiet times rather than active times. The relativistic electron
126 fluxes in the Earth's radiation belt or measured at geosynchronous orbit are also skewed toward
127 the quiet time averages (e.g., Figure 1 in Baker et al. [2019]). Solar images, which are used to
128 predict solar flare events, Coronal Mass Ejections (CME), and solar wind speed, also capture
129 much quieter images far more often than solar eruptions [Al-Ghraibah et al., 2015; Nishizuka et
130 al., 2021; Wan et al., 2021]. Therefore, imbalanced data sets are also ubiquitous in space physics.

131 Successful applications of statistical and ML-based regression models improved our
132 understanding of the magnetospheric and ionospheric response to the solar wind drivers (see
133 summary in Camporeale (2019) and references therein). However, it was brought to scientists'
134 attention that the regression models provide poor predictions during active times (e.g.,
135 Chakraborty et al., 2020; Lazzús et al., 2017; Tan et al., 2018), especially during large to extreme
136 events due to the too-often-too-quiet problem (Camporeale, 2019). The traditional method of
137 regression, either statistical or ML-based, is fairly heuristic and suffers from the shortcomings of
138 imbalanced data. For instance, the error metrics, mean squared errors (MSE), are commonly used

139 in previous studies (e.g., see discussion in [Temerin and Li, 2002]). In the case of imbalanced
140 data, the MSE is dominated by many quiet-time observations. To maintain a zero mean of the
141 errors, the large volume of quiet time data is usually slightly overestimated toward higher values.
142 On the other hand, the small volume of large values during active times (or large-to-extreme
143 events) is usually underestimated significantly toward lower values. Therefore, it usually leads to
144 unrealistic biases when predicting quiet time and active values.

145 Due to the imbalanced nature of the chorus waves, traditional statistical models cannot
146 reproduce the time-dependent variations of chorus waves, especially the strong wave amplitude
147 (see discussion in Guo et al. [2021]). Therefore, for the first time, we developed a neural network
148 model for the lower-band (LB) chorus wave amplitude using an imbalanced regressive (IR)
149 method, which can accurately predict both background noise and large wave amplitudes.
150 Furthermore, the model provides time-dependent and global variations of chorus wave amplitude
151 and is used to study the evolution of the LB chorus waves during a typical event.

152 **2 Data Description**

153 **2.1 Database**

154 In this study, chorus waves in the Earth's inner magnetosphere are modeled using an
155 imbalanced regressive (IR) neural network model. The primary dataset consists of the wave
156 amplitude of the lower band (LB) chorus waves taken from Van Allen Probes (RBSP) and
157 geomagnetic indices from the OMNI database and SuperMAG.

158 NASA's Van Allen Probes spacecraft consists of two identically equipped satellites in
159 near-equatorial orbits with an apogee of ~ 6 R_E and an orbit period of ~ 9 hours (Mauk et al.,
160 2013). The two spacecraft have almost identical orbits with varying spacecraft separation along
161 the track. The plasma density is obtained using the upper hybrid resonance frequency identified

162 from the High-Frequency Receiver (HFR) on Electric and Magnetic Field Instrument Suite and
163 Integrated Science (EMFISIS) (Kletzing et al., 2013; Kurth et al., 2015). Chorus waves are
164 analyzed using measurements from the Waveform Receiver (WFR) on the EMFISIS wave
165 instrument (Kletzing et al., 2013). The LB chorus waves are identified using the following
166 criteria: (1) they occur outside the plasmapause, (2) within the frequency range of 0.05-0.5 f_{ce} ,
167 (3) they have planarity > 0.6, and (4) ellipticity > 0.7 (see detailed description in Li et al. (2016)
168 and Shen et al., (2019)). The plasmasphere could be identified using the intensity of the electron
169 cyclotron harmonic (ECH) waves (Meredith et al., 2004), and we follow the procedure by Shen
170 et al. (2019) to find the measurements outside the plasmapause along the Van Allen Probes orbit.
171 Using the above criteria, the wave amplitude of the LB chorus waves is obtained along Van
172 Allen Probes' trajectory from January 1, 2013, to the end of the mission (August 1, 2019 for
173 RBSP-A and July 16, 2019 for RBSP-B). For observations with no chorus waves, the wave
174 amplitude is filled by 0.1 pT as the lower threshold. Due to the satellite procession, the satellite
175 measurements covered all MLT sectors more than three times throughout the mission lifetime.
176 The dataset has more than 66 million data samples every ~6 seconds. This study reduces the
177 temporal resolution to 5 min averages while conserving the mean wave power (Bw^2), which
178 results in ~1.4 million data samples.

179 The solar wind conditions and geomagnetic indices are obtained from the OMNI dataset
180 (<https://omniweb.gsfc.nasa.gov/>) (Papitashvili et al., 2020) and SuperMAG
181 (<https://supermag.jhuapl.edu/>) (Gjerloev et al., 2010), which are used as potential input
182 parameters to the neural network model.

183 2.2 Data distribution of chorus waves

184 Figure 1 shows the statistical distribution of the dataset with respect to its locations and
185 several important factors. Figure 1a shows that the observations of Van Allen Probes are within
186 the L shell range of 2.0 and 7.0 and $|MLAT| < 20^\circ$. The majority of observations are taken
187 between $L \sim 5.8$ near the apogee of Van Allen Probes, with more observations taken near the
188 equator than at higher latitudes. Figure 1b shows that the observations are relatively evenly
189 distributed relative to MLTs. Figures 1c and 1d are in the same format as Figures 1a and 1b
190 when $Bw > 5pT$. Note that these samples ($Bw > 5pT$) are mostly located at high L shells. Figure 1e
191 shows that the dataset is highly imbalanced with respect to the chorus wave amplitude, where
192 quiet-time observations dominate the whole dataset. About 90.0% of the observations are below
193 $3.5 pT$, and 94.4% of the data are below $10.0 pT$. Figure 1f shows that chorus waves are well
194 organized by plasma density. Chorus waves are usually observed at low-density regions (< 100
195 cm^{-3}) outside the plasmapause, as expected [Hartley et al., 2022; Malaspina et al., 2016, 2018,
196 2020, 2021]. The statistical analysis above provides important information regarding the
197 development of the neural network model, which will be discussed below.

198 **3 Methodology**

199 3.1 Model description

200 In this study, an LB chorus wave model is developed using a feedforward neural network
201 following the workflow described by Chu et al. (2021). The neural network's architecture for the
202 chorus wave model is similar to that used in previous studies, which successfully modeled global
203 dynamic distributions of plasma density and electron and ion fluxes (Chu et al., 2017a, 2017b,
204 2021). It consists of a linear input layer, three hidden layers with a sigmoid activation function,
205 each followed by a batch normalization layer, and a linear output layer. The input parameters

206 include the location of the measurements (i.e., L shell, MLT, and MLAT), the in-situ electron
207 density, and the time series of the solar wind parameters and geomagnetic indices from the
208 OMNI and SuperMAG dataset, which is discussed in greater detail below. The target parameter,
209 also referred to as the model output, is the base ten logarithms of the wave amplitude of the LB
210 chorus waves $\log_{10}(B_w)$. The model inputs and output are normalized using each parameter's
211 mean and standard deviation before training and scaled back when making predictions.

212 It is essential to perform imbalanced regression since the dataset of chorus waves is
213 highly imbalanced, having more quiet-time background samples than the active-time, large-
214 amplitude chorus samples of interest. The chorus wave dataset is categorized by amplitude: quiet
215 background ($B_w < 2 \text{ pT}$), weak ($2 \text{ pT} < B_w < 5 \text{ pT}$), and strong ($B_w > 5 \text{ pT}$). The integrated wave
216 amplitude of $B_w \sim 2 \text{ pT}$ is roughly the noise level of the EMFISIS instrument (Kletzing et al.,
217 2013). Also, the amplitude of 2 pT is close to the local peak value in the histogram of the wave
218 amplitude (Figure 1e), the elbow point from a power law, suggesting two distinct distributions.
219 Thus, the quiet background values are chosen as $B_w < 2 \text{ pT}$ and assigned a weight of 1.0. Another
220 elbow point is found at $B_w \sim 5 \text{ pT}$, shown as the slower decrease of sample number with
221 increasing B_w at $B_w > 5 \text{ pT}$ than that at $B_w < 5 \text{ pT}$. Therefore, these weak chorus waves of 2
222 $\text{pT} < B_w < 5 \text{ pT}$ are assigned a weight of 10. These strong chorus waves ($B_w > 5 \text{ pT}$) are assigned a
223 weight of 20. The weights for each category are chosen empirically based on a number of
224 experiments when the data-model comparison is along the diagonal line, as shown in Figure 2.
225 The data-model comparison pairs show different degrees of biases (offset from the diagonal line)
226 in the range of different categories for different experiments, and we chose the experiment that
227 yields minimal biases in all ranges. In addition, without proper weights, the model prediction
228 exhibits a cutoff at large values around tens of pT for different experiments (see Figure 8 and

229 Section 5 for discussion), and we chose the experiment without the cutoff. The loss function is
 230 the weighted mean squared error (*WMSE*) of the $\log_{10}(B_w)$.

231

$$WMSE = \frac{\sum_1^n w_i (Bw_{obs} - Bw_{model})^2}{n \sum_1^n w_i}$$

232 where w_i is the weight of each data sample. To minimize the loss function, the neural
 233 network model is trained using the Nesterov-accelerated Adaptive Moment Estimation (*Nadam*)
 234 optimizer (Dozat, 2016). To avoid data leakage, the whole dataset is split into daily segments.
 235 This 1-day period is much longer than the typical time scale (1 hour) of chorus wave dynamics,
 236 i.e., the substorm duration (\sim 1 hour) (Chu et al., 2015) that is known to be the primary driver of
 237 chorus waves. Then, 60% of the 1-day segments are randomly selected as the training data, 20%
 238 as the validation set, and 20% as the test set. To avoid overfitting, we applied early stopping with
 239 15 epochs, dropout layers after each hidden layer (Srivastava et al., 2014), and modified
 240 stratified five-fold cross-validation (Chu et al., 2021).

241 To make global and time-dependent reconstructions of chorus wave amplitude, the
 242 plasma density at every spatial location and time is required, but not available. Therefore, a pilot
 243 neural-network-based electron density model has been developed using a 1-min electron density
 244 obtained from EMFISIS, similar to our previous models (Bortnik et al., 2016; Chu et al., 2017a,
 245 b). This model provides global distributions of electron density that are used as the input to the

246 chorus model. Since we have introduced the plasma density model in our past studies (Bortnik et
247 al., 2016; Chu et al., 2017a, b), we do not elaborate on the details here.

248 3.2 Feature selection and hyperparameter optimization

249 We used the same feature selection and hyperparameter optimization (HPO) processes
250 discussed in Chu et al. (2021). It is based on the strategy of sequentially adding the most
251 informative predictors for the neural network model and assessing its performance (Kuhn et al.,
252 2013). First, the locations of each measurement (L shell, MLT, and MLAT) are used as input.
253 Second, the location plus the time series of one parameter from the OMNI and SuperMAG
254 database are used as the only inputs. We used 1 min resolution of the indices for the preceding
255 three hours and hourly averages for the preceding 24 hours, which are chosen empirically. We
256 used a modified stratified five-fold cross-validation approach for the training process
257 (https://scikit-learn.org/stable/modules/cross_validation.html). The input parameters include all
258 the parameters in the OMNI dataset (<https://omniweb.gsfc.nasa.gov/>) and the geomagnetic
259 indices from SuperMAG (SME/U/L/R). After looping through all the input parameters, the SME
260 index (SuperMAG auroral index) yields the best performance among all input parameters. The
261 SME index, the auroral electrojet indices reflective of the horizontal currents in the ionosphere,
262 indicates the plasma injections from the magnetotail. This result is expected since the chorus
263 waves are excited due to the electron anisotropy associated with plasma injections (Li et al.,
264 2010). Third, we repeat the second step by adding the time series of another parameter from the

265 OMNI dataset as input. However, adding another parameter did not improve the model
 266 performance further (i.e., the error does not decrease).

267 The hyperparameters of the neural network model, including the number of neurons in
 268 each hidden layer and the dropout rates, are optimized using a Tree-structured Parzen estimator
 269 algorithm (Bergstra et al., 2011, 2013) implemented in Optuna (Akiba et al., 2019). We use a
 270 modified stratified 5-fold cross-validation, and the model yields the best performance on the
 271 validation dataset chosen. The final model has three hidden layers with 180, 184, and 43 neurons
 272 and dropout rates of 0.47, 0.22, and 0.20, respectively.

273 3.3 Model uncertainty

274 A second pilot model of the uncertainty of the chorus model was developed, following a
 275 similar protocol to our previous work (Camporeale et al., 2019). The uncertainty is defined as the
 276 absolute error between the observed and modeled LB chorus wave amplitude:

$$277 \text{uncertainty} = |\log_{10}(Bw_{obs}) - \log_{10}(Bw_{model})| = |\log_{10} \frac{Bw_{obs}}{Bw_{model}}|$$

278 The uncertainty model takes the same input as the chorus model (see section 3.1 for details) and
 279 predicts the absolute error of the predicted chorus wave amplitude $\log_{10}(B_w)$, which is usually
 280 close to a Gaussian distribution, as shown in Figure 16 in Camporeale et al., (2019). Thus, the
 281 uncertainty denotes a relative error in the wave amplitude so that the ratios of Bw are symmetric
 282 both above and below 1 (Morley et al., 2018). Finally, both the chorus wave amplitude and its
 283 uncertainty can be provided by the two neural network models at any time and at any location,
 284 i.e., time-dependent uncertainties. An example of the modeled chorus wave amplitude and its
 285 uncertainty along the Van Allen Probe's trajectories are discussed in section 5 with Figure 5. The

286 error bars represent the modeled chorus wave amplitudes plus and minus the modeled
287 uncertainties.

288 **4 Model performance**

289 The correlation between the observed and modeled chorus wave amplitude $\log_{10}(B_w)$
290 above the background level is shown in the four panels in Figure 2 for the whole dataset, as well
291 as the training, validation, and test datasets separately. The probability density of occurrences in
292 each bin is indicated by its color. The red dashed diagonal line ($y=x$) represents where the model
293 predicts the wave amplitude perfectly, as expected. It should be noted that most observation-
294 model pairs are distributed around the diagonal line. This result suggests that the neural network
295 model reproduces the observations without much over- or under-estimation, regardless of the
296 chorus amplitude $\log_{10}(B_w)$. Particular attention has been given to these large values, which are
297 also well-predicted. While this is intuitively correct and was relatively easy to obtain in previous
298 models (e.g., plasma density in Bortnik et al., 2016; Chu et al., 2017a, b; electron fluxes in Chu
299 et al., 2021; Ma et al., 2022), it has been challenging to achieve using highly imbalanced data
300 such as the chorus wave amplitude. Traditional statistical models of chorus wave distribution, or
301 any model based on an imbalanced dataset, are usually dominated by the frequently occurring
302 background values. Furthermore, the traditional models usually minimize the mean squared error
303 (MSE), with the assumption that each data point is equally important. As a result, these models
304 tend to regress to the means of quiet-time values, and cannot predict large values in the long tail
305 distribution. In the case of chorus waves, traditional statistical models usually underestimate the
306 amplitude of large chorus waves. In this study, we show that an imbalanced regressive technique

307 is essential during model development using imbalanced datasets, and our chorus model is the
308 first model that can predict strong chorus waves.

309 Our chorus model can make accurate predictions of large chorus waves within a
310 reasonable uncertainty. The weighted root mean square errors (WRMSE) are shown on the
311 bottom right of the panels. The WRMSE on the test dataset is 0.53, which translates to an
312 uncertainty of a factor of 3.3 ($=10^{0.53}$).

313 Figure 3 shows the probability density of the errors as a function of the L shell for the
314 four datasets, for direct comparison to Figure 2. The error is defined as the difference between
315 the logarithms of the observation and the model prediction $error = \log_{10}(Bw_{obs}) - \log_{10}(Bw_{model})$.
316 The color indicates the number of samples in each bin. The error bars represent the weighted
317 mean and WRMSE. The errors are much smaller at low L shells (<2.8) and gradually increase at
318 high L shells, reflecting the highly fluctuating chorus wave amplitudes at large L shells. This is
319 because the satellites are inside the plasmasphere at low L shells, where chorus waves are largely
320 absent (see Figure 1f). As a result, the observations and model predictions are close to
321 background noise, which results in small errors and bias. At higher L shells outside the
322 plasmasphere, the variation of the wave amplitude from the noise level to the strong wave
323 amplitude is large, resulting in a larger uncertainty. In the heart of the outer radiation belt ($L \sim 4$ -
324 5), where chorus waves play an essential role in the acceleration and loss of the relativistic
325 electrons, the uncertainty is about 0.5 in $\log_{10}(Bw)$, which translates to an uncertainty of a factor
326 of 3.0 ($=10^{0.5}$) in Bw .

327 Figure 4 shows the probability density of the errors as a function of the electron density
328 for the four datasets. The error indicates the number of samples in each bin. The error bars

329 represent the weighted mean and WRMSE. The errors are much smaller in high-density regions
330 and suddenly become larger in low-density regions. At the density of $10^{1.8} \text{ cm}^{-3}$, which marks the
331 plasmapause, there is a sharp transition in the model error. This is consistent with the sharp
332 transition of $10^{1.8} \text{ cm}^{-3}$ in Figure 2, where the chorus waves are mainly observed at low-density
333 regions. As discussed above, this is because chorus waves are observed outside the plasmapause,
334 thus resulting in quiet background noise inside the plasmapause and highly fluctuating chorus
335 amplitude outside the plasmapause.

336 **5 Model application**

337 For illustration purposes, the chorus model was applied to a three-day period over
338 October 24-27, 2017, which was held out as an out-of-sample test dataset. Therefore, this case
339 can represent the forecast capability of the chorus model on out-of-sample datasets, and the
340 results are shown in Figure 5.

341 The geomagnetic activity was quiet before 0800 UT on October 24, when a corotating
342 interaction region (CIR) arrived at the Earth's magnetopause. The solar wind speed increased
343 from 400 km/s to 650 km/s during the next two days, with a leading pressure enhancement
344 between 0800-1200 UT on October 24 (not shown). The CIR induced a two-day activity period,
345 which is similar to, but too weak to account for a geomagnetic storm. The Sym-H index in
346 Figure 5a shows a sudden commencement between 0800-1200 UT on October 24, then reached a
347 minimum of -36 nT around 2300 UT. Many magnetospheric substorms occurred subsequently,
348 with two strong substorms reaching more than 1100 nT in the AE index during the storm's main
349 phase. Another weak storm with a minimum Sym-H of -44 nT occurred on October 26.

350 Figures 5b and 5c show the comparison between the observed (red) and model-predicted
351 (blue) LB chorus wave amplitude along the trajectories of the Van Allen Probes (RBSP-A and
352 RBSP-B), the apogees of which were on the dayside. The chorus model predicts the chorus wave
353 amplitude well along the trajectories, as the lines are very close. During the first orbit with no
354 chorus waves, the model predicted background values. During the successive few orbits, the
355 model predicted wave amplitude followed the trend of the observed value. For the first time, a
356 chorus model can predict the peak amplitude of the strong chorus wave (~ 100 pT) during every
357 orbit, including those of the second storm. In addition, the uncertainty of the model predictions is
358 provided by the uncertainty model described in section 3.3. The model uncertainties (green lines)
359 are larger for strong chorus waves and smaller for quiet times. For strong chorus waves, the
360 model uncertainties are roughly 0.3, which translates to a factor of 2 ($10^{0.3}$). For quiet times, the
361 model uncertainties are roughly 0.1, translating to a factor of 1.2.

362 Figure 5d shows the model-predicted chorus wave amplitude on the equatorial plane near
363 midnight (MLAT=0° and MLT=3). First, the chorus wave enhancements are closely related to
364 the substorm activity indicated by the SME index. For example, the chorus waves strengthened
365 during the first two strong substorms in the storm main phase. Second, the chorus wave
366 amplitude extended to lower L shells during strong substorms. This is because of the erosion of
367 the plasmasphere due to the electric fields brought by the substorm injections. Thus, the chorus
368 waves, excited right outside the plasmapause, also contracted to lower L shells [Hartley et al.,
369 2022; Malaspina et al., 2016, 2018, 2020, 2021].

370 One of the merits of the neural network model is that it can reconstruct the global
371 distribution of chorus wave amplitude at any time. The evolution of the chorus waves on the
372 equatorial plane (MLAT=0°) is shown in Figure 6a. The arrows indicate the six snapshots in

373 Figure 5. There were no chorus waves during the quiet time at 2017-10-24/08:00:00. Right after
374 the substorm onset at 2017-10-24/13:00:00, the chorus waves were strengthened at high L shells
375 outside the nominal plasmapause indicated by the black line ($n_e = 50 \text{ cm}^{-3}$). The wave amplitude is
376 higher in the midnight and early morning region and lower toward noon. This distribution is
377 consistent with the drift path of the injected electrons. At the peak of the first substorm at 2017-
378 10-24/13:00:00, the chorus waves further strengthened and moved to the lower L shell as the
379 plasmapause contracted. Nevertheless, the model-predicted chorus waves were outside the
380 nominal plasmapause. At the peak of the second substorm at 2017-10-24/17:00:00, the chorus
381 waves were stronger and reached lower L shell and broader local times. This is because the
382 second substorm was stronger, and the plasmapause was more contracted. After the two
383 substorms at 2017-10-24/20:30:00, the chorus waves were observed at higher L shells while the
384 plasmapause remained contracted. During the second storm with an elevated SME index, similar
385 to steady magnetospheric convection (Kissinger et al., 2012; McPherron et al., 2005; O'Brien et
386 al., 2002; Sergeev et al., 1996), the chorus waves were stronger, extended to lower L shells, and
387 broader local times.

388 The evolution of the chorus waves in the meridian plane is investigated in Figure 6 at
389 four different MLTs (MLT=0, 3, 6, 9, and 12). Near midnight (MLT=0), the chorus waves
390 peaked at the equator (MLAT=0°), and the amplitude decreased toward higher latitudes due to
391 Landau damping of chorus waves (Bortnik et al., 2006). The chorus waves further strengthened
392 and covered an extensive range of latitudes when the substorm strengthened. Nevertheless, the
393 peak remained at the equator. In the dawn region (MLT=6), the chorus waves are strong and
394 located at higher L shells, yet still near the equator. However, note that a minimum wave
395 amplitude is found near the equator right outside the plasmapause, i.e., at the inner edge of the

396 chorus wave region. The minimum in the wave amplitude is more pronounced toward the
397 dayside, except in the plume region where the plasmapause extended to a large L shell. The
398 equatorial minimum in chorus wave amplitude can be explained by two possible mechanisms:
399 wave propagation and a local minimum in magnetic field strength, which is further elaborated on
400 in the discussion section.

401 The temporal evolution of the chorus wave amplitudes versus MLAT at different L shells
402 and MLT is illustrated in Figure 7. First, similar to Figure 5d, the chorus amplitude strengthens
403 during substorms. Second, near the region of plasma injections (MLT=0), the chorus waves peak
404 at the equator throughout this period, regardless of L shell and geomagnetic activity phases. On
405 the other hand, toward the noon region, an equatorial minimum in wave amplitude was evident at
406 different L shells during this period. Figure 7 further validates the equatorial minimum near the
407 noon region during different activity and L shells, as shown in Figure 6.

408 The comparison between the IR chorus model and the traditional neural network model
409 in Figure 8 further demonstrates the importance of imbalanced regression. A traditional neural
410 network (NN) of the LB chorus amplitude is trained with an MSE loss function, which does not
411 consider the weights of the imbalanced dataset. The IR chorus model and the traditional NN
412 model are applied to the Van Allen Probe era (January 1, 2013 to June 1, 2019). The IR chorus
413 model (Figure 8c) shows good agreement with the observed chorus amplitude from both Van
414 Allen Probes (Figure 8b). Note that the IR chorus model could predict the strong chorus waves
415 $10^{2.5}$ pT (300 pT). On the other hand, the traditional NN model (Figure 8d) is capped at about
416 $10^{1.5}$ pT (30 pT) and cannot predict strong chorus waves. Therefore, the traditional NN model
417 underestimates the strong chorus wave amplitude by a factor of 10. Furthermore, both models are
418 applied to the equatorial plane (MLAT=0°) at MLT=0300 throughout the Van Allen Probe era.

419 The IR chorus model predicted many strong chorus wave events (red events in Figure 8e), while
420 the traditional NN severely underestimated the wave amplitudes (green color in Figure 8f).
421 Figures 8g and 8h show the zoomed-in view of the comparison during October 24-27, 2017, the
422 same time period as Figure 5. Note that the chorus waves were strong (~ 100 pT) during this
423 period, both in observations (Figure 5) and the IR model reconstructions (Figure 8g). However,
424 the traditional NN model underestimated the chorus wave amplitude and predicted the yellow
425 color at peaks rather than the red color from the IR chorus models, which is roughly a factor of
426 10 smaller. In summary, the IR chorus model can predict the strong amplitude of strong chorus
427 waves with an uncertainty of a factor of 3. On the other hand, the traditional model
428 underestimates these waves by a factor of 10.

429 **5 Discussion and Conclusions**

430 We develop a neural network-based model of the LB chorus wave amplitude in the inner
431 magnetosphere. The model uses a combination of the satellite location, in-situ plasma density,
432 and time series of the SME index as input and predicts the LB chorus wave amplitude in the
433 inner magnetosphere ($L \leq 7$ and $|MLAT| < 20^\circ$). The model is trained using 7-year observations
434 (2013-2019) from the EMFISIS instrument onboard two Van Allen Probes. It was found that the
435 auroral electrojet index SME alone can fully represent the geomagnetic activity related to the
436 chorus waves. This is expected since the SME index indicates the strength of substorm
437 injections, which induce electron anisotropy and lead to the cyclotron resonant interactions.
438 Furthermore, the neural network model can predict most of the chorus wave amplitude within an

439 uncertainty of a factor of 2 and the chorus wave amplitude in the heart of the radiation belt ($L \sim 4$ -
440 5) within an uncertainty of 1.6-2.1.

441 Using imbalanced regressive methods to develop the chorus waves model is essential
442 because the database is highly imbalanced. About 90% of the observations are non-chorus
443 samples ($Bw < 3 \text{ pT}$), and only 5.6% of the data contains chorus waves ($Bw > 10 \text{ pT}$). Traditional
444 regression methods are usually dominated by non-chorus quiet data samples. As a result,
445 traditional models tend to underestimate strong chorus waves, which are the most important and
446 exciting to radiation belt physics. In this study, we utilized a loss function WMSE to account for
447 different weighting factors for data samples of different chorus wave amplitudes. Our results
448 demonstrate that this is a simple and effective way to deal with the imbalanced chorus wave
449 dataset. As a result, our model can predict the large amplitude chorus waves in statistical analysis
450 (Figure 2), event studies (Figure 5), and long-term predictions (Figure 8). Our study shows the
451 importance of imbalanced regression in model development, both for machine learning models
452 and traditional statistical models. Therefore, imbalanced regression (and classification) should be
453 emphasized in the space physics/weather community since most datasets in our fields are highly
454 imbalanced.

455 For the first time, the global temporal and spatial evolution of the chorus waves can now
456 be investigated. Taking advantage of the neural networks' predictive capability, we can
457 reconstruct the global distribution of chorus waves at a time instance within the coverage of the
458 database ($L \leq 7$ and $|MLAT| < 20^\circ$). The chorus waves are distributed in a region consistent with
459 the injected electron drift path, which agrees with theoretical expectations. The chorus waves are
460 typically distributed outside the nominal plasmapause regardless of MLT and levels of
461 geomagnetic activity. As substorms develop, the chorus waves move to the lower L shells along

462 with the erosion of the plasmapause, especially on the nightside. They also extend to a much
463 broader region in MLT. On the other hand, the chorus waves in the noon-to-dusk region move to
464 high L shells due to the formation of plasmaspheric plumes.

465 The latitudinal distributions of chorus waves show interesting evolutions. Chorus waves
466 have their maximum amplitude near the equator and are confined to the plasma sheet region near
467 midnight (MLT=3), which is close to the source MLT of the injections. During substorms, the
468 amplitude and coverage of chorus waves can vary, expanding and contracting in MLT.
469 Regardless, the chorus waves have peaks in the plasma sheet near midnight, where substorm
470 injections are most frequent. Approaching the noon region, the chorus waves show a minimum at
471 the equator, with peak amplitudes at higher latitudes in both hemispheres. This feature is
472 consistent with statistical chorus wave distributions from multi-satellite observations (Meredith
473 et al., 2021). Two possible explanations exist for the equatorial minimum in the chorus wave
474 amplitude. First, chorus waves are excited near the equator, then propagate toward high latitudes
475 and become more oblique (Bortnik et al., 2008, 2009, 2011; Chen et al., 2013). Thus, the chorus
476 waves at higher latitudes at a specific L shell might originate from the equator at higher L shells.
477 This means there is little chorus wave power near the equator at the same lower L shell, thus
478 manifesting as a local equatorial minimum of chorus amplitude. This is consistent with a
479 statistical study showing that the minimum near the equator on the dayside disappears at large L
480 shells (Meredith et al., 2020), although beyond the range of the Van Allen Probes orbit (L~7).
481 Thus, it also supports the first explanation that the waves are excited near the equator at higher L
482 shells ($L>6$) and propagate to lower L shells at higher latitudes. Second, the magnetic field
483 strength exhibits local minimums off the equator in the dayside region (Tsurutani & Smith, 1977;
484 Keika et al., 2012). The substorm injections will drift along the magnetic field minimum, thus,

485 following the bifurcation of the magnetic field lines to both hemispheres. In addition, the
486 excitation of the chorus waves is in favor of smaller electron gyrofrequency (f_{ce}). Therefore, the
487 excitation of the chorus waves on the dayside shows the feature of bifurcation, i.e., off-equator
488 maximums of chorus amplitude in both hemispheres. A further investigation will be carried out
489 to distinguish the two explanations, which require observations from higher latitudes and
490 additional information on wave polarization properties, such as wave normal angle and Poynting
491 flux.

492 The Earth's radiation belt belts, consisting primarily of energetic electrons and protons
493 with energies from a few keV to several MeV, are particularly hazardous to spacecraft and
494 astronauts. Thus, the specification and prediction of Earth's radiation environment have been an
495 essential topic in space physics and space weather. To understand and predict radiation belt
496 dynamics, the traditional approach involves the integration of the Fokker-Planck (FP) equations
497 (e.g., Ma et al., 2017; Kellerman et al., 2021). However, it requires three-dimensional time-
498 varying distributions of waves to calculate the diffusion coefficients. While chorus waves play an
499 essential role in the acceleration of relativistic electrons, previous empirical chorus models are
500 parameterized by geomagnetic activity and cannot provide such distributions. This is especially
501 important during geomagnetic storms due to their underestimation of large-amplitude chorus
502 waves. Therefore, the IR-based chorus model will address the problem by providing IR-based
503 modeled chorus distributions, especially these storm-time strong chorus waves, to the FP
504 simulation to better predict the radiation belt environment (Bortnik et al., 2018). In future

505 studies, a comprehensive environment including waves and plasma conditions predicted by
506 machine learning models will be used as input to the FP simulation for prediction purposes.

507 We summarize the major conclusions as follows:

- 508 1. We develop a neural network model of the lower-band chorus wave amplitude using
509 imbalanced regressive methods.
- 510 2. Based on feature selection, the time series of the SME index can capture the variation of
511 the lower-band chorus waves.
- 512 3. Our IR chorus model can correctly predict the amplitude of the strong chorus waves, for
513 the first time. A pilot model is developed to provide the model uncertainties.
- 514 4. The IR chorus model can predict the strong wave amplitude (> 300 pT) with an
515 uncertainty of a factor of 3. On the other hand, the traditional neural network model's

516 prediction is capped by 30 pT, persistently underestimating the amplitude of strong
517 chorus waves by a factor of 10.

518 5. The equatorial evolution of the chorus waves is consistent with the electron drift path of
519 substorm injections.

520 6. The chorus waves peak at the equator (plasma sheet) in the source MLT near midnight.
521 They show a minimum at the equator toward noon, with two off-equator amplitude peaks
522 in two hemispheres.

523 7. Imbalanced regression methods require more attention since most datasets in space
524 physics, space weather, and real world are imbalanced.

525

526

527 **Acknowledgments**

528 XC would like to thank grant NASA ECIP 80NSSC19K0911, 80NSSC20K0196,
529 80NSSC22K1023, 80NSSC20K1325, 80NSSC23K0096, 80NSSC18K1227, and AFOSR YIP
530 FA9550-23-1-0359. In addition, JB acknowledges support from the Defense Advanced Research
531 Projects Agency under the Department of the Interior award D19AC00009. WL, XS, and QM
532 acknowledge NASA grants 80NSSC19K0845, 80NSSC20K0698, as well as the NSF grant AGS-
533 1847818. This work used Extreme Science and Engineering Discovery Environment (XSEDE)
534 Bridges GPU at the PSC through allocation TG-PHY190033.

535

536 **Open Research**

537 The chorus waves are analyzed using measurement from the EMFISIS instrument (Kletzing et al.,
538 2013) available at emfisis.physics.uiowa.edu onboard Van Allen Probe mission (Mauk et al.,
539 2013) available at rbspgway.jhuapl.edu. The solar wind parameters and geomagnetic indices are
540 obtained from the OMNI dataset (Papitashvili et al., 2020) available at omniweb.gsfc.nasa.gov
541 and SuperMAG (Gjerloev et al., 2010) available at <https://supermag.jhuapl.edu/>. The data set and
542 models of the chorus wave are available (Chu et al., 2023) at
543 <https://doi.org/10.5281/zenodo.7894060>. The neural network models are developed using the
544 TensorFlow package, which is open-source (TensorFlow Developers, 2023) and available at
545 www.tensorflow.org.

546

547

548

549 **References**

550

551 A. Al-Ghraibah, L. E. Boucheron and R. T. J. McAteer, A Study of Feature Selection of
552 Magnetogram Complexity Features in an Imbalanced Solar Flare Prediction Dataset, 2015 IEEE
553 International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 2015,
554 pp. 557-564, doi: 10.1109/ICDMW.2015.188.

555

556 Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard,
557 H., Balikhin, M., and Rolland, G. (2013), Statistics of whistler-mode waves in the outer radiation
558 belt: Cluster STAFF-SA measurements, *J. Geophys. Res. Space Physics*, 118, 3407– 3420,
559 doi:10.1002/jgra.50312.

560

561 Agapitov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S., & Krasnoselskikh, V. (2015).
562 Empirical model of lower band chorus wave distribution in the outer radiation belt. *Journal of*
563 *Geophysical Research: Space Physics*, 120, 10,425–10,442.

564 <https://doi.org/10.1002/2015JA021829>

565

566 Agapitov, O., D. Mourenas, A. Artemyev, F. S. Mozer, J. W. Bonnell, V. Angelopoulos, V.
567 Shastun, and V. Krasnoselskikh (2018), Spatial Extent and Temporal Correlation of Chorus and
568 Hiss: Statistical Results From Multipoint THEMIS Observations, *J. Geophys. Res.*, 123(10),
569 8317-8330, doi:10.1029/2018ja025725.

570

571 Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). *Optuna: A next-generation*
572 *hyperparameter optimization framework. Paper presented in proceedings of the 25th ACM*
573 *SIGKDD international conference on knowledge discovery & data mining (KDD'*
574 *19)* (pp. 2623– 2631): Association for Computing
575 Machinery. <https://doi.org/10.1145/3292500.3330701>

576

577 Baker DN, Kanekal SG, Hoxie VC, et al. A long-lived relativistic electron storage ring
578 embedded in Earth's outer Van Allen belt. *Science*. 2013;340(6129):186-190.
579 doi:10.1126/science.1233518

580

581 Baker DN, Jaynes AN, Hoxie VC, et al. An impenetrable barrier to ultrarelativistic electrons in
582 the Van Allen radiation belts. *Nature*. 2014, 515(7528):531-534. doi:10.1038/nature13956
583

584 Baker, D. N., et al. (2014b), Gradual diffusion and punctuated phase space density enhancements
585 of highly relativistic electrons: Van Allen Probes observations, *Geophys. Res. Lett.*, 41(5), 1351-
586 1358, doi:10.1002/2013gl058942.

587

588 Baker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X., & Elkington,
589 S. (2019). Multiyear measurements of radiation belt electrons: Acceleration, transport, and
590 loss. *Journal of Geophysical Research: Space
591 Physics*, 124, 2588– 2602. <https://doi.org/10.1029/2018JA026259>

592

593 Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. (2011). Algorithms for Hyper-Parameter
594 Optimization. Paper presented at the 25th Annual Conference on Neural Information Processing
595 Systems (NIPS 2011), Granada, Spain. <https://proceedings.mlr.press/v28/bergstra13.html>

596

597 Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter
598 optimization in hundreds of dimensions for vision architectures. In *Paper presented at the*
599 *proceedings of the 30th international conference on machine learning, proceedings of machine*
600 *learning research*. Retrieved from <http://proceedings.mlr.press>

601

602 Bortnik, J., and R. M. Thorne (2007), The dual role of ELF/VLF chorus waves in the
603 acceleration and precipitation of radiation belt electrons, *Journal of Atmospheric and Solar-*
604 *Terrestrial Physics*, 69(3), 378-386, doi:10.1016/j.jastp.2006.05.030.

605

606 Bortnik, J., Thorne, R. M., and Meredith, N. P. (2007), Modeling the propagation characteristics
607 of chorus using CRRES suprathermal electron fluxes, *J. Geophys. Res.*, 112, A08204,
608 doi:10.1029/2006JA012237.

609

610 Bortnik, J., Thorne, R. M., Meredith, N. P., and Santolik, O. (2007), Ray tracing of penetrating
611 chorus and its implications for the radiation belts, *Geophys. Res. Lett.*, 34, L15109,
612 doi:10.1029/2007GL030040.

613

614 Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of plasmaspheric
615 hiss from discrete chorus emissions, *Nature*, 452(7183), 62-66, doi:10.1038/nature06741.

616

617 Bortnik, J., W. Li, R. M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O. Le Contel, and A.
618 Roux (2009), An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus
619 Emissions, *Science*, 324(5928), 775-778, doi:DOI 10.1126/science.1171273.

620

621 Bortnik, J., Chen, L., Li, W., Thorne, R. M., and Horne, R. B. (2011), Modeling the evolution of
622 chorus waves into plasmaspheric hiss, *J. Geophys. Res.*, 116, A08221,
623 doi:10.1029/2011JA016499.

624

625 Chen L., R. M. Thorne, W. Li, and J. Bortnik (2013), Modeling the wave normal distribution of
626 chorus waves, *J. Geophys. Res. Space Physics*, 118, 1074–1088, doi:10.1029/2012JA018343.

627

628 Bortnik, J., Li, W., Thorne, R. M., & Angelopoulos, V. (2016). A unified approach to inner
629 magnetospheric state prediction. *Journal of Geophysical Research: Space
630 Physics*, **121**(3), 2423– 2430. <https://doi.org/10.1002/2015ja021733>

631

632 Bortnik, J., Chu, X., Ma, Q., Li, W., Zhang, X., Thorne, R. M., et al. (2018). Artificial neural
633 networks for determining magnetospheric conditions. In E. Camporeale, S. Wing, & J. R.
634 Johnson (Eds.), *Machine learning techniques for space weather* (pp. 279– 300).

635 Elsevier. <https://doi.org/10.1016/b978-0-12-811788-0.00011-1>

636

637 Buda, M., Maki, A., and Mazurowski, M. A. A systematic study of the class imbalance problem
638 in convolutional neural networks. *Neural Networks*, 106:249–259, 2018.

639

640 Bunch, N. L., M. Spasojevic, and Y. Y. Shprits (2011), On the latitudinal extent of chorus
641 emissions as observed by the Polar Plasma Wave Instrument, *J. Geophys. Res.*, 116, doi:Doi
642 10.1029/2010ja016181.

643

644 Burtis, W. J. & Helliwell, R. A. Magnetospheric chorus: occurrence patterns and normalized
645 frequency. *Planet. Space Sci.* **24**, 1007 (1976).

646

647 Camporeale, E. (2019). The challenge of machine learning in Space Weather: Nowcasting and
648 forecasting. *Space Weather*, 17, 1166– 1207. <https://doi.org/10.1029/2018SW002061>

649

650 Camporeale, E., Chu, X., Agapitov, O. V., & Bortnik, J. (2019). On the generation of
651 probabilistic forecasts from deterministic models. *Space Weather*, 17, 455– 475.

652 <https://doi.org/10.1029/2018SW002026>

653

654 Chakraborty, S., & Morley, S. K. (2020). Probabilistic prediction of geomagnetic storms and the
655 Kp index. *Journal of Space Weather and Space Climate*, 10.

656 <https://doi.org/10.1051/swsc/2020037>

657

658 Chen, L. J., J. Bortnik, R. M. Thorne, R. B. Horne, and V. K. Jordanova (2009), Three-
659 dimensional ray tracing of VLF waves in a magnetospheric environment containing a
660 plasmaspheric plume, *Geophys. Res. Lett.*, 36, doi:10.1029/2009gl040451.

661

662 Chu, X., McPherron, R. L., Hsu, T.-S., & Angelopoulos, V. (2015). Solar cycle dependence of
663 substorm occurrence and duration: Implications for onset. *Journal of Geophysical Research:*
664 *Space Physics*, **120**(4), 2808– 2818. <https://doi.org/10.1002/2015ja021104>

665

666 Chu, X. N., Bortnik, J., Li, W., Ma, Q., Angelopoulos, V., & Thorne, R. M. (2017a). Erosion and
667 refilling of the plasmasphere during a geomagnetic storm modeled by a neural network. *Journal*
668 *of Geophysical Research: Space*

669 *Physics*, **122**(7), 7118– 7129. <https://doi.org/10.1002/2017ja023948>

670

671 Chu, X., Bortnik, J., Li, W., Ma, Q., Denton, R., Yue, C., et al. (2017b). A neural network model
672 of three-dimensional dynamic electron density in the inner magnetosphere. *Journal of*
673 *Geophysical Research: Space*

674 *Physics*, **122**(9), 9183– 9197. <https://doi.org/10.1002/2017ja024464>

675

676 Chu, X., Ma, D., Bortnik, J., Tobiska, W. K., Cruz, A., Bouwer, S. D., et al. (2021). Relativistic
677 electron model in the outer radiation belt using a neural network approach. *Space Weather*, 19,
678 e2021SW002808. <https://doi.org/10.1029/2021SW002808>

679

680 Chu, X. (2023). Distribution and evolution of chorus waves modeled by a neural network: the
681 importance of imbalanced regression (Version 0.1) [Data and Software].

682 <https://doi.org/10.5281/zenodo.7894060>

683

684 T. Dozat, "Incorporating Nesterov momentum into Adam", *Proc. ICLR*, pp. 1-4, 2016.

685

686 Gjerloev, J. W., R. A. Hoffman, S. Ohtani, J. Weygand, and R. Barnes, Response of the Auroral
687 Electrojet Indices to Abrupt Southward IMF Turnings (2010), *Annales Geophysicae*, 28, 1167-
688 1182 [Dataset]. (www.ann-geophys.net/28/1167/2010/angeo-28-1167-2010.pdf),

689

690 Guo, Y., Ni, B., Fu, S., Wang, D., Shprits, Y. Y., Zhelavskaya, I. S., et al. (2022). Identification
691 of controlling geomagnetic and solar wind factors for magnetospheric chorus intensity using
692 feature selection techniques. *Journal of Geophysical Research: Space Physics*, 127,
693 e2021JA029926. <https://doi.org/10.1029/2021JA029926>

694

695 Hartley, D. P., Kletzing, C. A., Santolík, O., Chen, L. & Horne, R. B. Statistical properties of
696 plasmaspheric hiss from Van Allen Probes observations. *J. Geophys. Res.: Space Phys.* **123**,
697 2605–2619 (2018).

698

699 Hartley, D. P., C. A. Kletzing, L. Chen, R. B. Horne, and O. Santolík (2019), Van Allen Probes
700 Observations of Chorus Wave Vector Orientations: Implications for the Chorus-to-Hiss
701 Mechanism, *Geophys. Res. Lett.*, 46(5), 2337-2346, doi:10.1029/2019gl082111.

702

703 Hartley, D. P., Chen, L., Christopher, I. W., Kletzing, C. A., Santolik, O., Li, W., & Shi,
704 R. (2022). The angular distribution of lower band chorus waves near plasmaspheric
705 plumes. *Geophysical Research Letters*, 49,
706 e2022GL098710. <https://doi.org/10.1029/2022GL098710>

707

708 Horne, R. B., and R. M. Thorne (1998), Potential waves for relativistic electron scattering and
709 stochastic acceleration during magnetic storms, *Geophys. Res. Lett.*, 25(15), 3011-3014, doi:doi
710 10.1029/98gl01002.

711

712 Kasahara, S. et al. Pulsating aurora from electron scattering by chorus waves. *Nature* **554**, 337–
713 340 (2018).

714

715 Katoh Y, Omura Y, Computer simulation of chorus wave generation in the Earth's inner
716 magnetosphere, *GRL* 34, L03102 (2007). <http://dx.doi.org/10.1029/2006GL028594>

717

718 Keika, K., Spasojevic, M., Li, W., Bortnik, J., Miyoshi, Y., and Angelopoulos, V. (2012),
719 PENGIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in the
720 dayside uniform zone under steady solar wind and quiet geomagnetic conditions, *J. Geophys.*
721 *Res.*, 117, A07212, doi:10.1029/2012JA017708.

722

723 Kim, J.-H., Lee, D.-Y., Cho, J.-H., Shin, D.-K., Kim, K.-C., Li, W., and Kim, T. K. (2015), A
724 prediction model for the global distribution of whistler chorus wave amplitude developed
725 separately for two latitudinal zones. *J. Geophys. Res. Space Physics*, 120, 2819– 2837,
726 doi: [10.1002/2014JA020900](https://doi.org/10.1002/2014JA020900).

727

728 Kissinger, J., McPherron, R. L., Hsu, T.-S., and Angelopoulos, V. (2012), Diversion of plasma
729 due to high pressure in the inner magnetosphere during steady magnetospheric convection, *J.*
730 *Geophys. Res.*, 117, A05206, doi:[10.1029/2012JA017579](https://doi.org/10.1029/2012JA017579).

731

732 Kletzing, C. A., et al. (2013), The Electric and Magnetic Field Instrument Suite and Integrated
733 Science (EMFISIS) on RBSP, *Space Sci. Rev.*, **179**, 127–181, [Dataset] doi:[10.1007/s11214-013-9993-6](https://doi.org/10.1007/s11214-013-9993-6).

735

736 Kuhn, M., & Johnson, K. (2013). *Applied predictive modeling*: Springer.

737

738 Kurth, W. S., S. De Pascuale, J. B. Faden, C. A. Kletzing, G. B. Hospodarsky, S. Thaller, and J.
739 R. Wygant (2015), Electron densities inferred from plasma wave spectra obtained by the Waves
740 instrument on Van Allen Probes, *J. Geophys. Res. Space Physics*, **120**, 904–914,
741 doi:[10.1002/2014JA020857](https://doi.org/10.1002/2014JA020857).

742

743 Lazzús, J. A., Vega, P., Rojas, P., & Salfate, I. (2017). Forecasting the Dst index using a swarm-
744 optimized neural network. *Space Weather*, *15*(8), 1068–1089.

745 <https://doi.org/10.1002/2017SW001608>

746

747 Lee, D. Y., D. K. Shin, J. H. Kim, J. H. Cho, K. C. Kim, J. A. Hwang, D. L. Turner, T. K. Kim,
748 and M. Y. Park (2013), Long-term loss and re-formation of the outer radiation belt, *J. Geophys.
749 Res.*, *118*(6), 3297–3313, doi:10.1002/jgra.50357.

750

751 Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux,
752 U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed
753 on the THEMIS spacecraft, *Geophys. Res. Lett.*, *36*(9), L09104, doi:10.1029/2009gl037595.

754

755 Li W, Thorne RM, Nishimura Y, Bortnik J, Angelopoulos V, et al., THEMIS analysis of
756 observed equatorial electron distributions responsible for the chorus excitation, JGR 115,
757 A00F11 (2010). <http://dx.doi.org/10.1029/2009JA014845>

758

759 Li, W., J. Bortnik, R. M. Thorne, C. M. Cully, L. Chen, V. Angelopoulos, Y. Nishimura, J. B.
760 Tao, J. W. Bonnell, and O. LeContel (2013), Characteristics of the Poynting flux and wave
761 normal vectors of whistler-mode waves observed on THEMIS, *J. Geophys. Res. Space
762 Physics*, **118**, 1461–1471, doi:[10.1002/jgra.50176](https://doi.org/10.1002/jgra.50176).

763

764 Li, W., Santolik, O., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S., and Hospodarsky,
765 G. B. (2016), New chorus wave properties near the equator from Van Allen Probes wave
766 observations, *Geophys. Res. Lett.*, **43**, 4725–4735, doi:[10.1002/2016GL068780](https://doi.org/10.1002/2016GL068780).

767

768 Li, J., Bortnik, J., An, X. *et al.* Origin of two-band chorus in the radiation belt of Earth. *Nat
769 Commun* **10**, 4672 (2019). <https://doi.org/10.1038/s41467-019-12561-3>

770

771 Li, X., D. N. Baker, M. Temerin, T. E. Cayon, E. G. D. Reeves, R. A. Christensen, J. B. Blake,
772 M. D. Looper, R. Nakamura, and S. G. Kanekal (2013), Multisatellite observations of the outer
773 zone electron variation during the November 3–4, 1993, magnetic storm, *Journal of Geophysical
774 Research: Space Physics*, **102**(A7), 14123–14140, doi:10.1029/97ja01101.

775

776 Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X. Large-scale long-tailed
777 recognition in an open world. In CVPR, 2019.

778

779 Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., et al. (2018). Quantitative
780 evaluation of radial diffusion and local acceleration processes during GEM challenge events.
781 *Journal of Geophysical Research: Space Physics*, 123, 1938– 1952.

782 <https://doi.org/10.1002/2017JA025114>

783

784 Ma, D., Chu, X., Bortnik, J., Claudepierre, S. G., Tobiska, W. K., Cruz, A., et al.
785 (2022). Modeling the dynamic variability of sub-relativistic outer radiation belt electron fluxes
786 using machine learning. *Space Weather*, 20, e2022SW003079. <https://doi->
787 <https://doi.org/10.1029/2022SW003079>

788

789 Malaspina, D. M., Jaynes, A. N., Boulé, C., Bortnik, J., Thaller, S. A., Ergun, R. E., Kletzing, C.
790 A., and Wygant, J. R. (2016), The Distribution of Plasmaspheric Hiss Wave Power with Respect
791 to Plasmapause Location, *Geophys. Res. Lett.*, 43, 7878– 7886, doi:[10.1002/2016GL069982](https://doi.org/10.1002/2016GL069982).

792

793 Malaspina, D. M., Jean-Francois Ripoll, Xiangning Chu, George Hospodarsky, John
794 Wygant, Variation in Plasmaspheric Hiss Wave Power With Plasma Density, *Geophysical
795 Research Letters*, 10.1029/2018GL078564, **45**, 18, (9417-9426), (2018).

796

797 Malaspina, D. M., Hui Zhu, Alexander Y. Drozdov, A Wave Model and Diffusion Coefficients
798 for Plasmaspheric Hiss Parameterized by Plasmapause Location, *Journal of Geophysical*
799 *Research: Space Physics*, 10.1029/2019JA027415, **125**, 2, (2020).

800

801 Malaspina, D. M., Jaynes, A. N., Elkington, S., Chan, A., Hospodarsky, G., & Wygant,
802 J. (2021). Testing the organization of lower-band whistler-mode chorus wave properties by
803 plasmapause location. *Journal of Geophysical Research: Space Physics*, 126,
804 e2020JA028458. <https://doi.org/10.1029/2020JA028458>

805

806 Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy,
807 A. (2013). Science objectives and rationale for the radiation belt storm probes mission. *Space*
808 *Science Reviews*, **179**(1–4), 3–27 [Dataset]. <https://doi.org/10.1007/s11214-012-9908-y>

809

810 McPherron, R. L., T. P. O'Brien, and S. M. Thompson (2005), Solar wind drivers for steady
811 magnetospheric convection, in *Multiscale Coupling of the Sun-Earth Processes*, edited by A. T.
812 Y. Liu, Y. Kamide, and G. Consolini, pp. 113–124, Elsevier, Amsterdam, doi:[10.1016/B978-044451881-1/50009-5](https://doi.org/10.1016/B978-044451881-1/50009-5).

814

815 Meredith, N. P., R. B. Horne, and R. R. Anderson (2001), Substorm dependence of chorus
816 amplitudes: Implications for the acceleration of electrons to relativistic energies, *J. Geophys.*
817 *Res.*, **106**(A7), 13165–13178, doi:10.1029/2000ja900156.

818

819 Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003a), Favored regions for
820 chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt,
821 *Geophys. Res. Lett.*, 30(16), 1871, doi:10.1029/2003gl017698.

822

823 Meredith, N. P., R. M. Thorne, R. B. Horne, D. Summers, B. J. Fraser, and R. R. Anderson
824 (2003b), Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC
825 waves observed on CRRES, *J. Geophys. Res.*, 108(A6), doi:10.1029/2002ja009700.

826

827 Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R. (2004),
828 Substorm dependence of plasmaspheric hiss, *J. Geophys. Res.*, 109, A06209,
829 doi:10.1029/2004JA010387.

830

831 Meredith, N. P., R. B. Horne, A. Sicard-Piet, D. Boscher, K. H. Yearby, W. Li, and R. M.
832 Thorne (2012), Global model of lower band and upper band chorus from multiple satellite
833 observations, *J. Geophys. Res.*, 117, doi:Doi 10.1029/2012ja017978.

834

835 Meredith, N. P., Horne, R. B., Kersten, T., Li, W., Bortnik, J., Sicard, A., et al. (2018). Global
836 model of plasmaspheric hiss from multiple satellite observations. *Journal of Geophysical
837 Research: Space Physics*, 123(6), 4526–4541. <https://doi.org/10.1029/2018JA025226>

838

839 Meredith, N. P., Horne, R. B., Shen, X.-C., Li, W., & Bortnik, J. (2020). Global model of
840 whistler mode chorus in the near-equatorial region. *Geophysical Research Letters*, 47(11)
841 e2020GL087311. <https://doi.org/10.1029/2020GL087311>

842

843 Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., & Shen, X.-C. (2021). Statistical investigation
844 of the frequency dependence of the chorus source mechanism of plasmaspheric
845 hiss. *Geophysical Research Letters*, 48,
846 e2021GL092725. <https://doi.org/10.1029/2021GL092725>

847

848 Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of model performance based on
849 the log accuracy ratio. *Space Weather*, 16, 69– 88. <https://doi.org/10.1002/2017SW001669>

850

851 Ni, B., Thorne, R. M., Shprits, Y. Y. & Bortnik, J. Resonant scattering of plasma sheet electrons
852 by whistler-mode chorus: contribution to diffuse auroral precipitation. *Geophys. Res. Lett.* **35**,
853 L11106 (2008).

854

855 Ni, B. B., J. Bortnik, R. M. Thorne, Q. L. Ma, and L. J. Chen (2013), Resonant scattering and
856 resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss, *J. Geophys. Res.*,
857 *118*(12), 7740-7751, doi:10.1002/2013ja019260.

858

859 Ni, B. et al. Origins of the Earth's diffuse auroral precipitation. *Space Sci. Rev.* **200**, 205–259
860 (2016).

861

862 Nishimura, Y. et al. Identifying the driver of pulsating aurora. *Science* **330**, 81–84 (2010).
863 Kasahara, S. et al. Pulsating aurora from electron scattering by chorus waves. *Nature* **554**, 337–
864 340 (2018).

865

866 Nishizuka, N., Kubo, Y., Sugiura, K. *et al.* Operational solar flare prediction model using Deep
867 Flare Net. *Earth Planets Space* **73**, 64 (2021). <https://doi.org/10.1186/s40623-021-01381-9>

868

869 Nunn, D., A self-consistent theory of triggered VLF emissions, *P&SS* **22**, 349-378
870 (1974). [http://dx.doi.org/10.1016/0032-0633\(74\)90070-1](http://dx.doi.org/10.1016/0032-0633(74)90070-1)

871

872 O'Brien, T. P., S. M. Thompson, and R. L. McPherron (2002), Steady magnetospheric
873 convection: Statistical signatures in the solar wind and AE, *Geophys. Res. Lett.*, **29**(7), 1130,

874

875 Omura Y, Katoh Y, Summers D, Theory and simulation of the generation of whistler-mode
876 chorus, *JGR* **113**, A04223, (2008). <http://dx.doi.org/10.1029/2007JA012622>

877

878 Papitashvili, Natalia E. and King, Joseph H. (2020), "OMNI 1-min Data",
879 NASA Space Physics Data Facility [Dataset], <https://doi.org/10.48322/45bb-8792>

880

881 Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O'Brien (2003), Acceleration and
882 loss of relativistic electrons during geomagnetic storms, *Geophys. Res. Lett.*, **30**(10), 1529,
883 doi:10.1029/2002gl016513.

884

885 Reeves, G. D., et al. (2013), Electron acceleration in the heart of the Van Allen radiation belts,
886 *Science*, **341**(6149), 991-994, doi:10.1126/science.1237743.

887

888 Rothe, R., Timofte, R., and Gool, L. V. Deep expectation of real and apparent age from a single
889 image without facial landmarks. *International Journal of Computer Vision*, 126(2-4):144–157,
890 2018.

891

892 Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M. & Cornilleau-Wehrlin, N. Spatio temporal
893 structure of storm-time chorus. *J. Geophys. Res.* **108**(A7), 1278 (2003).

894

895 Sergeev, V.A., Pellinen, R.J. & Pulkkinen, T.I. Steady magnetospheric convection: A review of
896 recent results. *Space Sci Rev* 75, 551–604 (1996). <https://doi.org/10.1007/BF00833344>

898

899 Shen, X.-C., Li, W., Ma, Q., Agapitov, O., & Nishimura, Y. (2019). Statistical analysis of
900 transverse size of lower band chorus waves using simultaneous multisatellite
901 observations. *Geophysical Research
Letters*, 46, 5725– 5734. <https://doi.org/10.1029/2019GL083118>

903

904 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
905 A simple way to prevent neural networks from overfitting. *Journal of Machine Learning
Research*, **15**, 1929– 1958. <http://jmlr.org/papers/v15/srivastava14a.html>

907

908 Summers, D., C. Ma, N. Meredith, R. Horne, R. Thorne, D. Heynderickx, and R. Anderson
909 (2002), model of the energization of outer-zone electrons by whistler-mode chorus during the
910 October 9, 1990 geomagnetic storm, *Geophys. Res. Lett.*, 29(24).

911

912 Tan, Y., Hu, Q., Wang, Z., & Zhong, Q. (2018). Geomagnetic Index Kp Forecasting With
913 LSTM. *Space Weather*, 16(4), 406–416. <https://doi.org/10.1002/2017SW001764>

914

915 Tang, K., Huang, J., and Zhang, H. Long-tailed classification by keeping the good and removing
916 the bad momentum causal effect. In NeurIPS, 2020.

917

918 Temerin, M., and Li, X. (2002), A new model for the prediction of *Dst* on the basis of the solar
919 wind, *J. Geophys. Res.*, 107(A12), 1472, doi:[10.1029/2001JA007532](https://doi.org/10.1029/2001JA007532), 2002

920

921 TensorFlow Developers. (2023). TensorFlow (v2.13.0-rc2) [Software]. Zenodo.
922 <https://doi.org/10.5281/zenodo.8071599>

923

924 Thorne, R. M., Ni, B., Tao, X., Horne, R. B. & Meredith, N. P. Scattering by chorus waves as the
925 dominant cause of diffuse auroral precipitation. *Nature* **467**, 943–946 (2010).

926

927 Thorne, R. M., et al. (2013a), evolution and slow decay of an unusual narrow ring of relativistic
928 electrons near L similar to 3.2 following the September 2012 magnetic storm, *Geophys. Res.*
929 *Lett.*, 40(14), 3507-3511, doi:10.1002/grl.50627.

930

931 Thorne, R. M., et al. (2013b), Rapid local acceleration of relativistic radiation-belt electrons by
932 magnetospheric chorus, *Nature*, 504(7480), 411-414, doi:10.1038/nature12889.

933

934 Tsurutani, B. T. & Smith, E. J. Postmidnight chorus: a substorm phenomenon. *J. Geophys. Res.*
935 79, 118–127 (1974).

936

937 Tsurutani BT, Smith EJ, Two types of magnetospheric ELF chorus and their substorm
938 dependences, *JGR* 82, 5112-5128 (1977). <http://dx.doi.org/10.1029/JA082i032p05112>

939

940 Wan, J., Fu, J.-F., Liu, J.-F., Shi, J.-K., Jin, C.-G., & Zhang, H.-P. (2021). Class imbalance
941 problem in short-term solar flare prediction. *Research in Astronomy and Astrophysics*, 21(9),
942 237. <https://doi.org/10.1088/1674-4527/21/9/237>

943

944 Wang, D., Shprits, Y. Y., Zhelavskaya, I. S., Agapitov, O. V., Drozdov, A. Y., & Aseev, N. A.
945 (2019). Analytical chorus wave model derived from Van Allen Probe observations. *Journal of*
946 *Geophysical Research: Space Physics*, 124, 1063– 1084. <https://doi.org/10.1029/2018JA026183>

947

948 Yang, Y., Zha, K., Chen, Y.-C., Wang, H., & Katabi, D. (2021). Delving into Deep Imbalanced
949 Regression. *arXiv preprint arXiv:2102.09554*.

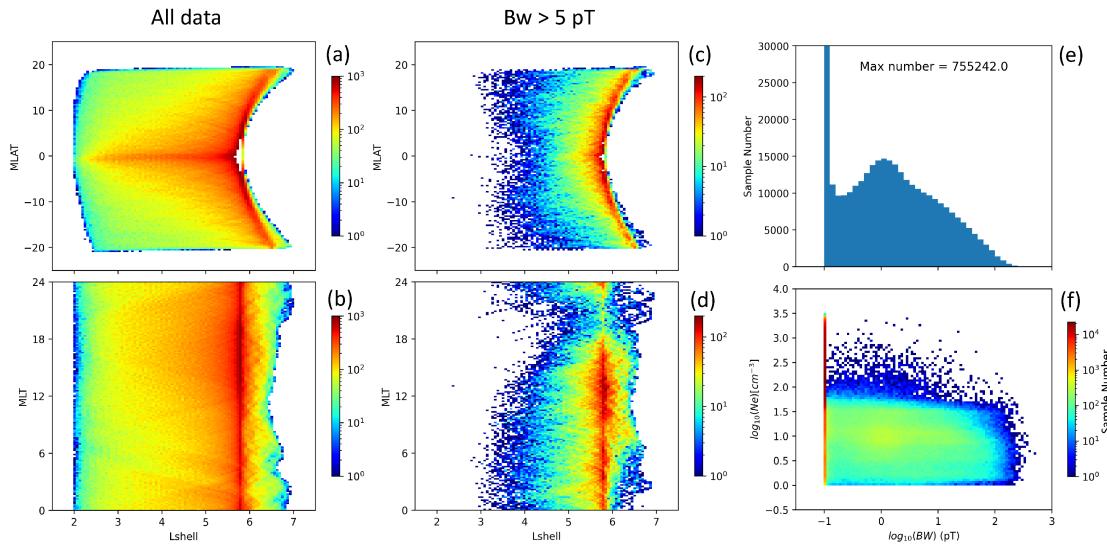
950

951 Zhao, H. et al. Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt
952 electrons. *Nat. Phys.* **15**, 367 (2019).

953

954

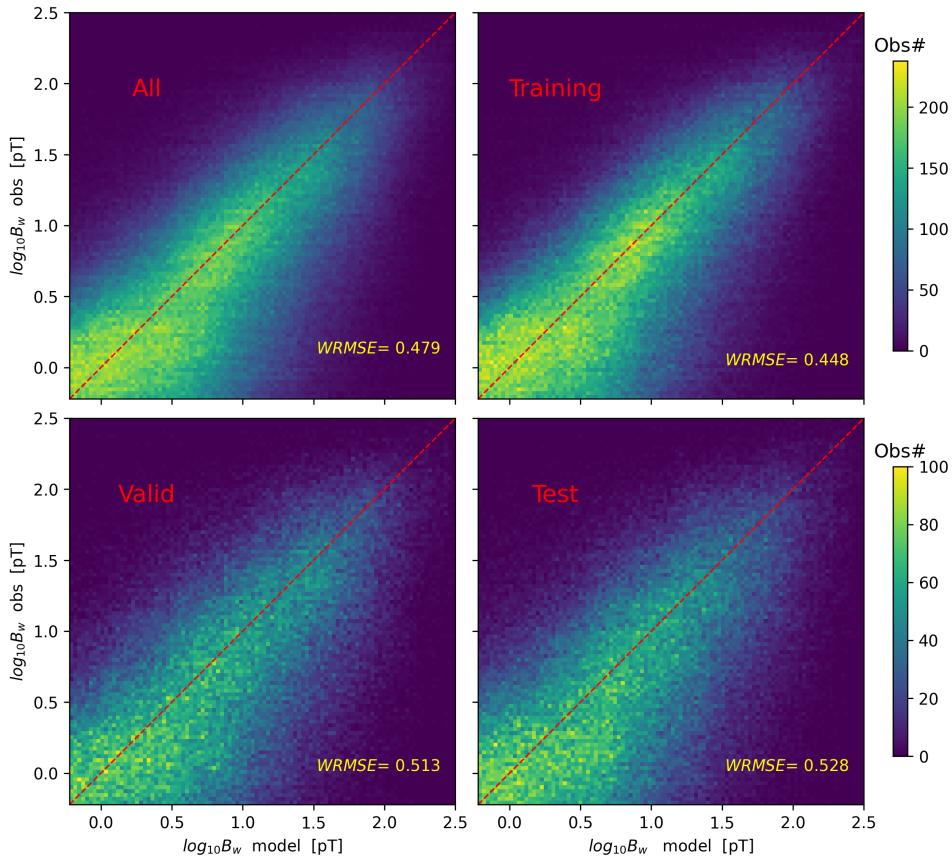
955



956

957 **Figure 1. Statistical properties of the LB chorus wave amplitude $\log_{10}(B_w)$. The numbers of**
 958 **data samples as a function of (a) L shell and MLAT, (b) L shell and MLT, (e) wave**
 959 **amplitude, and (f) plasma density and wave amplitude. Panels (c) and (d) are in the same**
 960 **format as panels (a) and (b) but for $B_w > 5 pT$.**

961



962

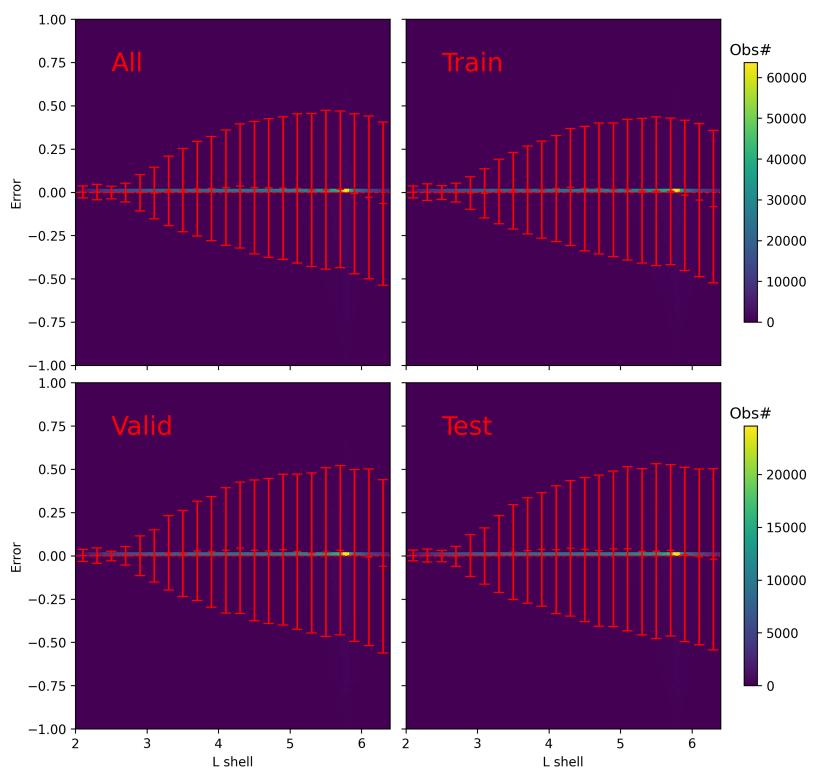
963

964 **Figure 2. The two-dimensional distribution of the model predicted and observed LB chorus**
 965 **wave amplitude for four datasets (all, training, validation, and test). The red dashed lines**
 966 **are the diagonal line ($y=x$), indicating perfect agreement. The weighted root mean square**
 967 **errors (WRMSE) are shown on the bottom right of each panel.**

968

969

970



971

972 **Figure 3. The error distribution as a function of the L shell for the four datasets (all,**
973 **training, validation, and test). The error bars illustrate the weighted mean (marked by**
974 **black crosses) and WRMSE.**

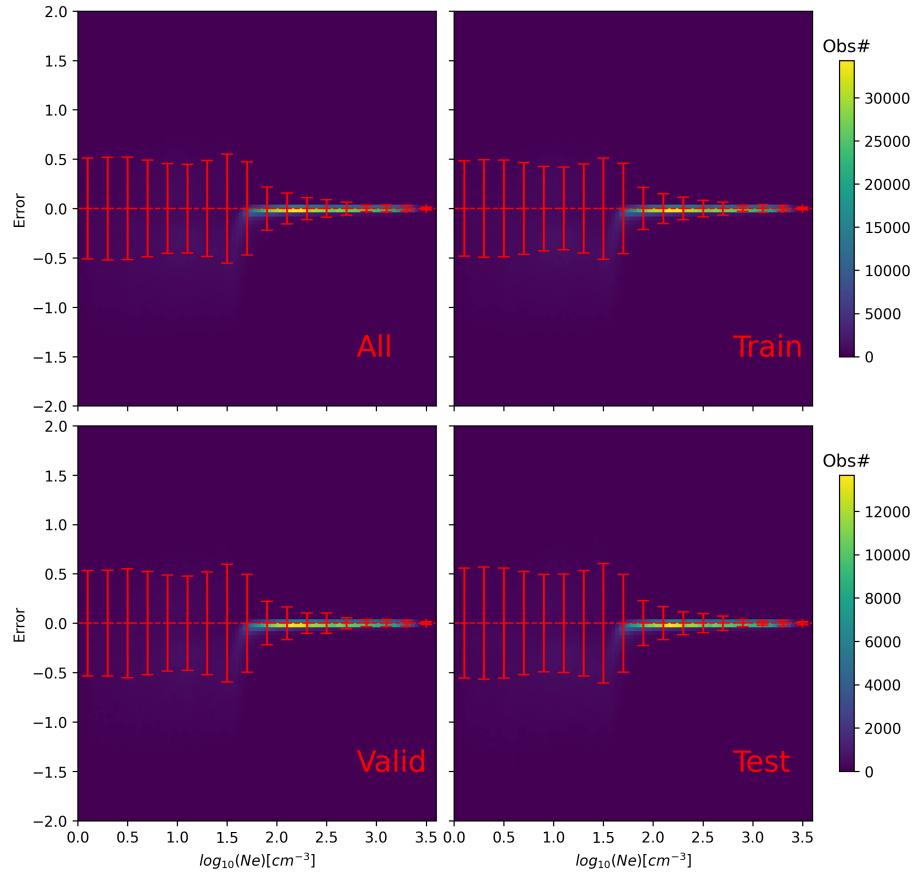
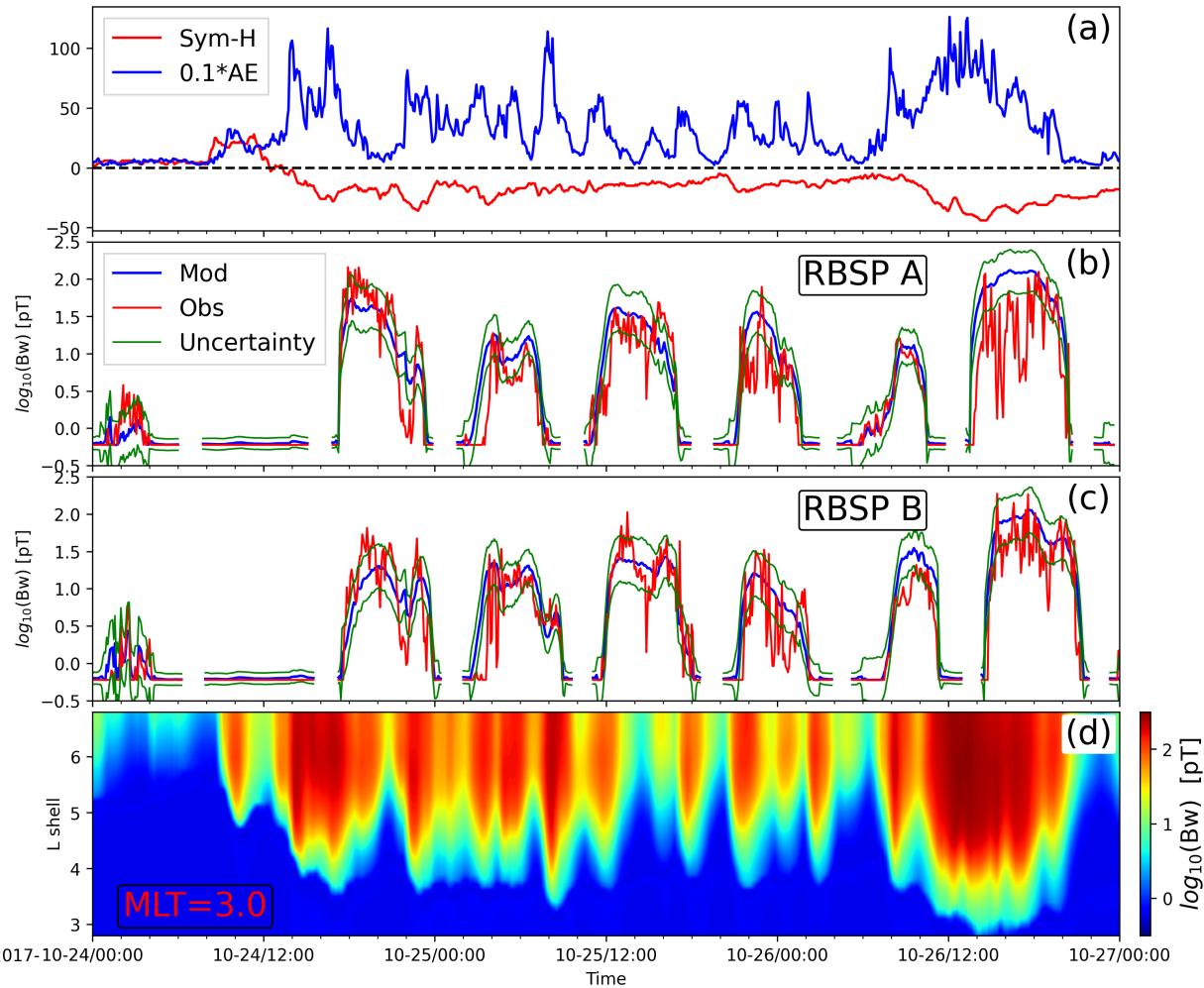
975
976

Figure 4. The error distribution as a function of the electron density for the four datasets

977 **(all, training, validation, and test). The error bars illustrate the weighted mean (marked by**

978 **black crosses) and WRMSE.**

979

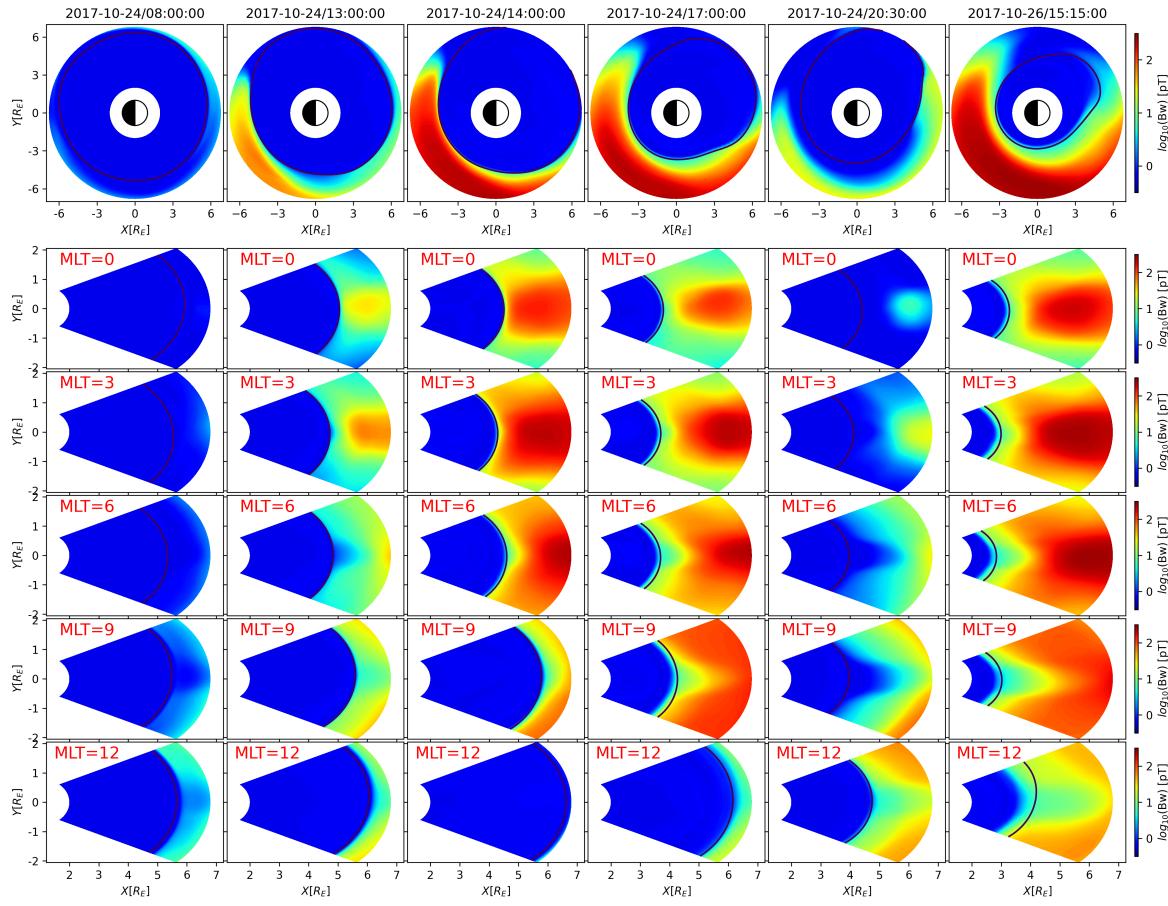


980

981 **Figure 5. An application of the chorus model during a three-day period 24-27 October**
 982 **2017, which is held out for test purposes. (a) Geomagnetic indices Sym-H and SME. (b-c)**
 983 **The comparison between the observed (red) and modeled (blue) LB chorus wave amplitude**
 984 **for Van Allen Probes (RBSP-A and RBSP-B). The green lines represent the model**
 985 **uncertainties. (d) The modeled LB chorus wave amplitude as a function of L shell on the**
 986 **equatorial plane (MLAT=0°) at MLT=0300. Note that the apogees of the Van Allen Probes**
 987 **were on the dayside (MLT~1200).**

988

989

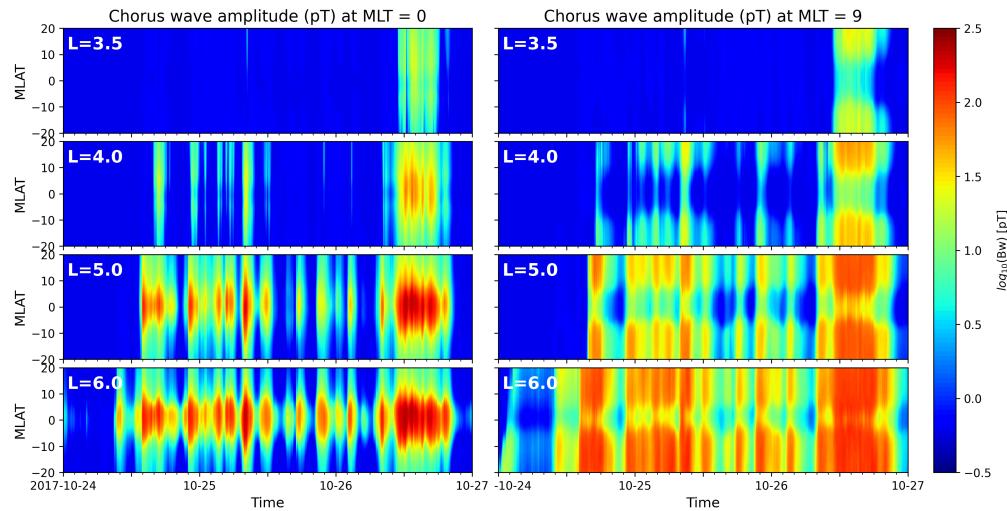


990

991 **Figure 6. The evolution of chorus wave amplitude on the equatorial planes (top row) and**
 992 **meridian planes (bottom five rows) at different MLTs (MLT=0, 3, 6, 9, and 12).**

993

994



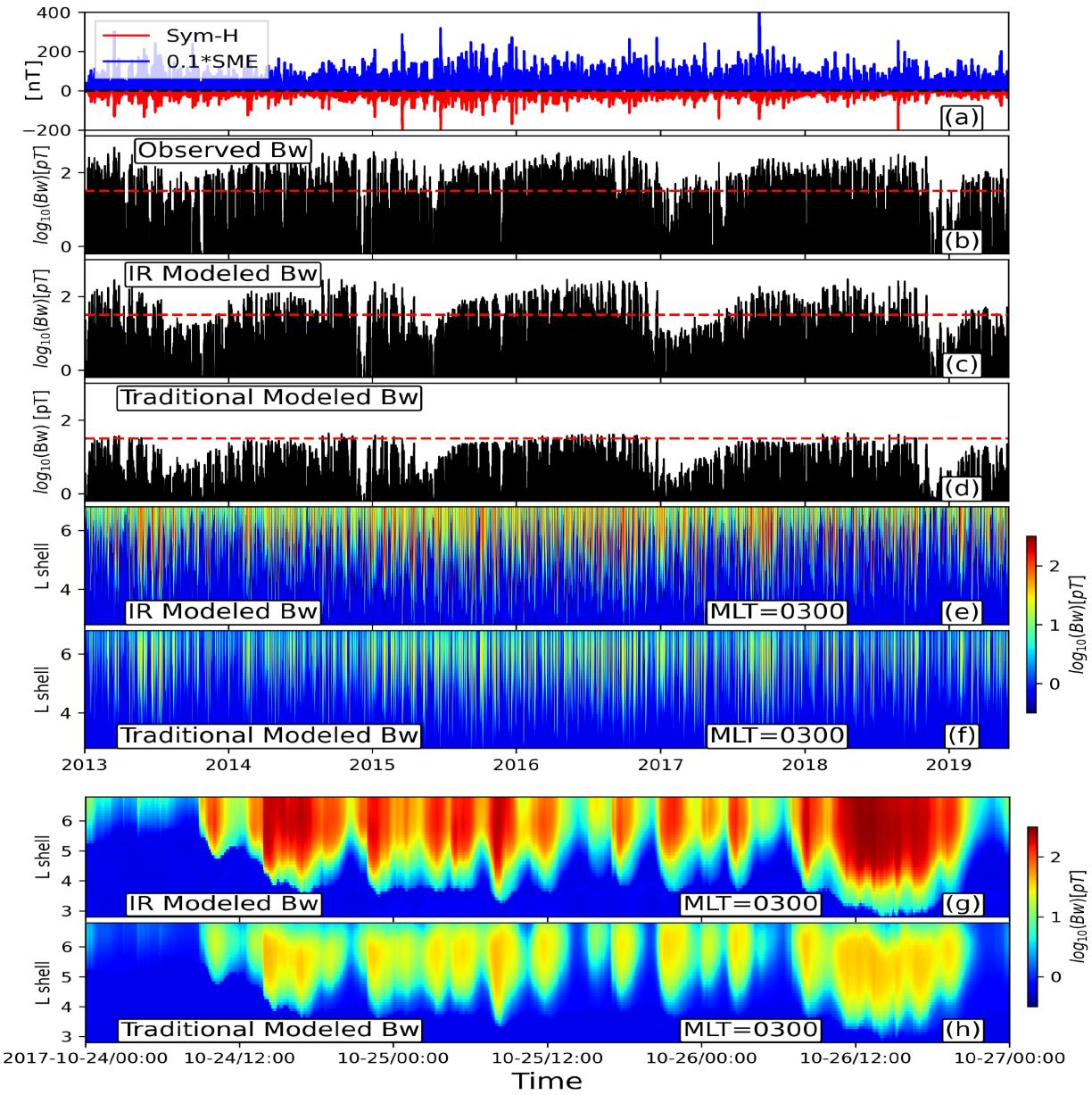
995

996 **Figure 7. The temporal evolution of chorus wave amplitude as a function of MLAT at**
 997 **different L shells (L=3.5, 4.0, 5.0, and 6.0) near midnight (MLT=3, left) and near noon**
 998 **(MLT =9, right).**

999

1000

1001



1002

1003 **Figure 8. The comparison between the observed chorus amplitude and those modeled by**
 1004 **the imbalanced regressive and traditional neural network (NN) models. (a) Geomagnetic**
 1005 **indices Sym-H and SME, (b) the observed LB chorus wave amplitude along the trajectories**
 1006 **of both Van Allen Probes; (c-d) the LB chorus wave amplitude modeled by imbalanced**
 1007 **regressive NN model (c) and traditional NN model (d) along the trajectories of both Van**

1008 **Allen Probes; (e-f) the LB chorus wave amplitude modeled by imbalanced regressive**
1009 **chorus model (e) and traditional NN model (f) on the equatorial plane (MLAT=0°) at**
1010 **MLT=0300. (g-h) Zoomed-in view of the LB chorus amplitude modeled by imbalanced**
1011 **regressive NN model (g) and traditional NN model (h) between October 24-27, 2017, the**
1012 **same period as Figure 5.**

1013

1014