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Key Points: 14 
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imbalanced regression 16 

• For the first time, a chorus model can predict the large amplitude of strong chorus waves  17 
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• Chorus' evolution is consistent with electron injection drift paths, peak equatorial 18 

amplitude near midnight, and off-equator peaks at noon 19 
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Abstract 26 

Whistler-mode chorus waves play an essential role in the acceleration and loss of energetic 27 

electrons in the Earth's inner magnetosphere, with the more intense waves producing the most 28 

dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due 29 

to the imbalanced nature of the dataset, i.e., there are many more non-chorus data points than 30 

strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes 31 

significantly during active times. Using an imbalanced regressive (IR) method, we develop a 32 

neural network model of lower-band (LB) chorus waves using 7-year observations from the 33 

EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the 34 

auroral electrojet index alone captures most of the variations of chorus waves. The large 35 

amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model 36 

shows that the equatorial LB chorus's spatiotemporal evolution is similar to the drift path of 37 

substorm-injected electrons. We also show that the chorus waves have a peak amplitude at the 38 

equator in the source MLT near midnight, but toward noon, there is a local minimum in 39 

amplitude at the equator with two off-equator amplitude peaks in both hemispheres, likely 40 

caused by the bifurcated drift paths of substorm injections on the dayside. The IR-based chorus 41 

model will improve radiation belt prediction by providing chorus wave distributions, especially 42 

storm-time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and 43 

other physical systems, imbalanced regressive methods deserve more attention in space physics.  44 

 45 

Plain Language Summary 46 

Whistler-mode chorus waves are essential in accelerating radiation belt electrons. However, 47 

predicting the amplitude of strong chorus waves is difficult because of their imbalanced nature. 48 
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In other words, there are many more observations of no-chorus waves than strong chorus waves. 49 

A consequence is that these no-chorus wave data dominate traditional models, so these models 50 

usually predict values that are too small for strong waves. Using an imbalanced regressive 51 

method, we developed a machine learning (ML) model of lower-band chorus wave amplitude. 52 

For the first time, the ML-chorus model can predict the amplitude of strong chorus waves. The 53 

ML-chorus model shows the evolution of the chorus wave at the equator, similar to the drift path 54 

of injected electrons, which brings electron anisotropy that generates chorus waves. The ML-55 

chorus model shows that the chorus waves are stronger at the equator near midnight, the source 56 

region of plasma injection. Away from midnight, the chorus waves have an equatorial minimum 57 

instead. Our chorus model will improve the forecast of the radiation belt environment by 58 

providing chorus wave distributions, especially large-amplitude strong chorus during 59 

geomagnetic storms. Because data imbalance is commonly seen in space physics and other 60 

physical systems, imbalanced regressive methods require more attention.  61 

 62 

1 Introduction 63 

1.1 Radiation belt dynamics and chorus waves 64 

The Earth's outer Van Allen radiation belt consists of trapped energetic electrons 65 

(~MeV), the dynamics of which result from a delicate and competitive balance between 66 

acceleration, loss, and transport processes (Baker et al., 2013, 2014a, 2014b; Lee et al., 2013; Li 67 

et al., 2013; Ma et al., 2018; Meredith et al., 2003; Ni et al., 2013; Reeves et al., 1998, 2003; 68 

Thorne et al., 2013a, 2013b). Local acceleration driven by whistler-mode chorus waves plays an 69 

essential role in accelerating seed electrons to relativistic and ultra-relativistic energies (Horne 70 
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and Thorne, 1998; Summers et al., 2002; Thorne et al., 2013b), and pitch angle scattering of 71 

plasma sheet electrons by chorus leads to electron precipitation into the upper atmosphere to 72 

produce diffuse aurora (Ni et al., 2008, 2016; Thorne et al., 2010) and pulsating aurora (Kasahara 73 

et al., 2018; Nishimura et al., 2010).  74 

Whistler-mode chorus waves are intense electromagnetic waves typically showing 75 

discrete elements that are excited naturally in the low-density region outside the plasmapause 76 

due to a cyclotron instability of anisotropic energetic electrons (Burtis and Helliwell, 1976; 77 

Meredith et al., 2001, 2003a; Santolik et al., 2003; Tsurutani and Smith, 1974). These anisotropic 78 

electrons are believed to form due to electrons injected from the plasma sheet into the inner 79 

magnetosphere, conserving their first two adiabatic invariants (e.g., Katoh and Omura, 2007; Li 80 

et al., 2010; Nunn, 1974). However, validating this theory using observations is not trivial since 81 

it requires multi-point in-situ observations of the chorus waves and the electron velocity 82 

distributions, with the observations taken such that they follow the electron drift path of the 83 

injections. Chorus waves typically occur in the frequency range of 0.1–0.8 fce (the equatorial 84 

electron cyclotron frequency) and are organized into two distinct bands (lower and upper bands) 85 

with a gap near 0.5 fce (Li et al., 2019; Meredith et al., 2012; Santolík et al., 2003; Tsurutani and 86 

Smith, 1977). Previous studies have shown that nightside chorus waves are peaked near the 87 

equator, whereas dayside chorus waves can extend to higher magnetic latitudes (MLAT) (e.g., 88 

Agapitov et al., 2013, 2015; Bortnik et al., 2007; Bortnik and Thorne, 2007; Bunch et al., 2011; 89 

Li et al., 2009). In addition, the chorus wave is believed to be one of the origins of plasmaspheric 90 

hiss (Agapitov et al., 2018; Bortnik et al., 2008, 2009; Chen et al., 2009; Hartley et al., 2019; 91 

Meredith et al., 2013b).  92 
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There have been many studies on modeling the properties of chorus waves. The average 93 

wave amplitude is generally statistically modeled as a function of spatial location (L shell, MLT, 94 

and MLAT), and parameters used to categorize the chorus wave amplitude include solar wind 95 

parameters, geomagnetic indices, or a combination of these parameters (Aryan et al., 2014, 2016, 96 

2020; Agapitov et al., 2015, 2018; Li et al., 2009, 2013, 2016; Meredith et al., 2012, 2018, 2020; 97 

Wang et al., 2019). Chorus waves have also been modeled using neural networks (Guo et al., 98 

2022; Kim et al., 2013; Bortnik et al., 2018), performing better in errors than the statistically 99 

averaged models. However, these models generally fail to predict the correct intensity of strong 100 

chorus waves due to the highly imbalanced nature of the chorus database, which is discussed 101 

below.  102 

1.2 Imbalanced regression and shortcomings of standard regression models 103 

Data imbalance is a ubiquitous problem inherent in the real world. Real-world data sets 104 

are usually not uniformly distributed and generally exhibit skewed distributions with a long tail, 105 

where specific values (typical of little interest) have much more data samples than the other 106 

ranges with very few samples (but are of the most interest). Imbalanced datasets have been an 107 

essential problem in machine learning (ML) (Buda et al., 2018; Liu et al., 2019). The challenge 108 

of imbalanced data has been discussed and investigated in many studies in the field of machine 109 

learning (Cao et al., 2019; Cui et al., 2019; Huang et al., 2019; Liu et al., 2019; Tang et al., 2020; 110 

Yang et al., 2021). Nevertheless, most existing studies for learning from imbalanced data focus 111 

on classification problems, i.e., targeted parameters with categorical values. However, many 112 

real-world tasks are inherently regression problems, i.e., the target values are continuous across 113 

the domain. For an example of regression, in the field of vision applications, a popular large-114 

scale image database is called IMDB-WIKI (Rothe et al., 2018). It is used to estimate the age of 115 
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different people based on their visual appearance. The target parameter, people's age, is a 116 

continuous target and highly imbalanced in the IMDB-WIKI database. The challenge of 117 

imbalanced data also exists in medical applications. The target parameters of heart rate, blood 118 

pressure, and oxygen saturation are continuous, and their distributions are usually skewed across 119 

the patient populations, with the anomalous, elevated values (that are of most interest to patients) 120 

occurring for only a small fraction of the data samples.  121 

In space physics, most of the physical parameters, if not all, are imbalanced datasets. For 122 

instance, the most popular geomagnetic indices, the auroral electrojet indices (AE, AU, and AL), 123 

the ring current index Dst, and the Kp index are skewed toward low values due to the large 124 

number of observations taken during quiet times rather than active times. The relativistic electron 125 

fluxes in the Earth's radiation belt or measured at geosynchronous orbit are also skewed toward 126 

the quiet time averages (e.g., Figure 1 in Baker et al. [2019]). Solar images, which are used to 127 

predict solar flare events, Coronal Mass Ejections (CME), and solar wind speed, also capture 128 

much quieter images far more often than solar irruptions [Al-Ghraibah et al., 2015; Nishizuka et 129 

al., 2021; Wan et al., 2021]. Therefore, imbalanced data sets are also ubiquitous in space physics.  130 

Successful applications of statistical and ML-based regression models improved our 131 

understanding of the magnetospheric and ionospheric response to the solar wind drivers (see 132 

summary in Camporeale (2019) and references therein). However, it was brought to scientists' 133 

attention that the regression models provide poor predictions during active times (e.g., 134 

Chakraborty et al., 2020; Lazzús et al., 2017; Tan et al., 2018), especially during large to extreme 135 

events due to the too-often-too-quiet problem (Camporeale, 2019). The traditional method of 136 

regression, either statistical or ML-based, is fairly heuristic and suffers from the shortcomings of 137 

imbalanced data. For instance, the error metrics, mean squared errors (MSE), are commonly used 138 
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in previous studies (e.g., see discussion in [Temerin and Li, 2002]). In the case of imbalanced 139 

data, the MSE is dominated by many quiet-time observations. To maintain a zero mean of the 140 

errors, the large volume of quiet time data is usually slightly overestimated toward higher values. 141 

On the other hand, the small volume of large values during active times (or large-to-extreme 142 

events) is usually underestimated significantly toward lower values. Therefore, it usually leads to 143 

unrealistic biases when predicting quiet time and active values.  144 

Due to the imbalanced nature of the chorus waves, traditional statistical models cannot 145 

reproduce the time-dependent variations of chorus waves, especially the strong wave amplitude 146 

(see discussion in Guo et al. [2021]). Therefore, for the first time, we developed a neural network 147 

model for the lower-band (LB) chorus wave amplitude using an imbalanced regressive (IR) 148 

method, which can accurately predict both background noise and large wave amplitudes. 149 

Furthermore, the model provides time-dependent and global variations of chorus wave amplitude 150 

and is used to study the evolution of the LB chorus waves during a typical event.  151 

2 Data Description 152 

2.1 Database 153 

In this study, chorus waves in the Earth's inner magnetosphere are modeled using an 154 

imbalanced regressive (IR) neural network model. The primary dataset consists of the wave 155 

amplitude of the lower band (LB) chorus waves taken from Van Allen Probes (RBSP) and 156 

geomagnetic indices from the OMNI database and SuperMAG.  157 

NASA's Van Allen Probes spacecraft consists of two identically equipped satellites in 158 

near-equatorial orbits with an apogee of ~6 RE and an orbit period of ~9 hours (Mauk et al., 159 

2013). The two spacecraft have almost identical orbits with varying spacecraft separation along 160 

the track. The plasma density is obtained using the upper hybrid resonance frequency identified 161 
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from the High-Frequency Receiver (HFR) on Electric and Magnetic Field Instrument Suite and 162 

Integrated Science (EMFISIS) (Kletzing et al., 2013; Kurth et al., 2015). Chorus waves are 163 

analyzed using measurements from the Waveform Receiver (WFR) on the EMFISIS wave 164 

instrument (Kletzing et al., 2013). The LB chorus waves are identified using the following 165 

criteria: (1) they occur outside the plasmapause, (2) within the frequency range of 0.05-0.5 fce, 166 

(3) they have planarity > 0.6, and (4) ellipticity > 0.7 (see detailed description in Li et al. (2016) 167 

and Shen et al., (2019)). The plasmasphere could be identified using the intensity of the electron 168 

cyclotron harmonic (ECH) waves (Meredith et al., 2004), and we follow the procedure by Shen 169 

et al. (2019) to find the measurements outside the plasmapause along the Van Allen Probes orbit. 170 

Using the above criteria, the wave amplitude of the LB chorus waves is obtained along Van 171 

Allen Probes' trajectory from January 1, 2013, to the end of the mission (August 1, 2019 for 172 

RBSP-A and July 16, 2019 for RBSP-B). For observations with no chorus waves, the wave 173 

amplitude is filled by 0.1 pT as the lower threshold. Due to the satellite procession, the satellite 174 

measurements covered all MLT sectors more than three times throughout the mission lifetime. 175 

The dataset has more than 66 million data samples every ~6 seconds. This study reduces the 176 

temporal resolution to 5 min averages while conserving the mean wave power (Bw2), which 177 

results in ~1.4 million data samples.  178 

The solar wind conditions and geomagnetic indices are obtained from the OMNI dataset 179 

(https://omniweb.gsfc.nasa.gov/) (Papitashvili et al., 2020) and SuperMAG 180 

(https://supermag.jhuapl.edu/) (Gjerloev et al., 2010), which are used as potential input 181 

parameters to the neural network model.  182 

2.2 Data distribution of chorus waves 183 
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Figure 1 shows the statistical distribution of the dataset with respect to its locations and 184 

several important factors. Figure 1a shows that the observations of Van Allen Probes are within 185 

the L shell range of 2.0 and 7.0 and |MLAT|<20°. The majority of observations are taken 186 

between L~5.8 near the apogee of Van Allen Probes, with more observations taken near the 187 

equator than at higher latitudes. Figure 1b shows that the observations are relatively evenly 188 

distributed relative to MLTs. Figures 1c and 1d are in the same format as Figures 1a and 1b 189 

when Bw>5pT. Note that these samples (Bw>5pT) are mostly located at high L shells. Figure 1e 190 

shows that the dataset is highly imbalanced with respect to the chorus wave amplitude, where 191 

quiet-time observations dominate the whole dataset. About 90.0% of the observations are below 192 

3.5 pT, and 94.4% of the data are below 10.0 pT. Figure 1f shows that chorus waves are well 193 

organized by plasma density. Chorus waves are usually observed at low-density regions (<100 194 

cm-3) outside the plasmapause, as expected [Hartley et al., 2022; Malaspina et al., 2016, 2018, 195 

2020, 2021]. The statistical analysis above provides important information regarding the 196 

development of the neural network model, which will be discussed below.  197 

3 Methodology 198 

3.1 Model description 199 

In this study, an LB chorus wave model is developed using a feedforward neural network 200 

following the workflow described by Chu et al. (2021). The neural network's architecture for the 201 

chorus wave model is similar to that used in previous studies, which successfully modeled global 202 

dynamic distributions of plasma density and electron and ion fluxes (Chu et al., 2017a, 2017b, 203 

2021). It consists of a linear input layer, three hidden layers with a sigmoid activation function, 204 

each followed by a batch normalization layer, and a linear output layer. The input parameters 205 



manuscript submitted to Space Weather 

 

include the location of the measurements (i.e., L shell, MLT, and MLAT), the in-situ electron 206 

density, and the time series of the solar wind parameters and geomagnetic indices from the 207 

OMNI and SuperMAG dataset, which is discussed in greater detail below. The target parameter, 208 

also referred to as the model output, is the base ten logarithms of the wave amplitude of the LB 209 

chorus waves log10(Bw). The model inputs and output are normalized using each parameter's 210 

mean and standard deviation before training and scaled back when making predictions.  211 

It is essential to perform imbalanced regression since the dataset of chorus waves is 212 

highly imbalanced, having more quiet-time background samples than the active-time, large-213 

amplitude chorus samples of interest. The chorus wave dataset is categorized by amplitude: quiet 214 

background (Bw<2 pT), weak (2 pT<Bw<5 pT), and strong (Bw>5 pT). The integrated wave 215 

amplitude of Bw~2 pT is roughly the noise level of the EMFISIS instrument (Kletzing et al., 216 

2013). Also, the amplitude of 2 pT is close to the local peak value in the histogram of the wave 217 

amplitude (Figure 1e), the elbow point from a power law, suggesting two distinct distributions. 218 

Thus, the quiet background values are chosen as Bw<2 pT and assigned a weight of 1.0. Another 219 

elbow point is found at Bw~5 pT, shown as the slower decrease of sample number with 220 

increasing Bw at Bw>5 pT than that at Bw<5 pT. Therefore, these weak chorus waves of 2 221 

pT<Bw<5 pT are assigned a weight of 10. These strong chorus waves (Bw>5 pT) are assigned a 222 

weight of 20. The weights for each category are chosen empirically based on a number of 223 

experiments when the data-model comparison is along the diagonal line, as shown in Figure 2. 224 

The data-model comparison pairs show different degrees of biases (offset from the diagonal line) 225 

in the range of different categories for different experiments, and we chose the experiment that 226 

yields minimal biases in all ranges. In addition, without proper weights, the model prediction 227 

exhibits a cutoff at large values around tens of pT for different experiments (see Figure 8 and 228 



manuscript submitted to Space Weather 

 

Section 5 for discussion), and we chose the experiment without the cutoff. The loss function is 229 

the weighted mean squared error (WMSE) of the log10(Bw).  230 

𝑊𝑀𝑆𝐸 =
∑ 𝑤!(𝐵𝑤"#$ − 𝐵𝑤%"&'())*
+

𝑛∑ 𝑤!*
+

 231 

where 𝑤! is the weight of each data sample. To minimize the loss function, the neural 232 

network model is trained using the Nesterov-accelerated Adaptive Moment Estimation (Nadam) 233 

optimizer (Dozat, 2016). To avoid data leakage, the whole dataset is split into daily segments. 234 

This 1-day period is much longer than the typical time scale (1 hour) of chorus wave dynamics, 235 

i.e., the substorm duration (~1 hour) (Chu et al., 2015) that is known to be the primary driver of 236 

chorus waves. Then, 60% of the 1-day segments are randomly selected as the training data, 20% 237 

as the validation set, and 20% as the test set. To avoid overfitting, we applied early stopping with 238 

15 epochs, dropout layers after each hidden layer (Srivastava et al., 2014), and modified 239 

stratified five-fold cross-validation (Chu et al., 2021).  240 

To make global and time-dependent reconstructions of chorus wave amplitude, the 241 

plasma density at every spatial location and time is required, but not available. Therefore, a pilot 242 

neural-network-based electron density model has been developed using a 1-min electron density 243 

obtained from EMFISIS, similar to our previous models (Bortnik et al., 2016; Chu et al., 2017a, 244 

b). This model provides global distributions of electron density that are used as the input to the 245 
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chorus model. Since we have introduced the plasma density model in our past studies (Bortnik et 246 

al., 2016; Chu et al., 2017a, b), we do not elaborate on the details here.  247 

3.2 Feature selection and hyperparameter optimization  248 

We used the same feature selection and hyperparameter optimization (HPO) processes 249 

discussed in Chu et al. (2021). It is based on the strategy of sequentially adding the most 250 

informative predictors for the neural network model and assessing its performance (Kuhn et al., 251 

2013). First, the locations of each measurement (L shell, MLT, and MLAT) are used as input. 252 

Second, the location plus the time series of one parameter from the OMNI and SuperMAG 253 

database are used as the only inputs. We used 1 min resolution of the indices for the preceding 254 

three hours and hourly averages for the preceding 24 hours, which are chosen empirically. We 255 

used a modified stratified five-fold cross-validation approach for the training process 256 

(https://scikit-learn.org/stable/modules/cross_validation.html). The input parameters include all 257 

the parameters in the OMNI dataset (https://omniweb.gsfc.nasa.gov/) and the geomagnetic 258 

indices from SuperMAG (SME/U/L/R). After looping through all the input parameters, the SME 259 

index (SuperMAG auroral index) yields the best performance among all input parameters. The 260 

SME index, the auroral electrojet indices reflective of the horizontal currents in the ionosphere, 261 

indicates the plasma injections from the magnetotail. This result is expected since the chorus 262 

waves are excited due to the electron anisotropy associated with plasma injections (Li et al., 263 

2010). Third, we repeat the second step by adding the time series of another parameter from the 264 
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OMNI dataset as input. However, adding another parameter did not improve the model 265 

performance further (i.e., the error does not decrease).  266 

The hyperparameters of the neural network model, including the number of neurons in 267 

each hidden layer and the dropout rates, are optimized using a Tree-structured Parzen estimator 268 

algorithm (Bergstra et al., 2011, 2013) implemented in Optuna (Akiba et al., 2019). We use a 269 

modified stratified 5-fold cross-validation, and the model yields the best performance on the 270 

validation dataset chosen. The final model has three hidden layers with 180, 184, and 43 neurons 271 

and dropout rates of 0.47, 0.22, and 0.20, respectively.  272 

3.3 Model uncertainty 273 

A second pilot model of the uncertainty of the chorus model was developed, following a 274 

similar protocol to our previous work (Camporeale et al., 2019). The uncertainty is defined as the 275 

absolute error between the observed and modeled LB chorus wave amplitude:  276 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = | log+,(𝐵𝑤"#$) − log+,(𝐵𝑤%"&'()| = | log+,
𝐵𝑤"#$
𝐵𝑤%"&'(

| 277 

The uncertainty model takes the same input as the chorus model (see section 3.1 for details) and 278 

predicts the absolute error of the predicted chorus wave amplitude log10(Bw), which is usually 279 

close to a Gaussian distribution, as shown in Figure 16 in Camporeale et al., (2019). Thus, the 280 

uncertainty denotes a relative error in the wave amplitude so that the ratios of Bw are symmetric 281 

both above and below 1 (Morley et al., 2018). Finally, both the chorus wave amplitude and its 282 

uncertainty can be provided by the two neural network models at any time and at any location, 283 

i.e., time-dependent uncertainties. An example of the modeled chorus wave amplitude and its 284 

uncertainty along the Van Allen Probe's trajectories are discussed in section 5 with Figure 5. The 285 
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error bars represent the modeled chorus wave amplitudes plus and minus the modeled 286 

uncertainties.  287 

4 Model performance 288 

The correlation between the observed and modeled chorus wave amplitude log10(Bw) 289 

above the background level is shown in the four panels in Figure 2 for the whole dataset, as well 290 

as the training, validation, and test datasets separately. The probability density of occurrences in 291 

each bin is indicated by its color. The red dashed diagonal line (y=x) represents where the model 292 

predicts the wave amplitude perfectly, as expected. It should be noted that most observation-293 

model pairs are distributed around the diagonal line. This result suggests that the neural network 294 

model reproduces the observations without much over- or under-estimation, regardless of the 295 

chorus amplitude log10(Bw).  Particular attention has been given to these large values, which are 296 

also well-predicted. While this is intuitively correct and was relatively easy to obtain in previous 297 

models (e.g., plasma density in Bortnik et al., 2016; Chu et al., 2017a, b; electron fluxes in Chu 298 

et al., 2021; Ma et al., 2022), it has been challenging to achieve using highly imbalanced data 299 

such as the chorus wave amplitude. Traditional statistical models of chorus wave distribution, or 300 

any model based on an imbalanced dataset, are usually dominated by the frequently occurring 301 

background values. Furthermore, the traditional models usually minimize the mean squared error 302 

(MSE), with the assumption that each data point is equally important. As a result, these models 303 

tend to regress to the means of quiet-time values, and cannot predict large values in the long tail 304 

distribution. In the case of chorus waves, traditional statistical models usually underestimate the 305 

amplitude of large chorus waves. In this study, we show that an imbalanced regressive technique 306 
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is essential during model development using imbalanced datasets, and our chorus model is the 307 

first model that can predict strong chorus waves.  308 

Our chorus model can make accurate predictions of large chorus waves within a 309 

reasonable uncertainty. The weighted root mean square errors (WRMSE) are shown on the 310 

bottom right of the panels. The WRMSE on the test dataset is 0.53, which translates to an 311 

uncertainty of a factor of 3.3 (=100.53).  312 

Figure 3 shows the probability density of the errors as a function of the L shell for the 313 

four datasets, for direct comparison to Figure 2. The error is defined as the difference between 314 

the logarithms of the observation and the model prediction error = log10(Bwobs) – log10(Bwmodel). 315 

The color indicates the number of samples in each bin. The error bars represent the weighted 316 

mean and WRMSE. The errors are much smaller at low L shells (<2.8) and gradually increase at 317 

high L shells, reflecting the highly fluctuating chorus wave amplitudes at large L shells. This is 318 

because the satellites are inside the plasmasphere at low L shells, where chorus waves are largely 319 

absent (see Figure 1f). As a result, the observations and model predictions are close to 320 

background noise, which results in small errors and bias. At higher L shells outside the 321 

plasmasphere, the variation of the wave amplitude from the noise level to the strong wave 322 

amplitude is large, resulting in a larger uncertainty. In the heart of the outer radiation belt (L~4-323 

5), where chorus waves play an essential role in the acceleration and loss of the relativistic 324 

electrons, the uncertainty is about 0.5 in log10(Bw), which translates to an uncertainty of a factor 325 

of 3.0 (=100.5) in Bw.  326 

Figure 4 shows the probability density of the errors as a function of the electron density 327 

for the four datasets. The error indicates the number of samples in each bin. The error bars 328 
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represent the weighted mean and WRMSE. The errors are much smaller in high-density regions 329 

and suddenly become larger in low-density regions. At the density of 101.8 cm-3, which marks the 330 

plasmapause, there is a sharp transition in the model error. This is consistent with the sharp 331 

transition of 101.8 cm-3 in Figure 2, where the chorus waves are mainly observed at low-density 332 

regions. As discussed above, this is because chorus waves are observed outside the plasmapause, 333 

thus resulting in quiet background noise inside the plasmapause and highly fluctuating chorus 334 

amplitude outside the plasmapause.  335 

5 Model application 336 

For illustration purposes, the chorus model was applied to a three-day period over 337 

October 24-27, 2017, which was held out as an out-of-sample test dataset. Therefore, this case 338 

can represent the forecast capability of the chorus model on out-of-sample datasets, and the 339 

results are shown in Figure 5.  340 

The geomagnetic activity was quiet before 0800 UT on October 24, when a corotating 341 

interaction region (CIR) arrived at the Earth's magnetopause. The solar wind speed increased 342 

from 400 km/s to 650 km/s during the next two days, with a leading pressure enhancement 343 

between 0800-1200 UT on October 24 (not shown). The CIR induced a two-day activity period, 344 

which is similar to, but too weak to account for a geomagnetic storm. The Sym-H index in 345 

Figure 5a shows a sudden commencement between 0800-1200 UT on October 24, then reached a 346 

minimum of -36 nT around 2300 UT. Many magnetospheric substorms occurred subsequently, 347 

with two strong substorms reaching more than 1100 nT in the AE index during the storm's main 348 

phase. Another weak storm with a minimum Sym-H of -44 nT occurred on October 26.  349 
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Figures 5b and 5c show the comparison between the observed (red) and model-predicted 350 

(blue) LB chorus wave amplitude along the trajectories of the Van Allen Probes (RBSP-A and 351 

RBSP-B), the apogees of which were on the dayside. The chorus model predicts the chorus wave 352 

amplitude well along the trajectories, as the lines are very close. During the first orbit with no 353 

chorus waves, the model predicted background values. During the successive few orbits, the 354 

model predicted wave amplitude followed the trend of the observed value. For the first time, a 355 

chorus model can predict the peak amplitude of the strong chorus wave (~100 pT) during every 356 

orbit, including those of the second storm. In addition, the uncertainty of the model predictions is 357 

provided by the uncertainty model described in section 3.3. The model uncertainties (green lines) 358 

are larger for strong chorus waves and smaller for quiet times. For strong chorus waves, the 359 

model uncertainties are roughly 0.3, which translates to a factor of 2 (100.3). For quiet times, the 360 

model uncertainties are roughly 0.1, translating to a factor of 1.2.     361 

Figure 5d shows the model-predicted chorus wave amplitude on the equatorial plane near 362 

midnight (MLAT=0° and MLT=3). First, the chorus wave enhancements are closely related to 363 

the substorm activity indicated by the SME index. For example, the chorus waves strengthened 364 

during the first two strong substorms in the storm main phase. Second, the chorus wave 365 

amplitude extended to lower L shells during strong substorms. This is because of the erosion of 366 

the plasmasphere due to the electric fields brought by the substorm injections. Thus, the chorus 367 

waves, excited right outside the plasmapause, also contracted to lower L shells [Hartley et al., 368 

2022; Malaspina et al., 2016, 2018, 2020, 2021].  369 

One of the merits of the neural network model is that it can reconstruct the global 370 

distribution of chorus wave amplitude at any time. The evolution of the chorus waves on the 371 

equatorial plane (MLAT=0°) is shown in Figure 6a. The arrows indicate the six snapshots in 372 
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Figure 5. There were no chorus waves during the quiet time at 2017-10-24/08:00:00. Right after 373 

the substorm onset at 2017-10-24/13:00:00, the chorus waves were strengthened at high L shells 374 

outside the nominal plasmapause indicated by the black line (ne =50cm-3). The wave amplitude is 375 

higher in the midnight and early morning region and lower toward noon. This distribution is 376 

consistent with the drift path of the injected electrons. At the peak of the first substorm at 2017-377 

10-24/13:00:00, the chorus waves further strengthened and moved to the lower L shell as the 378 

plasmapause contracted. Nevertheless, the model-predicted chorus waves were outside the 379 

nominal plasmapause. At the peak of the second substorm at 2017-10-24/17:00:00, the chorus 380 

waves were stronger and reached lower L shell and broader local times. This is because the 381 

second substorm was stronger, and the plasmapause was more contracted. After the two 382 

substorms at 2017-10-24/20:30:00, the chorus waves were observed at higher L shells while the 383 

plasmapause remained contracted. During the second storm with an elevated SME index, similar 384 

to steady magnetospheric convection (Kissinger et al., 2012; McPherron et al., 2005; O'Brien et 385 

al., 2002; Sergeev et al., 1996), the chorus waves were stronger, extended to lower L shells, and 386 

broader local times.  387 

The evolution of the chorus waves in the meridian plane is investigated in Figure 6 at 388 

four different MLTs (MLT=0, 3, 6, 9, and 12). Near midnight (MLT=0), the chorus waves 389 

peaked at the equator (MLAT=0°), and the amplitude decreased toward higher latitudes due to 390 

Landau damping of chorus waves (Bortnik et al., 2006). The chorus waves further strengthened 391 

and covered an extensive range of latitudes when the substorm strengthened. Nevertheless, the 392 

peak remained at the equator. In the dawn region (MLT=6), the chorus waves are strong and 393 

located at higher L shells, yet still near the equator. However, note that a minimum wave 394 

amplitude is found near the equator right outside the plasmapause, i.e., at the inner edge of the 395 
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chorus wave region. The minimum in the wave amplitude is more pronounced toward the 396 

dayside, except in the plume region where the plasmapause extended to a large L shell. The 397 

equatorial minimum in chorus wave amplitude can be explained by two possible mechanisms: 398 

wave propagation and a local minimum in magnetic field strength, which is further elaborated on 399 

in the discussion section.  400 

The temporal evolution of the chorus wave amplitudes versus MLAT at different L shells 401 

and MLT is illustrated in Figure 7. First, similar to Figure 5d, the chorus amplitude strengthens 402 

during substorms. Second, near the region of plasma injections (MLT=0), the chorus waves peak 403 

at the equator throughout this period, regardless of L shell and geomagnetic activity phases. On 404 

the other hand, toward the noon region, an equatorial minimum in wave amplitude was evident at 405 

different L shells during this period. Figure 7 further validates the equatorial minimum near the 406 

noon region during different activity and L shells, as shown in Figure 6.  407 

The comparison between the IR chorus model and the traditional neural network model 408 

in Figure 8 further demonstrates the importance of imbalanced regression. A traditional neural 409 

network (NN) of the LB chorus amplitude is trained with an MSE loss function, which does not 410 

consider the weights of the imbalanced dataset. The IR chorus model and the traditional NN 411 

model are applied to the Van Allen Probe era (January 1, 2013 to June 1, 2019). The IR chorus 412 

model (Figure 8c) shows good agreement with the observed chorus amplitude from both Van 413 

Allen Probes (Figure 8b). Note that the IR chorus model could predict the strong chorus waves 414 

102.5 pT (300 pT). On the other hand, the traditional NN model (Figure 8d) is capped at about 415 

101.5 pT (30 pT) and cannot predict strong chorus waves. Therefore, the traditional NN model 416 

underestimates the strong chorus wave amplitude by a factor of 10. Furthermore, both models are 417 

applied to the equatorial plane (MLAT=0°) at MLT=0300 throughout the Van Allen Probe era. 418 
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The IR chorus model predicted many strong chorus wave events (red events in Figure 8e), while 419 

the traditional NN severely underestimated the wave amplitudes (green color in Figure 8f). 420 

Figures 8g and 8h show the zoomed-in view of the comparison during October 24-27, 2017, the 421 

same time period as Figure 5. Note that the chorus waves were strong (~100 pT) during this 422 

period, both in observations (Figure 5) and the IR model reconstructions (Figure 8g). However, 423 

the traditional NN model underestimated the chorus wave amplitude and predicted the yellow 424 

color at peaks rather than the red color from the IR chorus models, which is roughly a factor of 425 

10 smaller. In summary, the IR chorus model can predict the strong amplitude of strong chorus 426 

waves with an uncertainty of a factor of 3. On the other hand, the traditional model 427 

underestimates these waves by a factor of 10.  428 

5 Discussion and Conclusions 429 

We develop a neural network-based model of the LB chorus wave amplitude in the inner 430 

magnetosphere. The model uses a combination of the satellite location, in-situ plasma density, 431 

and time series of the SME index as input and predicts the LB chorus wave amplitude in the 432 

inner magnetosphere (L≤7 and |MLAT|<20°). The model is trained using 7-year observations 433 

(2013-2019) from the EMFISIS instrument onboard two Van Allen Probes. It was found that the 434 

auroral electrojet index SME alone can fully represent the geomagnetic activity related to the 435 

chorus waves. This is expected since the SME index indicates the strength of substorm 436 

injections, which induce electron anisotropy and load to the cyclotron resonant interactions. 437 

Furthermore, the neural network model can predict most of the chorus wave amplitude within an 438 
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uncertainty of a factor of 2 and the chorus wave amplitude in the heart of the radiation belt (L~4-439 

5) within an uncertainty of 1.6-2.1.  440 

Using imbalanced regressive methods to develop the chorus waves model is essential 441 

because the database is highly imbalanced. About 90% of the observations are non-chorus 442 

samples (Bw<3 pT), and only 5.6% of the data contains chorus waves (Bw>10 pT). Traditional 443 

regression methods are usually dominated by non-chorus quiet data samples. As a result, 444 

traditional models tend to underestimate strong chorus waves, which are the most important and 445 

exciting to radiation belt physics. In this study, we utilized a loss function WMSE to account for 446 

different weighting factors for data samples of different chorus wave amplitudes. Our results 447 

demonstrate that this is a simple and effective way to deal with the imbalanced chorus wave 448 

dataset. As a result, our model can predict the large amplitude chorus waves in statistical analysis 449 

(Figure 2), event studies (Figure 5), and long-term predictions (Figure 8). Our study shows the 450 

importance of imbalanced regression in model development, both for machine learning models 451 

and traditional statistical models. Therefore, imbalanced regression (and classification) should be 452 

emphasized in the space physics/weather community since most datasets in our fields are highly 453 

imbalanced.  454 

For the first time, the global temporal and spatial evolution of the chorus waves can now 455 

be investigated. Taking advantage of the neural networks' predictive capability, we can 456 

reconstruct the global distribution of chorus waves at a time instance within the coverage of the 457 

database (L≤7 and |MLAT|<20°). The chorus waves are distributed in a region consistent with 458 

the injected electron drift path, which agrees with theoretical expectations. The chorus waves are 459 

typically distributed outside the nominal plasmapause regardless of MLT and levels of 460 

geomagnetic activity. As substorms develop, the chorus waves move to the lower L shells along 461 
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with the erosion of the plasmapause, especially on the nightside. They also extend to a much 462 

broader region in MLT. On the other hand, the chorus waves in the noon-to-dusk region move to 463 

high L shells due to the formation of plasmaspheric plumes.  464 

The latitudinal distributions of chorus waves show interesting evolutions. Chorus waves 465 

have their maximum amplitude near the equator and are confined to the plasma sheet region near 466 

midnight (MLT=3), which is close to the source MLT of the injections. During substorms, the 467 

amplitude and coverage of chorus waves can vary, expanding and contracting in MLT. 468 

Regardless, the chorus waves have peaks in the plasma sheet near midnight, where substorm 469 

injections are most frequent. Approaching the noon region, the chorus waves show a minimum at 470 

the equator, with peak amplitudes at higher latitudes in both hemispheres. This feature is 471 

consistent with statistical chorus wave distributions from multi-satellite observations (Meredith 472 

et al., 2021). Two possible explanations exist for the equatorial minimum in the chorus wave 473 

amplitude. First, chorus waves are excited near the equator, then propagate toward high latitudes 474 

and become more oblique (Bortnik et al., 2008, 2009, 2011; Chen et al., 2013). Thus, the chorus 475 

waves at higher latitudes at a specific L shell might originate from the equator at higher L shells. 476 

This means there is little chorus wave power near the equator at the same lower L shell, thus 477 

manifesting as a local equatorial minimum of chorus amplitude. This is consistent with a 478 

statistical study showing that the minimum near the equator on the dayside disappears at large L 479 

shells (Meredith et al., 2020), although beyond the range of the Van Allen Probes orbit (L~7). 480 

Thus, it also supports the first explanation that the waves are excited near the equator at higher L 481 

shells (L>6) and propagate to lower L shells at higher latitudes. Second, the magnetic field 482 

strength exhibits local minimums off the equator in the dayside region (Tsurutani & Smith, 1977; 483 

Keika et al., 2012). The substorm injections will drift along the magnetic field minimum, thus, 484 
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following the bifurcation of the magnetic field lines to both hemispheres. In addition, the 485 

excitation of the chorus waves is in favor of smaller electron gyrofrequency (fce). Therefore, the 486 

excitation of the chorus waves on the dayside shows the feature of bifurcation, i.e., off-equator 487 

maximums of chorus amplitude in both hemispheres. A further investigation will be carried out 488 

to distinguish the two explanations, which require observations from higher latitudes and 489 

additional information on wave polarization properties, such as wave normal angle and Poynting 490 

flux.  491 

The Earth’s radiation belt belts, consisting primarily of energetic electrons and protons 492 

with energies from a few keV to several MeV, are particularly hazardous to spacecraft and 493 

astronauts. Thus, the specification and prediction of Earth’s radiation environment have been an 494 

essential topic in space physics and space weather. To understand and predict radiation belt 495 

dynamics, the traditional approach involves the integration of the Fokker-Planck (FP) equations 496 

(e.g., Ma et al., 2017; Kellerman et al., 2021). However, it requires three-dimensional time-497 

varying distributions of waves to calculate the diffusion coefficients. While chorus waves play an 498 

essential role in the acceleration of relativistic electrons, previous empirical chorus models are 499 

parameterized by geomagnetic activity and cannot provide such distributions. This is especially 500 

important during geomagnetic storms due to their underestimation of large-amplitude chorus 501 

waves. Therefore, the IR-based chorus model will address the problem by providing IR-based 502 

modeled chorus distributions, especially these storm-time strong chorus waves, to the FP 503 

simulation to better predict the radiation belt environment (Bortnik et al., 2018). In future 504 
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studies, a comprehensive environment including waves and plasma conditions predicted by 505 

machine learning models will be used as input to the FP simulation for prediction purposes.  506 

We summarize the major conclusions as follows:  507 

1. We develop a neural network model of the lower-band chorus wave amplitude using 508 

imbalanced regressive methods.  509 

2. Based on feature selection, the time series of the SME index can capture the variation of 510 

the lower-band chorus waves.  511 

3. Our IR chorus model can correctly predict the amplitude of the strong chorus waves, for 512 

the first time. A pilot model is developed to provide the model uncertainties.  513 

4. The IR chorus model can predict the strong wave amplitude (> 300 pT) with an 514 

uncertainty of a factor of 3. On the other hand, the traditional neural network model’s 515 
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prediction is capped by 30 pT, persistently underestimating the amplitude of strong 516 

chorus waves by a factor of 10.  517 

5. The equatorial evolution of the chorus waves is consistent with the electron drift path of 518 

substorm injections. 519 

6. The chorus waves peak at the equator (plasma sheet) in the source MLT near midnight. 520 

They show a minimum at the equator toward noon, with two off-equator amplitude peaks 521 

in two hemispheres.  522 

7. Imbalanced regression methods require more attention since most datasets in space 523 

physics, space weather, and real world are imbalanced.  524 

 525 

  526 
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 955 

 956 

Figure 1. Statistical properties of the LB chorus wave amplitude log10(Bw). The numbers of 957 

data samples as a function of (a) L shell and MLAT, (b) L shell and MLT, (e) wave 958 

amplitude, and (f) plasma density and wave amplitude. Panels (c) and (d) are in the same 959 

format as panels (a) and (b) but for Bw > 5 pT.  960 

  961 
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 962 

 963 

Figure 2. The two-dimensional distribution of the model predicted and observed LB chorus 964 

wave amplitude for four datasets (all, training, validation, and test). The red dashed lines 965 

are the diagonal line (y=x), indicating perfect agreement. The weighted root mean square 966 

errors (WRMSE) are shown on the bottom right of each panel.  967 

  968 
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 970 

 971 

Figure 3. The error distribution as a function of the L shell for the four datasets (all, 972 

training, validation, and test). The error bars illustrate the weighted mean (marked by 973 

black crosses) and WRMSE. 974 
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 975 
Figure 4. The error distribution as a function of the electron density for the four datasets 976 

(all, training, validation, and test). The error bars illustrate the weighted mean (marked by 977 

black crosses) and WRMSE. 978 
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 979 

 980 

Figure 5. An application of the chorus model during a three-day period 24-27 October 981 

2017, which is held out for test purposes. (a) Geomagnetic indices Sym-H and SME. (b-c) 982 

The comparison between the observed (red) and modeled (blue) LB chorus wave amplitude 983 

for Van Allen Probes (RBSP-A and RBSP-B). The green lines represent the model 984 

uncertainties. (d) The modeled LB chorus wave amplitude as a function of L shell on the 985 

equatorial plane (MLAT=0°) at MLT=0300. Note that the apogees of the Van Allen Probes 986 

were on the dayside (MLT~1200).  987 
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 989 

 990 

Figure 6. The evolution of chorus wave amplitude on the equatorial planes (top row) and 991 

meridian planes (bottom five rows) at different MLTs (MLT=0, 3, 6, 9, and 12).  992 
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 994 

 995 

Figure 7. The temporal evolution of chorus wave amplitude as a function of MLAT at 996 

different L shells (L=3.5, 4.0, 5.0, and 6.0) near midnight (MLT=3, left) and near noon 997 

(MLT =9, right).  998 

 999 
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 1001 

 1002 

Figure 8. The comparison between the observed chorus amplitude and those modeled by 1003 

the imbalanced regressive and traditional neural network (NN) models. (a) Geomagnetic 1004 

indices Sym-H and SME, (b) the observed LB chorus wave amplitude along the trajectories 1005 

of both Van Allen Probes; (c-d) the LB chorus wave amplitude modeled by imbalanced 1006 

regressive NN model (c) and traditional NN model (d) along the trajectories of both Van 1007 
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Allen Probes; (e-f) the LB chorus wave amplitude modeled by imbalanced regressive 1008 

chorus model (e) and traditional NN model (f) on the equatorial plane (MLAT=0°) at 1009 

MLT=0300. (g-h) Zoomed-in view of the LB chorus amplitude modeled by imbalanced 1010 

regressive NN model (g) and traditional NN model (h) between October 24-27, 2017, the 1011 

same period as Figure 5.  1012 

 1013 

 1014 


