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Abstract

In this paper, we first propose and analyze a steady state Dual-Porosity-Navier—Stokes model,
which describes both Dual-Porosity flow and free flow (governed by Navier—Stokes equation)
coupled through four interface conditions, including the Beavers—Joseph interface condition.
Then we propose a domain decomposition method for efficiently solving such a large com-
plex system. Robin boundary conditions are used to decouple the Dual-Porosity equations
from the Navier-Stokes equations in the coupled system. Based on the two decoupled sub-
problems, a parallel Robin-Robin domain decomposition method is constructed and then
discretized by finite elements. We analyze the convergence of the domain decomposition
method with the finite element discretization and investigate the effect of Robin parameters
on the convergence, which also provide instructions for how to choose the Robin parameters
in practice. Three cases of Robin parameters are studied, including a difficult case which was
not fully addressed in the literature, and the optimal geometric convergence rate is obtained.
Numerical experiments are presented to verify the theoretical conclusions, illustrate how the
theory can provide instructions on choosing Robin parameters, and show the features of the
proposed model and domain decomposition method.

Keywords Dual-Porosity-Navier—Stokes flow - Interface conditions - Domain
decomposition method - Finite elements
1 Introduction

The investigation of fluid flows within a complicated porous medium coupled with con-
duit system is of significance in many applications, such as groundwater flow system
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[1], petroleum extraction [2], industrial filtration [3], etc. It is not an easy job to build
a mathematically and physically reasonable model for the coupled flow problem in such
coupled system, especially for the problems with complicated porous media including multi-
porosity and multi-permeability properties. During the past decades a number of related
fluid dynamical models were built by scientists and engineers, including Stokes—Darcy
model, Navier—Stokes—Darcy model, Stokes—Darcy-transport model, Dual-Porosity-Stokes
model, two-phase Stokes—Darcy models, stochastic Stokes—Darcy model, and so on [4-18].
Meanwhile, there are many numerical methods developed to solve these Stokes—Darcy type
systems, which basically include two classes of strategy: the coupled numerical methods
[19-22] and the decoupled numerical methods [23-29].

The widely used Darcy model is usually an averaged single porosity/permeability model
for the fluid flow in the porous media region. However, it has the limitations to describe com-
plicated geometrical structures of the porous media, especially naturally fractured porous
media which contain the multi-porosity/permeability regions [30]. The hydraulically frac-
tured reservoirs, such as shale gas reservioirs, usually have multiscaled pore spaces with
different fractures properties, including matrix pores, natural fractures, and vugs. The first
multi-porosity model was proposed by Barenblatt for the naturally fractured reservoir where
the micro-fracture and matrix systems are formulated by individual but overlapping con-
tinua [31]. Based on Barenblatt’s model, Warren developed a homogeneous orthotropic
Dual-Porosity model in 1963 [32], which was utilized for many applications, such as the
geothermal system, hydrogeology, petroleum industry, tight/shale oil/gas reservoirs, and so
on. In [33], the authors consider the flow in macro-fractures and vugs and define a kind of triple
porosity model for fractured horizontal wells by three sequentially coupled Darcy models.
There are other Darcy-type models for describing multi-porosity/permeability media, such
as multi-continuum models [34], multiple interacting continua (MINC) models [35], discrete
fracture-matrix models [36], mixed-dimensional models [37], mixed-dimensional porome-
chanical models [38], and so on. However, all these porous media models do not consider
the free flow in large conduits, and the wellbore is simplified as the source and sink terms
on the right hand side of Darcy equations. On the other hand, the existing Stokes—Darcy or
Navier—Stokes—Darcy models do not consider multi-porosity when they couple the porous
media flow with the free flow in channels. In practice, there are many real world applications
which involve with the coupling between the multi-porosity flow and the free flow in large
conduits. For example, the shale oil reservoir simulation with multi-stage fractured horizon-
tal wellbore obviously involve the multi-porosity flow in the shale reservoir and the channel
flow in the horizontal wellbore [39].

Therefore, a coupled time-dependent Dual-Porosity-Stokes model with the Beavers-
Joseph (BJ) interface condition [40] was recently proposed in [41], where the Dual-Porosity
model instead of the single-porosity Darcy model is utilized to govern the flow in the porous
media and couples with the Stokes equation via four multi-physical interface conditions.
Among these interface conditions, the BJ condition takes into account the coupling between
the fracture flow velocity and the free flow velocity along the tangent of interface, which
brings an indefinite term to the equation system and requires the BJ constant « to be small
enough for the wellposedness of the steady-state model, see [42, 43] for more details about
the restriction of «. In [41], the traditional coupled finite element method is utilized to
solve and illustrate the new Dual-Porosity-Stokes model. But for such a sophisticated multi-
physics model, more efficient decoupled numerical methods are in great needs. Among
the existing decoupled algorithms, the domain decomposition methods are very natural to
be considered for decoupling the Dual-Porosity-Stokes and Dual-Porosity-Navier—Stokes
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models, since the problem domain naturally consists of two different subdomains, see [44—
48] and references therein for various domain decomposition works on the Stokes—Darcy
model and Navier—Stokes—Darcy model. For the time-dependent Dual-Porosity-Navier—
Stokes model, a non-iterative Robin-type decoupled finite element method was studied
[49]. For the steady-state Dual-Porosity-Stokes model with the simplified Beavers—Joseph-
Saffman (BJS) interface condition [50, 51], the optimized Schwarz method was studied in
[52].

However, the convergence analysis of the iterative Robin—Robin domain decomposition
methods for steady-state problems in [47, 52, 53] was carried out at the continuous level
without considering the finite element discretization. And they did not discuss all the cases,
due to a major difficulty for one case, which is important for the realistic parameters as illus-
trated in [53]. Recently, in [54], this difficult case was analyzed at the discrete level for the
steady-state Stokes—Darcy model with the BJ condition, and an almost optimal geometric
convergence rate was derived. In the analysis of [54], two inverse inequalities were used to
reach complicated and vague Robin parameter restrictions, and the mesh size needs to be
larger than the permeability and viscosity. In this paper, we will utilize a different inverse
inequality and further improve the analysis directly at the discrete level with the finite ele-
ment discretization for the more difficult Dual-Porosity-Navier—Stokes model with the BJ
condition. Hence we will be able to remove the restriction on the mesh size, reach the optimal
geometric convergence rate, and obtain more precise Robin parameter restrictions, which can
provide easier instructions on choosing the important Robin parameters. These are the major
contributions of this paper for the convergence analysis part, in addition to the other major
contributions in the wellposedness of the steady-state Dual-Porosity-Navier—Stokes model
with the BJ condition as well as the corresponding algorithm development and validation.

More specifically, we will first analyze the wellposedness of the steady-state Dual-
Porosity-Navier—Stokes model with the BJ condition, based on an elegant framework of
variational analysis for the Navier—Stokes—Darcy model with the simplified BJS condition
in [12]. Then based on two Robin type transmission conditions, we propose the itera-
tive Robin-type domain decomposition method for decoupling Dual-Porosity equations and
Navier-Stokes equations. From the investigations about the effect of Robin parameters on the
convergence in [26, 52, 53], we know that the Robin-type algorithm is very sensitive to small
model parameters and the robustness of the algorithm is significantly affected by the Robin
parameters (Y. and yy, see Sect. 3.1 for the detailed definition) under small permeability and
viscosity. Therefore, we will analyze the convergence of the proposed method with finite
element discretization for all three cases of Robin parameters including y. < yg4, Ve = Y4
and y. > y4, and obtain the optimal geometric convergence rate for the cases y, < yg
and y, > y4. For the most difficult case y. > y;, we present a more accurate and simpler
approach than the approach provided in [54] to obtain the optimal geometric convergence
rate instead of the almost optimal geometric convergence rate. Specifically, we first prove the
inverse inequality for the dual porosity model which is more difficult than the Darcy model.
With the help of Young’s inequality, we can obtain a more accurate estimate than the estimate
for the Darcy model in [26, 54], and can get rid of the lower bound constraints of the mesh
size required in [54]. Secondly, by choosing appropriate scaling parameter, we can get rid of
the inverse inequality of the Stokes equation that must be used in the proof in [54], so that the
unnecessary complexity in the analysis is greatly simplified. More importantly, the optimal
geometric convergence rate is obtained due to the two aspects above.

The analysis result provides a general guideline of choice on the Robin parameters to
obtain the convergence and geometric convergence rate. The numerical experiments will be
provided to illustrate and validate the convergence and applicability of the proposed method.
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Fig.1 A sketch of the dual porous media domain 4, the free-flow domain 2., and the interface I'.4. Define
the boundaries I'y = 025/ 'cg and I'e = 02/ Teq

In the first experiment, the convergence of all the cases are verified by a mathematical
example with known analytic solutions. And the realistic parameters are also considered.
In the second and third experiments, we use a more realistic case with more complicated
geometries to validate the proposed model and method.

The rest of paper is organized as follows. In Sect. 2, we introduce the Dual-Prosity-Navier—
Stokes system and analyze its wellposedness. In Sect. 3, we propose and analyze the Robin
type domain decomposition method in three subsections. In Sect. 4, numerical experiments
are provided. In Sect. 5, we draw the conclusions.

2 Steady Dual-Porosity-Navier-Stokes Model
2.1 Mathematical Model and Weak Formulation
We consider the coupled Dual-Porosity-Navier—Stokes system on a bounded domain Q =
QaUQ. cRY, (d=2,3),seeFig. 1.
In the porous media region €24, the flow is governed by the Dual-Porosity system [32]
kin
Ve —Vpm ) =-0, 2.1
w
kg
-V. M—'fo =0 +qp. 22)
Here O = % (pm —-p f) is a mass exchange term between matrix and micro-fractures
porosity, o is a shape factor associated with the cut rocks and orthogonal fractures, p;; (ps)

is the pressure in matrix (micro-fracture), k,, (k) is the intrinsic permeability in matrix
(micro-fracture), u is the dynamic viscosity, and g, is the sink/source term.
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In the fluid region €2, the fluid flow is assumed to satisfy the Navier—Stokes system
[55-57]

u-Vyu—V-T(u,p) =f, 2.3)
V.-u=0, 24

where u is the fluid velocity, p is the kinematic pressure, f is the external body force,
T (u, p) =2vD (u)— %p]l is the stress tensor, D (u) = 1/2 (Vu + (Vu)T) is the deformation

tensor, [ is the identity matrix, v is the kinematic viscosity of the fluid and p is the fluid density,
v="F.
Let .y = Q4N Q. denote the interface between the fluid and dual porous media regions.

On the interface I'.4, we consider the following four interface conditions [41]:

ki
——Vpm - () =0, (2.5)

"

kg
—;fo-ncdzu-ncd, (2.6)
T 1 1
—n., T (u, p)neg + EU ‘U= ;Pf, 2.7
av/d k

=P (T(u, p)neg) = ——~; (u + val’f) , (2.8)

trace (]])

where n.4 denotes the unit outer normal to the fluid region €2, on the interface ¢4, o is a
constant parameter, [ | is the intrinsic permeability of fracture media and equal to [] = k1,
d is the spatial dimension, and P; denotes the projection onto the local tangent plane on I'¢4,
1.€e.,

d-1

Pru= Z(u STj)T),

j=l1

with 7; (j =1, ..., d — 1) being the unit tangential vector on the local tangent planes of I'¢4.
The first interface condition (2.5) is a no-exchange condition which means no flux could go
across the interface from matrix system directly to the conduits. We refer readers to [41] for
more justification of this assumption of the Dual-Porosity model [32]. The interface condition
(2.6) stands for the conservation of mass between the micro-fractures and the conduits. The
condition (2.7) describes the balance of the forces in the normal direction. The last condition
(2.8) is referred to as the Beavers—Joseph interface condition [40].

For simplicity, we assume that the matrix pressure py,, the fracture pressure ps and
the fluid velocity u satisfy homogeneous Dirichlet boundary condition except on .4, i.e.,
pm = 0and py = 0 on the boundary I'y and u = 0 on the boundary I',.

We define the functional spaces

Wo:={y e H (Qa):y=00nTy}, Vo:={ve H (Q)?:v=00nT.},
Viiv ={veVy:V-v=0}, M:=L>(Q.), Xo:= ¥ x ¥ x Vo, Yo
= \I’() X \I’() X Vdivv

and the corresponding norms
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Il = 1Y llgq, . Y € Yo, (2.9)
d 12
”V”] = (Z ”vl”%{](Q()) i Vv = {Ui}?zl € VO! (210)
i=1
lallo == llgll2e,) . ¥a € M, @11
5 1/2
17 I, = (1l + 1o 1T+ I013) 0 ¥V = W 7)€ Xo, (2.12)
) 1/2
19 2 = (020, + 195 a0y + IVB2g) o YV = (s 07 ¥) € X,
(2.13)
k k 1/2
v — [ Zm 2 r 2 2
” v ”YO L (p/.L ”V]/fm ”Lz(Qd) + ol ”wa ”Lz(Qd) + 21) ”ID)(V)”LZ(Q()) )
VYV = Y, Y7, V) € Yo (2.14)

1
We also need the trace space defined as Hgo (Tea) := Volr,,, which is a non-closed subspace

of H% (I'¢q) and has a continuous zero extension to H% (082.), see [42, 43].
For the domain D (D = Q. or ), (-, -) p denotes the L? inner product on the domain
D, and (-, -) denotes the L? inner product on the interface I'z4 or the duality pairing between

1 / 1
(Hé0 (ch)> and Héo (I'cq). With these notations, the weak formulation of the coupled

steady-state Dual-Porosity-Navier—Stokes problem is given as follows: find (i), p) € Xp x
M, such that

(WU, V)+a(U,V)+b(V.p)=¢(V). VV Xy, (2.15)
b(d,q)=0, VqeM. (2.16)

The trilinear form is defined as
c(W,d,7V) =((W~V)u,V)QC—%(w~u,v~ncd), (2.17)

for arbitrary 0 = (Pms pyom), v = (¥m, ¥y, v) and W = (¢m. ¢ 7. w) in Xo. Based on
(3.3) in [47], we have

c(V.V.V)=0. (2.18)

The bilinear forms and linear form are defined respectively as,

k
o(@.7) =1 (250 v )

Qq

ks
+7 ;fo, Vs

+2v (D), D (V))g,

+<ﬂ(—)lﬁ>
nupm vamQ

ok 1
+n|— (Pf_pm):Wf + —Pf, V- -Neq
122 Qu P

Qq

d
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—n<u~ncd,wf)+M<PT (u+k—prf),PrV>, (2.19)

trace (]]) s
1
b(_V’,p)=—;(V~v, Pa, - (2.20)
(V) =E Vg +n(ap ¥r)g, - @221
for arbitrary W = (Pm. py,u) and v = (Ym, ¥r.v) in Xo. The integral

(Pr (%f Vi f) , P, v> on "4 is understood to be the value of the functional P; (%f Vi f) ITeu
I

1 1
€ ( Hy, (ch)> applied to v|r,, € Hg, (Icq), which is well defined when & 1 is isotropic,

see [43] and the references cited therein. We remark that for simplicity the scaling factor n
multiplied to the Dual-Porosity equations is set to 1/p in the later proof.

2.2 Well-Posedness of the Model

To prepare for the analysis, we recall the following Poincaré inequality, Korn’s inequality,
trace inequality, and Sobolev inequalities: there exist constants C,, C¢, Cy, Cy, Dy, E;, which

only depend on the domain €2., and C P C ‘s C - ﬁt, which only depend on the domain 24,
such that for all ¥ € Yg and v € V,

IVilz2) < Cp VY2, »
Wz, < Cr IV ll2y)

(2.22)
VY2 < CelID W2, »
(2.23)
Ivili2,r0 < CellVVIL2Q,
W lj2r, < GV 2, VeV I-ior, < Co VY2, - (2.24)
IVl < DilVVIL20 » 1W 20 < DIV lL2ey) - (2.25)
||V||L4(r(‘d) <E ”VV”LZ(QL.) ) ||V||L4(QC) <G ||VV||L2(Q(,) ) (2.26)

where V. ¢ stands for the tangential derivative of ¥ and is defined in the dual space of
H(l)(/)2 (T¢q), see [42] and the references therein for more details.

Lemma 2.1 The bilinear functional b (-, -) is continuous on Xo x M and satisfies the inf-sup
condition, that is, there exists a constant B > 0 such that

b(V,
inf S M > B. 2.27)
0ZgeM o5 ex, gl [V [k,
By the similar arguments in [41], we can obtain the following lemma.

Lemma 2.2 Assume thatf € L? (QL-)d, qp € L2 (S2). Then the solution (ﬁ), p) eXox M
of (2.1)-(2.8) is equivalent to the solution of the weak problem (2.15)-(2.16).

Next, we follow the framework in [12] for the Navier—Stokes—Darcy model to obtain the
existence of the weak solution of (2.15)-(2.16). By restricting the test functions v in (2.15)-
(2.16) on the divergence-free subspace Vg ;,, we have the following variational equations:
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find U € Yo, such that
c(W, 4, V)+a(W,¥V)=¢(V), YV €Y, (2.28)

Based on Lemma 2.1, the reduced problem (2.28) and the problem (2.15)-(2.16) are equiva-
lent, therefore it suffices to prove the existence and uniqueness of a weak solution of problem
(2.28).

The following theorems concern the existence and uniqueness of solution to the problem
(2.28). Since the proof is pretty standard [12], we omit it here due to the page limitation.

Theorem 2.3 Let a be small enough so that «C.C;Cy, < 1, and R be the following constant

1

2C5C} ey 2
R = . IIfIILz(Q)Jr 5 ||qp||L2(Qd) (2.29)

which only depends on the viscosity, micro-fracture permeability, domain and sink/source
term. Then there exists a solution to the problem (2.28) satisfying

km f 2
e IVl g, + 0 VY Iy + 20 ID W22, <RE (230)
Theorem 2.4 Under the assumption of Theorem 2.3, and the data satisfying

1 2
V3> 2 (Cfc,ﬁ + 5D,EfC,?) R, (2.31)

the problem (2.28) has a unique weak solution.

3 Robin-Robin Domain Decomposition Method

In this section, we follow the idea in [47], which was for the Navier—Stokes—Darcy model,
to propose the domain decomposition approach for decoupling the Dual-Porosity-Navier—
Stokes system with Beavers—Joseph interface condition. Instead of the convergence analysis
based on the continuous formulation, which was discussed only for two cases in [47], in this
section we will carry out the convergence analysis based on the finite element discretization
formulation for all the three cases.

3.1 Domain Decomposition with Robin Boundary Conditions

Based on the idea in [47], we consider the following Robin conditions to decouple the Dual-
Porosity model and Navier-Stokes equation: for given constants y; > 0 and y. > 0, and
given functions 1y, 1. and 7 e defined on ey,

ki 1
Ya-LVPf - (—0ea) + =Py =na  onTeq, 3.1)
iz p
_ 1
Neg - (T (u, @ “Neg) — 5 -u+ )/cu Neg = 1e on ey, (3.2)
. (xv«/a .
—P (T(@, P) Neg) — —————=P,U=T17c onle, (3.3)
trace (]_[)
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together with (2.5). Then the weak formulation for the decoupled Dual-Porosity-Navier—
Stokes system reads: for 1y, 7e, 7 cr € L% (Teq), find (ﬁm, Dy, u, ﬁ) € Xop x M, such
that

k R | TN
(ﬁw%va +(ivwﬂwJ

w Q4 H Qq

okm , ~ okm ~
+ (Pm _Pf)sl//m + (pf_Pm)y‘//f
1% Qu M Q
— ~ | N . ~

+(@- V), Vg — 5 (WU, V- neg) + 2 D@, DW)g, —(V-v,Dg, + (V- -1, q)q,

avv/d
trace ([)

= (9p- ‘/ff)Qd +E v + <% ll/f> + (1, V- Nea)

_<_n)czv Prv), V(Wms'ﬁf,V,CI)EXOXM- 349
Next we show that, for appropriate choices of y., V4, n¢, 14, and _n)cr, the solution of

coupled Dual-Porosity-Navier—Stokes system (2.15)-(2.16) are equivalent to the solution of
decoupled system (3.4).

d

D . —~
+<7fa1//f>+yc (W-neq,v-ne) + (P:u, Prv)

Yap

Lemma 3.1 Under the assumptions of Theorem 2.3 and Theorem 2.4, let (pm, prou, p)
be the solution of the coupled Dual-Porosity-Navier—Stokes system (2.15)—(2.16) and let
(Pm. Dy W, P) be the solution of the decoupled Dual-Porosity and Navier-Stokes system
(3.4) with Robin boundary conditions (3.1)—(3.3) at the interface. Then, (ﬁm, Pr., ﬁ) =

(pm, pfu, p) if and only if v¢, v, Ne, _rf”, and ng satisfy the following compatibility
conditions:

~ I _
Nd = YdO - Neg + ;Pf, (3.5)
A 1
Ne = Yl - Neg — ;Pf, (3.6)
av/d ke
?az—————&(lvm>. 3.7)
trace ([]) s

Proof For the necessity, we pick 1,, = ¥y = 0 and v such that P,v = 0in (2.15) and (3.4),
then by subtracting (3.4) from (2.15), we get

1
<nc—ycuf ‘Mg + fpf,v~ncd> =0,Yv e Vg with P,v=0
oF

which implies (3.6). The necessity of (3.5) and (3.7) can be derived in a similar fashion.

As for the sufficiency, by substituting the compatibility conditions (3.5)—(3.7) into (3.4),
we can easily see that (py,, P, W, p) solves the coupled Dual-Porosity-Navier—Stokes system
(2.15)—(2.16). Since the solution to the Dual-Porosity-Navier—Stokes system is unique under
the assumptions in Theorems 2.3 and 2.4, we have (D, Dr. W, D) = (pm. py. . p). ]

For convenience, we define the following bilinear forms for the two independent systems
respectively.

ki ky
am (Pm> ¥m) = (;me’ Vwm> , afr (va wf) = (;fo’ Vlﬁf , (3.8)

Qq Qq
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1
ac(,v) =2vD@),D(V)gq,, be(v,p)= ~ (V-v.pg,- (3.9)

Then we propose the parallel Robin—Robin domain decomposition algorithm for the Dual-
Porosity-Navier—Stokes system.
Algorithm 3.1 (parallel DDM):

1. Initial values of '72, 1% and 779, are guessed.
2. Fork =0,1,2, ..., independently solve the Navier—Stokes equation and Dual-Porosity

equation with Robin boundary conditions. More precisely, <p’,j1, p’}) € ¥y x Y is
computed from

am (Pz];w 1//m) +ayr (pl}’ 1pf) + (Oim (Pz]; - pl}) , 1/fm)Qd +

Ok (& _ ) LA | o
<# (pf pm)’wf Qd+<ydp’wf _(ql”wf)fzd—i_ yd’llff

VY, Uy € Yo, (3.10)

and u* € Vg and p* € M are computed from

c (uk, uk, v) +a. (uk, v) + b, (V, pk)

d
+ve (uk *Neg, V- ncd> + L <Pruk7 PrV>
JJ/trace (T])
- (n’g, v. ncd> + (V) — <T7”gt, Prv> Vv e Vo, 3.11)
be (uk,q) —0 VYgeM. (3.12)

3. pit, pk+and 77X+ are updated in the following manner:

b

= ank + Zplj‘" (3.13)
nit = enf 4+ dut g, (3.14)

d kr

trace () H

where the coefficients a, b, ¢, d are chosen as follows:
a=Y b=—1-a c=-1, d=ye +va. (3.16)

Yd

The relations in (3.16) are necessary to ensure the convergence of the scheme. Suppose that
above algorithm is convergent, and n’c‘ , 1;5, pfn, p* and u¥ converge to Nes N> Py p;/i and
u*, respectively. Then, by (3.13)-(3.14) and Lemma 3.1, it can be easily seen that ", 13, p;r,
p}i and u* satisfy the consistency equations (3.5)-(3.6),

For the comparison purpose, we also present a serial scheme as follows.

Algorithm 3.2 (serial DDM):

1. Initial values of ng, ng and _n>(c)r are guessed.
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2. Firstly, for k = 0,1,2,..., solve the Dual-Porosity model with Robin boundary

conditions to find (p’,;, p’}) € Wy x Yy satisfying (3.10).

k1 and 77 %+ can be updated by (3.13) and (3.15).

4. Then, for k = 0,1,2,..., solve the Navier—Stokes equation with Robin boundary
conditions to find uf € Vg and pk € M satistying (3.11)-(3.12).

5. nZ"H is updated in the following manner:

et

ot = et auk ngg, (3.17)
where the coefficients a, b, ¢, d are defined in (3.16).

In the following we consider finite element discretization of the Robin-Robin domain
decomposition method. Let 7., and 74 ; be the partitions of €2, and 2,4 respectively, and
they are compatible on the interface I'.4. Upon the partitions, the conforming finite element
spaces \I/,(l), Vg, and M}, are defined by

WP = {Yn € C°(Qu) | ¥nlk € P2 (K) VK € Tgn, Yalr, = O}, (3.18)
— \\d

Vi =t € (C°(R))" | valx € B2 (KD VK € T, Vilr, = 0}, (3.19)

My, = {qn € C° (Q) | qnlk € P1(K) VK € T, (3.20)

where P, (K') and P (K') denote the space of quadratic and linear finite elements respectively.
Thus, X2 = \Ilho X \IJ,? X Vg is the subspace of X¢. Furthermore, we define the finite element
space on the interface I';4,

Ap = {nn € C®(Tea) | nle € P2 (e) Ve € Tn, nular,, = 0}, (3.21)

where 7}, is the induced partition by 7. j, and 7z 5 on I'¢4. It is easy to see that Ay, is the trace
space in the sense that

Aapi=YIr, = An, (3.22)
A= VYIr., Nea = Ap. (3.23)

We recall the standard conforming finite element method for the coupled Dual-Porosity-
Navier-Stokes system (2.15)-(2.16): find Wy, = (pm.n. P, wn) € X) and py € My, such
that

c(Wn, Wn, Vi) +a(dn, Vi) +b(Vu,pn)=0(Vh), YVieX), (3.24)
b(Wn,qn) =0, Yan € My. (3.25)

Remark 3.2 The well-posedness and convergence analysis of (3.24)-(3.25) can be obtained
by combing the corresponding analysis techniques for the steady-state Dual-Porosity-Navier—
Stokes model [49, 58] and the Navier—Stokes—Darcy model [47, 59, 60]. In this work, we
focus on the decoupled domain decomposition schemes instead of the above coupled scheme.

The decoupled Dual-Porosity-Navier—Stokes system with the Robin-Robin domain
decomposition conditions (3.1)-(3.3) can be discretized by the finite element approxima-

. . —
tion: for given ”fl,h’ nf_’h, [ ]:-r,h € Ay, find (pfn’h, p’}’h,uz, p’h‘) € \112 X \Ilho X V2 x My
such that
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c (uﬁ,ul,‘,,v) +a. (ulh‘, V) + b (V, pﬁ) + ay, (pfn,h, 1//m)
ok
+ay (pl}’h, Iﬁf) + <7m (pI’;’h _ P?,h) , 1ﬁm>
1% Qu

ok
+< M’" (p'} pmh) w) +yc<u’,§-ncd,V-ncd>

Qq

(S

Yap

trace
’75 h
= (fk,V) +<771;_h,V'ncd>+<’,Wf>_<_77)lgr,h’va>
Qe Ya
VU, ¥y € W), veVy, (3.26)
be (u;‘,,q) -0 VqeM,. (3.27)

3.2 Convergence of the Robin-Robin Domain Decomposition Method

In this section, we follow the elegant energy method proposed in to demonstrate the con-
vergence of the parallel Robin—Robin domain decomposition method with finite element
discretization. Three cases of Robin parameters y. and y, are discussed and the analy-
sis result provides a general guideline of choice on the relevant parameters to obtain the
convergence and geometric convergence rate.

Let (pm_h, Df.hs Up, ph) denote the corresponding finite element solution of the Dual-

Porosity-Navier—Stokes system (3.24)-(3.25), and (p,’; > p’}_ P u';l, pﬁ) denote the solution

of the decoupled system (3.26)-(3.27) with ’75,11’ n](f’h, _n”;’h satisfying the discrete
counterpart of compatibility conditions (3.13)-(3.15). Next, we define the error functions

k k k k —k — —k
Ed.n = Nd.h —Ngp Ecp = Nesh — Nep Ecrh = Nerh = Nern

k k k k k Kk k k
mh = Pmh = Pmn €fn=Pfh —DPfrpn Cup=8rn—Wy €, =DPh— Dp-

Thus, the error functions satisfy the following error equations:

ok
am (651,;1: Wm) +ay (el},lw Wf) + <7m (efn,h - eff,h) s Ym — Wf)

k 9k h ( )
AR ¢ - ’ ¢ v ¢l‘na ¢ € I ’ 3-28

Qq

c(u;,,u;,,v)—c(uﬁ,uh, )J’_ac(uh’ )+bc( )+VC< o Ded, Ve ncd>

+;Uc;/?l_[) <Pfel,§,hv PrV> = (85,;1, \& ncd> - <—>” ne Prv > Vv eV
(3.29)
b, (eﬁ,h’ ‘I) =0 Vgqe My, (330,
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and, along the interface I'.q,

b
et =aek , + fe’},h, (3.31)

Sﬁl = cefy +deg ) e, (3.32)

k
ke _od < Ve fh> (3.33)
trace ([) H

Lemma 3.3 The error functions satisfy

oY Bl ()
2w \ya) IMMee,  p? va b
2
Z¥e <1 + )’c) <am (efn b efn h)

Yd ’ ’

0

ok
t+ag (e ehn) + (7" (ekn = e5n) - ehn = e?h)g ) (3.34)
d

2

2

k+1

£
ch L2(Teq)

k1) 2

{l
Fol =
SRl L2(r )

M2
—2Ye +vYa) ( ( €, Un, €, h) +c (ul’h eﬁ,h’ eﬁﬁ))
_Z(Vc‘i‘)/d)ac( €ns € uh) 2 (Ve + va)
avvd k
7<Pr (e/;,h +Lve ’}h‘) , Pfe’,;yh>. (3.35)
trace ([ ) s

Proof Equation (3.31) leads to

k
€y n Ded

+(vi—v2)

L2 (Tea)

1, P
Lk
P

2 1
kel 2 +2ab<8§h,fel}h>. (3.36)
el

c,h

2 || &
Hgd,h

2Ca) L2(Tea) L)

Setting ¥, = - e, h and ¢ p = 7ef , in (3.28), we have

1 Yd
k k k k k
<€d,h’ ;ef»h> ) (“m ( Emh> € ) tar (ef»h’ ff,h)

SCCIEEDRIEEN

L ok
+ (e s hn). (3.37)
Substituting (3.37) into (3.36), we have
2 2 (b* + 2ab)
k+1 — 42|k 7
el HS‘“‘ vrag 2 Hef L2
2aby, ok
T, (“ (ek ke €m h) +ay ( e fl},h) + (7 (efn.h - el},h>’erkn,h - el},h)g ) :
d
(3.38)
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With a and b defined in (3.16) the error function (3.34) is obtained.
The error function (3.35) can be similarly obtained. ]

We are now ready to demonstrate the convergence of Robin—Robin domain decomposition
method. The convergence analysis for y. < y4, Yo = yq and y. > y; will be treated
separately.

3.2.1 Case 1: ¥c < Y4

Theorem 3.4 Under the assumptions of Theorem 2.3 and Theorem 2.4, if y. and y, satisfy

0 SRS B R
<Yi—Ve<—S—and0 < —— — < —
‘T pic} ve vaT DI

, (3.39)

then the domain decomposition solution ( pl}; . pl} " uﬁ, pz ) converges to the finite element
solution of the coupled system (pm p, P n Wn, Ph)- Specifically, if y. and y, further satisfy
1 1 1

v
O<yVi—Ve< 5 and — — — < ——, (3.40)
‘= DX} Yo Vd D?k”f+yd

then the algorithm has geometric convergence rate | ;’—;

Remark 3.5 1t is noticeable that for very small viscosity v and permeability k s in practise,
the upper bounds of the constraints in (3.39) will be very close to 0. Hence y. and y; need to
be very close to each other in order to satisfy (3.39). Therefore, if v and k  are very small,
then it is very difficult for the choice of y. < y4 to reach convergence. In fact, even though
the convergence is reached with extraordinary effort, the convergence will be very slow with
a rate % close to 1 in such situation. We will need the Case 3 (y, > y4) in Subsection
3.2.3 to deal with this difficulty. On the other hand, when viscosity v and permeability k s
are not small and y; is not too big, it is much easier for the choice of y. < y;, to satisfy the
constraints (3.39) and (3.40), hence guarantee the convergence and geometric convergence
rate. These observations provide theoretical instructions for selecting y, and y,; and will be
numerically demonstrated in Sect. 4.

Proof Multiplying (3.35) by and adding it to (3.34), we obtain

Ye k+1’2 k+1’2
Ya L2(Tea) N L2(r )
2
2 2
- () ol +
Yd M oya MM 2w
Ye 2 k
+—= e, -ng
” (Vd Vc) uh * Med L2(Tug)

2 1 2
e 2 ) ” €rn

Y
_27:(%"‘%1) ( (l;h’“h’ uh>+L(uh’ e 1€ +ac(uh’ uh))

Y. 1 k Kk o km
_2)/—:(yc+yd);<am(mh, )+llf(f7h,€f7h)+7

2
L2(Q4)

avy/d k
2 Y (e ) <Pf <e’;,h +-Lvet, ,,1> : P,e{i,h>. (3.41)
vd trace (]_[) "

&
Cm.n ~ €f 0

@ Springer



Journal of Scientific Computing (2023) 95:67 Page 150f45 67

For the trilinear form in the right hand side of (3.41), we have
c (eﬁ’h, uy, eﬁ,h) +c (uh, e];,h, e’;’h>

= ((e’;’h : V) uy, e’,j’h)Q + ((uh - V) eﬁyh, e{ih)Q - <uh ~eijh, eﬁ,h -ncd>. (3.42)

Using Holder, Korn, Sobolev and trace inequalities, the three terms in the last line in (3.42)
are bounded as follows,

k k k 2
((eu,h -V) uy, eu7h>Q < eu,h‘ o IVunll 2.
2
< c2ct e, o, D@D, - (3.43)
k k k k
((“h V) e“~h’e“”’>g ‘ < lunllego ‘Ve“‘wm Cutll g,
23 k 2
= GG HD(eu,h)‘ L2y P2, - (3.44)
k k k k
Kuh G 'n"d>’ = e“*”‘ Loy I e [
2
< DE;CY D ], ) D@2, (3.45)

By the constraint (2.30) in Theorem 2.3, we know that the discrete solution uy, is uniformly
bounded by

1
1D (up) Il 2 <—R. (3.46)
L@ = 50
Then, substituting (3.46) into (3.43)-(3.45), we obtain
o (ko wn et )+ (i€t )|
< C2C}+ D EXCH Dk )|
1
V2
v H]D)(eﬁ,h)‘

) D)l 20,
2

2
L2

IA

RQC? + DE)CE | Dek )

LX)
2

IA

4
L@y (3.47)

where the last inequality in (3.47) holds due to the assumption (2.31) in Theorem 2.4.
For the BJ condition in the right hand side of (3.41), using Holder, trace, Korn and Young’s
inequalities, we have

avy/d k
<PT (fvel}”) , P,e’;’h>

J/trace (T])

ok
= | =L (P (e ) Pect )
P , ,
o kf
Vel e, [Pehal
-~ ) ” A IS R PR
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1 k
= EaC CiCi2 Hve”“ L2(Qy) HD (e“”’) L2(0)
1 -
< 5CeCiCi (e[ (¢ ) L |vehal
= 20! Lt k(f eu’h LZ(QC) 2@y
=3 o (), L ve \ (.49
) wh)l 2@y T 2pu L@ '

In the last inequality in (3.48), we use € = v in the Young’s inequality, the relationship
pv = u, and the assumption «C;C;Cy < 1 in Theorem 2.3.
By the trace inequality (2.25) and the Korn inequality (2.23), we have

B - Dk h)‘ (3.49)
%, L2y — ! 2@’
2 2
< D?|v 3.50
‘ fh‘ L2(Tog) — fh L2(Qq) (3:30)

Summing (3.41) over k from k = 1 to N, combining (3.47), (3.48), (3.49) and (3.50),
then we deduce

Ye || N+1]2 al Ye ve\? |2
T lett [y + 2o (2= () ) et
ya I 4" L2 ,;2 va \va AR L2(reg)
N+1]? a 1Z
+ (&
=2 el
+ gc’h H LZ(F[?{I) + ];2 < yd) SC,h LZ(FL'LI)

2 n &
L2(Teq)  Vd

(Y 2 1
=\ €d.h
N 2\ N
Ye (2 2 k 2 1 Ye Ik
+f(y —)/) €, , Ny +—=(1-(— He ‘
Yd d c = u,h C L2(Coy) p2 Vd ]; f.h

o
L2

L? (Cea)

N
_2*(V0+7’d)2<c( who Who ];h)JFC(“h’ €ppe uh)+ac( ﬁ,h’e];,h)

1 kook 1 kok
+ —am (emh, mh)+;af (ef,h’ef,h)

+ > (TL (em,h - ef,h) e o t——

a trace ([)
kfo k-1 k
e+ 20552) )
) Jebliag, + 2 el
<|— ) +—|e&
(Vd) A2y T yg Forliz2 ey

N
Ye (2 2\ m22 N
R L L N
yg \Vd " Ye ’kk; wh’ll 20,

1 Vc) ~2 2
(1= D’ HVe H
p? ( <Va' ) Z FhliL2 @)
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- 2— Ve +va) Z (— v H]D)(eu h)HL2 ) +2v H]D)(eu h)H

L2(Q0)
o 7ehl ooy * e [7hl;
iz @) Pl @y
o e =l *%M [l
e
pp 7k o e trace ( Pkl L)
v
3 1P () oy~ 3 95,
2 H Cu.h L2(Q0) pr, L2(Q)

2

N el oy * 2 etal,
=\ 3 +— |l

(Vd) SN2y yg 1OPIL2(0)

N

Ye km v |2
— 255 (ye +va) = HVe H

va P Z mhl L2

_re ()/C + Vd) (H ”Lz(szd)

h Hveg"h H L2(szd)>

N
Ye (2 2\ p2.2  Ye ik
+(Z( )R- L e+ )v)§ |peew ]
<7/d Ya — Ve t Ck Va Ye T Vd - u,h L2(Qy)

+<p12(1 (;;))DZ_(VL-FW))ZH ,thLz(Q) 351)

Suppose y. and y; are chosen such that

. Y.
*C(de—yf)Dfo—VZ(VCer)VSO,

vd

1 v

2(1 ( L) D} = = (e +va) == <0

p Vd

which are equivalent to
v

Yd —Ye = thclg, (3.52)
1 1 1
— = — =< = (3.53)
yL‘ )’d Dt E

Then, from (3.51)-(3.53), we derive

N
e Jex | > () En)
ya I 2wy ,; va \va fdh 2,
N 2
N+1
& 1— ‘
*een ‘L%M)JrX;( ) L2(Teq)
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+2—<yc+yd>—ZH A, %(m+m>—“

LZ(QJ) LZ(Q )
N
+ (X, +yd)v_&(y2_y2)chz ZHD(ek ) 2
Yd ‘ Yd d ¢ 1=k — u,h L2,
N
Ve kf 1 -,
= ety - —— | 1- D H
(Vd Ye TV o T o2 i Z 1
2
o) leial N
= (L) Mebaliag + 2 et + 2 00 o as
which implies H ek ‘ 2 k ‘ 2 ek ok H H ond (6 2010 as
0 VETURS RCED PRYSN R PR R

k — o0.
Next we derive a geometric convergence rate for Case 1. Plugging (3.34) into (3.35), using
trace and Korn inequalities, and combining (3.47) and (3.48), we have

2
k12 _ (Y Hsk—l 2
dhllwy — \ya ARl L2( )
c () e
p? L2(Teq)
2 2 2
+(rd =) |ewn mea L2(Tey)

2%( ) k-1 k=1 k-1
1+ (a (e s )+a (e ,ey )
0 Va m h mh AT RN
Okm ( j_1 k—1 k—1 k—l)
+ —(e —e ),e —e
( u m,h f.h m,h f.h Ny

—2(Vc+yd)( (uh,uh, )+c(uh,ef§,h,e’;,h)>

=2 +Vd)ac< e ’;h)
avvd
trace ([ )

k
<Pr ( €nt *fvel} hl> ) Pre];,h>

=2+ Vi) ————

2
:<&>H - +i71_(ﬁ> ngz
va) VFan e, ™ p2 Vd SRLN FRTIO)
2
+ (Vd —Ye ) €, h Deq L2(Tea)

2
: (l * )’d) (7”W'" h ”Lz(fld) + *f”W ”L2<9,>

0
Lz(Qd)>

akm H
=2 +va) (C (eﬁvh, up, eﬁ,h) +c (uh, el . e’;,h)Zv ”]D)(e",

2
Qe
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av/d
—2We+Ya) ——— L, 2+ Va) ——
trace ( ]_[ (Tea) trace ([])
k
)
Ye H 1|2 1 (Vc) =9 1%
=|— +—=(1- D; | Ve,
<)’d) iy T2 vd Pl 2@
2
22\ p22 Kk

+(vi —ve) D Ci HD (%,h) Ly

2y, Ye
- p (1 + % 7”V€m h ”LZ(Qd)

Okm || k-1 k-1 2
4ww iy + 22 et =,

~ 20+ 1) (—vnD(eﬁ,h)n 2(9)+2u el ))

2t Vi) ——— H

‘/trace Ml

2 (e[’

+2(etva) 5 H (eu$h> 2@, ,t 2(ye + )/d) — H LZ(QJ)

k=1 k-1
Cmh —Cfh

) <&)2 H8k—1 2 B 2Ye (1 n &) (—HVe ” Ukm
“\va dhllaw,  p Va e+

2
Lz(Qd)>
1 k 2y, 2
(= () ) 3w - (2 1) o
P Vd oM\ Vd o

L2(Qq)
2
2 o\ 22 K
+ (vi = v’) D; Ci HD (eu,h)

—1]|?
Sl L2

— (e +va) vIDE DI

L2(c)
av/d 2
—2(e ) e | ek (3.55)
trace (]]) LA Tea)
Suppose y. and y; are chosen such that
(vi —v2) DICE = (ve +va)v <0,
1 A2\ - ki {2y
— 1—<£) D?—(yﬁm)—f(i—l) <0,
P Yd PH N\ Vd
which are equivalent to
< (3.56)
Yd — Ve = DIZC/%’ .
1 1 1
— — < = 3.57)

Ye  Vd ka‘}+yd

Noting that the constraints (3.56) and (3.52) are the same, but the upper bound of constraint
(3.57) is smaller than that of constraint (3.53).
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Then, from (3.55)-(3.57), we obtain

2

2 , 2
= ( . > Hgs_hl ‘

L2(Tca) Vd ’

H8k+1 7
L2(Teq)

d,h

which implies the geometric convergence rate _ / va for ¢ A

Setting ¥, = e}, , and Y7 = €., in (3.28), we have

ki | & |12 2 k k|2
n + o vl Jehs =<b
H R IEC Il 2@y mh L 2y
oy 1L = o) G59)
,e .
pya 1T 2y = g o €
Using Holder’s and Young’s inequalities, we estimate the right hand side of (3.58) as follows,
Rl T B £ (1l Il
— & ,,e < — e e < —€|e + — He
vd ( AR )’d 2y 1M 20 = 294 L PRI R T
< H ( + ek ’ (3.59)
= v 1M 2y ™ g 1500 2y '
where € = = in the Young’s 1nequa11ty From (3.58) and (3. 592 itis easﬂy seen that
o |ve p\z A e Joi.],
“mhll L2y rillaay © T 16mh = il 2y = By [P0 ] 12,
(3.60)

which implies the convergence rate for H fn h ” and ” I} h H is at least /ﬁ From (3.31)

and the convergence of ek . and ek 4.p» We can obtain the geometric convergence rate for EC n
Through (3.29)-(3.30) and (3.32) (3 33), we can similarly obtain the geometric convergence
rate for the rest variables. O

3.22 Case2: Y. = VY4

In the case Y4 = y. = y, by Lemma 3.3, we have

2 2 4
LR N T
c,h L2(Tey) gd,h L2(Tey) 0 am em.h’ em,h
k k okm ( k k k
+ay (ef,h’ ef,h) + ( " <em’h — e_f.h) s Cmh — e'f'h>g ) . 3.61)
d
! ’ = Eﬁh‘z —4y(c(e’;h,uh,eﬁh)+c<uh, € nr € L¢h>+a5(ltjh’eﬁh))
G NL2(reg) L2 (Tea) ’ ' S
avv/d k
4y 2VE <P ( Eat —fw§ ,,}) , P,e’;qh>, (3.62)
trace (]])

Theorem 3.6 Under the assumptions of Theorem 2.3 and Theorem 2.4, if y. = yq = y,
then the domain decomposition solution ( p’]; W p’}y . uﬁ, p’; ) converges to the finite element
solution of the coupled system.

Proof Adding (3.61) and (3.62) and summing over k from 1 to N, we derive

H N+ 2

d.h

N+1
c,h

Lz(rcd) Lz(rcd)
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N

- Hgdh”LZ(rcd) + chh”[](r 2) 4)’2( ( uh’uh» ﬁh)
k=1

1
k k k k k
+c (uh’ u ho €y h) +ac ( u,h’ eu,h) + ;am (em,h’ em,h)
1 k k 1 (Ukm k k k k
+ —a (e ,e )—i-f —(e —e ),e —e
P F\€rn €f.h o\ i m.h f.h m,h f.h o

v/d k
y Ve <P, (e’;’h + v ’;,}) , Pfe’;,h>>. (3.63)
trace (]_[) H

By (3.47) and (3.48), we have
¢ (eﬁ,h’ “hveﬁ,h> +c (“hv Iljh! €, h) +ac ( €,n € 5}1)
1 1
+*am (ef;,;” ‘351,11) + ;af (el},h» el},h)
ok,
A ()t
- ( m € €1 Foh o,

av/d k
+7<Pt <efj7h +-Lv ’;,}) : P,e’ljyh>
trace (]) K

220 [ (eh) [ o [y * s [90 ]
- AL Q) pu Lz(szd) L2(Qq)
akm k v |I?
T ek _v ‘
” Cmh e L2(Q4)
oy —v|D (e ’
Pz, w2
trace ed ¢
-5 [P (e )\ i vl
2@ 2p/L URUN FRT(s )
k 2
] LI R A e o)
2 L2(QL L2(Qq)  2pu IL2(Qy)
7 |ve §
— || Ve Ve ‘
" i T )
ﬁ [l
T uh
trace L2(Tea)
i (175l 30y~ 1745511, (.64
L2(Q0) Sl ) '
Considering (3.64) into (3.63), we deduce
2 2
N+1 N+1
£ €.,
H d.b ‘Lz(rcd) c:h ‘Lzm(l)
2 2 al
1 1 k
= Had,hHLz(er) + ”SC,hHLZ(FM) Z( ( €y Un» € uh)
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1
+c (“h» ﬁh’ uh) +ac ( ];hv uh) + pam (e]r;,h’ef;,})
1 k k (Uk k k
+ —a (e , € )—I—f —( — ek ),e —e
0 F\€rn€fn 0 1 €m,h f.h m,h f.h o,
avy/d k
E————— <Pr <eﬁ,h + = ! Ve’ji hl> , Preﬁ7h>>
trace (]) H
2 2 N
1 1
= H‘gd,h“LZ(rcd) + ||8c,h||L2(er) —4y Z < ”D( €, h)
k=1

2
L2(Qq)

# | et
L2(Qa) trace i

2
) . (3.65)

L2(Q4)

2

L2(R)

€f.h

2 ks
+ 3o |70
L2(Qq)  2pu

k
+l Hvelr{n,h

N
_4yz
=1

2
—ZV*(H i

vel ‘
L2(20) H fih

m h f h‘ L2(Tey)

Moving the negative terms on the right hand side of (3.65) to the left hand side, then we get

2 v 2
N+1 N+1 k
‘ 2 [P (k)]
H d.h ’ L2(T.y) ¢.h ‘ LZ(FL,]) 4y Z (2 H wh)l2@,
ki v |12
+—me,,,] van o |V \ o)
Pl L2(Qq) 2/0M L*(Qa)
2 2
2L H ‘ 4 g8m Hw _vek ‘
+ y Pl gy T V,; Il 2@,
ﬁ“” |Peeta],
T uh
trace L2(Teq)
k 2
0 0 f 0
<% nlra, + 1% 2, + 27 o H ved, ’ o (3.66)

which implies e’;,h tends to zero in (H1 (Qc))d, and efn’h and el}’h tend to zero in H' (),
respectively. The convergence of ef;’ ;, and el}’ ;, together with the error equation (3.28) implies
the convergence of EZ’ , in H -3 (T'¢q). Combining the convergence of 857 ;, and el}’ 5 and
the error equation (3.31), we deduce the convergence of sf_, pin H -3 (I'¢q). Combining the
convergence of el} ;, and the error equation on the interface (3.33), we deduce the convergence

of T etk in H=3 (I"¢q). The convergence of the pressure then follows from error equation
(3.29) and the discrete counterpart of the inf-sup condition (2.27). Hence we have proved the
theorem. O

In order to obtain an explicit convergence rate for the case y,. = y,4 and the case y, > y4

in next subsection, we introduce the inverse inequality for the Dual-Porosity model in the
lemma below. One of the key ingredients in the following estimation is an extension technique
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which was used in [26] for the Stokes—Darcy model. An alternate extension technique is the
discrete harmonic extension used in [54] and can provide equivalent results. Here we will use
the extension technique in [26] and prove the inverse inequality for the Dual-Porosity model
where two coupled Darcy equations need to be handled properly. Particularly, we obtain a
more precise result with the help of Young’s inequality than that in [26, 54], and get rid of
the lower bound constraints of the mesh size required in [54].

Based on the inverse inequality for finite element spaces, see Lemma 4.5.3 in [61],
we reduce the quasi-uniform assumption on the entire partition to a local quasi-uniform
assumption only for the elements near the interface I'.4:

Lemma 3.7 (Local inverse inequality) Let lIJ,? c HY(Qy) be the finite element space with
shape regular and local quasi-uniform triangulation 1, j,. Then, we have

IV¥nll 2y < Crh™ Wl 2y Yo € W5, (3.67)
forall K € Ty along the interface I'cy and Ch <diam K < h.

Lemma 3.8 Under the assumption of Lemma 3.7, then we have

2 %2 2 k2 2
k <a202p 1 [ Em HV k °f HV k
HS‘”"LZ(rm =HaC e el g,y T2 1Y)
+2 ” k ‘2 (3.68)
— ||€ . .
o2 752,

Remark 3.9 This inverse inequality is critical to the analysis of convergence rate for the cases
¥e = Ya and Y. > y, below. By several techniques different from those of [54], we obtain
a more precise estimate and get rid of the lower bound constraints of mesh size in Lemma
2.3 of [54]. Moreover, we use the local inverse inequality on the elements along the interface
(see Lemma 3.7) instead of the inverse inequality on the boundary in Lemma 2.2 of [54], and
avoid using any inverse inequality for the Stokes equation, in order to simplify the analysis
of the case y. > yy.

Proof First, we introduce the zero extension operator &; , from Ay to \112 as follows,

ek (N)if N € Naalry,
0 it N € Naw \ Na.nlrey
where Ny ; denotes the set of nodes for global basis functions on the finite element triangu-

lation on 24. We directly recall the following conclusion (see Lemma 5.4 in [26] for more
details):

Eanely, (N) = { (3.69)

21 Y (G ) it Y (e )~ b e

NeNg, NeNalry

Hg fall
d,h€
MR PRI

2T

(3.70)
Setting Y, = Yy = Eqnel , in (3.28)

k k
€r.h €d,h
(b o Eanelyy) +ar (¢ g Eanely) + (L2 ey ) = (“E2eb, ). GTD
’ ’ ' vdp vd ’
and using the Cauchy-Schwarz inequality and Young’s inequality, we get

2

b
P
H A2,

k
€f.n
= Ydam (e’],(n'h, (c/'d,hgclj"h> + ydaf (el}’h, 5d!h85’h) + <];), 85,h>
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km k k
<2 Ive ‘ ‘VE ¢ ‘
= H bl 2 I 20,
— VE nek ‘
+yd H ‘LZ(Q ) ” dhEdh| 12q,)
W |2 It
— 1)
p Ml 2y 174 L2
r[Veunehal g+ 2 [Vl
=37 hedh| 2, F L2(20)
kf k|2 1 |2
LI Hve P +—HVe ‘
2" <2 Ehdn 2oy T e I 2y
+— | € Hs ’ + — He . 3.72
2p ( % ey e 191 2,y 372)

Let F4,5 be the subset of the partition 74, containing only elements along the interface
I'cq. Since Sd,hes |k vanishes for the element K not close to the interface I'¢¢, then we have

(3.73)

k 2
Eqne

H d,hed,h LK)’
KeFun

e |2
Hgd,hed,h‘ L@y

(3.74)

> [veuchal,
KeFan

Ve ‘
H d.h& ‘”’ 2@y L2(K)

From (3.73), (3.74) and Lemma 3.7, we deduce
(3.75)

-1 k
< ot Eaneh,
L2(2q) vk

VE s ek ‘ .
H dhCd,h L2(Qq)

Substituting (3.75) into (3.72), and considering (3.70), then we obtain

2 1 km 2 1 k 2 1 k
— €e1Crh™ Hs + — H e ’
L — 27 ( i dhllpar,y e 7 Tmh

k
Jois]

2
L%(Q4)

el
L2(Q4)

— Vef’h

2
) . (3.76)

kf< 2otk |?
— [ eC7h Hs ‘ +
Ya, ! Chllary e
1

+55 (e

(e

Merging the same terms, we have

va Cj
G_Mh@qwm) N“”

k1 2 1 krl 2
15kl w3 [l
u e L2Qy) 27 poe Lz

2

k
+ 2 el
L@ e 2w,

L? (Cea)

2

11
7H k ‘ (3.77)

and setting €] = - ﬁc%, € = %%CLIZ and €3 = 4, we have

2

21,2
2Ci Ky H k ‘
ef’h

s v
2 Ml L2 @q)

L(Q)

>l <
— e =
2 d'h Lz(rz'd) - yd h /JL
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+ 2 | ‘2 (3.78)
— |le . .
p2 17/ L2y
Hence we have
2 K2 2 k2 2
k 2 - k f k
€ <4y C h HVe ‘ —= H Ve ‘
H d.h ‘LZ(F 2 ! (Mz m.h Lz(Qd)+ u? Ll PRI
42 & ‘2 (3.79)
— |le .
PR A VET
which proves the lemma. O
Theorem 3.10 Under the assumptions of Theorem 2.3 and Theorem 2.4, if y. = yq = y
and y > max %, ka , then the domain decomposition algorithm has convergence rate

proportional to 1 — O (h).
Proof Substituting (3.47), (3.48) and (3.61) into (3.62), we obtain

H k+l‘2
RN L2,
4y
k—1 k=1 k-1 k—1
H Ed.h ‘Lzm_?("m (et ehn) +ar (€203

km ( k_ k—1 k—
+ < (em,h ~C€rn ) €~ €
”w
—4y (C (eﬁ,h’ “h’eﬁ,h> tc (“h’ e ) el h) +ac ( e eﬁ,h)

av/d k
+)<Pf ( ek, + ;wf h),Pteﬁyh>

»‘
\_/
&
S——"

trace ([
4y
k-1
= H Ed.h ‘LQ(FM) o (7HV€ ||L2(S21)
f okm 1 —1]|?
||V€ ”LZ(Qd) + Hem,h - ef,h ‘ LZ(Q([)
Yk |
— 4y <_v HD (e”*h)‘ L2(2) +2v HD (e’“h)‘ LZ(QC))
av/d Pk 2
=N H Te“*h‘ﬁ(r 2
trace ¢
4 —*HD(ek ), C el
4 ( 2 wh ) 2@ 2pu Lzmd)
2 4y ky, 2y k
k—1 )4 k— <Y Rf
< el |y~ 5 1Vt gy = = 19 g,
2 4)/ ok, 2
k
—2yv HD (e“*h)‘ L2(Q0) H L2(Q0)
[02%
CavVd H ot h‘ o (3.80)
,/trace e

By the inverse inequality (3.68), we have
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h H k-1

ay2c? I%dh oy,
x2 2 k2 2 h 2
<2 vt L |veks! iyl . (81
=l My~ w2 17T len - 2p2p20; T 2w G-8D
For the last term in above inequality, using the trace inequality (2.25), we deduce

h 2 hD}? 2 2
e 1l = s |96 [y = 219, 092
2p%y%Cy L2(Tea) — 2p%y2Cy L2<szd> L*(Qq)

. . . o 2255,
where the last inequality holds if the mesh size is small enough such that 7 < ﬁzl b2
Combining (3.81) and (3.82), we have '

2 2
i ', = 2 v, 22 [
202 2 - 42 m,h 2 2 f.h 2
4y=Cy L*(TCea) 1 L=(Qq) 125 L=(Qa)
47/ m 2 2y k ~f
= 77”V€ ”Lz(Qd) + — 0 ||V€ ”LZ(Q ) (383)
where the last inequality uses the assumption y > max [ Z’Z, s } The restriction y >

kr) . k . . .
max [ ]fh) , =L } is actually y > 7’, since the matrix permeability &, is much smaller than the

micro- fracture permeability k ¢ in the Dual-Porosity model.
Finally, substituting (3.83) into (3.80) and dropping the last three terms in the right hand
side of (3.80), then we obtain

2
k+1 k-1
Hgd’h ‘LZ(FM) = H Ed.n ‘L2(rf ) y—llVem h ”LZ(QJ) ||Ve ”LZ(Qd)
= (1 4 2C2) ” ‘LQ(F @) (3.84)

which implies that the rate of convergence depends on the mesh size & and is proportional
to 1 — O(h) for small i. The same convergence rate can be obtained for the rest variables
through arguments at the end of proof in Theorem 3.4. O

3.23 Case3: ¥y, > V4

In this subsection we consider the case y,. > y,4.In[26], this case was analyzed for the steady-
state Stokes—Darcy model with BJSJ interface condition, which is much easier than the steady-
state Dual-porosity-Navier—Stokes model with BJ interface condition in this paper, and they
derived a convergence rate of 1-O (k) provided that y, and y; are close enough. Recently, in
[54], this case was also analyzed for the steady-state Stokes—Darcy model with BJ interface
condition and an almost optimal geometric convergence rate was derived. For the analysis
in this recent work, the techniques of the discrete harmonic extension and discrete Stokes
extension were used to obtain two important inverse inequalities one for Darcy model and the
other for the Stokes equation, and the mesh size 4 was required to be bigger than the viscosity
and hydraulic conductivity. In our analysis below, simpler and more precise constrains are
presented to obtain the optimal geometric convergence rate. Hence the theoretical analysis
results in this section are more practically useful for providing instructions to select y. and
¥4, see the remark below and the numerical experiments in Sect. 4. Specifically, the inverse
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inequality (3.68) for the Dual-Porosity model is enough in the analysis by properly selecting
the scaling parameter, and no particular lower bound constraints are required for the mesh
size h.

Theorem 3.11 Under the assumptions of Theorem 2.3 and Theorem 2.4, if y. and yq satisfy

3 C?k
0< (%-1) <2h’:"yd—1) <1, (3.85)

C?k - 1
0< (% - 1) <4h’;yd +D,2i% - ) <1, (3.86)

then the domain decomposition solution ( plljl I pkf e “2» p,’i ) converges to the finite element
solution of the coupled system (pm p, P f,h, Wp, pn). Specifically, if v, and y4 further satisfy

C?k 2 2
0<<&_1> R e e (3.87)
Yd v ve+ v ve vy

C?k v 2 ;
0<<ﬁ—1> 4Ly 4 D 1——2 T )< S50 Gse)
Yd h v "ky ve+va vé+va

then the algorithm has geometric convergence rate /%.

Remark 3.12 In Remark 3.5, we noted that, for low permeability the conditions (3.39) and
(3.40) are hard to be satisfied unless y. is close to y;. However, Theorem 3.11 indicates
that for low permeability the conditions (3.85) and (3.86) are easier to be satisfied with
properly selected y. > y4. It is also noted that the constraints of Robin parameters in
Theorem 3.11 depend on both the model parameters (permeability and viscosity) and the
mesh size. From the analysis of Theorem 3.11 and the numerical experiments, we have the
following general observations about how to properly choose Robin parameters in the case
of small permeability and viscosity. If the permeability is much smaller than v, then y. > yg4
should be considered and y,; should be accordingly increased to counteract the effect of small
permeability. If the value of v is very small, the value of y,; should be accordingly reduced
to counteract the effect of small v, while the choice of y. > y; or y. < y4 depends on the
the permeability value. There is another possible way to decide the Robin parameters, that is
the optimized Schwarz method discussed in [44, 48, 52]. It works well for the Stokes—Darcy
model and Dual-Porosity-Stokes models, but more refined future works are needed for the
Navier—Stokes—Darcy and Dual-Porosity-Navier—Stokes models.

Proof Multiplying (3.35) by § and adding it to (3.34), we obtain

‘SH k12 k+1‘2
L2, Sl L2
2
. 2 2
=(Z) |eba L 8 )ekal
Ya VX ) L2(Teg)

2

k
€ n Ded

+8 (v —v7)

2 1 Vc)z k
()
LT | p? ( ()’d fih

—25(V¢+Vd)( (uh’uh’ uh) (llh, €, n € uh)+ac (e;h,eﬁ‘h>)

L% (Tea)
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avs/d k
~28 (Ve + Ya) ——— <Pf (e’;,h +-Lvek ;3) 7 Pre’;,h>
trace () ®

2y,
_T); Ve + Ya) (am (ef,,’h» e,ljl,h) +ar (el},h, e?},)

oky k )
ek — _ . (3.89)
< 12 ( h e, h> “fh Qd)

Summing (3.89) over k from k = 1 to N, using trace and Korn inequalities, and combining
(3.47) and (3.48), then we deduce

1 2 | 2 % 2 N
T P o - (2 Sl
e et T2 va ;; R TEIOW M2
N 2
2 1 Ve v 112
+5( 2 2) ek .n. + — Ye -1 He
Ye yd 2:: uh cd L2(Tug) p2 v ]; o Lz(FLd)
2
Ve H 1 2 1 ‘2
=\ [} + 4 |e.
(Vd) L PRI M 2Ty

N
~2(ve+va) Y (c AR A (uh, e s e’;,h> +ac (e';,h, e’;,;,))
k=1

N

av/d

=28 (Ve +Va) —— Z< ( ent fVe]}hl>,P,el;,h>
trace ([]) i=1

k k ko ok
+ Va) Z <am (em,h’ em,h) tay (ef,h’ e_fﬁh)
k=1

ok k k k k
+ (Tm (em,h - ef,h) sCmh ~ Cf.h o,
(Z) Jeial;
Yd S PEIU)
N
B ety Y. (—v o (et
k=1

avy/d
trace ([])

N
v
vy "B Y (—5 o (k)]

IA

1 ‘
&
h
SN L2(Peg)

2 k
L2(Q0) +2v HD (e“*”)

2
LQ(QL-))

=258 (ve + va)

N
Z‘ € uh‘ L2<szd>)

LZ(Q) 2ppL H

kg " L e |?
+ va) Z (* HV € H + o Hvef.h H + o Iemn T e_f,h‘ @
) Jeial, L,
< | = 3 +6|le.
()/d) o VAT el L2
N
v av«f
~25 (v 3o (),
(VL + Vd) X_: 2 u,h L2(Q ) trace LZ(FM)
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akm

ZVC A
— (Ve +va) Z (* H @ W Cmh — €f.n L2(2)
x 2
+3 (Ve + va) Z H Lz(Qi) Hvef’h L2(Qq)
2y. > (
% o s ky H 3.90
( va (e +7a) Mz .

to the right hand side

N 2
Setting § = 1 in above inequality, moving the term ) H 85 h‘
k=2 LT ea)

and using the inverse inequality (3.68) and trace inequality, then we derive

2 2
N+1 N+l —
H‘Sdﬁ ‘LZ(FM) S P21 ) +(yc+yd) ” "z
N
av[
+2 (ve +va) Z ) HD< €y h)‘ H MLz

2
k=1 L(Q) 4/ trace

N 2

% ok | & ok
L ned | 0 d)+ ” (Vc+Vd)Z ol h ef,h‘Lz(Qd)
2
= (Vd) lebaliz + lelalizg, + e +W) o H ‘U(szd)
_% L I Y 0 k.
(e +va) ; P Hvem’h‘ L2(Q4) ( Yd ) (e +va) Z H LZ(Qd)
1 Ye 2 l k 2 Ye k 2
v <(Vd> _I)ZHef"’ B <E) ! ZHS‘“‘ L)
2
= () bl + il ot 0 2 o \m
2y, kin Ye 2 1
AN Z (X)) - 2C2h™
|:)’d (et 7a) J <(Vd> ) ! }ZH MlL2@a
2y, k¢ <Vc)2 2 1
(= -1) ¢ L ((X) - 2CTh™
[( vd )(y T o ( vd ! ZH ‘an)
1 Ye ~
+ﬁ <(Vd> ) b Z H M2 39D
Assuming that
2y, k X 2 k2
[ y’;‘ (Ve + va) ﬁ - ((;) 1) 4y2C2h~ ‘M”z’] > 0, (3.92)
2 k 2 kK p?
[(” - 1) (e +ya) =L - ((y) - 1) 4yiCin 'L - —2 ((V) = 1)} >0,
vd oL Vd w Vd
(3.93)
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which is equivalent to

Then, from (3.91), (3.92) and (3.93), we have

| N*‘H +(Vc+7/d)

H “f.h HL2(Qd)

7€
wWhIL2(r )

2
k
L2<r) Vd (V‘J”/d)z H ef’hHm(szd)

L2 (Teq) HLZ(F(d)

+zm+mz(;uwemum s |

k=1 ‘/tl‘ace
N
+(r2-v3) X |

k=1

ZL Km Ye 2_ 2 1
+[ y Vc‘f‘J/d)pM ((Vd) 1>4 Cih~ ZH thLz(Qd)
K2
2yc (Vc>2 20,1k 1 (VC> H2
( +ya) = — (=) —1)ayicin ' S - (=) -1)D
[ Ve J/d) (Vd Yatr w2 02\ t
N

2
> |vehal
K

+

L2(Qq)

—_

2
) fesal
< () |e +
(Vd) AR 121

which implies the convergence of eu e fn , and ek e
Next we derive a geometric convergence rate for Case 3. Plugging (3.34) into (3.35), using
the inverse inequality (3.68) and trace inequality, and combining (3.47) and (3.48), we have

2 1 Ye
A () )1
2 o2 (( > )
Yd : 12 Ye Yd k—1
() s+ () (2)) b
(Vc) H d:h L*(Tea) ((Vd) <VC> ) d.h
27&-( Vc) k=1 k-1 k=1 k-1
— 1+ ( (e )+a (e ,e )
0 v m.h €m,h S\Cfh €fn
+(ka(k1 kl) k—1 kl) )
Cm.h fh mh fh
K Qq
k k k k
—Z(Vc“r)/d)( (uh’uh’ €y h)+c(uh’eu,h’eu,h)) Z(VL J’_Vd)ac ( uh’ uh)

avy/d k
=2 tVa) ——— <Pf <e’;,h + L Vel ,}) , Pfeﬁ’h>
trace ([]) s

eg,h H iz(rcd) + (e + Vd) H €f.h HLZ(Qd) (3.94)

H k+1‘ 2

€d.n

2 2
— (3 ng
L2(Tea) + (e =) i PET

2

L2(Tea)
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()] sx\m,ﬁ((;;)z—( ) e,

2y Ye f
- 7 <1 + E —||Ve ”LZ(QI) + ”ve ”LZ(QJ)

L2(Tea)

oky

2
k=1 _ k-1
+ m Cmn T €fn ‘ LZ(Qd)>
2 © \II?
20 tya) (v HD ( >‘ oy T HD <e"’h> ‘ L@ »>)
avy/d 2
—2(Ve + Ya) ——— H feﬁ,h’ L2(Tuy)
trace () «
-2 3P, 2 153,
(Ve +va) ( L2(QC) 2pp, L2(Q)
G 148, 5 () (2 - )
=) FPerllieen ™ L@
avy/d 2
=2V +Va) —— HP ekh‘Lzr
trace (l_[) (Tea)
2 2 2 2
+ <ﬁ> —(@) 4yicin”! ‘*H | fH 7
Vd Ve L2 L@

H ‘ Lz(Qd)j|

27/0 Ve k 2
— P <1+Z 7||Ve ||L2(Q ) _V(Vc+)/d) HD(eu,h)‘

L2(Q0)
2y Ye 2
e (14 X —Ve + e+ —H 7| 3.95
’ ( ) LVl + et ) i (3.95)
Then we have
2
H ket |2 (Y _,
dhlleag o2 \\ya
He"-‘1 2 + (2 =v3) ek, nea + v (Ve + va) HD(ek ) ’
Fhllaryy Ve Td) Fuh L2(Tea) ¢ wh)ll 2@,
2V, . k 2
+i(l+£) <U - efn;: 1}711 )+2(VC+yd) ‘ T uh
P Vd I ’ L%(Qq) /trace (1) L2(Tcq)

2

Yd H k—1
< €
<Vc) d;h
2 k 2 2 Cc2 ;2
e (H&) ki (L) _ (ﬁ) o T ”Ve’,ifhl
P Vi) 1 Yd Ye h u ’

L2(Tea)

2

L2(Q)
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e (6 -6)

0
,C2 k5 2D?
<4 7—2 ) e + va) } Vel 1220 (3.96)
Assuming that
2y, ( K 2 ,C2 k2
tm 4y =L2m | 5 ) 3.97
2 C2 k2 2
[2% ( ff ( ) (4)/5 ! J; 2D; — (e + Vd) — =0,
P 7 h 02 pu
(3.98)

which is equivalent to

o< (% 1) (21, o v o ¥
PTG I I R &
Yd veE+v, ve+vy

C% 1 2 2
0<<ﬁ—1> 4—1—fyd+D,———2 Zy‘ 5] < 2’/‘ .
Yd h ky va ve+v; e+ vy

Then, considering (3.97) and (3.98) into (3.96), we obtain

2
()
L2(Teq) Ye

which implies the geometric convergence rate % for ss ;- The geometric convergence rate
vV v .

2
€4.h

kl’

Lz(ral)

can be similarly obtained for the rest variables through same arguments at the end of proof
in Theorem 3.4. O

Next, we deduce the possible range of Robin parameters which satisfy the restrictions
(3.85)-(3.86) to ensure the convergence in the above theorem. From the first restriction
(3.85), we can see that

2
1 h v 2Lk,
Yd € Eﬁk—ﬁroo and ye € Ve, —,—Va |- (3.99)
Ci km 27'16*'")/51—1

If y, is close to %CL} ﬁ, then y, will have a very wide range extended to (4, +00). In this
situation, the range of the second restriction (3.86) is more decisive. It is easy to see that

CIk
4L L ~vd + D? — 2 has an extreme point on the positive semi-axis

’kfl/d

va=vh— 2 (3.100)

2 ~
which also lies in the range of y; by (3.99)as h < I]z—’z” C% th, and the corresponding minimum
I

value is

N

1 C;D,
B Q] -2 (3.101)
Yd
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which is positive for & < 4C?D?. Substituting the minimum value (3.101) into (3.86), we
deduce

Ve 1 1

s s— (3.102)
d f N 1 Lo
4 4G tva+ DIy -2 AT 2

Meanwhile, substituting the extreme point (3.100) into the term 2L ’ K 2ys — 1in (3.85), we
have

1 n
Ye 1< < f . (3.103)

vd 2%% va—1 'f"CIDr—«/Tl

Then, for y; > 0, the range of y, is restricted by

~ ki N
4C; D, — Vh ; CiDr
AC; Dy —2vh kn c,Dt —Vh

Yd < Ye <mi Va. (3.104)

Since k;; < ky in the Dual-Porosity model, the upper bound coefficient in (3.104) is actually

~ ki ~ -
| 4ciD—Vn x; C1Dr 4C;D, — vVh
min = - (3.105)
4C; D, — 2[ Lot c,D, Vh 4C;D; — 2h

2 .
forh < (4 — %}) C%th. Finally, the range of Robin parameters decided by (3.85)-(3.86)

is
1 h v 4C;D, — Vh
i € +oo | and y. € | yy, ————yu 3.106
17 [2c2km ) Ve (V 3¢, B, — 27" (3.106)

k2 ~
where h < —’;C%th.
ke

4 Numerical Examples

In this section, we will present three numerical experiments to verify the theoretical
conclusions and demonstrate the features of the proposed model and method.

4.1 Convergence Tests

First we consider the model problem (2.1)-(2.8) on Q@ = [0, 1] x [—0.25,0.75] where
the Dual-Porosity domain is ; = [0, 1] x [0, 0.75] and the conduit domain is Q. =
[0, 1] x [—0.25, 0]. The interface between these two domains is I'.y = (0, 1) x {0}. The
following exact solutions are used:

P = (y2 - y3) cos(x), py= (ey +e Y — 2) sin(x), (x,y) € Qq, 4.1)

ky
"

%f (#sinz(ny) — y2) sin(x)

Lein2 -2
(rsin@ry) =2y)cos0) } 0 ean 4.2)
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Then the source terms and Dirichlet boundary conditions of the model are chosen such
that the above functions are the exact solutions of the model. We use a uniform grid with
grid size h = 1/64. The Taylor-Hood elements are used for the Navier—Stokes system and
the quadratic finite elements are used for the Dual-Porosity system. The initial values of
the iteration are randomly set between O and 1. The stopping criteria for the iteration is
||u]h( — u],fl lr2,) < 102 and the maximum iteration number is set to 20.

In this example, we present three tests with different model parameters to test the effect of
Robin parameters on the convergence of domain decomposition method. In addition to the
three cases y. = Y4, Ve < Y4, and y. > y4 discussed in this paper, we also compare them
with the optimized parameters which are just directly borrowed from the optimized Schwarz
method for the steady-state Dual-Porosity-Stokes model with BJS condition (see more details
in [52]). As mentioned in Remark 3.12, these parameters are not necessarily optimal for the
Dual-porosity-Navier—Stokes model, and more refined future works are needed for this model,
since this paper does not focus on the optimized Schwarz method.

We first investigate the performance of the proposed method for

testA ky, =103k, =100, u=1Lv=1,p=10=050a=1

In this case, the values of permeability k¢ and viscosity v are not small. According to
Theorem 3.4 the choice of y,. < y; should be suitable and their constraints (3.39) and (3.40)
are independent of mesh size. In this test, we consider two step sizes h = 1/32, 1/64. y,
is set to 15 and y; is chosen to be one value in the set {5, 15, 30, 45} for the comparison
purpose. In this comparison, we also add the optimized Robin parameters from [52]: y; =
201.0619, y, = 9.3302 for h = 1/32 and y; = 402.1239, y, = 9.3302 for h = 1/64, which
are computed through an optimal formula in [52] (see (3.48) in Theorem 3.5 of [52]). At
each domain decomposition iteration step, the errors are computed between the finite element
solution of the domain decomposition method and the coupled finite element solution. The
L?-norm convergence for the parallel scheme (Algorithm 3.1) with 4 = 1/32 is shown in
Fig.2. The figure for i = 1/64 is very similar, hence omitted here due to the page limitation.
To compare the parallel scheme and the serial scheme (Algorithm 3.2), we correspondingly
present the L?-norm convergence of the serial scheme with 4 = 1/32 in Fig. 3. In this case,
the serial scheme shows a little better convergence than the parallel scheme although they
have similar convergence rate.

From these numerical results, we can see that the domain decomposition iterations are
convergent to the conforming finite element solution as . < y4. The optimized Robin
parameters borrowed from [52] also work well for the Dual-Porosity-Navier—Stokes model
in this case. In Fig.4, we present the contour of the logarithm of error ratio ||e%0||0/||e}l llo
computed by the parallel scheme with (y,, y4) € [0, 1000] x [0, 1000]. From the contour
in Fig.4, we see that for the relatively larger permeability and viscosity used in this case,
¥e < vq does show better convergence, which is in accordance with the analysis in Theorem
3.4.

In Table 1, we also list the numerical results of y; = 45, y. = 15 at selected iteration
steps to clearly compare the error and rate with different mesh sizes 1 = 1/32, 1/64. All

the listed convergence rates are smaller than the corresponding theoretical geometric rate
4

}Tg ~ (.11. Hence we observe that the geometric convergence rate is independent of

mesh size as long as the convergence is guaranteed.
In order to test the robustness of the proposed method for small permeability, we consider

testB ky =108k, =105, 1 =102, v=10"2,p=1,0 =05, ¢ = L.
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Fig.2 Test A: L2-norm errors of parallel DDM iterations with 7 = 1/32
Table 1 Test A: convergence error and rate of parallel DDM with y, = 15 and y; = 45
k ||efnyh\|1 Rate Hel}’hlll Rate \|e’;,h|\1 Rate ||e§h\|1 Rate
Parallel DDM with h = 1/64
8 1.5977e-5 - 4.9443e—4 - 2.3190e—-5 - 8.5296e—3 -
12 1.0474e—6  0.0656  3.2414e—5  0.0656 1.5188¢e—6  0.0655 5.5927e—4  0.0656
16  6.8611e—8  0.0655  2.1233e—6  0.0655  9.9482e—8  0.0655  3.6637e—5  0.0655
20 4.4936e—9  0.0655 1.3907e—7  0.0655  6.5211e—9  0.0656  2.3998¢e—6  0.0655
Parallel DDM with h = 1/32
8 1.589%e-5 - 4.9203e—4 - 2.3011e-5 - 8.5041e—-3 -
12 1.0416e—6  0.0655 3.2235e—5  0.0655 1.5061e—6  0.0654  5.5734e—4  0.0655
16  6.8189%—8  0.0655 2.1103e—6  0.0655 9.8514e—8  0.0654  3.6486e—5  0.0655
20 4.4623e—9  0.0654 1.3810e—7  0.0654  6.4448¢e—9  0.0654  2.3876e—6  0.0654
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Fig.3 Test A: L2-norm errors of serial DDM iterations with i = 1/32

In this case, the value of permeability is much smaller than the previous case. According to
Theorem 3.11, we consider y. > y,4. To compare the parallel and serial schemes, the L2-
norm convergence with 7 = 1/32 are shown for them in Fig. 5. The parameter pair (y4, v.)
is set to (10, 15), (50, 75), (100, 150), and (20, 450), respectively. Among these pair values,
(20, 450) is very close to one of the local optimal parameters of the parallel scheme which
can be observed in the contour of log ([le7°lo) with h = 1/32 in Figs.6.

From these numerical results, we can see the potential of the case y. > Y4 for handling low
permeability. By increasing the value of (4, y.) from (10, 15) to (100, 150), the convergence
of the parallel DDM is improved with the relatively bigger parameter (100, 150). This is
consistent with the discussion in Remark 3.12 that a relatively large y,; is more suitable in
the case of small permeability. From the comparison between the parallel and serial schemes,
it can be seen that the serial scheme does not necessarily have better convergence than the
parallel scheme, and their local optimal parameters are quite different.

In Table 2, we list the numerical results of y; = 100, y. = 150 at selected iteration
steps to compare the convergence error and rate of the parallel scheme under different mesh
sizes h = 1/32, 1/64. All the listed convergence rates are smaller than or close to the corre-

4
sponding theoretical geometric rate < %) ~ (.44. Hence we observe that the geometric
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Fig.4 Test A: contour of log <||e}21O ”0/”6}1 ||0) of parallel DDM with (y,, y4) € [0, 1000] x [0, 1000]

Table 2 Test B: convergence error and rate of parallel DDM with y. = 150 and y; = 100

k ||e£‘n‘h\|1 rate \|e’},h||1 rate \|e’;,h|\1 rate ||e’;yh\|1 rate
Parallel DDM with h = 1/64

8  27133¢e—4 - 8.640le—3 - 2909le—5 - 7.8258¢—3 -

12 1.2180e—4 04489 3.8757e—3 04486 1.3122¢—5 04511 3.4869%e—3  0.4456
16  53510e—5 04393  1.7021e—3 04392  57994e—6 04420  1.5237¢—3  0.4370
20  2307le—5 04312  7.3378¢—4 04311 2.5209e—6  0.4347  6.5402e—4  0.4292
Parallel DDM with h = 1/32

8  33616e—5 — 1.0866e—3  — 1.4904e—5 - 1.2930e—3 -

12 4.7847e—6  0.1423  1.5728e—4  0.1447  2.154%e—6  0.1446  1.8400e—4  0.1423
16  4.873%—7  0.1019  1.757%—5 0.1118  3.0823e—7  0.1430  1.8745¢—5  0.1019
20 2.6241e—8  0.0538  2.0536e—6  0.1168  9.5615e—8  0.3102  1.0500e—6  0.0560
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Fig.5 Test B: L2-norm errors of DDM iterations with & = 1 /32
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Fig.7 Test C: L2-norm errors of parallel and serial DDM iterations with 7 = 1/32

convergence rate is independent of mesh size as long as the convergence is guaranteed. How-
ever, according to Remark 3.12, the constraints (3.85)-(3.88) in Theorem 3.11 depend on
both the model parameters and the mesh size. Thus the range of suitable Robin parameters
and the local optimal parameter values will change with different mesh sizes.

In the third case, we test the small viscosity v = 10-°.

testC ky, = 1075,k =107, u=103v=10"%p =10}, 0 = L,a = 1.

The pairs of (¥4, y) used in this case are set to (1, 0.3), (0.1, 0.03), (0.001, 0.003). The
mesh sizeis & = 1/32. The L?-norm convergence for the parallel and serial schemes are given
in Fig.7. One can see that the convergence of the parallel DDM is gradually improved by
reducing the value of Robin parameters. This is in accordance with the discussion in Remark
3.12 that a relatively small y; is more suitable for small v. Meanwhile, the convergence of
the serial DDM is not improved for the same group of parameters. This also indicates that
the serial scheme does not necessarily have better convergence than the parallel scheme.

4.2 Cross-Flow Membrane Filtration Problem

In this example, we test the cross-flow membrane filtration problem [44, 52]. The contiguous
domains are set to 2., = [0,0.015] x [0.0025, 0.0075] and 2; = [0.0035,0.0105] x
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Fig.8 Contour of log (||e},0\|0/||e,§||0) with (ve, v4) € [0, 1000] x [0, 1000]

[0, 0.0025], and the interface is I'.; = [0.0035, 0.0105] x 0.0025. The boundary conditions
are set as follows:

u = (16000y* — 160y + 0.3,0)” on I'" = {0} x (0.0025, 0.0075), (4.3)
T(u, p)neg = 0 on T2 = {0.015} x (0.00625,0.0075),  (4.4)
u=00ndQ \ (M" UL UT), (4.5)
pm = ps =0on '} = (0.0035,0.0105) x {0}, (4.6)
k

—Imvpm (—Neg) = 00n 3Q \ (M5 UTey), @7

kg b
—;vpf (=neg) =0 0n 32\ (T5UT,). (4.8)

We use the following parameters in the simulation, k,, = 107%, k F= 1077, w= 1072,
p=1v=10"206=0.5a=0.1.In Fig. 8, we present the contour of log (||e,1lo||0/||e}1||o)
with (y¢, v4) € [0, 1000] x [0, 1000]. From the numerical results, it can be seen that y, < y4
performs better than y. = y; and y. > y4. In Fig.9, we draw the velocities in conduit
obtained by the domain decomposition method with two sets of Robin parameters that are
opposite to each other, and compare with the velocity obtained by the coupled finite element
(CFE) solution. Among the selected parameters, the velocity of the domain decomposition
method with y, = 100 < y; = 300 is much closer to the velocity of the coupled finite
element solution than that of the domain decomposition method with y, = 300 > y; = 100.
The numerical results in Fig.9 are compatible with the observations in Fig. 8.

4.3 Multistage Fractured Horizontal Wellbore

In this example, we simulate the flow around a five-stage fractured horizontal wellbore with
cased hole completion, see [49] for the details of setup of geometries and interfac/boundary
conditions. The simulation domain is the rectangle [0, 10] x [0, 6] and the horizontal wellbore
is simplified as a smaller rectangle [2.75, 7.25] x [2.8, 3.2] embedded in this domain. The
inhomogeneous Dirichlet boundary conditions are imposed on the outer boundaries of €2,
such that pr; = 100 and py,, = 10. The smallest spatial step size is about & ~ 0.079. The
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Fig.9 Comparison of velocities between CFE and DDM

(a) velocity streamline in matrix (b) velocity streamline in micro-fractures and conduits

Fig. 10 Velocities of DDM with y,. = 100 and y; = 200

model parameters including rock and fluid properties used in the simulation are: permeability
kn = 1073, kr = 1072, viscosity u = 0.1, v = 0.1, fluid density p = 1, and other
parameters 0 = 0.1, o = 1.

The velocities solved by the domain decomposition method with y. = 100 and y; =
200 are draw in Fig.10. The fluid in the matrix doesn’t communicate with conduits but
feeds the micro-fractures. The five-stage hydraulic fractures form attractions and the fluid in
the micro-fractures can flow into the hydraulic fractures. The vertical wellbore is assumed
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to be connected to the right end of horizontal wellbore, so the fluid in conduits does not
communicate with the porous media but directly flows out of the horizontal well into the
assumed vertical wellbore. With cased hole completion, the horizontal wellbore is only fed
by the hydraulic fractures but does not directly communicate with the dual-porosity media
flows. These results are physically valid and consistent with the investigation in [49].

5 Conclusions

In this article, we developed a parallel Robin—Robin domain decomposition method to
numerically solve the Dual-Porosity-Navier—Stokes model with the Beavers—Joseph inter-
face condition. This model describes the confined flow in porous media by the Dual-Porosity
equations and the free flow in conduits by Navier-Stokes equation. And then the two
flows are coupled through four physically valid interface conditions. The resulting cou-
pled Dual-Porosity-Navier—Stokes model has higher fidelity than either the Dual-Porosity or
Navier—Stokes systems on their own. However, coupling the two constituent models leads
to a very complex system. Then the Robin—Robin domain decomposition method is con-
structed based on the interface conditions of Dual-Porosity-Navier—Stokes model. In both
the theoretical analysis and the numerical experiments, we found that the Robin parameters
depend on and are sensitive to the physical data. Both the analysis and numerical experiments
demonstrate that with proper Robin parameters the domain decomposition solutions converge
to the solution of the coupled system. The effect of Robin boundary on the convergence is
investigated by considering different values of y, and y; in the examples.
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