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Abstract
Quantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information
processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been
constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical
approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their
quickly diminishing performance as the operational complexities increase. Here, we present a general architecture,
dubbed the quantum receiver enhanced by adaptive learning, to adapt quantum receiver structures to diverse
operational conditions. The adaptively learned quantum receiver is experimentally implemented in a hardware
platform with record-high efficiency. Combining the architecture and the experimental advances, the error rate is
reduced up to 40% over the standard quantum limit in two coherent-state encoding schemes.

Introduction
Quantum information science (QIS) endows commu-

nication1–3, sensing4,5, and computing6,7 capabilities
unrivaled by their classical counterparts. QIS has also
sharpened our understanding of the fundamental limits of
information acquisition, transfer, and processing due to
the indistinguishability of nonorthogonal quantum states,
which in turn place bounds on the rate of optical com-
munications8,9 and the precision of sensing10. Unfortu-
nately, in many scenarios, an appreciable gap separates
the performance achievable by routine measurement
apparatus and what is allowed by quantum mechan-
ics11,12. A central theme of QIS is thus the quest for
protocols that approach the ultimate performance limits.
Quantum receivers are unconventional measurement

apparatuses designed to bridge the gap and enable a
performance boost in a wide range of information pro-
cessing tasks modeled as quantum-state discrimination13

or parameter estimation14. Pioneering quantum-receiver

works unveiled that adaptive structures based on quan-
tum circuits configured by feed-forward controls15,16 can
vastly reduce the error probability in discriminating
nonorthogonal quantum states. A landmark development
was the Dolinar receiver capable of discriminating two
weak coherent states at the fundamental Helstrom
bound17. More recent studies have laid out quantum-
receiver structures to benefit a variety of near-term tasks
encompassing quantum state tomography18–21, target
detection22,23, communication24–31, and computing32,33.
Despite these encouraging advances, the design of quan-
tum receivers for general QIP problems remains a for-
midable challenge, primarily due to the large Hilbert
space that quantum states reside in. Indeed, only a few are
known to achieve the ultimate performance limit even
excluding imperfections. In practical situations, noise and
disturbance in a dynamic environment would further
bring substantial complexities to the quantum-receiver
design34, rendering the traditional design method based
on analytic modeling clumsy and impotent.
The rapid development of data science has given rise to

efficient tools for addressing complex data-processing
problems in a large parameter space, shifting the land-
scape of data mining35, computer vision36, automated
control37,38, and decision-making39. State-of-the-art
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data-science methods now help combat the unprece-
dented challenge of designing quantum protocols and
platforms, such as engineering of quantum states40,41,
operators42, or a combination of both43,44.
Here, we harness reinforcement learning45 to design

quantum receivers, formulating the quantum receiver
enhanced by adaptive learning (QREAL) architecture
capable of tackling a series of quantum-state dis-
crimination and data-classification problems. The
QREAL architecture enjoys a substantially reduced
complexity compared with other proposals based on
model-free reinforcement learning46,47, allowing it to be
embodied in a photonic platform compatible with tele-
communication. We then verify QREAL’s capability of
tackling different quantum-state discrimination problems
with advantages over the standard quantum limit (SQL).
By virtue of its capability of adapting to diverse opera-
tional conditions, QREAL’s advantage over prior quan-
tum receivers is further magnified in the presence of
practical imperfections. These features of QREAL render
it readily available to enhance long-haul communications,
imaging, and sensing systems.

The QREAL Architecture
The general goal of our quantum receiver is to perform

a hypothesis-testing task between a set of quantum states,
each tagged by a classical entry y. A general quantum-
receiver structure depicted in Fig. 1a comprises N rounds
of processing and measurements. Following the control
logic, the classical processor manages the quantum circuit

and provides a decision based on the measurement his-
tory. In the jth round, the quantum state from previous
steps is modified by a history-configured unitary opera-

tion Ûjðα
k1k2 ¼ kj"1½ $
j Þ with an ancillary state ρ̂sj , then

mapped into a result kj, which leads to the operation in
the next round.

Figure 1b illustrates a control logic comprised of an M-
ary decision tree with depth N and a decision table, both
employed by a quantum receiver specified as QREAL
(N,M). Each node, linked from its parent node, contains
a variable that is optimized by the QREAL formulator
(Fig. 1c). The noise awareness of QREAL is accom-
plished by simulating a batch of decision trees, each
generated with stochastically sampled noise through all
rounds. In doing so, the QREAL formulator obtains a
collection of probability distributions for the measure-
ment history conditioned on each input state, subject to
the noise characteristics. Then, the decision table is
derived by Bayesian inference, and the decision tree is
adjusted to lower the loss function. After the iterations,
an optimized control logic for a specific QIP task is
loaded into the classical processor (Detailed description
in supplementary section I).
In such an iterative quantum processor with feed-for-

ward, noise is detrimental since its impact may accumu-
late through operations. Noise can carry different
characteristics within the time scale of a round. High-
frequency noise uniformly degrades the fidelity of unitary
operations in each round, which can be simply treated as
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Fig. 1 Overview on the QREAL architecture. a The hardware of a general quantum receiver composed of rounds of processing. The jth processing
round entails a variational quantum circuit represented by the unitary operation Ûj configured by the parameter set αj, ancillary states ρ̂sj , and

measurement apparatus Mj . b The control logic comprised of a decision tree and a decision table. Blue lines show one possible path toward the
output. Quantum-receiver output y is determined by the sequence of measurement outcomes, tied to a unique path in the decision tree. c The
QREAL formulator consisting of four modules (clockwise) as one iteration in the learning process. The control logic optimized by the QREAL
formulator is compiled and built into the classical processor
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independent and get modeled easily. When noise varies
on a time scale much longer than N rounds, it can be
regulated by tracking the drift. However, mid-frequency
noise affects the system collectively since it varies on a
time scale of several rounds. This type of noise obeys
stationary statistics across a batch of decision trees.
QREAL aims to learn the pattern of mid-frequency noise
and accordingly adapt its measurement strategy toward a
better overall performance.

Setting up QREAL for decoding weak coherent light
The nonorthogonality of quantum states precludes

them from being perfectly discriminated, forbidding the
classical receivers operate near the fundamental limits.
To bridge the gap, we leverage the QREAL formulator to
construct quantum receivers for the problem of dis-
criminating weak nonorthogonal coherent states. To
date, experimentally implemented quantum receivers are
predominantly devised by static approaches that are
incapable of adapting to diverse operational conditions,
including various genres of noise and imperfections,
rendering their performance far inferior to that of
QREAL as we show below.
The quantum-receiver hardware is a fiber-based plat-

form operating at the c-band of optical communication.
The components realize suitable functionalities within
the general QREAL architecture. Specifically, practical
modules of variational quantum circuits and measure-
ments are assembled to manipulate and detect weak
coherent states.
We next elaborate on the QREAL architecture with

more details on the experimental setup, the modeling of
noise patterns, and the learning process. In the quantum-
receiver hardware, the ancillaries ρ̂sj are vacuum states.

The unitary operation Ûj at each round is a reconfigurable
quadrature displacement operation with a history-

dependent complex variable α
k1k2 ¼ kj"1½ $
j for the displace-

ment. The measurement at each round is a photon-
number resolving (PNR) detection.
In the optical part of the hardware, the displacement

operation is implemented by interfering the signal and a
local oscillator (LO) on a 99:1 beamsplitter. During each
round of decoding, the relative phase and amplitude of the
LO determine the equivalent displacement applied to the
signal. The displaced optical field is then captured by a
time-multiplexed superconducting single-photon detec-
tor. A 5 kHz clock switches the system status between
decoding and phase-locking while synchronizing other
supplementary electronic devices.
The classical processor is an FPGA implementing the

control logic with a decision tree. The FPGA stores an
updatable look-up table in its memory. After acquiring
photon arrival times from the detector, the FPGA

searches and determines the displacement for the next
round. It then sends voltage signals to change the phase
and amplitude of the LO in a proper time window. The
FPGA communicates with a desktop computer that runs
the QREAL formulator.
In setting up for a QIP task, the QREAL formulator

works with the FPGA to estimate on the incoming
signal power, dark count rate, and the photon statistics
associated with different displacements on each signal.
The average interference fringe visibility is obtained at
the same time, as a statistical indicator for the fluctua-
tion and noise. In general, the noise model can embody
any pattern.
In the current experiment, the preset noise model fits

the statistical outcomes by two individual Gaussian dis-
tributions on both the phase and amplitude in the dis-
placement operation and one Poissonian distribution for
the dark count and ambient light at the detector. The
noise is identical for N rounds in each decoding frame but
constitutes a stationary stochastic process between frames.
The noise model is suitable for our setup since the switch
between phase-locking and decoding will eventually add
phase fluctuations to each cycle. The intractable loss
fluctuation caused by the fiber-stretcher and polarization
managements also induces cycle-wise amplitude bias to
the LO. Due to such noise, the overall fidelity of dis-
placement operation barely exceeds 99.7%.
Subsequently, based on the pre-estimated noise dis-

tributions, the formulator generates a batch of noisy
decision trees, each obeying the modeled noise patterns.
The formulator then starts to optimize displacements,
aimed at reducing the average error rate for the batch of
decision trees. (More details are in the supplementary
section II, III).

Results
As a first test, we develop and implement the QREAL

robust against noise and other imperfections for the
binary phase-shift keying (BPSK) format (Fig. 2a, inset).
The discrimination of quantum states encoded in the
BPSK format has been extensively investigated, with many
quantum receivers proposed16,17,48 and implemented24 to
beat the SQL. The original Dolinar receiver17 was the first
to approach the ultimate Helstrom bound for BPSK
quantum-state discrimination in an ideal scenario, given a
mean photon number including loss. However, its
advantage over SQL quickly fades away under noise, due
to the lack of a mechanism to cope with practical non-
idealities when the displacement are preset.
In contrast, QREAL(4,2) for BPSK can mitigate the

adverse effect caused by noise and other imperfections by
adaptively learning their patterns in ~150 iterations
(~15 s) (Fig. 2a). The disparity between the learned dis-
placement parameters and those used in the Dolinar(4,2)
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receiver is shown in Fig. 2c, d1–d3. To verify
QREAL(4,2)’s robustness against noise, we test
QREAL(4,2), the conditional-nulling25 receiver (CN(4,2)),
and Dolinar(4,2) subject to an identical noise pattern. The
simulation results in Fig. 2b, e show that, while noise
quickly degrades the performance of Dolinar(4,2),
QREAL(4,2) maintains its advantage over SQL within a
broad range of power levels of the input quantum states.
In the large photon-number or high-noise regime,
QREAL picks a strategy closer to that of the CN receiver,
whereas in the small photon-number or low-noise regime,
the QREAL learns a strategy closer to that of the Dolinar
receiver. Overall, QREAL outperforms the other two
quantum receivers across the entire parameter space,
shown by the experimental error rates displayed in
colored dots, with error bars smaller than the size of the
points. With no additional components between the dis-
placement operation and the detector, the experimental
setup achieves two parameters to beat BPSK’s loss-less
SQL49,50, i.e., an overall efficiency of 85% while main-
taining the visibility at 99.75%. Specifically, we achieve a
raw bit error rate of <2.5% at a mean photon number of
~0.75, corresponding to an information rate as high as 1.1
bits per received photon. QREAL enjoys an error rate 39%
below the SQL at a mean photon number of 0.95 and
keeps an advantage over the SQL for mean photon
numbers below 1.6. After adapting to the noise, QREAL

reduces up to 14% error rate compared with the best of
the CN and Dolinar receivers.
We next develop the QREAL for the quadrature

amplitude modulation (QAM) encoding (Fig. 3a, inset) to
demonstrate its capability of handling complex tasks in
the presence of noise. QAM profits the spectral efficiency
by leveraging a larger codeword space but challenges the
design of sub-SQL quantum receivers due to its larger
parameter space. The QREAL formulator takes ~120
iterations (~10 minutes) to converge the design at a
minimal error rate (Fig. 3a). The constructed QREAL
surpasses the SQL and beats the error rate of the CN
receiver. The learned QREAL(6,3) for QAM-6 decoding is
tested back-to-back with CN(6,3). Both the simulation
and the experimental results illustrate QREAL’s noise
mitigation capability, which underpins QREAL’s perfor-
mance gain in the low photon-number regime where
noise constitutes a significant portion of error events. In
practice, QREAL enables up to 43% (average 32%) error-
rate reduction over the SQL (loss-free heterodyne) and up
to 19% (average 17%) improvement over the CN receiver,
as depicted in Fig. 3b.
To illustrate the internal workflow of QREAL, Fig. 3c

plots the evolution of the posterior probability distribu-
tions through the processing rounds for each codeword,
starting from a uniform prior probability distribution.
More information about the incoming quantum state is
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acquired as the QREAL executes through the consecutive
rounds so that the correct codeword becomes prominent
the posterior probability distribution while the incorrect
guesses are suppressed. To further understand how the
QREAL discriminates between different codewords, we
quantitatively compare the distance between the mea-
surement statistics resulted from the 6 different coherent
states using the relative entropy DKLðpjjq; nÞ, as shown in
Fig. 3d. By the end of the first two rounds, the measure-
ment statistics for a subset of the codeword states, e.g.,
jβ1i and jβ5i, have been adequately disparate so that they
are distinguished with confidence. The rest of the code-
word states, however, remain unsure due to their close
measurement statistics. As the processing proceeds into
subsequent rounds, more measurement outcomes lead to
distinct measurement statistics for different codeword
states, allowing QREAL to pick the correct codeword.
We have developed QREAL to address two quantum-

state discrimination problems. First, QREAL for BPSK is
shown to outperform both the Dolinar and the CN
receivers. Notably, QREALs are proven robust against
imperfections so that QREAL’s performance advantage
over conventional quantum and classical receivers sus-
tains over a large noise region. Such an improvement
makes QREAL outperform other quantum receivers in
nonideal environments. We also constructed QREAL for
QAM to verify its capability of undertaking a complex

QIP task that require optimization in a large parameter
space with more than 1000 variables. The QREAL
architecture is envisioned to endow new functionalities
in the noisy intermediate-scale quantum era by harnes-
sing the hybrid quantum-classical information proces-
sing architecture.

Discussion
The quantum-receiver hardware can be augmented with

new types of variational quantum circuits and measure-
ments to embrace a wider scope of QIP problems. For
example, continuous-variables measurements such as the
homodyne detector offers an additional degree of freedom
to access a richer set of information20. With a versatile
topology, the QREAL formulator can be generalized to
most near-term measurement-based quantum applications,
including quantum state generation32, tomography19, var-
iational quantum eigensolvers51, and quantum-enhanced
sensing23, after proper discretization.
Moving toward practical operational environments, the

QREAL formulator can fit the in-situ learning iterations
as tests on the hardware also provide the sampled prob-
ability distribution. In doing so, the QREAL formulator
will be more efficiently in dealing with the exponentially
large quantum-state space and, in the meantime, adapt to
slowly-varying noise. This feature enables long-time
unsupervised stability, which is crucial for real-world
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applications. In addition, the QREAL formulator supports
artificial neural networks in its decision strategy, for
capturing patterns embedded in data52, like the variational
autoencoder53. In circumstances without prior knowledge
or model for the channel and receiver imperfections,
model-free reinforcement-learning techniques can be
used to design quantum receivers46,47.
A few remarks on the optimization process of QREAL are

worth making. A recent paper discovered that the initial
parameters, to a large extent, determines the local mini-
mum that a machine-learning algorithm converges to54. In
our work, the QREAL formulator leverages a greedy algo-
rithm to generate initial parameters that obey a preset cri-
terion, locating near those of the CN receiver. Other sets of
initial parameters may exist to further enhance the per-
formance of QREAL, but as a tradeoff they would require
more computing resources to identify. In addition, the
initialization processes for QREALs tackling more complex
quantum information processing problems would call for
more systematic studies.

Materials and methods
The classical computing part within the QREAL archi-

tecture is achieved by TensorFlow 2.1.0 package on Python
3.7 platform. The communication between classical com-
puting and FPGA is held by TCP/IP protocol via wired
local area network (LAN). The fiber-optical setup in front
of a superconducting nanowire single photon detector
(SNSPD) is compatible with the telecommunication
c-band at 1550 nm right. The arrival time of the pulsed
output from the SNSPD is recorded by the FPGA analog
input port. The other FPGA analog input port is used for
synchronization. Two analog output ports of the FPGA are
properly amplified and connected to the amplitude and
phase modulators. More details on the QREAL archi-
tecture and experimental setup are presented in Supple-
mentary Information.
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