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Quantum-secured covert sensing for the Doppler effect
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Quantum mechanics has paved the way for establishing shared privacy among communicating parties through
a secure regime known as quantum-secured communication. Recent advancements in both theory and exper-
imentation have unveiled the potential of quantum resources in enhancing the performance and security of
estimating unknown parameters. This has led to the emergence of a novel paradigm known as quantum-secured
covert sensing, wherein the sensing operation is concealed from an adversary monitoring the environment by
embedding the probe signal in a bright noise background. The performance and security of such protocols
are quantified using quantum measurement theory. While previous investigations into quantum-secured covert
sensing primarily focused on proof-of-concept phase estimation problems, this paper presents a pioneering
quantum-secured covert sensing system designed for the Doppler effect—a versatile estimation problem with
broad applications. Our research uncovers an inherent trade-off among measurement precision, security, and
range within the system. This work establishes a new avenue for incorporating physical-layer security into
sensing systems, thereby opening up exciting possibilities for future research in this field.
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I. INTRODUCTION

Quantum cryptography utilizes the unique properties of
quantum systems to ensure the utmost security, privacy,
and integrity of processed data. Among various quantum
cryptographic techniques, quantum key distribution (QKD)
is arguably the most well-developed paradigm to create
a significant impact on secure communication [1–4]. By
leveraging the principles of the quantum no-cloning theo-
rem [5], QKD enables the establishment of shared private
keys between communicating parties. When combined with
one-time pad encryption, QKD offers a communication se-
curity framework that relies on the fundamental laws of
physics rather than assumptions about mathematical com-
plexity. In recent years, QKD has experienced substantial
growth, transitioning from proof-of-concept experiments in
controlled laboratory environments [6–10] to practical field
tests conducted between quantum communication satellites
and ground stations [2,3,11]. The remarkable progress of
QKD underscores the potential of quantum cryptography and
underscores the need to explore protocols that go beyond
mere key distribution [12–15]. As the field continues to ad-
vance, researchers are increasingly compelled to investigate
additional aspects of quantum cryptography beyond key dis-
tribution. This exploration will uncover new possibilities and
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applications, further enhancing the capabilities and impact of
quantum cryptography.

In the past decade, quantum-secured covertness has
emerged as a new paradigm in quantum cryptography, ex-
tending beyond the realm of QKD [16–21]. This paradigm
involves concealing the quantum signal within background
noise, rendering the execution of quantum-secured covert
protocols undetectable from the perspective of an adversary,
referred to as Willie, thereby safeguarding the security and
integrity of data. The concept of quantum-secured covertness
was initially proposed [21,22] and demonstrated [16] in the
context of transferring classical bits over a noisy channel. The
analysis of quantum-secured covert communication protocols
employs quantum measurement theory, revealing a trade-off
between performance and security quantified by the square-
root law.

In recent years, quantum-secured covertness has been
extended to the domain of sensing, resulting in a multitude
of proposed protocols [18,20,23] and an experimental
implementation [24]. In these protocols, a transmitter
generates a probe that is either classically correlated
or entangled with a reference. This probe is then sent
into a noisy and lossy environment where an object of
interest resides, while the reference is retained locally.
At the receiver, a joint measurement is performed on the
probe returning from the environment and the locally
retained reference, allowing for the extraction of the object’s
property. Due to the presence of intense background noise,
Willie is unable to detect the sensing attempt, quantified
by the probability of detection derived from quantum
measurement theory. Similar to quantum-secured covert
communication, quantum-secured covert sensing is bound
by the squared-root law, which imposes a fundamental
trade-off between the achievable performance and security. A
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FIG. 1. Configuration for Doppler shift covert sensing. Transmit-
ter generates a broadband signal and the associated reference and
sends the signal to probe a moving object. The receiver performs
a heterodyne measurement on the signal returned from a lossy and
noisy environment. Willie captures photons not collected by the
receiver and takes the optimal quantum measurement to detect the
sensing operation.

recent proof-of-concept experiment on entanglement-
enhanced covert sensing [24] demonstrated the capability
of estimating a phase shift induced by the object, while
effectively restricting Willie’s detection probability within
bounds defined by the protocol.

This study delves beyond the conventional phase-
estimation problem and presents an experimental investi-
gation into quantum-secured covert sensing of frequency
shift—an aspect closely linked to velocity measurement
through the Doppler effect. We explore the relationship
between measurement precision, covertness, and various en-
vironmental parameters. Our findings reveal an inherent
trade-off among measurement precision, range, and secu-
rity. By shedding light on these intricate dynamics, our
research paves the way for quantum cryptography to make
a tangible impact on real-world applications such as target
detection [25–27], object tracking [28–30], secure satellite
navigation [31–33], and remote sensing [34–36]. This work
opens up a new avenue for leveraging the power of quan-
tum cryptography in addressing practical challenges in these
domains.

II. COVERT-SENSING PROTOCOL

The quantum-secured covert velocity sensing protocol is
illustrated in Fig. 1. The transmitter divides the output of a
broadband source with the carrier angular frequency ωc into
two arms, each consisting of M temporal modes

âm = √
ηŝm +

√
1 − ηv̂m,

r̂m =
√

1 − ηŝm − √
ηv̂m,

(1)

where m ∈ {1, . . . , M}, and âm, r̂m, ŝm, and v̂m are the annihi-
lation operators for the probe signal, reference retained at the
sensor, broadband source, and vacuum modes, respectively.
The parameter η is chosen to control the mean photon num-
ber NS ≡ 〈â†

mâm〉 of each signal mode. To operate covertly,
it requires NS ' 1 to conceal the signal within the noise
background. In the Schrödinger picture, the quantum state of
each signal mode is described by the density operator ρ̂am . The
transmitter emits the signal state, ρ̂S ≡ ρ̂a1 ⊗ ρ̂a2 . . . ⊗ ρ̂aM to
interrogate a moving object.

Due to the Doppler effect, a frequency shift of

$ω = 2v

c
ωc (2)

is induced on all signal modes. Here, v represents the velocity
of the target relative to the observer and c is the speed of
light. The Doppler effect transforms the initial signal modes
as follows:

âm → â′
m = ei$ωtm âm, (3)

where tm is the time associated with the mth temporal mode.
The environment where the target resides is characterized

by the transmission efficiency κS between the transmitter and
receiver for the signal and a noise background. The probe
signal modes at the receiver, represented by b̂m, can then be
derived as follows:

b̂m = √
κSâ′

m +
√

1 − κSn̂m, (4)

where n̂m represents the environmental background thermal
modes with on average 〈n̂†

mn̂m〉 = NB/(1 − κS ) photons per
mode.

The receiver performs a heterodyne detection using a ref-
erence with angular frequency ωc on the returned probe to
estimate the frequency shift $ω. In the Schrödinger pic-
ture, the signal and reference states at the receiver, denoted
as ρ̂′

S (v) ≡ ρ̂b1 ⊗ ρ̂b2 . . . ⊗ ρ̂bM ⊗ ρ̂r1 ⊗ ρ̂r2 . . . ⊗ ρ̂rM , are de-
pendent on the velocity of the interrogated object. The
performance of the measurement in estimating v can be quan-
tified within the framework of the quantum Fisher information
(QFI) derived as [37]

Jv = 8 × lim
v→0

1 −
√
F [ρ̂′

S (v), ρ̂′
S (v + dv)]

dv2
, (5)

where the Uhlmann fidelity between two quantum states is
defined as F (ρ̂1, ρ̂2) = (tr

√√
ρ̂1ρ̂2

√
ρ̂1)2. Subsequently, a

lower bound on the measurement sensitivity, applicable to any
quantum measurement performed on ρ̂′

S (v), can be obtained
from the quantum Cramér-Rao bound (QCRB) as follows:

($v)2 ! 1
J v

. (6)

To assess the covertness of the protocol, we consider an
adversary named Willie, who is capable of capturing photons
that are not collected by the receiver, in an attempt to infer the
sensing operation. In the absence of the probe signal, Willie’s
quantum state, comprising M modes, is described as

ŵ(0)
m = √

κW v̂′
m +

√
1 − κW n̂′

m, (7)
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FIG. 2. Experimental setup. The transmitter is equipped with an amplified spontaneous emission (ASE) source that generates a broadband
probe signal and a reference. A Doppler shift on the probe signal is introduced via phase modulation using an electrooptic modulator (EOM).
The receiver comprises an air gap (AG) to fine-tune the propagation delay between the probe signal and the reference, followed by a balanced
heterodyne detector that acquires the two quadratures of the returned probe signal measured by two photodiodes operating in a balanced
setting. Other experimental components include a coarse wavelength-division multiplexer (CWDM), a polarizing beam splitter (PBS), optical
attenuators (Attn), beam splitters (BS), a signal generator (SG), polarization controllers (PC), low-pass filters (LPF), and data acquisition (DA).

where n̂′
m represents the environmental modes from Willie’s

perspective, each with N ′
B/(1 − κW ) photons, and v̂′

m rep-
resents vacuum modes. Thus, in the Schrödinger picture,
Willie’s quantum state ρ̂(0)

W ≡ ρ̂ (0)
w1

, ρ (0)
w2

, . . . , ρ (0)
wM

is a set of
thermal states, each with a mean photon number N ′

B. In the
presence of the probe signal, Willie’s quantum state becomes
a mixture of a small portion of the probe and the background
noise, formulated as

ŵ(1)
m = √

κW â′
m +

√
1 − κW n̂′

m, (8)

with the Schrödinger picture representation of ρ̂(1)
W ≡

ρ̂ (1)
w1

, ρ (1)
w2

, . . . , ρ (1)
wM

. Consequently, the presence of the probe
signal increases Willie’s collected mean photon number by
κW NS per mode.

To detect the sensing operation, Willie endeavors to
discriminate between ρ̂(0)

W and ρ̂(1)
W . Regardless of Willie’s

measurement, his detection error probability is bounded by

Pe ! 1
2

(
1 − 1

2

∥∥ρ̂(0)
W − ρ̂(1)

W

∥∥
1

)
! 1

2 − ε, (9)

where ‖ · ‖1 denotes the trace distance and ε is defined as
the covertness parameter. In the protocol, ε can be controlled
by choosing appropriate values for NS and M, subject to a
security-performance trade-off as detailed in Sec. IV C. By
setting κW = 1 − κS , Willie is granted full power in detecting
the sensing operation by capturing all the signal photons that
do not arrive at the receiver. Within the operational parame-
ter range of the protocol, i.e., NS ' 1, NB - 1 and M - 1,
Willie’s detection error probability is found to be [24]

ε =
√

M(1 − κS )2NS

4κSNB
∝

√
MNS

NB
. (10)

III. EXPERIMENT

Our experimental setup is sketched in Fig. 2. The output
from a thermal-light source based on amplified sponta-
neous emission (ASE) is passed through a flat-top 16-nm
optical filter centered at 1550 nm, defining the optical band-
width W ∼ 2 THz for the signal and reference. To ensure
single-polarization light, a polarizer is employed to pass one
polarization and filter out the other. The single-polarization
light is then split by a 99:1 unbalanced fiber coupler (FC). The
output at the 1% port serves as the probe signal, containing
NS ' 1 photons per mode, while the light at the 99% port
serves as the reference, with NR - 1 photons per mode. A tun-
able fiber attenuator is used to further adjust the signal power
to the desired level, according to the experimental conditions.
To compensate for the disparity in dispersion between the sig-
nal and reference, a waveshaper (Finisar 1000A) is programed
to apply wavelength-dependent phase shifts on the signal. For
the heterodyne measurement, a frequency offset between the
reference and the signal is created by phase modulating the
signal with an electro-optic modulator (EOM1), driven by a
20-MHz sawtooth voltage from a signal generator (SG).

The Doppler effect introduces a frequency shift on the
signal. In our experiment, EOM2 applies two phases, φ1 and
φ2, separated by an interval T = tm+1 − tm. The differential
phase δφ = φ2 − φ1 results in an effective frequency shift of
$ω = δφ/T on the signal.

The covertness of the protocol relies on concealing the
signal within a bright noise background. In our experiment,
we create the noisy environment by mixing ASE noise with
the same optical bandwidth as the signal. To control the
magnitude of the environmental noise, a variable attenuator
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is applied to the ASE noise. We ensure that the polarization of
the injected ASE noise aligns with that of the signal using a
polarization controller (PC), making it indistinguishable from
the signal in terms of polarization. Prior to the heterodyne
detection at the receiver, we finely adjust the propagation
delay of the reference using an air gap (AG) and perform
polarization tuning to match it with the signal returned from
the object. This step is crucial to ensure efficient interference
between the reference and the returned signal.

Next, a 50:50 beam splitter (BS) mixes the reference and
the signal, and its two output ports direct the combined signal
to a balanced detector (Thorlabs PDB450C) with 80% quan-
tum efficiency. The amplified voltage signal for the difference
photocurrent of the two diodes is split into two arms, each
equipped with a radio-frequency (RF) mixer. The RF local
oscillators (LOs) for the two mixers are generated from the
same SG that drives EOM1. We set the phases of the RF LOs
to differ by π/2, enabling simultaneous measurement of both
quadratures of the returned probe signal. The intermediate fre-
quency (IF) voltage signals are then filtered by two low-pass
filters (LPF) before undergoing data acquisition on a real-time
oscilloscope. Subsequent postprocessing is performed to infer
the frequency shift due to the Doppler effect and thereby
determine the velocity of the object.

At Willie’s terminal, he employs an FC with transmissivity
1 − κS to capture a portion of the noisy signal. He uses a pho-
todiode to measure the intensity difference of the tapped light,
which allows him to infer the absence or presence of the probe
signal. Additionally, Willie also measures the intensity of the
ASE light from the source on the polarization orthogonal to
the signal, enabling him to estimate and eliminate the source’s
technical intensity noise at low frequencies. By subtracting off
the technical noise in postprocessing, Willie’s measurement
performance is solely limited by the intrinsic uncertainties of
the quantum states.

IV. RESULTS

A. Sensing performance

We first demonstrate the system’s ability to estimate the
velocity of an object. To achieve this, we drive EOM2 with
a square wave at 207 kHz. The voltages at the two output
ports of the heterodyne detector carry information about the
two quadratures of the measured optical field of the returned
probe signal. Each voltage signal is filtered by a low-pass filter
(LPF) with a 310-kHz cutoff frequency and then recorded by
an oscilloscope at a sampling rate of 10 × 106 Sa/s. The ap-
plied differential phase shift δφ results in a pair of quadrature
measurement data {VQ1 ,VP1} and {VQ2 ,VP2}. The estimated
differential phase shift is obtained as follows:

δ̃φ = arctan
(

VP2

VQ2

)
− arctan

(
VP1

VQ1

)
. (11)

Subsequently, the emulated and estimated object velocity as-
sociated with the differential phase shift is derived as follows:

v = c
2ωc

δφ

T
, ṽ = c

2ωc

δ̃φ

T
. (12)

FIG. 3. Estimated velocity with respect to the applied differential
phase δφ = φ2 − φ1. The red area marks the theoretical root-mean-
square error. Error bars obtained from 2000 measurements. The
operational parameters are set to κSNS = 0.078 and NB = 2495. M =
4.83 × 106. The inset displays a continuous-time measurement of
fixed φ1 (blue) and φ2 (black) over 10 ms, showing robustness in
δφ = φ1 − φ2, even though the absolute phases drift due to thermal
fluctuations and other imperfections.

The mean squared error (MSE) of the velocity estimation is
then given by

($v)2 = 〈(̃v − v)2〉. (13)

Figure 3 plots the estimated velocity as a function of the
phase shift, demonstrating strong linearity within the full
range of δφ ∈ [−π ,π ). The theoretical root-mean-squared
(RMS) error, $v, is represented by the red shaded area and
the experimentally measured RMS values are depicted in the
error bars, indicating excellent agreement. Despite not im-
plementing phase locking in the experiment, the differential
phase estimation exhibits robustness against the drift in the
relative phase between the signal and reference, as long as
the estimation is performed at a much higher rate than such
a drift. This robustness is illustrated in the inset of Fig. 3,
showing a strong correlation between φ1 and φ2 even though
they both drift over time due to thermal fluctuations and other
imperfections.

B. Covertness

Willie’s error probability in detecting the sensing opera-
tion serves as a critical performance metric for the covert
sensing protocol. For the task of discriminating the probe
signal from its embedded bright noise background, Willie’s
optimal quantum measurement is direct photon counting. This
is due to both the signal and noise following thermal statistics,
characterized by a diagonal photon-number distribution in the
Fock basis. To experimentally measure the error probability
as a function of the transmission efficiency between the trans-
mitter and the receiver, we fix the signal and background noise
brightness NS and NB/(1 − κS ). With operating conditions
of NS ' 1 and NB - 1, we derive Willie’s detection error
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FIG. 4. Willie’s detection error probability with respect to sig-
nal transmission efficiency in the single-detector scheme (blue) and
the balanced-detection scheme (red). Blue dashed curve: Theory
for an ideal single-detector scheme without being affected by low-
frequency noise from the source. Blue solid curve: Fitted theoretical
model for experimental data acquired with a single detector. Red
curve: Fitted theoretical model for experimental data acquired with a
balanced-detection scheme. Black curve: A lower bound for Willie’s
error probability. Integration time T = 2.42 µs. The single-detector
scheme uses a photodiode (Thorlabs FGA01FC) and a current am-
plifier (Femto DLPCA-200), while the balanced-detection scheme
employs two photodiodes (Thorlabs PDB450C) to measure the dif-
ference photocurrent.

probability as follows [24]:

Pe = 1
2

erfc
[√

M/12γ
PS

PB

]
, (14)

where PS/PB = (1 − κS )2NS/κSNB represents Willie’s signal-
to-noise ratio and γ is a fitting parameter accounting for
suboptimality due to experimental imperfections. For an ideal
ASE source without technical noise, direct photon counting
using a single detector achieves γ = 1. In our experiment,
we find that γ = 100 provides a good fit to Willie’s detection
error probability data acquired with a single detector. With
a balanced detection scheme, γ reduces to 2, indicating the
removal of technical noise due to low-frequency intensity
fluctuations, albeit at the cost of doubling the number of noise
modes.

In the experiment, we set the power levels of the probe
signal and noise background at 40 nW and 1.28 mW, respec-
tively, resulting in NS = 0.156 and NB/(1 − κS ) = 4990. We
vary κS over 0.030, 0.059, 0.11, 0.20, 0.33, and 0.50 to test
Willie’s detection error probability at different transmission
efficiencies. We first turn off the probe signal and utilize
Willie’s photodetector to measure the intensity of the light
tapped from his FC. The output voltage of the photodetector is
filtered by an LPF with a bandwidth of 310 kHz and sampled
by an oscilloscope at a rate of 1/T = 414 kHz, yielding M =
W T = 4.83 × 106 modes. The same measurement is repeated
with the probe signal on. By setting a decision threshold,
we can readily derive Willie’s detection error probability for

FIG. 5. RMS error of velocity estimation as a function of the
covertness parameter ε at different |δvmax|. In the experiment, we set
κS = 0.5, NS = 0.11 (27 nW) for T = 1.52 µs and |δvmax| = 0.256
m/s; NS = 0.078 (20 nW) for T = 2.78 µs and |δvmax| = 0.140 m/s;
and NS = 0.058 (14.9 nW) for T = 5 µs and |δvmax| = 0.078 m/s.
NB is set to 2497, 2185, 1873, 1561, 1248 for the five ε values.
Inset shows the RMS error of velocity estimation as a function of
|δvmax| at ε = 0.012. Dashed lines: QCRB, which is saturated by the
dual-homodyne detection in the large noise limit (see the Appendix).

different values of transmission efficiency. The experimental
data, depicted in Fig. 4, align well with the fitted theoretical
model. For comparison, we also plot the projected detection
error probability for an ideal ASE source (blue dashed curve)
and a lower bound for the detection error probability (solid
black curve).

C. Performance-security trade-off

Similar to other covert sensing and communication pro-
tocols [16,17,19,24,38], our present protocol is subject to a
performance-security trade-off. Specifically, the differential
phase shift δφ between two consecutive phase measurements,
φ1 and φ2, must lie within the range [−π ,π ) to ensure an
unambiguous estimation. This constraint limits the range of
velocity estimation to |δvmax| = πc/2ωcT . A higher |δvmax|
requires a shorter T , leading to a reduced number of measured
modes M. However, to maintain a constant security level
quantified by ε,

√
MNS must remain constant, as shown in

Eq. (10). Consequently, the signal-to-noise ratio MNS/NB de-
creases as the range for velocity estimation increases, result-
ing in higher RMS errors, as illustrated in the inset of Fig. 5.

To further analyze the performance-security trade-off, we
fix |δvmax| and examine the RMS error for velocity estimation
as a function of the covertness parameter ε at different back-
ground noise levels. The data are plotted in Fig. 5, revealing
the trade-off between the security level (lower ε) and the
precision of velocity estimation (lower RMS error).

The inset in Fig. 5 depicts the RMS error of velocity
estimation as a function of |δvmax| at a fixed ε = 0.012.
The dashed lines represent the QCRB, which is saturated by
the dual-homodyne detection in the large noise limit (see the
Appendix). The main plot shows the RMS error of velocity
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estimation as a function of ε for different values of |δvmax|.
The data points correspond to different experimental pa-
rameters, demonstrating the trade-off between security and
precision in the covert-sensing protocol.

V. DISCUSSION

The present proof-of-concept quantum-secured covert
sensing for the Doppler effect is conducted in the optical do-
main within the telecommunication band centered at 1550 nm
(193 THz). At this wavelength, the ambient thermal noise
due to blackbody radiation is exceptionally weak, and thus, in
the experiment, ASE light is injected to emulate the environ-
mental noise background. However, in practical applications,
strong optical thermal light may arise from active jamming or
intense sunlight during the daytime. On the other hand, back-
ground noise due to blackbody radiation becomes much more
prominent in the microwave wavelength regime. For instance,
at ωc = 2π × 100 GHz in the W band, one can estimate
NB ∼ 60 at room temperature [39]. By reducing NS while
keeping ε constant, one can move into the covert sensing
parameter region in the microwave domain. Doing so would
substantially broaden |vmax|, as Eq. (12) indicates. Specifi-
cally, with a ∼2000 times reduction in the carrier frequency,
|vmax| would be extended to >500 km/hour, calculated based
on the parameters used in Fig. 5. However, there is a trade-
off as this would increase the interrogation time due to the
lower density of spectral modes in the microwave frequencies.
Assuming W = 2 GHz, the velocity estimation down to the
same precision would take 1.5 ms to 5 ms, in contrast to
the microsecond interrogation time in the optical domain.
Nonetheless, the relative precision, defined as $v/|δvmax|,
would remain independent of the carrier frequency given the
interrogation time.

In the experiment, the demodulation frequency at the
heterodyne detector matches the frequency shift applied by
EOM1 to the probe signal. However, with prior knowledge of
the object’s velocity, one could employ a different demodu-
lation frequency with an offset δ f from the signal. By doing
so, the velocity estimation can be carried out in the vicinity of
λcδ f /2, where λc is the carrier wavelength. Such a technique
would effectively increase the range of velocity estimation if
prior knowledge is available.

The attenuation on the probe signal due to environmental
loss affects both the sensing performance and security. On the
one hand, both the QFI and the classical Fisher information
for homodyne measurements scale linearly with the transmis-
sivity between the transmitter and the receiver, as shown in
Eqs. (A1) and (A2). A reduced tranmissivity would lift the
curves presented in Fig. 5. On the other hand, Willie’s de-
tection error probability drops as the transmissivity decreases
as he collects more signal photons to facilitate the detection
of the sensing attempt, as Fig. 4 illustrates. To offset the
performance and security degradation caused by a more lossy
environment, one can increase the number of signal modes
while reducing the mean photon number per mode, subject to
a fundamental performance-security tradeoff quantified by the
square-root law [16,24].

To further enhance the present protocol, entanglement has
been shown to boost the performance of covert sensing, as

demonstrated in a phase estimation experiment [24]. There,
entangled probe signal and a local reference improved the
SNR by nearly 3 dB. Similarly, for covert sensing of the
Doppler effect, entanglement is expected to bring about en-
hancements. However, current quantum receivers that harness
entanglement can only measure one quadrature [22,24,40,41],
while covert sensing for the Doppler effect requires the
measurement of both quadratures of the optical fields. The de-
velopment of quantum receivers for entanglement-enhanced
sensing protocols, capable of measuring both quadratures of
the optical fields, remains a subject for future investigations.

VI. CONCLUSION

In conclusion, we successfully demonstrated covert sens-
ing for the Doppler effect, enabling the accurate and secure
estimation of an object’s velocity. Our protocol’s measure-
ment performance and security have been rigorously analyzed
using quantum measurement theory using the QFI and QCRB
as the principal tool. Notably, we observed a performance-
security trade-off, which allows us to balance the range of
velocity estimation with the detection error probability against
potential adversaries.

An essential advantage of our experimental scheme is
that it does not require active phase locking and can be im-
plemented using readily available off-the-shelf components.
This significantly enhances the practical feasibility of our
approach and opens up promising avenues for real-world
quantum cryptography and sensing applications. Overall, our
work represents a notable step forward in the advancement
of quantum-based sensing technologies, with the potential to
impact a wide range of fields based on the Doppler effect such
as remote sensing, secure positioning and navigation, and
target detection and tracking, where covert and high-precision
measurements are of utmost importance.
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APPENDIX: FISHER INFORMATION
AND SIGNAL-TO-NOISE RATIO

In the experiment, a heterodyne detector using a refer-
ence with a frequency offset from the signal is exploited
to measure both quadratures of the optical field of the re-
turned probe signal. Figure 6(b) sketches a different detector
in the dual-homodyne configuration that is also capable
of simultaneously measuring both quadratures. In the dual-
homodyne detector, the signal is evenly split and measured
by two homodyne detectors supplied with local oscillators
differing by a π/2 phase such that each homodyne detector
measures one quadrature. In the literature, the terms “hetero-
dyne detector” and “dual-homodyne detector” have been used
interchangeably because in many scenarios, they share nearly
identical measurement characteristics. In particular, their

043206-6



QUANTUM-SECURED COVERT SENSING FOR THE … PHYSICAL REVIEW RESEARCH 5, 043206 (2023)

(a)

(b)

FIG. 6. Schematics of coherent optical detection. (a) In homo-
dyne detection, the signal beats with the local oscillator (LO) on a
50:50 beam splitter (BS). The difference photocurrent from two pho-
todiodes is filtered by a low-pass filter (LPF). (b) In dual-homodyne
detection the signal is evenly split into two arms and beats with two
LOs. One LO is in phase with the signal to address the amplitude (q̂)
quadrature while the other LO’s phase differs by π/2 to address the
phase quadrature (p̂). DA: data acquisition.

SNRs in measuring one quadrature are both 3 dB inferior
to that of the homodyne detector in the shot-noise-limited
regime. However, we next show that the dual-homodyne de-
tector outperforms the heterodyne detector in the presence of
broadband thermal noise, as is the case for covert sensing.

The disparities between the three types of detectors, homo-
dyne, dual-homodyne, and heterodyne, can be visualized in
the frequency domain, as illustrated in Fig. 7. We first discuss
the SNRs in the shot-noise-limited regime, plotted in the top
panel. In the homodyne detection scheme, the LO shares the
same carrier frequency as the signal represented by the green
bar. The shot noise is white, exhibiting a flat spectrum. The
measurement conducted over the signal’s bandwidth is added
by the shot noise in the same band. As a comparison, in
the measurement of one quadrature in the dual-homodyne
detection scheme, the signal is split in half by the 50:50
beam splitter while the spectrum of the shot noise remains
unchanged, resulting in a 3-dB reduction in the SNR.

In the heterodyne detection scheme, the LO is shifted from
the signal’s carrier frequency by ,. While the signal power
does not get attenuated, the shot noise residing within the
signal’s band and within the image band, which is situated at
ωc − 2,, both contribute to the measurement [42,43], causing
the noise power to be twice that of the homodyne detection.

As such, the SNRs for the dual-homodyne detection and het-
erodyne detection are both half of the SNR for the homodyne
detection.

We now turn our attention to the SNRs in the thermal-
noise-dominant regime, sketched in the lower panel of Fig. 7.
Both thermal noise and shot noise contribute to the homo-
dyne detection. In the dual-homodyne detection scheme, both
the signal and the thermal noise are attenuated by 50%,
while the shot noise’s spectrum remains unchanged. Since
the thermal noise dominates the shot noise, the SNR for the
dual-homodyne detection is nearly identical to that of the
homodyne detection.

In contrast, the noise power in the heterodyne detection
remains twice that of the homodyne detection due to the
broadband nature of the thermal noise. Hence, in the thermal-
noise-dominant regime, the homodyne and dual-homodyne
detection schemes have the same SNR in measuring one
quadrature, whereas the SNR for the heterodyne detection is
3 dB lower.

At this juncture, we will formally derive the SNRs for the
three types of detectors. Since covert sensing for the Doppler
effect builds on phase estimation, we first present its QFI as-
sociated with M ASE probes in the limit of NR - NB, NS [24]:

JQ,M
φ 0 M · 4κNS

1 + 2NB
. (A1)

Here, the term 1 in the denominator is the contribution from
the shot noise, while 2NB is caused by the thermal noise.

The classical Fisher information (CFI) for estimating the
phase shift using the homodyne detector in the same parame-
ter region has been derived as

JHomo,M
φ 0 M · 4κNS sin2 φ

1 + 2NB
. (A2)

We now consider the estimation of cos φ. Since the CFI for
a function of φ is given by

Jφ = [∂φ f (φ)]2J f , (A3)

we immediately obtain

JHomo,M
cos φ = Jθ/ sin2 φ = M · 4κNS

1 + 2NB
. (A4)

One finds that JHomo,M
cos φ is independent of φ, which is because

the output of the homodyne detector is simply proportional
to cos φ. We next proceed with defining the signal as the dif-
ference between the homodyne outcome at φ = 0 and φ = π .
The SNR for the homodyne detector can be readily derived as

SNRHomo,M = 4(cos 0 − cos π )2

(√
1/JHomo,M

cos 0 +
√

1/JHomo,M
cos π

)2

= 4JHomo,M
cos φ = M · 16κNS

1 + 2NB
. (A5)

We now address the dual-homodyne detector in the same
parameter region. A single homodyne detector in the dual-
homodyne setting effectively measures half of the signal while
the noise is also cut in half. As such, it is straightforward to
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(a) (b) (c)

(d) (e) (f)

FIG. 7. The power spectral density (PSD) for the three measurement configurations. (a)–(c) Shot-noise-limited regime. (d)–(f) Thermal-
noise-dominant regime. (a), (d) Homodyne detection. (b), (e) One quadrature of dual-homodyne detection. (c), (f) Heterodyne detection. The
signal and noise within the areas enclosed by the black solid lines contribute to the measurement. LO: local oscillator.

derive the SNR for the single dual-homodyne detector as

SNRDual,M = 4JDual,M
cos φ = M · 8κNS

1 + NB
. (A6)

As discussed at the outset, the noise in the heterodyne
detection in the thermal-noise-dominant regime is 3-dB higher
than that in the homodyne detection. As such, one can derive
the heterodyne’s SNR as follows:

SNRHetero,M = 4JHetero,M
cos φ = M · 8κNS

1 + 2NB
. (A7)

Further accounting for the detector’s quantum efficiency
η, one can readily derive the SNRs for the three types of
detectors as

SNRHomo,M,η = M · 16ηκNS

1 + 2ηNB
,

SNRDual,M,η = M · 8ηκNS

1 + ηNB
,

SNRHetero,M,η = M · 8ηκNS

1 + 2ηNB
. (A8)

We perform an experiment to verify the theory for the
SNRs at κSNS = 7.8 × 10−4 and different NB’s. The exper-
imental data reported in Fig. 8 are in accordance with the
theoretical model, proving that the dual-homodyne detection
and heterodyne detection do not always yield the same mea-
surement performance.

We next derive the QFI and CFI for velocity estima-
tion. The employed heterodyne detector is capable of
simultaneously measuring both quadratures, with the

FIG. 8. SNRs for the homodyne (red), dual-homodyne (black),
and heterodyne (blue) detection as a function of the background
noise brightness NB. Circles: experimental data; solid curves: the-
oretical model. κSNS = 7.8 × 10−4, NB = 1/16, 1/4, 1, 4, 16, and
64, and M = W T = 4.83 × 106. The quantum efficiency η = 0.72
(detector efficiency 0.8 and coupling efficiency 0.9). Error bars are
calculated based on ten measurements each with 200 samples. , =
2π × 3 MHz in heterodyne detection.
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following CFI:

JHetero,M
cos φ = JHetero,M

sin φ = M · 2κNS

1 + 2NB
. (A9)

With both quadratures measured, we can calculate the CFI for
tan φ as follows:

1

JHetero,M
tan φ

= 1
cos2 φ

1

JHetero,M
sin φ

+ sin2 φ

cos4 φ

1

JHetero,M
cos φ

, (A10)

as well as the CFI for φ:

JHetero,M
φ = (∂φ tan φ)2JHetero,M

tan φ = JHetero,M
cos φ . (A11)

The velocity estimation requires two uncorrelated consecutive
phase measurements. Thus, the CFI for velocity estimation is
derived as

JHetero,M
v = (∂vδφ)2Jδφ =

(
2ωcT

c

)2

JHetero,M
cos φ /2. (A12)

For the CRB,

($v)2 = 〈(̃v − v)2〉 = 1/JHetero,M
v . (A13)

Likewise, we can obtain the QFI for velocity estimation as

JQ,M
v 0

(
2ωcT

c

)2

JQ,M
φ /2. (A14)

Using the QCRB, a lower bound on the measurement sensi-
tivity in estimating the velocity reads

($vQ)2 ! 1

JQ,M
v

. (A15)

As discussed at the outset, the dual-homodyne detector
generally outperforms the heterodyne detector in the thermal-
noise-dominant regime. Indeed, one can show that the CFI for
the dual-homodyne detector approaches the QCRB, i.e.,

JDual,M
v =

(
2ωcT

c

)2

JDual,M
cos φ /2 0 JQ,M

v (A16)

in the limit of NB - 1. However, the dual-homodyne de-
tection requires phase locking between the LO and signal,
thereby adding extra complexities.
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