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Abstract

Cognitive Diagnosis Models (CDMs) provide a powerful statistical and psychome-

tric tool for researchers and practitioners to learn fine-grained diagnostic information

about respondents’ latent attributes. There has been a growing interest in the use of

CDMs for polytomous response data, as more and more items with multiple response

options become widely used. Similar to many latent variable models, the identifiability

of CDMs is critical for accurate parameter estimation and valid statistical inference.

However, the existing identifiability results are primarily focused on binary response

models and have not adequately addressed the identifiability of CDMs with polyto-

mous responses. This paper addresses this gap by presenting sufficient and necessary

conditions for the identifiability of the widely used DINA model with polytomous re-

sponses, with the aim to provide a comprehensive understanding of the identifiability

of CDMs with polytomous responses and to inform future research in this field.

Keywords: identifiability, polytomous responses, Q-matrix, cognitive diagnosis models,

DINA model
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1. Introduction

Cognitive Diagnosis Models (CDMs), which serve as a powerful tool to infer subjects’ la-

tent attributes such as skills, knowledge, or psychological disorders based on their responses

to some designed diagnostic items in the cognitive diagnosis assessment, have drawn in-

creasing attention over the years. As a family of discrete latent variable models, its pop-

ularity is not limited to educational assessments (Junker and Sijtsma, 2001; von Davier,

2008; Henson et al., 2009; Rupp et al., 2010; de la Torre, 2011; Wang et al., 2018), psychi-

atric diagnosis of mental disorders (Templin and Henson, 2006; de la Torre et al., 2018), and

epidemiological and medical measurement studies (Wu et al., 2017; O’Brien et al., 2019).

Various CDMs have been developed with different diagnostic assumptions and model-

ing goals, among which the Deterministic Input Noisy output “And” gate model (DINA;

Junker and Sijtsma, 2001), which assumes that subjects are expected to complete an item

correctly only when they possess all required attributes, is one of the most popular ones. Fur-

thermore, the DINA model also serves as a basis for a larger range of more general CDMs,

including the general diagnostic model (von Davier, 2008), the log linear CDM (LCDM;

Henson et al., 2009), and the generalized DINA model (GDINA; de la Torre, 2011). As

tests with polytomous responses appear more frequently in practice, the study of CDMs

with polytomous responses has also grown in popularity (Culpepper and Balamuta, 2021).

Specifically, several models concerning polytomous responses were proposed, such as Gen-

eral Diagnostic Models (GDM; von Davier, 2008), General Polytomous Diagnosis Models

(GPDM; Chen and de la Torre, 2018), and Sequential Cognitive Diagnosis Models (Sequen-

tial CDM; Ma and de la Torre, 2016).

As is the case with many statistical methods, ensuring the models applied in the cog-
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nitive diagnosis are statistically identifiable is fundamental to achieve reliable and valid

diagnostic assessment. Additionally, this is also a necessity for consistent estimation of the

model parameters of interest and valid statistical inferences. The study of identifiability

issue for CDMs has long been considered, such as DiBello et al. (1995), Maris and Bechger

(2009), Tatsuoka (2009), DeCarlo (2011), and von Davier (2014). Considerable identifia-

bility developments have been added to the CDM literature, such as DINA model and its

generalizations in recent years. For instance, Xu and Zhang (2016) and Gu and Xu (2019b)

discussed the sufficient and necessary condition for DINA model with binary responses. Xu

(2017), Gu and Xu (2019a, 2020), Chen et al. (2020) and Culpepper (2022) discussed identi-

fiability for more generally restricted latent class models. However, these results are targeted

for dichotomous responses specifically, and the requirements for the identifiability of mod-

els with polytomous responses have sparingly been taken into consideration. For instance,

Culpepper (2019) and Fang et al. (2019) discussed the sufficient condition for the identifia-

bility of general CDMs with polytomous responses, while the necessity of those conditions

remains an open problem.

Our paper fills this gap by providing sufficient and necessary conditions for the identifi-

ability of CDMs with polytomous responses. In particular, we focus on two commonly used

polytomous responses models under the DINAmodel setting: the GPDM (Chen and de la Torre,

2018) under the DINAmodel, which we refer asGPDINA, and the sequential CDM (Ma and de la Torre,

2016) under the DINA model, which we refer as Sequential DINA model. There are several

challenges in developing the identifiability of the polytomous responses models. Firstly, in

binary responses DINA models, the uncertainty of each item is charaterized by two item

parameters, whereas in polytomous responses models, each item generally involves more
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than two parameters. Therefore, polytomous responses models have more parameters to

identify, which makes its identifiability more challenging. What is more intricate is that the

dependency structure between these parameters is different from that of the binary response

models. This is because, in addition to accounting for dependencies across items, polytomous

models must also consider the dependency of parameters within a single item. Moreover,

the technical tool, T-matrix (Liu et al., 2013; Xu, 2017), which has been widely used in the

identifiability literature, is restricted to binary responses models currently, to our knowledge.

To address these challenges, we generalize the T-matrix framework to the more complex

polytomous model settings. Based on different dependency structure of the parameters of the

two models, the generalizations of the T-matrix for the two considered models (i.e., GPDINA

and sequential settings) are also different. In particular, there is a significant difference in

the structure of the T-matrix for Sequential DINA model, as compared to the T-matrix for

binary DINA models, since the sequential modeling introduces more complex and challenging

structure than the binary DINA case. With this powerful tool, we establish sufficient and

necessary conditions for the identifiability of the GPDINA and the Sequential DINA models.

Our proposed conditions ensure the identifiability and also specify the practical requirements

that the two models need to process to be identifiable. Through the duality of the DINA

and DINO models (Chen et al., 2015), the identifiability finding can be immediately applied

to the two models under the DINO setting. Moreover, our results not only extend many

existing results aimed at binary data to the polytomous case, but also shed light on the study

of more general polytomous CDMs, which cover the considered DINA models as submodels.

Practically, the sufficient and necessary condition solely depends on the Q-matrix structure,

and this easily verifiable requirement would serve as a practical guideline for developing
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cognitive tests that are both statistically valid and estimable.

The rest of the paper is organized as follows. Section 2 introduces the model setup

and brings up the definition of identifiability. Section 3 introduces a powerful tool T-matrix,

specific to the polytomous responses models and develops the identifiability results, examples

are also provided for illustration. Section 4 gives further discussion, and the supplementary

material provides the proofs for the main results.

2. Model Setup

Before we present our results, we first introduce some notations. Let ej = (0, . . . , 1, 0, . . . , 0)⊤

denote the vector where only the j-th entry is 1. Let 1 = (1, . . . , 1)⊤ denote the vector of all

ones and 0 = (0, . . . , 0)⊤ denote the vector of all zeros. Let IK denote the K-dimensional

identity matrix. For a positive integer m, we denote [m] = {1, . . . , m}. Let ◦ denote the

Hadamard product (element-wise product) of vectors. For instance, for a = (a1, . . . , am)
⊤

and b = (b1, . . . , bm)
⊤, a ◦ b = (a1b1, . . . , ambm)

⊤. Let ⊗ denote the Kronecker product

between matrices. For example, for c = (c1, . . . , cn)
⊤ ∈ R

n,

a⊗ c =




a1c

a2c

...

amc




∈ R
mn×1, a⊗ IK =




a1IK

a2IK

...

amIK




∈ R
mK×K .

Assume we have J polytomous items to measure K unobserved binary latent attributes,

and a binary latent attribute profile can be written as α = (α1, . . . , αK)
⊤, where αk ∈ {0, 1}.

So there are 2K attribute profiles in total. For j ∈ [J ], define positive integer Hj to be the
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number of non-zero categories (levels) the j-th polytomous item has, therefore, item j has

Hj + 1 categories in total, i.e., 0, 1, . . . , Hj. Accordingly, we define the observed random

variable response R = (R1, . . . , RJ)
⊤, with Rj ∈ {0, 1, . . . , Hj}, and denote the set of all

possible responses as S = {r = (r1, . . . rJ) : rj ∈ {0, 1, . . . , Hj}}.

In the CDM literature, the relationships between attributes and items are characterized

by the Q-matrix, which was proposed by Tatsuoka (1983). Different from CDMs with

binary responses, for polytomous responses, the interpretations of the entries in the Q-

matrix differ according to different modelings. In the following, we focus on two popular

models under the DINA assumption, the general polytomous diagnosis model (GPDINA) by

Chen and de la Torre (2018) and the Sequential DINA model by Ma and de la Torre (2016)

separately and introduce different ways of specifying the Q-matrix for polytomous CDMs.

2.1 The GPDINA model

In GPDINA (Chen and de la Torre, 2018) (the GPDM under the DINA assumption), for

models with J items and K attributes, we define a J × K binary Q-matrix. The entry

qjk of the Q-matrix is interpreted as follows: qjk = 1 means completing (responding) any

non-zero category of item j requires attribute k, and qjk = 0 means completing any non-zero

categories does not require attribute k. So the j-th row of the Q-matrix, qj, denotes the

attributes required to complete any non-zero categories for item j. Therefore, any non-zero

category of the same item requires the same attributes and shares the same q-vector. In

other words, non-zero categories of an item are indistinguishable, can be exchanged.

We consider the DINA assumption under the GPDINA framework. As in the DINA

model for binary data, we denote the ideal response ξj,α = I(α � qj). To further quantify
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the uncertainty of the responses, define the item parameters as:

θ+j,l := P (Rj = l | ξj,α = 1), l ∈ [Hj ], (1)

θ−j,l := P (Rj = l | ξj,α = 0), l ∈ [Hj ], (2)

where θ+j,l means the probability of completing category l of item j given the attribute profile

α is capable of completing it and θ−j,l means the probability of completing category l of item

j given the attribute profile α is not able to complete it. Then 1 − θ+j,l can be interpreted

as slipping parameter and θ−j,l interpreted as the guessing parameter (Junker and Sijtsma,

2001), and we assume that θ+j,l > θ−j,l for l ∈ [Hj] and j ∈ [J ]. As we can see, although

the attributes required by different categories of the same item are the same, here we allow

the response uncertainty to be heterogeneous, i.e., θ+j,l and θ−j,l can be different across l. So

in total we have 2
∑J

j=1Hj item parameters, and the multiplicity of the item parameters is

one of the aspects that makes polytomous responses models different from the binary DINA

models. For notation convenience, we also let

P (Rj = 0 | ξj,α = 1) = 1−

Hj∑

l=1

θ+j,l := θ+j,0, (3)

P (Rj = 0 | ξj,α = 0) = 1−

Hj∑

l=1

θ−j,l := θ−j,0. (4)

When qj = 0, ξj,α ≡ 1 for all α, then θ−j,l is not defined for all l ∈ [Hj ]. In the following

Proposition 1, we will show that excluding these zero q-vectors does not affect our analysis.

Let

θ+
j = (θ+j,1, θ

+
j,2, . . . θ

+
j,Hj

)⊤ and θ−
j = (θ−j,1, θ

−
j,2, . . . θ

−
j,Hj

)⊤,
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θ+ = (θ+
j )

J
j=1 and θ− = (θ−

j )
J
j=1, where there are

∑J

j=1Hj entries in both θ+ and θ−.

Denote pα as the proportion of attribute profile α in the population and p := (pα : α ∈

{0, 1}K)⊤, which satisfies
∑

α∈{0,1}K pα = 1, and we assume that pα > 0 for all α. Given

the attribute profile α, assume that a subject’s responses to the J items are independent.

For r = (r1, . . . , rJ)
⊤ ∈ S, we have

P (R = r | Q, θ+, θ−,p) =
∑

α∈{0,1}K

pα

J∏

j=1

(θ+j,rj)
ξj,α(θ−j,rj)

(1−ξj,α). (5)

We use the following example to further the illustration of the model setup.

Example 1. Suppose there are two polytomous items, each with two non-zero categories, so

then J = 2 and H1 = H2 = 2. Suppose only two attributes α1 and α2 are involved, and the

Q-matrix takes the following formula:

Q =




item 1

{

q1 = [1 0]

item 2

{

q2 = [0 1]




.

The dashline “- - -” is used to separate different items. Therefore, the first and the second

categories of the first item both require solely α1, and the first and the second categories of

the second item both require solely α2. In particular, attribute profile α = (1, 0) has ξ1,α = 1

and ξ2,α = 0. Thus,

P (R1 = 1 | α) = θ+1,1; P (R1 = 2 | α) = θ+1,2; P (R2 = 1 | α) = θ−2,1; P (R2 = 2 | α) = θ−2,2,

8



whereas for attribute profile α = (0, 1), ξ1,α = 0, ξ2,α = 1, and

P (R1 = 1 | α) = θ−1,1; P (R1 = 2 | α) = θ−1,2; P (R2 = 1 | α) = θ+2,1; P (R2 = 2 | α) = θ+2,2.

Therefore, attribute profile α = (1, 0) has higher probability of completing the two non-zero

categories of the first item but lower probability of completing the two non-zero categories of

the second item. Distributions for profiles with α = (1, 1) and α = (0, 0) can be similarly

obtained as well.

Under the above GPDINA model setup, the model parameters include (θ−, θ+,p). To

study the identifiability of these parameters, we formally introduce the definition in the

following, and we defer the identifiability result in Section 3.

Identifiability. We say that the GPDINA parameters are identifiable if there is no (θ̄
+
, θ̄

−
, p̄)

6= (θ+, θ−,p) such that

P (R = r | Q, θ+, θ−,p) = P (R = r | Q, θ̄
+
, θ̄

−
, p̄) for all r ∈ S. (6)

To simplify our discussion of the identifiability issue, we assume that qj 6= 0 for all j ∈ [J ]

without compromising the validity of the analysis, thanks to the following proposition.

Proposition 1. Let ∆ = {j ∈ [J ] : qj = 0} denote the set of items whose q-vectors are

zero, then the GPDINA model parameters with Q-matrix are identifiable if and only if the

GPDINA model parameters with Q−∆-matrix are identifiable, where Q−∆ is obtained by

removing the q-vectors in Q corresponding to the items in ∆.
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2.2 The Seqential DINA model

Another popular modeling approach for polytomous responses is the Sequential DINA model,

proposed by Ma and de la Torre (2016). In the Sequential DINA model with J items and K

attributes, we assume that the subject’s response to item j ∈ [J ], with Rj = 0 indicates that

the subject fails to complete the first category, and Rj = rj > 0 indicates that the subject has

completed categories 1, . . . , rj successfully and failed to complete category rj + 1. Rj = Hj

simply means the subject successfully completed all the categories. Therefore, categories

within one item are not exchangeable, and such ordered categories make it different from

the previous GPDINA model setup.

Due to the sequential hierarchy of the categories, different categories could require differ-

ent attributes. What’s worth noticing is that, though response categories are assumed to be

attained sequentially, there is no required structure for the attributes required by different

categories. For each item j, its different categories should have their corresponding q-vectors.

In Ma and de la Torre (2016), they refer such Q-matrix as restricted Q-matrix. As defined,

the polytomous item j has Hj non-zero categories, so for the associations between the at-

tributes and the polytomous item j, we have Hj rows in the Q-matrix to characterize such

information. With each row having K entries indicating which attributes are required by the

category, the Q-matrix can be summarized as a (
∑J

j=1Hj)×K binary matrix. Specifically,

we index the Q-matrix in the following way: for l ∈ [Hj ], we define the (j, l)-th row of the

matrix, qj,l, as a K dimensional binary vector indicating the association between the cate-

gory l of item j and the K attributes. According to our model construction, the qj,l vector

indicates the attributes required to complete category l of item j, given that the subject has

successfully completed the previous categories 1, . . . , l − 1. To further illustrate the model
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setup, we present an example in the following.

Example 2. Suppose there are two polytomous items with H1 = H2 = 2 and two attributes

α1 and α2, and

Q =




item 1





category 1 q1,1 = [1 0]

category 2 q1,2 = [0 1]

item 2





category 1 q2,1 = [0 1]

category 2 q2,2 = [1 1]




. (7)

Therefore, to complete the first category of the first item, a subject needs to require the first

attribute, and given that the subject has completed the first category, he/she needs to require

the second attribute to complete the second category of the first item.

Since different categories require different attributes, the ideal response needs to be

specified accordingly to different categories. We define the ideal response as ξj,l,α = I(α �

qj,l) for category l of item j. This is also different from the setup in GPDINA, for which we

only need to define item-wise ideal response. To quantify the uncertainty of the response to

different categories, we define the item parameters specific to the Sequential DINA model

as:

β+
j,l := P (Rj ≥ l | Rj ≥ l − 1, ξj,l,α = 1), l ∈ [Hj], (8)

β−
j,l := P (Rj ≥ l | Rj ≥ l − 1, ξj,l,α = 0), l ∈ [Hj], (9)

and we assume that 0 ≤ β−
j,l < β+

j,l ≤ 1. Note that the inequality β−
j,l < β+

j,l is assumed to

respect the monotonicity assumption of the latent attributes (Xu and Zhang, 2016), which

11



is also needed to avoid the label switching issue of the DINA model. Consequently, β−
j,l is

permitted to take on values within the range [0, 1) while β+
j,l can take on values within the

range (0, 1]. These parameters characterize the probability of completing category l of item

j given a subject with attributes α has completed the previous categories. Furthermore,

1 − β+
j,l can be interpreted as the slipping parameter and β−

j,l interpreted as the guessing

parameter (Junker and Sijtsma, 2001). Also notice that

P (Rj ≥ 0 | ξj,l,α = 1) = 1, l ∈ [Hj ],

P (Rj ≥ 0 | ξj,l,α = 0) = 1, l ∈ [Hj ],

and we let β+
j,Hj+1 = β−

j,Hj+1 = 0.

To see how these item parameters are related to the model setup in Ma and de la Torre

(2016), we formulate several concepts in their paper as the following. The processing function

Sj(l |α) in Ma and de la Torre (2016), which denotes the probability of completing category

l of item j provided that they have already completed category l − 1 successfully, given the

attribute profile α, can be written as

Sj(l |α) = (β+
j,l)

ξj,l,α(β−
j,l)

1−ξj,l,α = P (Rj ≥ l | Rj ≥ l − 1, α), l ∈ [Hj ].
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Let Sj(0 |α) = P (Rj ≥ 0 | α) = 1 and Sj(Hj + 1 |α) = 0. Then noticing that

P (Rj ≥ rj | α) =

rj∏

l=1

P (Rj ≥ l | Rj ≥ l − 1, α) · P (Rj ≥ 0 | α)

=

rj∏

l=1

Sj(l |α)

=

rj∏

l=1

(β+
j,l)

ξj,l,α(β−
j,l)

1−ξj,l,α ,

given the attribute profile α, the probability of Rj = rj can be written as

P (Rj = rj | α) = P (Rj ≥ rj | α)− P (Rj ≥ rj + 1 | α)

= [1− Sj(rj + 1 |α)]

rj∏

l=0

Sj(l |α).

Similar to GPDINA, when qj,l = 0, ξj,l,α ≡ 1 for all α, and then β−
j,l is not defined. We

will show later in Proposition 2 that excluding these categories with qj,l = 0 does not affect

our analysis. Note that when β−
j,l = 0 (qj,l is not necessarily 0), some model parameters

may not be well-defined. Suppose category l∗ is the first category in item j which appears

to have β−
j,l∗ = 0, i.e., β−

j,l > 0 for l < l∗. If we denote Γ−
j,l∗ := {α : ξj,l∗,α = 0} as the set

of attribute profiles that are not able to complete the l∗-th category of item j ideally, and if

the probability of guessing correctly category l∗ of item j is also 0, then there’s no way for

the subject to complete higher categories of item j. So we define for α ∈ Γ−
j,l∗,

β+
j,l = β−

j,l = 0, for l > l∗. (10)

Assume that a subject’s responses to the J items are conditionally independent given
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the attribute profiles. We let

β+
j =


β+

j,1, β
+
j,1β

+
j,2, . . .

Hj∏

l=1

β+
j,l


 and β−

j =


β−

j,1, β
−
j,1β

−
j,2, . . .

Hj∏

l=1

β−
j,l


 , for j ∈ [J ]

and β+ = (β+
1 ,β

+
2 , . . . ,β

+
J ), β

− = (β−
1 ,β

−
2 , . . . ,β

−
J ), then

P (R = r | Q,β+,β−,p) =
∑

α∈{0,1}K

pα

J∏

j=1

P (Rj = rj | α). (11)

The Sequential DINA model parameters consist of (β+,β−,p). Following the literature, we

formally define the identifiability for the Sequential DINA model in the following.

Identifiability. We say that the Sequential DINA model parameters are identifiable if

there is no (β̄
+
, β̄

−
, p̄) 6= (β+,β−,p) such that

P (R = r | Q,β+,β−,p) = P (R = r | Q, β̄
+
, β̄

−
, p̄) for all r ∈ S. (12)

Similar to GPDINA, in the following proposition, we show that excluding categories with

qj,l = 0 does not influence our analysis of the identifiability. Therefore, for simplicity, we

assume that qj,l 6= 0 for all l ∈ [Hj], j ∈ [J ] in this paper.

Proposition 2. Let ∆s = {(j, l) : qj,l = 0} denote the set of categories whose q-vectors are

zero, then the Sequential DINA model parameters with Q-matrix are identifiable if and only

if the Sequential DINA model parameters with Q−∆s-matrix are identifiable, where Q−∆s is

obtained by removing the q-vectors in Q corresponding to the categories in ∆s.
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2.3 Relationship between GPDINA and Sequential DINA models

In this section, we briefly discuss the relation between the GPDINA model and the Sequential

DINA model.

Fundamentally, GPDINA and Sequential DINA models differ by the hierarchy of the

categories of items. In GPDINA, different non-zero categories of the same item can be

exchanged and share the same q-vector. Whereas in Sequential DINA model, different non-

zero categories are generally not exchangeable and need to be completed sequentially, and

different non-zero categories are allowed to have arbitrarily different q-vectors. However,

when all the non-zero categories of an item share the same q-vector, the Sequential DINA

model becomes equivalent to GPDINA.

Formally, in Sequential DINA model, when qj,1 = . . . = qj,Hj
, such Q-matrix is referred

to as unrestricted Q-matrix (Ma and de la Torre, 2016), we have ξj,1,α = . . . = ξj,Hj,α for all

α and j ∈ [J ]. Under this Q-matrix, attribute profile α is either capable of completing all

the non-zero categories of an item or unable to complete any non-zero category. With these

constraints, such Q-matrix is also applicable to GPDINA, and we show that the two models

are equivalent by presenting a bijective mapping from the item parameters of GPDINA to the

parameters of the Sequential DINA model when the parameters are well-defined. Specifically,

for each item j ∈ [J ], we have the following relation between the two models’ parameters.

From Sequential DINA model to GPDINA:






P (Rj = l | ξj,α = 1) = θ+j,l = (1− β+
j,l+1)

∏l

h=1 β
+
j,h, for l ≥ 1;

P (Rj = l | ξj,α = 0) = θ−j,l = (1− β−
j,l+1)

∏l

h=1 β
−
j,h, for l ≥ 1.
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From GPDINA to Sequential DINA model:





P (Rj ≥ l |Rj ≥ l − 1, ξj,α = 1) = β+
j,l =

∑Hj

h=l θ
+
j,h∑Hj

h=l−1 θ
+
j,h

, for l ≥ 1;

P (Rj ≥ l |Rj ≥ l − 1, ξj,α = 0) = β−
j,l =

∑Hj

h=l θ
−
j,h∑Hj

h=l−1 θ
−
j,h

, for l ≥ 1.

By examining the above equations, it becomes apparent that there is a one-to-one corre-

spondence between the parameters of the two models, demonstrating the equivalence of the

two models under the considered Q-matrix constraints.

3. Identifiability

This section introduces our identifiability results for the GPDINA model and the Sequential

DINA model. To provide a foundation for these results, we first generalize the T-matrix, a

powerful tool in the literature to establish the identifiability of CDMs with binary responses

(Liu et al., 2013; Xu and Zhang, 2016; Xu, 2017), to polytomous models in Section 3.1. Since

the structure of the two polytomous models differ, the T-matrix generalizations also differ,

and we provide examples to illustrate this. We then formally present our identifiability

results for the two models in Sections 3.2 and 3.3, respectively.

3.1 Generalized T-matrix for CDMs with polytomous responses

Directly working on the equations (6) and (12) from the definitions of identifiability is chal-

lenging. Alternatively, we work on the marginal probability matrix, the T-matrix, firstly

introduced by Liu et al. (2013), which sets up a linear dependence between attribute distri-

bution and the response distribution. However, under the DINA model setting, most existing
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literature only focuses on the T-matrix for binary responses. For polytomous response DINA

models, there are more parameters involved for each item, and these parameters can not be

naively treated separately. Our aim in this section is to generalize this powerful T-matrix

tool to polytomous response models adjusted accordingly to the model setup.

3.1.1 T-matrix for GPDINA

The T-matrix for GPDINA T(θ+, θ−) is a
∏J

j=1(Hj +1) × 2K matrix, where the entries are

indexed by row index r ∈ S with rj ∈ {0, 1, . . . , Hj} and column index α ∈ {0, 1}K. The

r-th row and α-th column entry of T(θ+, θ−), denoted by tr,α(θ
+, θ−), is defined as

tr,α(θ
+, θ−) = P




⋂

j:rj 6=0

{Rj = rj} | Q, θ+, θ−,α



 =
∏

j:rj 6=0

P
(
Rj = rj | Q, θ+, θ−,α

)
.

When r = 0, t0,α(θ
+, θ−) = 1 for any α. When r = rj · ej ,

tr,α(θ
+, θ−) = P (Rj = rj | Q, θ+, θ−,α).

LetTr(θ
+, θ−) be the row vector in theT-matrix corresponding to r. Then for any r 6= 0, we

can write Tr(θ
+, θ−) = ◦

j:rj 6=0
Trj ·ej (θ

+, θ−), where ◦ is the element-wise product of the row

vectors. Since there exists a one-to-one mapping between Tr and P (R = r | Q, θ+, θ−,p)

for all r ∈ S, we may substitute the original identifiability problem with an equivalent

statement as follows.

Lemma 1. Following the definition in (6) and letting the attribute α index of p be consistent

with the α index in T, the GPDINA parameters are identifiable if and only if there is no
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(θ̄
+
, θ̄

−
, p̄) 6= (θ+, θ−,p) such that

Tp = T̄p̄. (13)

To illustrate the construction of the T-matrix, we provide an example in the following.

Example 3. For the Q-matrix given in Example 1, the T-matrix for this Q-matrix is

T =




α : (0, 0) (1, 0) (0, 1) (1, 1)

Tr=(0,0) 1 1 1 1

Tr=(1,0) θ−1,1 θ+1,1 θ−1,1 θ+1,1

Tr=(2,0) θ−1,2 θ+1,2 θ−1,2 θ+1,2

Tr=(0,1) θ−2,1 θ−2,1 θ+2,1 θ+2,1

Tr=(0,2) θ−2,2 θ−2,2 θ+2,2 θ+2,2

Tr=(1,1) θ−1,1θ
−
2,1 θ+1,1θ

−
2,1 θ−1,1θ

+
2,1 θ+1,1θ

+
2,1

Tr=(2,1) θ−1,2θ
−
2,1 θ+1,2θ

−
2,1 θ−1,2θ

+
2,1 θ+1,2θ

+
2,1

Tr=(1,2) θ−1,1θ
−
2,2 θ+1,1θ

−
2,2 θ−1,1θ

+
2,2 θ+1,1θ

+
2,2

Tr=(2,2) θ−1,2θ
−
2,2 θ+1,2θ

−
2,2 θ−1,2θ

+
2,2 θ+1,2θ

+
2,2




,

where Tr=(1,1) = Tr=(1,0)◦Tr=(0,1), Tr=(2,1) = Tr=(2,0)◦Tr=(0,1), Tr=(1,2) = Tr=(1,0)◦Tr=(0,2),

Tr=(2,2) = Tr=(2,0) ◦ Tr=(0,2). We can see that the T-matrix’s structure is the same as the

classic T-matrix for binary DINA model, where the entries of the T-matrix involve at most

two parameters.

3.1.2 T-matrix for Sequential DINA model

Similarly, we generalize the T-matrix for the Sequential DINA model. However, due to the

special structure of the Sequential DINA model, the generalization of the T-matrix here is
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slightly different from the literature, which we denote as Ts-matrix, where the “s” stands for

Sequential DINA model. Let the entries of Ts-matrix Ts(β+,β−) be indexed by row index

r ∈ S and column index α ∈ {0, 1}K. The r-th row and α-th column entry of Ts(β+,β−),

denoted by ts
r,α(β

+,β−), is defined as

ts
r,α(β

+,β−) = P




⋂

j:rj 6=0

{Rj ≥ rj} | Q,β+,β−,α




=
∏

j:rj 6=0

P
(
Rj ≥ rj | Q,β+,β−,α

)

=
∏

j:rj 6=0

rj∏

l=1

(β+
j,l)

ξj,l,α(β−
j,l)

1−ξj,l,α .

Apparently, ts
0,α(β

+,β−) = 1 for any α. When r = rj · ej ,

tsrj ·ej ,α(β
+,β−) = P (Rj ≥ rj | Q,β+,β−,α) =

rj∏

l=1

(β+
j,l)

ξj,l,α(β−
j,l)

1−ξj,l,α .

Let Ts
r
(β+,β−) be the row vector in the Ts-matrix corresponding to r. Then for any

r 6= 0, we can write Ts
r
(β+,β−) = ◦

j:rj 6=0
Ts

rj ·ej
(β+,β−). Similarly, due to the one-to-one

mapping between Ts
r
and P (R ≥ r | Q, θ+, θ−,p) for all r ∈ S, we may substitute the

original identifiability problem using the Ts-matrix technique, we state this consequence in

the following lemma.

Lemma 2. Following the definition in (12) and letting the attribute α index in p be con-

sistent with the α index in T, the Sequential DINA model parameters are identifiable if and

only if there is no (β̄
+
, β̄

−
, p̄) 6= (β+,β−,p) such that

Tsp = T̄sp̄. (14)
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In the following, we present the Ts-matrix for the model given in Example 2. Due to the

unique structure of the Sequential DINA model, the Ts-matrix is designed in a very different

way from a standard T-matrix for the DINA model.

Example 4. For the Q-matrix given in Example 2, the Ts-matrix for this Q-matrix is

Ts =




α : (0, 0) (1, 0) (0, 1) (1, 1)

Ts
r=(0,0) 1 1 1 1

Ts
r=(1,0) β−

1,1 β+
1,1 β−

1,1 β+
1,1

Ts
r=(2,0) β−

1,1β
−
1,2 β+

1,1β
−
1,2 β−

1,1β
+
1,2 β+

1,1β
+
1,2

Ts
r=(0,1) β−

2,1 β−
2,1 β+

2,1 β+
2,1

Ts
r=(0,2) β−

2,1β
−
2,2 β−

2,1β
−
2,2 β+

2,1β
−
2,2 β+

2,1β
+
2,2

Ts
r=(1,1) β−

1,1β
−
2,1 β+

1,1β
−
2,1 β−

1,1β
+
2,1 β+

1,1β
+
2,1

Ts
r=(2,1) β−

1,1β
−
1,2β

−
2,1 β+

1,1β
−
1,2β

−
2,1 β−

1,1β
+
1,2β

+
2,1 β+

1,1β
+
1,2β

+
2,1

Ts
r=(1,2) β−

1,1β
−
2,1β

−
2,2 β+

1,1β
−
2,1β

−
2,2 β−

1,1β
+
2,1β

−
2,2 β+

1,1β
+
2,1β

+
2,2

Ts
r=(2,2) β−

1,1β
−
1,2β

−
2,1β

−
2,2 β+

1,1β
−
1,2β

−
2,1β

−
2,2 β−

1,1β
+
1,2β

+
2,1β

−
2,2 β+

1,1β
+
1,2β

+
2,1β

+
2,2




where Ts
r=(1,1) = Ts

r=(1,0) ◦ Ts
r=(0,1), Ts

r=(2,1) = Ts
r=(2,0) ◦ Ts

r=(0,1), Ts
r=(1,2) = Ts

r=(1,0) ◦

Ts
r=(0,2), and Ts

r=(2,2) = Ts
r=(2,0) ◦T

s
r=(0,2).

Unlike the T-matrix for GPDINA, the entries of the Ts-matrix for the Sequential DINA

model usually involve more than two parameters, making identifying them technically more

challenging. For instance, Ts
r=(2,2) in the Sequential DINA model has four parameters in each

entry, whereas Tr=(2,2) in GPDINA only has two parameters in each entry. The following

sections give a more detailed discussion of the identifiability issue.
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3.2 Identifiability of the GPDINA model

In this section, we develop the sufficient and necessary condition for the identifiability of the

GPDINA model. To begin with, we introduce the terminology “completeness” for Q-matrix,

which was firstly proposed by Chiu et al. (2009). A Q-matrix is said to be complete if it can

differentiate all latent attribute profiles. Under the DINA model with binary responses, it

requires that for each attribute, there exists some item requiring solely that attribute, that

is, a complete Q-matrix must contain an identity matrix IK up to some row permutations,

which can be written as

Q =




IK

Q∗




J×K

. (15)

Similar to the binary response case (Xu and Zhang, 2016), the completeness of the Q-matrix

is necessary for the identifiability of the population proportion parameter p. Additionally,

each attribute must be required by a certain amount of items, and formally we state these

conditions as follows.

Condition C1. The Q-matrix must be complete, taking the form (15).

Condition C2. Each of the K attributes is required by at least three items.

Condition C3. Any two different columns of the sub-matrix Q∗ in (15) are distinct.

Theorem 1. Conditions C1-C3 are sufficient and necessary for the identifiability of the

parameters of the GPDINA model.

Remark 1. When Hj = 1 for all j ∈ [J ], the model is reduced to binary DINA model, and

the result we develop here is consistent with the result in Gu and Xu (2019b).
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Remark 2. While the identifiability conditions are the same as those for the DINA model

with binary responses Gu and Xu (2019b), we would like to emphasize several significant

distinctions. In the case of the DINA model with binary responses, the uncertainty of each

item is characterized by two parameters – the slipping and guessing parameters. In contrast,

the GPDINA model with polytomous responses introduces more than two parameters for each

item, significantly complicating the models and rendering the study of identifiability more

challenging. In particular, as discussed in Section 3.1, one crucial theoretical tool commonly

employed in the literature to investigate the identifiability of the DINA model is the T-

matrix, which is primarily designed for binary response models (Xu, 2027; Gu and Xu, 2019).

However, when extending our focus to the polytomous response scenario such as the GPDINA

model, it cannot be directly applied and a generalization of this tool becomes necessary. The

first contribution of our work, detailed in Section 3.1, lies in this generalization, extending

the applicability of these analytical techniques to a broader class of cognitive diagnosis models.

Moreover, with the newly developed T-matrix tool, significant efforts and new techniques are

involved in the establishment of our new results. From the sufficient condition perspective,

although conditions C1-C3 are also the counterparts of those of the DINA model, it is not

immediately evident if these conditions, transposed from the binary model, are still capable of

capturing the complexity and ensuring the identifiability of the more parameter-rich GPDINA

model. Addtionally, from the necessary condition perspective, evaluating the necessity of

conditions C1-C3 for the GPDINA model is more challenging than that of the DINA model

with binary responses, due to the increased complexity of the GPDINA model, as illustrated

in the following example and our proof of the theorem.

The completeness of the Q-matrix is necessary for the identifiability of the population
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proportion parameters, which follows from a similar argument as the binary DINA model

(Gu and Xu, 2019b). See our proof in Supplementary Material for more details. To illustrate

the necessity of the second condition C2 and the third condition C3, we consider a simple

case when K = 2 in the following example.

Example 5. We illustrate the necessity of the conditions C2 and C3 with an example with

K = 2. We first consider the necessity of the second condition. Suppose the Q-matrix

is complete, but does not satisfy condition C2. i.e., there exists some attribute which is

required by at most two items. Without loss of generality (WLOG), assume that this is the

first attribute. According to Proposition 1, qj 6= 0 for all j ∈ [J ], so the Q-matrix can be

written as one of the following:

Q =




1 0

1 0

0 1

...
...

0 1




J×2

or Q =




1 0

1 1

0 1

...
...

0 1




J×2

, (16)

where the dashline “- - -” indicates the separation of different items. For simplicity, we

may assume that the Q-matrix takes the first formula. The case when the Q-matrix takes

the other formula can be similarly obtained. So then only the first and the second item

require α1. Under this Q-matrix, we show that the model parameters (θ+, θ−,p) are not

identifiable by constructing a set of parameters (θ̄
+
, θ̄

−
, p̄) 6= (θ+, θ−,p) which satisfy (6).

Take θ̄
+

= θ+ and θ̄
−
j = θ−

j for j > 2, and p̄(11) + p̄(01) = p(11) + p(01). Next we show

that the remaining parameters (θ−
1 , θ

−
2 , p(00), p(01), p(10)) are not identifiable. Using the T-
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matrix tool, it can be shown that the non-identifiability occurs if the following equations

hold: P
(
(R1, R2) = (r1, r2) | Q, θ̄

+
, θ̄

−
, p̄

)
= P

(
(R1, R2) = (r1, r2) | Q, θ+, θ−,p

)
for all

r1 ∈ {0, 1, . . .H1}, r2 ∈ {0, 1, . . . , H2}, where (R1, R2) are the first two entries of the random

response R. These equations can be further expressed as the following equations:





p̄(00) + p̄(10) + p(01) + p(11) = p(00) + p(10) + p(01) + p(11);

θ̄−1,l1 [p̄(00) + p̄(01)] + θ+1,l1 [p̄(10) + p̄(11)] = θ−1,l1 [p(00) + p(01)] + θ+1,l1 [p(10) + p(11)];

θ̄−2,l2 [p̄(00) + p̄(01)] + θ+2,l2 [p̄(10) + p̄(11)] = θ−2,l2 [p(00) + p(01)] + θ+2,l2 [p(10) + p(11)];

θ̄−1,l1 θ̄
−
2,l2

[p̄(00) + p̄(01)] + θ+1,l1θ
+
2,l2

[p̄(10) + p̄(11)] = θ−1,l1θ
−
2,l2

[p(00) + p(01)] + θ+1,l1θ
+
2,l2

[p(10) + p(11)];

(17)

where l1 ∈ [H1], l2 ∈ [H2]. Then there are (1 +H1 +H2 +H1H2) equations above in total.

If we further let some κ ∈ (0, 1) s.t.




θ−1,l1

θ̄−1,l1

θ+1,l1

θ̄+1,l1




= κl1−1




θ−1,1

θ̄−1,1

θ+1,1

θ̄+1,1




, and




θ−2,l2

θ̄−2,l2

θ+2,l2

θ̄+2,l2




= κl2−1




θ−2,1

θ̄−2,1

θ+2,1

θ̄+2,1




for l1 ∈ [H1], l2 ∈ [H2], (18)
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then equations (17) can be reduced to four equations






p̄(00) + p̄(10) + p(01) + p(11) = p(00) + p(10) + p(01) + p(11);

θ̄−1,1[p̄(00) + p̄(01)] + θ+1,1[p̄(10) + p̄(11)] = θ−1,1[p(00) + p(01)] + θ+1,1[p(10) + p(11)];

θ̄−2,1[p̄(00) + p̄(01)] + θ+2,1[p̄(10) + p̄(11)] = θ−2,1[p(00) + p(01)] + θ+2,1[p(10) + p(11)];

θ̄−1,1θ̄
−
2,1[p̄(00) + p̄(01)] + θ+1,1θ

+
2,1[p̄(10) + p̄(11)] = θ−1,1θ

−
2,1[p(00) + p(01)] + θ+1,1θ

+
2,1[p(10) + p(11)].

(19)

For any (θ+, θ−,p), there are 4 constraints in (19) but 5 parameters (θ̄−1,1, θ̄
−
2,1, p̄(00), p̄(10), p̄(01))

to solve. Therefore there are infinitely many solutions and (θ+, θ−,p) are non-identifiable.

As for the case when the Q-matrix takes the other formula, the proof can be easily obtained

with minor change of notation.

Next we prove the necessity of the third condition C3. Suppose the Q-matrix is complete,

according to Proposition 1, we may assume that the Q-matrix has the following form up to

some permutation:

Q =




I2

1J−2 1J−2




J×2

. (20)

Take θ̄
+

= θ+ and θ̄
−
j = θ−

j for j > 2, and p̄(11) = p(11). Next we show the remaining

parameters (θ−
1 , θ

−
2 , p(00), p(10), p(01)) are not identifiable. Using the T-matrix tool, again we

can show that the non-identifiability occurs if the following equations hold: P
(
(R1, R2) =

(r1, r2) | Q, θ̄
+
, θ̄

−
, p̄

)
= P

(
(R1, R2) = (r1, r2) | Q, θ+, θ−,p

)
for all r1 ∈ {0, 1, . . .H1},

r2 ∈ {0, 1, . . . , H2}, where (R1, R2) are the first two entries of the random response R.

These equations can be further expressed into (1 + H1 + H2 + H1H2) equations similar to

equations (17) with minor notation modification. Similarly, if we further let some κ ∈ (0, 1)

s.t. equations (18) hold, then these equations can be reduced to only four equations.

For any (θ+, θ−,p), there are four constraints but five parameters (θ̄−1,1, θ̄
−
2,1, p̄(00), p̄(10), p̄(01))

to solve. Therefore there are infinitely many solutions and (θ+, θ−,p) are non-identifiable.
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Thus we have shown that that the conditions C2 and C3 are indeed necessary. For the proofs

of more general cases and the sufficiency of the conditions, see Supplementary Material for

more details.

3.3 Identifiability of the Sequential DINA model

To study the identifiability of the Sequential DINA model, different techniques need to be

developed. From the discussion in Sections 3.1 and 3.2, the structure of the Ts-matrix for the

Sequential DINA model is different from the T-matrix defined for the GPDINA model, since

the rows of the Ts-matrix of Sequential DINA corresponding to higher response categories

generally involve more than two item parameters, making it different from the usual DINA

model structure.

To address this issue, note that

Ts
ej

= P (Rj ≥ 1 | Q,β+,β−,α) = (β+
j,1)

ξj,1,α(β−
j,1)

1−ξj,1,α (21)

only involves two parameters β+
j,1 and β−

j,1, which has a similar algebraic structure to that

for the DINA model with binary responses, and thus working on these parameters firstly

would be a good strategy to consider. The focus of these quantities can be interpreted

as follows: consider “binary” responses of the form I(item j ≥ 1), the Sequential DINA

model is then reduced to a binary DINA model. According to equation (21), the uncertainty

parameters for this model are {β+
j,1, β

−
j,1}j∈[J ]. The corresponding T-matrix for this reduced

model consists of exactly vectors
(
Ts

ej

)
j∈[J ]

and their element-wise products. That is, let

T1 denote the T-matrix for the reduced model (here we compress the notation “s” in Ts),

26



which is a submatrix of Ts-matrix, then

T1 =

(
ij
◦

l=i1
Ts

el

)
for i1 < . . . < ij , j ∈ [J ].

Furthermore, let Q1 denote the submatrix of the Q-matrix for the first category of each

item, i.e., Q1 = (qj,1)j∈J . Then the Q-matrix for the above reduced model is Q1, as only the

attributes required for completing the first categories are in scope. For notation convenience,

we let Q1
1:K denote the submatrix of the Q1-matrix that consists of the q-vectors for the first

categories of the first K items, and Q1
K+1:J denote the submatrix of Q1 that consists of the

q-vectors for the first categories of items (K + 1), . . . , J , i.e.,

Q1 =




Q1
1:K

Q1
K+1:J


 .

To better illustrate this idea, we present an example in the following.

Example 6. The Q1-matrix and the T1-matrix for the reduced model of Example 2 are:

Q1 =



1 0

0 1


 , T1 =




α : (0, 0) (1, 0) (0, 1) (1, 1)

T1
r=(0,0) 1 1 1 1

T1
r=(1,0) β−

1,1 β+
1,1 β−

1,1 β+
1,1

T1
r=(0,1) β−

2,1 β−
2,1 β+

2,1 β+
2,1

T1
r=(1,1) β−

1,1β
−
2,1 β+

1,1β
−
2,1 β−

1,1β
+
2,1 β+

1,1β
+
2,1




,

where T1
r=(1,1) = T1

r=(1,0) ◦T
1
r=(0,1).

It turns out that the first category of each item plays a crucial role in the identifiability

27



of the Sequential DINA model. Provided the first categories of the items are informative

enough, based on the identifiability results for the DINA model with binary responses, we can

identify the item parameters of the first categories and the population proportion parameters.

More interestingly, we can show that the item parameters of the other categories can be

identified based on these identified parameters without additional requirements. Motivated

by this, we have the following sufficient condition for the identifiability of the Sequential

DINA model.

Theorem 2. The Sequential DINA model parameters are identifiable if the Q1 matrix sat-

isfies the following conditions S1-S3.

Condition S1. Q1-matrix is complete, i.e., under some permutation, Q1
1:K = IK.

Condition S2. Each of the K attributes is required by at least three items’ first categories.

Condition S3. Suppose Q1
1:K = IK, then any two different columns of Q1

K+1:J are distinct.

Remark 3. Conditions S1-S3 are similar to conditions C1-C3, with different target. S1-

S3 are stated for Q1-matrix in the Sequential DINA model, whereas C1-C3 are stated for

Q-matrix in GPDINA. When Hj ≡ 1, both polytomous models are reduced to binary DINA

model, and conditions C1-C3 are equivalent to S1-S3.

The conditions S1-S3, as sufficient conditions for identifying the Sequential DINA model,

provide guidelines for practitioners to designQ-matrix that validates identifiability. Based on

the theorem, it is suggested to design Q-matrix with informative first categories (satisfying

S1-S3) to ensure identifiability.

On the other hand, sufficient these conditions are, their requirements only rely on the

model’s first categories. With polytomous response data involving more categories, it is
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natural to ask whether other categories can aid in relaxing these conditions. It turns out

that relaxing these conditions necessitates careful consideration. In the following, we examine

the necessity of each condition, and our primary finding is that while these conditions are

challenging to relax, with certain constraints that allow for other informative categories to

help, they might be possible to be relaxed. The finding that these conditions are challenging

to relax comes from the intrinsic sequential structure of the model. Specifically, we will

show that condition S1 can not be relaxed and conditions S2 and S3 are hard to relax as

non-identifiable examples do exist with the absence of these conditions.

Our first claim is that without additional constraints, the first condition S1 can not be

relaxed, i.e., S1 is necessary.

Proposition 3 (Necessity of Condition S1). Condition S1 is necessary for the identifiability

of the parameters of the Sequential DINA model.

For the convenience of the following discussion, we present the proof of Proposition 3 below.

Proof of Proposition 3. Suppose that the Q-matrix does not satisfy condition S1, i.e., Q1 is

not complete, then there exists some attribute that is not solely required by any item’s first

category. WLOG, assume that this is the first attribute, and thus any item’s first category

that requires the first attribute also requires some other attributes. We claim that the

model parameters are not identifiable for such an incomplete Q1-matrix. Specifically, take

β−
j,1 ≡ 0, for j ∈ [J ]. Then subjects with attribute profiles 0 and e1 are not able to complete

the first categories of all the items. Since β−
j,1 ≡ 0, according to the model construction in

Section 2.2, subjects with 0 and e1 cannot complete the other categories either, and for 0 and

e1, β
+
j,l ≡ β−

j,l ≡ 0 for l > 1. Therefore, the two profiles p0 and pe1 share the same probability

of completing all the categories of all the items, which is zero, i.e., tr,0 = tr,e1 ≡ 0, ∀r. Thus,
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parameters p0 and pe1 are not identifiable.

In the above proof, we constructed a Sequential DINA model with β−
j,1 ≡ 0 so that the

parameters of higher categories are defined to be zero for attribute profiles 0 and e1. Note

that the identifiability definition requires any set of the parameters in the parameter space

to be identifiable. With the model parameters space including 0 ≤ β−
j,l < β+

j,l ≤ 1, in the

proof of Proposition 3, showing the nonidentifiability of the case β−
j,1 = 0 would be enough

to establish our claim on the necessity of the completeness condition.

However, this example is tender and may no longer be valid if we add additional con-

straints for the model parameters, that is, we only focus on the identifiability of a subset of

the model parameters space. For instance, if we restrict our model parameters to the subset

0 < β−
j,l < β+

j,l ≤ 1, then the necessity of S1 may not hold anymore. This is because by

constraining 0 < β−
j,l < β+

j,l ≤ 1, we allow more categories to help identifying the parameters.

The following gives an example of the model with identifiable parameters whose Q-matrix

does not satisfy condition S1 under the assumption that 0 < β−
j,l < β+

j,l ≤ 1.

Example 7. Assume that 0 < β−
j,l < β+

j,l ≤ 1, and consider the case when K = 2 where the
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Q-matrix takes the following form:

Q =




item1





1 1

0 1

item2

{

1 1

item3

{

1 1

item4

{

1 0

item5

{

1 0

item6

{

1 0




and Q1 =




1 1

1 1

1 1

1 0

1 0

1 0




. (22)

Clearly, the Q1-matrix does not satisfy the completeness condition, but the model parameters

with this Q-matrix are identifiable, whose proof is presented in the Supplementary Material.

Remark 4. Through the above analysis, we can see that condition S1 is necessary in a strict

sense, which may impose overly stringent requirements for practical cognitive diagnostic tests.

Statistically, “strict sense” in this context refers to the standard identifiability definition

of the model parameters that requires any set of the parameters in the parameter space to

be identifiable (Gu and Xu, 2020). Contrary to the notion of strict identifiability is the

notion of generic identifiability (Allman et al., 2009; Gu and Xu, 2020), where we allow

for non-identifiability to happen within a zero-measure set. This slightly weaker notion can

often suffice for real data analysis purposes (Allman et al., 2009; Gu and Xu, 2020) and is

therefore useful in practice. The extent to which our necessary conditions can be relaxed for

generic identifiability of the Sequential DINA model needs further explorations in the future,
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and the above case with β−
j,l = 0 in the Sequential DINA model is one of such example.

Next we study the necessity of conditions S2 and S3. It turns out that the analysis for

conditions S2 and S3 is more complicated. We start by presenting two examples to illustrate

that.

Example 8. Consider the case when K = 2 with two attributes α1 and α2, J = 4 items,

and the Q-matrix takes the following form:

Q =




item 1

{

1 0

item 2

{

0 1

item 3

{

0 1

item 4





1 1

1 0




and Q1 =




1 0

0 1

0 1

1 1




. (23)

The above Q-matrix satisfies conditions S1 and S3, but does not satisfy condition S2, and

the model parameters are not identifiable.

Example 9. Consider the case when K = 2 with two attributes α1 and α2, J = 4 items,
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and the Q-matrix takes the following form:

Q =




item 1

{

1 0

item 2

{

0 1

item 3






1 1

1 0

item 4

{

1 1




and Q1 =




1 0

0 1

1 1

1 1




. (24)

The above Q-matrix satisfies conditions S1 and S2, but does not satisfy condition S3, and

the model parameters are not identifiable.

We defer the proofs of the non-identifiability of the above two examples in Supplementary

Material. The preceding examples illustrate the difficulty in relaxing conditions S2 and S3,

even in simple cases such as J = 4 and K = 2, where non-identifiable examples exist when

these conditions are violated. For more general cases, relaxing these conditions could be

even more challenging.

However, the existence of these examples does not necessarily mean that conditions S2

and S3 are always necessary. In fact, we construct two identifiable examples that do not

satisfy conditions S2 and S3 in the following, which indicates that conditions S2 and S3 may

not be necessary in general. The identifiability of the following two examples relies on other

additional categories, which carry relevant information in place of the first categories. This is

also aligned with intuition, as we expect other categories to contribute to the identification

of the model parameters. In other words, with the help of other categories, the model

parameters could possibly be identified.
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Example 10. Consider the case when K = 2 with two attributes α1 and α2, and J = 4

items. Each item contains two categories and the Q-matrix takes the following form:

Q =




item 1






1 0

0 1

item 2





1 0

0 1

item 3





0 1

1 0

item 4





0 1

1 0




and Q1 =




1 0

1 0

0 1

0 1




. (25)

The above Q1 matrix does not satisfy the condition S2, yet the model parameters are identi-

fiable, whose proof is deferred to the Supplementary Material.

Remark 5. Condition S2 assumes each attribute is required by three items’ first categories.

In the above example, both attributes α1 and α2 are required by only two items’ first cate-

gories, yet the two attributes are also required by the second categories of other items, which

provides additional information and eventually makes the model parameters identifiable. This

suggests that the information provided by higher categories would also be helpful for the model

identifiability.

Similarly, as illustrated in the following example, the role of the first category in condition

S3 could also be replaced by other categories, which may make the model identifiable as well.
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Example 11. Consider the case when K = 2 with two attributes α1 and α2, and J = 5

items, and the Q-matrix takes the following form:

Q =




item 1





1 0

0 1

item 2





0 1

1 0

item 3

{

1 1

item 4

{

1 1

item 5

{

1 1




and Q1 =




1 0

0 1

1 1

1 1

1 1




.

The above Q1 matrix does not satisfy the condition S3, yet the model parameters are identi-

fiable, whose proof is presented in the Supplementary Material.

While the above two examples imply that the conditions S2 and S3 may not be necessary

for the identifiability of the parameters for the Sequential DINA model, the following weaker

versions of S2 and S3 (denoted as conditions S2∗ and S3∗) are necessary for the model

identifiability. This proposition is summarized as follows.

Proposition 4 (Necessity of Conditions S2∗ and S3∗). The Sequential DINA model param-

eters are identifiable only if the Q-matrix satisfies the following conditions S2∗ and S3∗.

Condition S2∗ Each of the K attributes is required by at least three categories (not nec-

essarily the first categories), and the three categories must come from at least two different

items.
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Condition S3∗ Suppose Q-matrix satisfies S1, i.e., Q1
1:K = IK, and any two different

columns of the following matrix (which removes the identity matrix of Q1
1:K from Q)




Q−1
1:K

QK+1:J




are distinct, where Q−1
1:K denotes the remaining submatrix of Q1:K after removing Q1

1:K .

We can see that conditions S2 and S3 are stronger versions of S2∗ and S3∗, which means

that any Q-matrix satisfying condition S2 (S3) will satisfy condition S2∗ (S3∗). We can

also see that the two identifiable models in Example 10 and Example 11 that do not satisfy

conditions S2 and S3 both satisfy condition S2∗ and condition S3∗. For instance, the Q-

matrix in Example 10, does not satisfy condition S2 since there are only two items’ first

categories require α1 and only two items’ first categories require α2. However, it does satisfy

condition S2*, since there are two other items’ second categories require α1 and other two

items’ second categories require α2. Similarly, the Q-matrix in Example 11, not satisfying

condition S3, does satisfy condition S3*, as the second category of the first item requires

only α2 and the second category of the second item requires only α1.

In summary, from the above discussions, we conclude that the sufficient conditions S1-

S3 are challenging to relax. Specifically, condition S1 can not be relaxed unless additional

constraints are imposed. While conditions S2 and S3 are also difficult to relax, we found

that other categories may assist in identifying the parameters.

In spite of the fact that the sufficient condition and the necessary condition proposed

in this section are different, filling the gap is not an easy task, as the model structure is

more subtle and the interactions between parameters are more complex. For instance, the
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Ts-matrix structure is different from the T-matrix structure for the binary DINA model

except for the first categories. The Ts
r
-vectors for higher categories behave more similar to

the Tr-vectors for G-DINA model (de la Torre, 2011), as the uncertainty for these categories

are characterized by more than two parameters. Therefore, to study the identifiability of the

Sequential DINA model requires more techniques beyond the DINA setting.

4. Data Examples

In this section, we demonstrate the application of our proposed results by examining two

educational assessment datasets: a PISA 2000 reading assessment dataset using the GPDINA

model (Chen and de la Torre, 2018) and a TIMSS 2007 fourth-grade mathematics assessment

dataset using the Sequential DINA model (Ma and de la Torre, 2016).

Identifiability of the GPDINA model: a PISA 2000 data example. We con-

sider a dataset from the PISA 2000 reading assessment, which was previously studied in

Chen and de la Torre (2018). This assessment, released by the OECD (1999, 2006), com-

prised both polytomous and binary items. The dataset for this application comprises re-

sponses from 1,039 English examinees to 20 specific items from a designated test booklet.

Out of these 20 items, five are polytomous. Following Chen and de la Torre (2018), the

attribute definitions for the PISA dataset are given in Table 1 and the Q-matrix for this

application is presented in Table 2. Since in the GPDINA model, different categories within

the same item share the same q-vectors, it suffices to provide one q-vector for each item.

According to our Theorem 1, thisQ-matrix does not contain an identity matrix, and thus

the model parameters are not identifiable. Specifically, since the matrix does not contain
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Table 1: Attribute Definitions for the PISA data (Chen and de la Torre, 2018)

Symbol Description
c Number of categories
α1 Retrieving information
α2 Forming a broad general understanding
α3 Developing an interpretation
α4 Reflecting on and evaluating the content of a text
α5 Reflecting on and evaluating the form of a text

Table 2: Items and Q-matrix for the PISA data (Chen and de la Torre, 2018)

No. Item Code c α1 α2 α3 α4 α5 No. Item Code c α1 α2 α3 α4 α5

1 R040Q02 2 1 0 1 0 0 11 R088Q04T 3 1 0 1 0 0
2 R040Q03A 2 1 0 1 1 0 12 R088Q05T 2 0 1 1 1 0
3 R040Q04 2 0 1 1 1 0 13 R088Q07 2 0 1 0 0 1
4 R040Q06 2 1 0 1 0 0 14 R216Q01 2 0 1 0 0 0
5 R077Q03 3 0 1 0 1 1 15 R216Q02 2 1 0 0 0 1
6 R077Q04 2 1 1 1 0 0 16 R216Q03T 2 0 1 1 0 0
7 R077Q05 3 0 1 1 1 0 17 R216Q04 2 0 1 1 0 0
8 R077Q06 2 0 1 0 0 1 18 R216Q06 2 0 1 0 1 0
9 R088Q01 2 0 1 1 0 0 19 R236Q01 2 1 0 1 0 0
10 R088Q03 3 1 0 1 0 0 20 R236Q02 3 0 0 1 1 0

e⊤
1 , e

⊤
3 , e

⊤
4 and e⊤

5 , attribute profiles 0, e1, e3, e4 and e5 have the same conditional response

distributions. Therefore, the parameters p0, pe1, pe3 , pe4 and pe5 can not be identified.

Identifiability of the Sequential DINA model: a TIMSS 2007 data example. We

consider the dataset in Ma and de la Torre (2016), which is derived from booklets 4 and 5

of the TIMSS 2007 fourth-grade mathematics assessment. This subset, originally utilized

by Lee et al. (2011), includes responses from 823 students to 12 items, which are linked to

eight of the original 15 attributes. Notably, items 3 and 9 are constructed-response items

scored polytomously across three response categories (0, 1, and 2). The dataset also features

items like 7a and 7b which, due to their heavy interdependence, can be treated as a single

polytomous item. We consider the Sequential DINA model in this example. Following
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Ma and de la Torre (2016), the attribute definitions for the TIMSS data are given in Table

3 and the Q-matrix is in Table 4. The corresponding Q1-matrix is also presented below.

Table 3: Attribute definitions for TIMSS 2007 data (Ma and de la Torre, 2016)

Attribute Description
α1 Representing, comparing, and ordering whole numbers as well as

demonstrating knowledge of place value
α2 Recognizing multiples, computing with whole numbers using the

four operations, and estimating computations
α3 Solving problems, including those set in real-life contexts
α4 Finding the missing number or operation and modelling simple sit-

uations involving unknowns in number sentence or expression
α5 Describing relationships in patterns and their extensions; generat-

ing pairs of whole numbers by a given rule and identifying a rule
for every relationship given pairs of whole numbers

α6 Reading data from tables, pictographs, bar graphs, and pie charts
α7 Comparing and understanding how to use information from data
α8 Understanding different representations and organizing data using

tables, pictographs, and bar graphs

Q1 =




1 1 0 0 0 0 0 0

0 1 1 0 1 0 0 0

1 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 0 1 0 0 0

0 1 1 0 1 0 1 0

0 1 1 1 0 0 0 0

0 1 1 0 0 0 0 0

1 1 0 0 0 1 0 1



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Table 4: Q-matrix for TIMSS 2007 data (Ma and de la Torre, 2016)

Item TIMSS item no. Category
Attributes

α1 α2 α3 α4 α5 α6 α7 α8

1 M041052 1 1 1 0 0 0 0 0 0
2 M041281 1 0 1 1 0 1 0 0 0
3a M041275 1 1 0 0 0 0 1 0 1
3b M041275 2 1 0 0 0 0 1 0 1
4 M031303 1 0 1 1 0 0 0 0 0
5 M031309 1 0 1 1 0 0 0 0 0
6 M031245 1 0 1 0 1 0 0 0 0
7a M031242A 1 0 1 1 0 1 0 0 0
7b M031242B 2 0 0 0 0 0 0 1 0
8 M031242C 1 0 1 1 0 1 0 1 0
9a M031247 1 0 1 1 1 0 0 0 0
9b M031247 2 0 1 1 1 0 0 0 0
10 M031173 1 0 1 1 0 0 0 0 0
11 M031172 1 1 1 0 0 0 1 0 1

According to Proposition 3, since the Q1-matrix does not contain an identity matrix, the

model parameters are not identifiable. Specifically, since the matrix does not contain any ej

for j = 1, 2, . . . , 8, if we take β−
j,1 = 0 for j = 1, 2, . . . 20, then subjects with attribute profiles

0 and ej for j = 1, 2, . . . , 8 are not able to complete the first categories of all the items.

Since β−
j,1 ≡ 0, according to the model construction in Section 2.2, these attribute profiles

cannot complete other categories either. Therefore, attribute profiles 0, ej for j = 1, 2, . . . , 8

have the same probability of completing all the categories of all the items, which is zero.

Therefore, the parameters p0, pej for j = 1, 2, . . . , 8 can not be identified.

Remark 6. For the above educational assessment examples, while the analysis shows non-

identifiability issues for the two considered models, this should not overshadow the potential

for analyzing these data using polytomous DINA or more general cognitive diagnosis mod-

els. First, as discussed in Section 3.3, although the two models in our application data fail

to satisfy the completeness condition, if we consider the more relaxed generic identifiabil-
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ity of the model parameters, that is, allowing nonidentifiability of parameters in a negligible

zero-measure set of the parameter space, the stringent completeness condition may not be nec-

essary, as discussed in Gu and Xu (2020). Second, the investigation of partial identifiability,

as proposed by Gu and Xu (2020), could also be extended to the current situation. Specifi-

cally, when the completeness condition is violated, partial identifiability may be established to

partially identify the nonidentifiable proportion parameters p up to their equivalent classes.

For example, in the first example, since attribute profiles 0, e1, e3, e4 and e5 have the same

conditional response distributions, they can be grouped and considered as an equivalent latent

class. Partial identifiability then seeks to identify parameter (p0 + pe1 + pe3 + pe4 + pe5) as a

whole, instead of treating each proportion parameter separately. Under such relaxation, the

models applied to the data examples may be partially identifiable. Finally, beyond the DINA

models considered in this paper, general cognitive diagnosis models (Chen and de la Torre,

2018; Ma and de la Torre, 2016) may be more appropriate for the two datasets, and studying

the identifiability (Gu and Xu, 2020) of these models could be also of great interest. Further

explorations of these interesting extensions are promising future research directions.

5. Discussion

This paper presents the sufficient and necessary conditions for the identifiability of CDMs

with polytomous responses. Our results focus on two popular models under the DINA as-

sumption: the GPDINA model and the Sequential DINA model. For both models, we pro-

vide the sufficient and necessary conditions for their identifiability. The results can be easily

extended to the DINO (deterministic input; noisy “or” gate) model (Templin and Henson,

2006) through the duality between the DINA and DINO models. While the minimum re-
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quirements for more general CDMs are still unknown, our proposed necessary conditions

remain necessary for them since our polytomous DINA models are submodels of the general

CDMs. Therefore our results would also shed light on the study of their identifiability.

The popularity of polytomous data is not restricted to response data, and polytomous

attributes data is also receiving more and more attention (Haberman et al., 2008; von Davier,

2008; Chen and Torre, 2013; de la Torre et al., 2022). Yet the discussion on the identifiability

of such models has sparingly been considered. More interestingly, we may further study the

identifiability results under the general CDM framework with polytomous responses and

polytomous attributes.

The Q-matrix in this paper is assumed to be correctly specified. In practice, the Q-

matrix is usually constructed by the designers, which can be subjective and may not be

accurate. For this reason, researchers have proposed to estimate and validate the design

Q-matrix based on the response data, which motivates the study of the identifiability of the

Q-matrix (e.g., Liu et al., 2013; Chen et al., 2015; Xu and Shang, 2018; Culpepper, 2019;

Chen et al., 2020; Gu and Xu, 2021). Nevertheless, most of these existing works focus on

dichotomous responses, and only few have explored the identifiability of Q-matrix in the

polytomous data setting, which would also be an interesting future research topic.
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A. Supplementary Material

This supplementary material provides the proofs of the main theoretical results and conclu-

sions in Examples 7-11. Specifically, Section A.1 provides the proofs of Propositions 1 and

2, while the identifiability results for the GPDINA model and the Sequential DINA model

are presented in Sections A.2 and A.3, respectively. Additionally, the proofs of the examples

are provided in Section A.4.

A.1 Proofs of Propositions 1 and 2

This section deals with the zero q-vectors (q = 0) in Q-matrix. Our propositions show that,

for both the GPDINA model and the Sequential DINA model, excluding items or categories

whose corresponding q-vectors are all zero does not affect the identifiability results.

Proposition 1. Let ∆ = {j ∈ [J ] : qj = 0} denote the set of items whose q-vectors are

zero, then the GPDINA model parameters with Q-matrix are identifiable if and only if the

GPDINA model parameters with Q−∆-matrix are identifiable, where Q−∆ is obtained by

removing the q-vectors in Q corresponding to the items in ∆.

Proof. According to Lemma 1, it suffices to show that the GPDINA models with Q-matrix

andQ∆-matrix yield the same equation system Tp = T̄p̄. Let T and T′ denote the T-matrix

under the Q-matrix and Q−∆-matrix separately, and let r∆ denote the ∆-coordinates of r.

Then T′ is a submatrix of T which excludes vectors Tr in T with r∆ 6= 0. i.e., T =

T′ ∪ {Tr : r∆ 6= 0}. We now show that {Tr : r∆ 6= 0} does not add additional constraints

to the equation system T′p = T̄′p̄. For j ∈ ∆ and l ∈ [Hj], recall that 1⊤ = (1, 1, . . . , 1),
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since qj = 0 and 1⊤p = 1⊤p̄ = 1, we have

Tlejp = θ+j,l1
⊤p = θ+j,l, T̄lej p̄ = θ̄+j,l1

⊤p̄ = θ̄+j,l.

So Tlejp = T̄lej p̄ gives θ+j,l = θ̄+j,l for l ∈ [Hj ]. Therefore, for j ∈ ∆, parameters θ+j,l are all

identifiable. Furthermore, for any r s.t. r∆ 6= 0, write r =
∑

j∈∆ rjej +
(
r −

∑
j∈∆ rjej

)
,

then T(r−
∑

j∈∆ rjej) is a vector in T′-matrix, and

Tr =
(
◦j∈∆Trjej

)
◦T(r−

∑
j∈∆ rjej) =

∏

j∈∆

θ+j,rjT(r−
∑

j∈∆ rjej) =
∏

j∈∆

θ̄+j,rjT(r−
∑

j∈∆ rjej).

Similarly, we have T̄r =
∏

j∈∆ θ̄+j,rjT̄(r−
∑

j∈∆ rjej). Therefore, Trp = T̄rp̄ is equivalent to

T(r−
∑

j∈∆ rjej)p = T̄(r−
∑

j∈∆ rjej)p̄. Therefore, the model with Q-matrix and Q∆-matrix

give the same equation system Tp = T̄p̄.

Proposition 2. Let ∆s = {(j, l) : qj,l = 0} denote the set of categories whose q-vectors are

zero, then the Sequential DINA model parameters with Q-matrix are identifiable if and only

if the Sequential DINA model parameters with Q−∆s-matrix are identifiable, where Q−∆s is

obtained by removing the q-vectors in Q corresponding to the categories in ∆s.

Proof. Similar to the previous analysis, we can show that β+
j,l = β̄+

j,l for (j, l) ∈ ∆s. If l = 1,

since qj,l = 0 and 1⊤p = 1⊤p̄ = 1, we have

Tej
p = β+

j,11
⊤p = β+

j,1, T̄ej
p̄ = β̄+

j,11
⊤p̄ = β̄+

j,1.

Thus, Tej
p = T̄ej

p̄ gives β+
j,1 = β̄+

j,1. For l > 1, since qj,l = 0, Tlej = β+
j,lT(l−1)ej

, and since
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T(l−1)ej
p = T̄(l−1)ej p̄, we have

Tlejp = β+
j,lT(l−1)ej

p = β+
j,lT̄(l−1)ej

p̄ = β̄+
j,lT̄(l−1)ej p̄ = T̄lej p̄.

Thus, β+
j,l = β̄+

j,l. So the item parameters in ∆s are all identifiable. Furthermore, write

r =
∑

(j,l)∈∆s

lej +



r −
∑

(j,l)∈∆s

lej



 ,

then T(r−
∑

(j,l)∈∆s lej)p = T̄(r−
∑

(j,l)∈∆s lej)p̄, and

Tr =
(
◦(j,l)∈∆sTlej

)
◦T(r−

∑
(j,l)∈∆s lej) =

∏

(j,l)∈∆s

β+
j,lT(r−

∑
(j,l)∈∆s lej) =

∏

(j,l)∈∆s

β̄+
j,lT(r−

∑
(j,l)∈∆s lej),

similarly, we have T̄r =
∏

j∈∆s θ̄
+
j,rj

T̄(r−
∑

(j,l)∈∆s lej). Therefore, Trp = T̄rp̄ gives

T(r−
∑

(j,l)∈∆s lej)p = T̄(r−
∑

(j,l)∈∆s lej)p̄.

Therefore, the model with Q-matrix and Q∆s-matrix give exactly the same equation system

Tp = T̄p̄.

A.2 Identifiability of GPDINA

Theorem 1. Conditions C1-C3 are sufficient and necessary for the identifiability of the

parameters of the GPDINA model.

Proof of sufficiency. Suppose the Q-matrix satisfies conditions C1-C3. Using Lemma 1, we

show thatTp = T̄p̄ will give (θ+, θ−,p) = (θ̄
+
, θ̄

−
, p̄). Take one arbitrary non-zero category
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from each item, denoted by c(j) (1 ≤ c(j) ≤ Hj), for j ∈ [J ]. We show that θ+
j,c(j) = θ̄+

j,c(j)

and θ−
j,c(j) = θ̄−

j,c(j).

Our proof leverages the identifiability results of the binary DINA model. Consider

constructing the following binary DINA model: if we focus on solely the category c(j) of

each item j, for j ∈ [J ]. If we dichotomize each item j through category c(j), and reframe

the response as binary response I(Rj = c(j))j∈[J ], then the model is reduced to a binary

DINA model. According to the model construction, the Q-matrix for the reduced model is

equivalent to the Q-matrix for the original polytomous model, since every non-zero category

of the same item requires the same attributes. The T-matrix for this reduced model, i.e.,

the marginal probability distribution for the dichotomized response I(Rj = c(j)), is simply

a submatrix of the original T-matrix. It is made up of the vectors that only involve category

c(j) of item j, i.e.,
(
Tc(j)·ej

)
j∈[J ]

and their element-wise products. The parameters for this

reduced model are

({
θ+
j,c(j), θ

−
j,c(j)

}
j∈[J ]

, p

)
. So the reduced model is completely a binary

DINA model. Since the Q-matrix for the reduced model satisfies conditions C1-C3, as a

direct result of Gu and Xu (2019b), T̄p̄ = Tp will give p̄ = p, θ+
j,c(j) = θ̄+

j,c(j), θ−
j,c(j) =

θ̄−
j,c(j), for j ∈ [J ]. This holds for any c(j) ∈ [Hj], thus (θ̄

+
, θ̄

−
, p̄) = (θ+, θ−,p) and we

complete the proof.

Proof of necessity. We prove separately each condition is necessary.

Necessity of condition C1. Suppose the Q-matrix is not complete, and WLOG, assume

that e⊤
1 /∈ (qj)

J
j=1. Then attributes profiles 0 and e1 have the same conditional response

distributions. Therefore, the parameters p0 and pe1 are exchangeable, and thus can not be
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identified. Therefore, condition C1 is necessary.

Necessity of condition C2. Suppose the Q-matrix satisfies condition C1, but does not

satisfy condition C2, i.e., there exists some attribute which is only required by at most two

items. WLOG, assume this is the first attribute, and it is the first and second items that

require the first attribute, so the Q-matrix can be written as follows:

Q =




item 1 1 0⊤

item 2 1 v⊤

item (3 : J) 0 Q′




. (26)

We partition α into two groups according to the first attribute:

g0 = {α : α1 = 0} = {α = (0,α∗), α∗ ∈ {0, 1}K−1},

g1 = {α : α1 = 1} = {α = (1,α∗), α∗ ∈ {0, 1}K−1},

so each group has 2K−1 attribute profiles, and we index the entries in each group by

g0
1 = (0, 0), g0

2 = (0, e1), . . . , g
0
K = (0, eK−1), g

0
K+1 = (0, e1 + e2), . . . , g

0
2K−1 =

(
0,

K−1∑

k=1

ek

)
,

g1
1 = (1, 0), g1

2 = (1, e1), . . . , g
1
K = (1, eK−1), g

1
K+1 = (1, e1 + e2), . . . , g

1
2K−1 =

(
1,

K−1∑

k=1

ek

)
,

where e1, . . . , eK−1 ∈ {0, 1}K−1 have K − 1 elements. Therefore, the k-th (k ∈ [2K−1]) entry

of g0 and g1, g0
k and g1

k share the same attributes except for the first one α1. Index the
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population proportion parameters p in the following way:

p =



p
g0

p
g1


 , where p

g0 =




pg0
1

pg0
2

...

pg0
2K−1




and p
g1 =




pg1
1

pg1
2

...

pg1
2K−1




. (27)

We now seek to construct (θ̄
+
, θ̄

−
, p̄) 6= (θ+, θ−,p) such that (13) holds: take θ̄

+
j = θ+

j for

j > 2 and θ̄
−
j = θ−

j for j ∈ [J ]. We claim that, with a simplified matrix T , for T̄p̄ = Tp

to hold, it suffices to have T̄ p̄ = T p. When the entries in p are indexed according to (27),

the T is given as follows:

T =




1 1

θ−
1 θ+

1

θ−
2 θ+

2

θ−
1 ⊗ θ−

2 θ+
1 ⊗ θ+

2




⊗ I, (28)

where I = I2K−1 . We now prove the claim.

• For any r s.t. r1 = r2 = 0, Tr does not involve θ+
1 , θ

−
1 , θ

+
2 , and θ−

2 . According to

the construction of the Q-matrix in (26), the response r does not require α1, so the

response distributions in both groups are the same, i.e., tr,g0
k
≡ tr, g1

k
for k ∈ [2K−1].

Since θ̄
+
j = θ+

j and θ̄
−
j = θ−

j for j > 2, we further have

tr, g0
k
≡ tr,g1

k
≡ t̄r, g0

k
≡ t̄r,g1

k
for k ∈ [2K−1]. (29)
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If we denote T
( 1
2
)

r as the first half of the vector Tr, i.e., the response of group g0,

then equation (29) indicates that T
( 1
2
)

r is also the response of group g1. Moreover,

T̄
( 1
2
)

r = T
( 1
2
)

r and

Tr =
(
T

( 1
2
)

r T
( 1
2
)

r

)
= T

( 1
2
)

r (I I ) = T̄
( 1
2
)

r (I I ) = T̄r.

Therefore, equations
(
I I

)
p̄ =

(
I I

)
p in (28) gives

T̄rp̄ = T̄
( 1
2
)

r (I I ) p̄ = T
( 1
2
)

r

(
I I

)
p = Trp.

• For any r s.t. r1 6= 0, r2 = 0, write r = r1e1 + (r − r1e1), then Tr = T(r−r1e1) ◦Tr1e1 ,

and the response (r − r1e1) belongs to the case we analyzed previously. Therefore,

T̄
( 1
2
)

(r−r1e1)
= T

( 1
2
)

(r−r1e1)
and

T̄(r−r1e1) = T̄
( 1
2
)

(r−r1e1)

(
I I

)
= T

( 1
2
)

(r−r1e1)

(
I I

)
= T(r−r1e1),

which gives

T̄rp̄ = (T̄(r−r1e1) ◦ T̄r1e1) p̄ = T̄(r−r1e1) (T̄r1e1 ◦ p̄)

= T
( 1
2
)

(r−r1e1)

(
I I

)
(T̄r1e1 ◦ p̄)

= T
( 1
2
)

(r−r1e1)

((
I I

)
◦ T̄r1e1

)
p̄

= T
( 1
2
)

(r−r1e1)

(
θ̄−1,r1I θ̄+1,r1I

)
p̄.

Therefore,
(
θ̄
−
1 ⊗ I θ̄

+
1 ⊗ I

)
p̄ =

(
θ−
1 ⊗ I θ+

1 ⊗ I

)
p in equation (28) guarantees
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that for ∀r1 ∈ [H1],

(
θ̄−1,r1I θ̄+1,r1I

)
p̄ =

(
θ−1,r1I θ+1,r1I

)
p.

Therefore,

T̄rp̄ = T
( 1
2
)

(r−r1e1)

(
θ̄−1,r1I θ̄+1,r1I

)
p̄ = T

( 1
2
)

(r−r1e1)

(
θ−1,r1I θ+1,r1I

)
p = Trp.

• Similarly, for any r s.t. r1 = 0, r2 6= 0,
(
θ̄
−
2 ⊗ I θ̄

+
2 ⊗ I

)
p̄ =

(
θ−
2 ⊗ I θ+

2 ⊗ I

)
p

with θ̄
−
2 = θ−

2 guarantees that T̄rp̄ = Trp.

• Similarly, for any r s.t. r1 6= 0, r2 6= 0,
(
θ̄
−
1 ⊗ θ̄

−
2 ⊗ I θ̄

+
1 ⊗ θ̄

+
2 ⊗ I

)
p̄ =

(
θ−
1 ⊗ θ−

2 ⊗

I θ+
1 ⊗ θ+

2 ⊗ I

)
p guarantees T̄rp̄ = Trp.

Next we construct (θ̄
+
1 , θ̄

+
2 , θ̄

−
1 , p̄) s.t. T̄ p̄ = T p holds. Let p̄

g1 = ρ · p̄
g0 , pg0 = u · p̄

g0 ,

and p
g1 = v · p̄

g0 . Then T̄ p̄ = T p can be simplified to

T̄




p̄
g0

ρ · p̄
g0


 = T



u · p̄

g0

v · p̄
g0


 ,
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i.e.,





I p̄
g0 + ρI p̄

g0 = uIp̄
g0 + vIp̄

g0 ;

θ̄−1,l1Ip̄g0 + ρθ̄+1,l1Ip̄g0 = uθ−1,l1Ip̄g0 + vθ+1,l1Ip̄g0, l1 ∈ [H1];

θ̄−2,l2Ip̄g0 + ρθ̄+2,l2Ip̄g0 = uθ−2,l2Ip̄g0 + vθ+2,l2Ip̄g0, l2 ∈ [H2];

θ̄−1,l1 θ̄
−
2,l2

Ip̄
g0 + ρθ̄+1,l1 θ̄

+
2,l2

Ip̄
g0 = uθ−1,l1θ

−
2,l2

Ip̄
g0 + vθ+1,l1θ

+
2,l2

I p̄
g0 , l1 ∈ [H1], l2 ∈ [H2].

Then it suffices to have





1 + ρ = u+ v;

θ̄−1,l1 + ρθ̄+1,l1 = uθ−1,l1 + vθ+1,l1 , l1 ∈ [H1];

θ̄−2,l2 + ρθ̄+2,l2 = uθ−2,l2 + vθ+2,l2 , l2 ∈ [H2];

θ̄−1,l1 θ̄
−
2,l2

+ ρθ̄+1,l1 θ̄
+
2,l2

= uθ−1,l1θ
−
2,l2

+ vθ+1,l1θ
+
2,l2

, l1 ∈ [H1], l2 ∈ [H2].

(30)

Let some κ ∈ (0, 1) s.t




θ−1,l1

θ̄−1,l1

θ+1,l1

θ̄+1,l1




= κl1−1




θ−1,1

θ̄−1,1

θ+1,1

θ̄+1,1




, and




θ−2,l2

θ̄−2,l2

θ+2,l2

θ̄+2,l2




= κl2−1




θ−2,1

θ̄−2,1

θ+2,1

θ̄+2,1




for l1 ∈ [H1], l2 ∈ [H2], (31)
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then equations (30) are reduced to the following four equations:






1 + ρ = u+ v;

θ̄−1,1 + ρθ̄+1,1 = uθ−1,1 + vθ+1,1;

θ̄−2,1 + ρθ̄+2,1 = uθ−2,1 + vθ+2,1;

θ̄−1,1θ̄
−
2,1 + ρθ̄+1,1θ̄

+
2,1 = uθ−1,1θ

−
2,1 + vθ+1,1θ

+
2,1.

There are five parameters (ρ, u, v, θ̄+1,1, θ̄
+
2,1) with four constraints, so there are infinite many

solutions. Consequently, parameters (θ+, θ−,p) are not identifiable and condition C2 is

indeed necessary.

Necessity of condition C3. Suppose the Q-matrix satisfies conditions C1 and C2, but

does not satisfy condition C3. WLOG, we may write Q as

Q =




IK

Q∗




J×K

, where Q∗ =

(
v v

...
...
...

)
.

We partition α into four groups according to the first and the second attributes:

g00 = {α : α1 = 0, α2 = 0} = {α = (0, 0,α∗), α∗ ∈ {0, 1}K−2},

g10 = {α : α1 = 1, α2 = 0} = {α = (1, 0,α∗), α∗ ∈ {0, 1}K−2},

g01 = {α : α1 = 0, α2 = 1} = {α = (0, 1,α∗), α∗ ∈ {0, 1}K−2},

g11 = {α : α1 = 1, α2 = 1} = {α = (1, 1,α∗), α∗ ∈ {0, 1}K−2}.
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So each group has 2K−2 attribute profiles. Index the entries in each group through the

following: in group g00,

g00
1 = (0, 0, 0), g00

2 = (0, 0, e1), . . . , g
00
K = (0, 0, eK−2), g

00
K+1 = (0, 0, e1 + e2), . . . , g

00
2K−2 =

(
0, 0,

∑K−2
k=1 ek

)
,

where e1, . . . , eK−2 ∈ {0, 1}K−2 have K − 2 elements. Similarly we index the elements in

g10, g01, g11, so that g00
k , g10

k , g01
k and g11

k for k ∈ [2K−2] share the same attributes except

for the first and second attributes. Index the population proportion parameters p in the

following way:

p =




p
g00

p
g10

p
g01

p
g11




, where p
g00 =




pg00
1

pg00
2

...

pg00
2K−2




, p
g10 =




pg10
1

pg10
2

...

pg10
2K−2




, p
g01 =




pg01
1

pg01
2

...

pg01
2K−2




, p
g11 =




pg11
1

pg11
2

...

pg11
2K−2




.

Next, we seek to construct (θ̄
+
, θ̄

−
, p̄) 6= (θ+, θ−,p) such that (13) holds: take θ̄

+
j = θ+

j

for all j, θ̄
−
j = θ−

j for j > 2, and let p̄
g11 = p

g11 . If we let g−11 = {g00, g10, g01} denote

the union of the other three groups, and denote its corresponding population proportion

parameters as

p
g−11 =




p
g00

p
g10

p
g01




,
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then using a similar strategy we can show that if T p
g−11 = T̄ p̄

g−11 holds, we have Tp = T̄p̄,

where T is given as follows:

T =




1 1 1

θ−
1 θ+

1 θ−
1

θ−
2 θ−

2 θ+
2

θ−
1 ⊗ θ−

2 θ+
1 ⊗ θ−

2 θ−
1 ⊗ θ+

2




⊗ I, (32)

with I = I2K−2 being the identity matrix of dimension (K − 2)× (K − 2). We now prove

the claim.

• For any r s.t. r1 = r2 = 0, Tr does not involve θ+
1 , θ

−
1 , θ

+
2 , θ

−
2 . According to the

construction of the Q-matrix, item 2, . . . , J either require both α1 and α2 or require

neither, therefore the response distribution in groups g00, g10, g01 are the same, i.e.,

tr,g00
k

≡ tr, g10
k

≡ tr,g01
k

for k ∈ [2K−2]. Since θ̄
+
j = θ+

j θ̄
−
j = θ−

j for j > 2, we further

have

tr,g00
k
≡ tr,g10

k
≡ tr, g01

k
≡ t̄r,g00

k
≡ t̄r, g10

k
≡ t̄r,g01

k
, and tr,g11

k
≡ t̄r, g11

k
for k ∈ [2K−2].

(33)

Let T
( 1
4
)

r be the first quartile of the vector Tr, and T+
r
be the last quartile of the vector

Tr, then T
( 1
4
)

r is the response of group g00 and T+
r
is the response of group g11. Then

equation (33) indicates that T
( 1
4
)

r is also the response of group g10 and g01. I.e., we
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have

T
( 1
4
)

r =
∏

j:rj 6=0

P
(
Rj = rj | Q, θ+, θ−,α = g00

)
=

∏

j:rj 6=0

P
(
Rj = rj | Q, θ+, θ−,α = g10

)

=
∏

j:rj 6=0

P
(
Rj = rj | Q, θ+, θ−,α = g01

)
,

T+
r
=

∏

j:rj 6=0

P
(
Rj = rj | Q, θ+, θ−,α = g11

)
.

Then equation (33) also indicates that T̄
( 1
4
)

r = T
( 1
4
)

r and T+
r
= T̄+

r
. Thus,

Tr =
(
T

( 1
4
)

r T
( 1
4
)

r T
( 1
4
)

r T+
r

)
=

(
T

( 1
4
)

r (I I I ) T+
r

)
=

(
T̄

( 1
4
)

r (I I I ) T̄+
r

)
.

combining
(
I I I

)
p̄
g−11 =

(
I I I

)
p
g−11 in (32) and p̄

g11 = p
g11 gives

T̄rp̄ =
(
T̄

( 1
4
)

r (I I I ) T̄+
r

)


p̄
g−11

p̄
g11


 = T̄

( 1
4
)

r (I I I ) p̄
g−11 + T̄+

r
p̄
g11

= T
( 1
4
)

r (I I I )p
g−11 +T+

r
p
g11

= Trp.

• For any r s.t. r1 6= 0, r2 = 0, write r = r1e1 + (r − r1e1), then Tr = T(r−r1e1) ◦Tr1e1 .

If we split the vector Tr1e1 via the third quartile, i.e.,

Tr1e1 =
(
T

( 3
4
)

r1e1 T+
r1e1

)
, (34)

where T
( 3
4
)

r1e1 is the first three-fourths of the vector and T+
r1e1

is the last fourth part of
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the vector. Then we know that T
( 3
4
)

r1e1 is the response of group g−11 and T+
r1e1

is the

response of group g11, i.e.,

T
( 3
4
)

r1e1 = P
(
R1 = r1 | Q, θ+, θ−,α = g−11

)
,

T+
r1e1

= P
(
R1 = r1 | Q, θ+, θ−,α = g11

)
.

Since item 1 only requires α1, the entries of T+
r1e1

are positive, and since θ+
1 = θ̄

+
1 , we

have T̄+
r1e1

= T+
r1e1

. Furthermore, response (r− r1e1) belongs to the case we analyzed

previously, therefore, we have

T̄(r−r1e1) =
(
T̄

( 1
4
)

(r−r1e1)
(I I I ) T̄+

(r−r1e1)

)
(35)

=
(
T

( 1
4
)

(r−r1e1)
(I I I ) T+

(r−r1e1)

)
. (36)

Hence,

T̄rp̄ = (T̄(r−r1e1) ◦ T̄r1e1) p̄

= T̄(r−r1e1) (T̄r1e1 ◦ p̄)

(35)
==

(
T̄

( 1
4
)

(r−r1e1)
(I I I ) T̄+

(r−r1e1)

)
(T̄r1e1 ◦ p̄)

(36)
==

((
T

( 1
4
)

(r−r1e1)
(I I I ) T+

(r−r1e1)

)
◦ T̄r1e1

)
p̄

(34)
==

(
T

( 1
4
)

(r−r1e1)
(I I I ) ◦ T̄

( 3
4
)

r1e1 T+
(r−r1e1)

◦ T̄+
r1e1

)
p̄

= T
( 1
4
)

(r−r1e1)

(
θ̄−1,r1I θ̄+1,r1I θ̄−1,r1I

)
p̄
g−11 +T+

(r−r1e1)
◦ T̄+

r1e1
p̄
g11

= T
( 1
4
)

(r−r1e1)

(
θ̄−1,r1I θ̄+1,r1I θ̄−1,r1I

)
p̄
g−11 +T+

(r−r1e1)
◦T+

r1e1
p
g11 .
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Then
(
θ̄
−
1 ⊗I θ̄

+
1 ⊗I θ̄

−
1 ⊗I

)
p̄
g−11 =

(
θ−
1 ⊗I θ+

1 ⊗I θ−
1 ⊗I

)
p
g−11 in equation

(32) guarantees that for ∀r1 ∈ [H1],

(
θ̄−1,r1I θ̄+1,r1I θ̄−1,r1I

)
p̄
g−11 =

(
θ−1,r1I θ+1,r1I θ−1,r1I

)
p
g−11

Therefore, T̄rp̄ = Trp.

• Similarly, for any r s.t. r1 = 0, r2 6= 0,
(
θ̄
−
2 ⊗ I θ̄

−
2 ⊗ I θ̄

+
2 ⊗ I

)
p̄
g−11 =

(
θ−
2 ⊗ I θ−

2 ⊗ I θ+
2 ⊗ I

)
p
g−11 gives T̄rp̄ = Trp.

• Similarly, for any r s.t. r1 6= 0, r2 6= 0, to ensure T̄rp̄ = Trp, it suffices to have

(
θ̄
−
1 ⊗θ̄

−
2 ⊗I θ̄

+
1 ⊗θ̄

−
2 ⊗I θ̄

−
1 ⊗θ̄

+
2 ⊗I

)
p̄
g−11 =

(
θ−
1 ⊗θ−

2 ⊗I θ+
1 ⊗θ−

2 ⊗I θ−
1 ⊗θ+

2 ⊗I

)
p
g−11 .

Now we construct (θ̄
−
1 , θ̄

−
2 , p̄g00 , p̄g10 , p̄g01) that satisfies T̄ p̄ = T p as follows: let p

g10 =

ρ1 · pg00 , pg01 = ρ2 · pg00 , p̄g00 = u · p
g00 , p̄g10 = v · p

g00 and p̄
g01 = w · p

g00 . Then T̄ p̄ = T p

can be simplified to

T̄




u · p
g00

v · p
g00

w · p
g00




= T




1 · p
g00

ρ1 · pg00

ρ2 · pg00




,
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i.e., for l1 ∈ [H1], l2 ∈ [H2],





uIp
g00 + vIp

g00 + wIp
g00 = Ip

g00 + ρ1Ipg00 + ρ2Ipg00 ;

uθ̄−1,l1Ipg00 + vθ̄+1,l1Ipg00 + wθ̄−1,l1Ipg00 = θ−1,l1Ipg00 + ρ1θ
+
1,l1

Ip
g00 + ρ2θ

−
1,l1

Ip
g00 ;

uθ̄−2,l2Ipg00 + vθ̄−2,l2Ipg00 + wθ̄+2,l2Ipg00 = θ−2,l2Ipg00 + ρ1θ
−
2,l2

Ip
g00 + ρ2θ

+
2,l2

Ip
g00 ;

uθ̄−1,l1 θ̄
−
2,l2

Ip
g00 + vθ̄+1,l1 θ̄

−
2,l2

Ip
g00 + wθ̄−1,l1 θ̄

+
2,l2

Ip
g00 = θ−1,l1θ

−
2,l2

Ip
g00 + ρ1θ

+
1,l1

θ−2,l2Ipg00 + ρ2θ
−
1,l1

θ+2,l2Ipg00 .

Then it suffices to have





u+ v + w = 1 + ρ1 + ρ2;

uθ̄−1,l1 + vθ̄+1,l1 + wθ̄−1,l1 = θ−1,l1 + ρ1θ
+
1,l1

+ ρ2θ
−
1,l1

;

uθ̄−2,l2 + vθ̄−2,l2 + wθ̄+2,l2 = θ−2,l2 + ρ1θ
−
2,l2

+ ρ2θ
+
2,l2

;

uθ̄−1,l1 θ̄
−
2,l2

+ vθ̄+1,l1 θ̄
−
2,l2

+ wθ̄−1,l1 θ̄
+
2,l2

= θ−1,l1θ
−
2,l2

+ ρ1θ
+
1,l1

θ−2,l2 + ρ2θ
−
1,l1

θ+2,l2 .

(37)

Let some κ ∈ (0, 1) s.t.




θ−1,l1

θ̄−1,l1

θ+1,l1

θ̄+1,l1




= κl1−1




θ−1,1

θ̄−1,1

θ+1,1

θ̄+1,1




, and




θ−2,l2

θ̄−2,l2

θ+2,l2

θ̄+2,l2




= κl2−1




θ−2,1

θ̄−2,1

θ+2,1

θ̄+2,1




for l1 ∈ [H1], l2 ∈ [H2], (38)
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then equations (37) are now reduced to






u+ v + w = 1 + ρ1 + ρ2;

θ̄−1,1 + vθ̄+1,1 + wθ̄−1,1 = θ−1,1 + ρ1θ
+
1,1 + ρ2θ

−
1,1;

uθ̄−2,1 + vθ̄−2,1 + wθ̄+2,1 = θ−2,1 + ρ1θ
−
2,1 + ρ2θ

+
2,1;

uθ̄−1,1θ̄
−
2,1 + vθ̄+1,1θ̄

−
2,1 + wθ̄−1,1θ̄

+
2,1 = θ−1,1θ

−
2,1 + ρ1θ

+
1,1θ

−
2,1 + ρ2θ

−
1,1θ

+
2,1.

The above equation system contains (u, v, w, θ̄−1,1, θ̄
−
2,1) five parameters with four constraints,

which gives infinitely many solutions. Thus the model parameters are not identifiable and

condition C3 is necessary.

A.3 Identifiability of Sequential DINA model

Theorem 2. The Sequential DINA model parameters are identifiable if the Q1 matrix sat-

isfies the following conditions S1-S3.

Condition S1. Q1-matrix is complete, i.e., under some permutation, Q1
1:K = IK.

Condition S2. Each of the K attributes is required by at least three items’ first categories.

Condition S3. Suppose Q1
1:K = IK, then any two different columns of Q1

K+1:J are distinct.

Proof. We begin by showing that when Q1 meets the conditions S1-S3, T̄sp̄ = Tsp gives

p̄ = p and β̄+
j,1 = β+

j,1, β̄−
j,1 = β−

j,1, for j ∈ [J ]. As discussed in Section 3.3, the parameters

(
p, (β+

j,1)j∈[J ], (β
−
j,1)j∈[J ]

)
can be interpreted as parameters in the reduced binary DINA

model. In this model, the binary item takes the form I(item j ≥ 1), and the corresponding

q-vectors are (qj,1)j∈[J ], which indicates the attributes required to complete the first cate-

gories. Moreover, Q1 is the Q-matrix for this reduced DINA model, so the item parameters
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only involve (β+
j,1)j∈[J ], (β

−
j,1)j∈[J ]. Since the Q-matrix for this reduced binary DINA model

satisfies conditions S1-S3, according to the sufficient condition for the binary DINA model

in Gu and Xu (2019b), parameters p, (β+
j,1)j∈[J ], (β−

j,1)j∈[J ] are identified, i.e., p̄ = p and

β̄+
j,1 = β+

j,1, β̄
−
j,1 = β−

j,1 for j ∈ [J ].

Next we identify β+
j,l, β

−
j,l, for l > 1, by induction. Suppose categories h (h < l) of item

j have been identified, i.e.,

β̄+
j,h = β+

j,h, β̄−
j,h = β−

j,h for h < l. (39)

For each item j, we will use two rows of the Ts-matrix in T̄sp̄ = Tsp to infer that β̄+
j,l = β+

j,l

and β̄−
j,l = β−

j,l. For item j, its category l requires some attribute, and WLOG, suppose this

is α1. There are two possible cases.

Case 1: category l of item j requires solely α1, i.e., qj,l = e⊤
1 . According to condition S2,

there exists some other item j′ whose first category requires α1. So the Q-matrix takes the

following form:

Q =




...
...

...
...

...

item j, category l 1 0 . . . 0

...
...

...
...

...

item j′, category 1 1 v⊤

...
...

...
...

...




. (40)
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In this case, ξj′,1,α ≤ ξj,l,α for all α, consider vectors

Ts
lej

= P (Rj ≥ l | Q,β+,β−),

Ts
lej+ej′

= P (Rj ≥ l, Rj′ ≥ 1 | Q,β+,β−).

According to the assumption in equation (39), we have ts(l−1)ej ,α
= t̄s(l−1)ej ,α

. Therefore,

tslej ,α =





β+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

, t̄slej ,α =





β̄+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β̄−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

. (41)

Since β̄+
j′,1 = β+

j′,1, β̄
−
j′,1 = β−

j′,1, we have

tslej+ej′ ,α
=






β+
j′,1 t

s
lej ,α

, ξj′,1,α = 1

β−
j′,1 t

s
lej ,α

, ξj′,1,α = 0

, t̄slej+ej′ ,α
=






β+
j′,1 t̄

s
lej ,α

ξj′,1,α = 1

β−
j′,1 t̄

s
lej ,α

, ξj′,1,α = 0

. (42)

Since T̄s
r
p̄ = Ts

r
p for r = lej and r = lej + ej′, p̄ = p, we have





β−
j′,1(T̄

s
lej

−Ts
lej
)p = 0

(T̄s
lej+ej′

−Ts
lej+ej′

)p = 0

⇒ [(β−
j′,1T̄

s
lej

− T̄s
lej+ej′

)− (β−
j′,1T

s
lej

−Ts
lej+ej′

)]p = 0.
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Using equations (41-42), we have (β−
j′,1 − β+

j′,1)
∑

α : ξj′,1,α=1

(t̄slej ,α − tslej ,α) pα = 0. According to

the constructed Q-matrix (40), ξj′,1,α = 1 must imply ξj,l,α = 1. Therefore,

(β−
j′,1 − β+

j′,1)(β̄
+
j,l − β+

j,l)
∑

α : ξj′,1,α=1

ts(l−1)ej ,α
pα = 0,

from which we conclude that β̄+
j,l = β+

j,l.

Next consider Ts
lej
: with β̄+

j,l = β+
j,l, equation (41) can be written as

tslej ,α =






β+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

, t̄slej ,α =






β+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β̄−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

. (43)

With T̄s
lej
p̄ = Ts

lej
p, p̄ = p and equation (43), we have

(T̄s
lej

−Ts
lej
)p = 0

⇒(β̄−
j,l − β−

j,l) ·
∑

α : ξj,l,α=0

ts(l−1)ej ,α
pα = 0

⇒β̄−
j,l = β−

j,l.

Case 2: category l of item j requires some other attribute. WLOG, assume that this is

the second attribute α2. Then according to condition S1, α1 or α2 is required solely by some

other item’s first category. WLOG, assume that it is α1, and it is item j′’s (j′ 6= j) first
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category that requires α1, i.e., qj′,1 = e⊤
1 . So the Q-matrix can be written as follows:

Q =




...
...

...
...

...

item j, category l 1 1 v⊤

...
...

...
...

...

item j′, category 1 1 0 . . . 0

...
...

...
...

...




. (44)

In this case, ξj,l,α ≤ ξj′,1,α for all α. Consider vectors

Ts
lej

= P (Rj ≥ l | Q,β+,β−), (45)

Ts
lej+ej′

= P (Rj ≥ l, Rj′ ≥ 1 | Q,β+,β−). (46)

According to assumption (39), we have ts(l−1)ej ,α
= t̄s(l−1)ej ,α

. Therefore,

tslej ,α =






β+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

, t̄slej ,α =






β̄+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β̄−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

. (47)

Since β̄+
j′,1 = β+

j′,1, β̄
−
j′,1 = β−

j′,1, we have

tslej+ej′ ,α
=





β+
j′,1 t

s
lej ,α

, ξj′,1,α = 1

β−
j′,1 t

s
lej ,α

, ξj′,1,α = 0

, t̄slej+ej′ ,α
=





β+
j′,1 t̄

s
lej ,α

ξj′,1,α = 1

β−
j′,1 t̄

s
lej ,α

, ξj′,1,α = 0

. (48)
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Since T̄s
r
p̄ = Ts

r
p holds for r = lej and r = lej + ej′, and p̄ = p,






β+
j′,1(T̄

s
lej

−Ts
lej
)p = 0

(T̄s
lej+ej′

−Ts
lej+ej′

)p = 0

⇒ [(β+
j′,1T̄

s
lej

− T̄s
lej+ej′

)− (β+
j′,1T

s
lej

−Ts
lej+ej′

)]p = 0.

Using equations (47-48), we have (β+
j′,1 − β−

j′,1)
∑

α : ξj′,1,α=0

(t̄slej ,α − tslej ,α) pα = 0. According to

the constructed Q-matrix (44), ξj′,1,α = 0 must imply ξj,l,α = 0. Therefore, using equation

(47), we have

(β+
j′,1 − β−

j′,1)(β̄
−
j,l − β−

j,l)
∑

α: ξj′,1,α=0

ts(l−1)ej ,α
pα = 0,

which we conclude that β̄−
j,l = β−

j,l. Next consider T
s
lej
: with β̄−

j,l = β−
j,l, equation (47) can be

written as

tslej ,α =





β+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

, t̄slej ,α =





β̄+
j,l t

s
(l−1)ej ,α

, ξj,l,α = 1

β−
j,l t

s
(l−1)ej ,α

, ξj,l,α = 0

. (49)

Using T̄s
lej
p̄ = Ts

lej
p and p̄ = p, and equation (49), we have

(T̄s
lej

−Ts
lej
)p = 0

⇒(β̄+
j,l − β+

j,l) ·
∑

α : ξj,l,α=1

ts(l−1)ej ,α
pα = 0

⇒β̄+
j,l = β+

j,l.
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Therefore, for both cases, β+
j,l and β−

j,l are identified. By induction, we conclude that all

parameters (β+,β−,p) are identifiable and conditions S1-S3 are sufficient.

Proposition 4 (Necessity of Conditions S2∗ and S3∗). The Sequential DINA model param-

eters are identifiable only if the Q-matrix satisfies the following conditions S2∗ and S3∗.

Condition S2∗ Each of the K attributes is required by at least three categories (not nec-

essarily the first categories), and the three categories must come from at least two different

items.

Condition S3∗ Suppose Q-matrix satisfies S1, i.e., Q1
1:K = IK, and any two different

columns of the following matrix (which removes the identity matrix of Q1
1:K from Q)




Q−1
1:K

QK+1:J




are distinct, where Q−1
1:K denotes the remaining submatrix of Q1:K after removing Q1

1:K .

Proof. We have shown the necessity of condition S1 in Proposition 3, so we may assume

that the Q-matrix satisfies condition S1.

Necessity of Condition S2∗. Suppose the Q1 matrix satisfies condition S1, but does

not satisfy condition S2∗. We first show that each attribute must be required by more than

one item. Suppose there exists some attribute that is only required by one item. WLOG,

assume this is attribute one α1, and is only required by the first item. So the Q-matrix can
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be written as

Q =




item 1



1 0⊤

∗ ∗




item (2 : J)

(
0 ∗

)




. (50)

We partition α into two groups according to the first attribute:

g0 = {α : α1 = 0} = {α = (0,α∗), α∗ ∈ {0, 1}K−1},

g1 = {α : α1 = 1} = {α = (1,α∗), α∗ ∈ {0, 1}K−1}.

So each group has 2K−1 attribute profiles, and we index the entries in each group by

g0
1 = (0, 0), g0

2 = (0, e1), . . . , g
0
K = (0, eK−1), g

0
K+1 = (0, e1 + e2), . . . , g

0
2K−1 =

(
0,

K−1∑

k=1

ek

)
,

g1
1 = (1, 0), g1

2 = (1, e1), . . . , g
1
K = (1, eK−1), g

1
K+1 = (1, e1 + e2), . . . , g

1
2K−1 =

(
1,

K−1∑

k=1

ek

)
,

where e1, . . . , eK−1 ∈ {0, 1}K−1 have K − 1 elements. Therefore, the k-th (k ∈ [2K−1]) entry

of g0 and g1: g0
k and g1

k, share the same attributes except for the first one α1. Index the

population proportion parameters p in the following way:

p =



p
g0

p
g1


 , where p

g0 =




pg0
1

pg0
2

...

pg0
2K−1




and p
g1 =




pg1
1

pg1
2

...

pg1
2K−1




.
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Recall that β+
j =

(
β+
j,1, β

+
j,1β

+
j,2, . . .

∏Hj

l=1 β+
j,l

)
, β−

j =
(
β−
j,1, β

−
j,1β

−
j,2, . . .

∏Hj

l=1 β−
j,l

)
, for j ∈

[J ]. Item parameters β+ = (β+
1 ,β

+
2 , . . . ,β

+
J ) and β− = (β−

1 ,β
−
2 , . . . ,β

−
J ). We now seek to

construct (β+,β−,p) 6= (β̄
+
, β̄

−
, p̄) such that (12) holds:

1. Take β+
j = β̄

+
j , β

−
j = β̄

−
j for j > 1.

2. β−
1,1 = β̄−

1,1 = 0, β̄+
1,l1

= β+
1,l1

, β̄−
1,l1

= β−
1,l1

for l1 > 1.

3. p̄
g1 = ρ · p̄

g0, pg0 = u · p̄
g0 , and p

g1 = v · p̄
g0 .

According to Lemma 2, in order for equation (12) to hold, it suffices to show that T̄rp̄ = Trp

holds for ∀r.

• For any r s.t. r1 = 0, tr,g0
k
≡ tr, g1

k
for k ∈ [2K−1]. Since β+

j = β̄
+
j , β

−
j = β̄

−
j for j > 1,

tr,g0
k
≡ tr, g1

k
≡ t̄r, g0

k
≡ t̄r, g1

k
for k ∈ [2K−1], to ensure T̄rp̄ = Trp, it suffices to have

1 + ρ = u+ v.

• For any r s.t. r1 = 1, since β−
1,1 = 0, tr,g0

k
= 0, it suffices to have ρβ̄+

1,1 = vβ+
1,1 to

guarantee T̄rp̄ = Trp.

• For any r s.t. r1 > 1, since β−
1,1 = 0 and β̄+

1,l1
= β+

1,l1
, β̄−

1,l1
= β−

1,l1
for l1 > 1, T̄rp̄ = Trp

holds without additional conditions.

With three parameters (u, v, β+
1,1) and two constraints, the equation system has infinitely

many solutions. Thus the construction exists. Therefore, each attribute must be required

by more than one item.

Now suppose the Q-matrix satisfies condition S1 and each attribute is required by at

least two items, and suppose that there exists some attribute which is required by at most

two categories. WLOG, assume this is α1, and it is the first and second items that require
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α1. Assume that category l∗2 ∈ [H2] of item 2 requires α1 and other categories of item 2 do

not require. So the Q can be written as

Q =




item 1






1 0⊤

0 ∗

item 2





0 ∗

1 v⊤

0 ∗

item 3:J

{

0 ∗




. (51)

We now seek to construct (β̄
+
, β̄

−
, p̄) 6= (β+,β−,p) such that T̄rp̄ = Trp holds for ∀r.

1. Take β+
j = β̄

+
j , β

−
j = β̄

−
j for j > 2.

2. For l1 > 1, β̄−
1,l1

= β−
1,l1

and β̄+
1,l1

= β+
1,l1

.

3. For l2 6= l∗2, β̄
+
2,l2

= β+
2,l2

, for l2 ∈ [H2], β̄
−
2,l2

= β−
2,l2

.

4. p̄
g1 = ρ · p̄

g0, pg0 = u · p̄
g0 , and p

g1 = v · p̄
g0 .

So the remaining parameters are (β+
1,1, β

−
1,1, β

+
2,l∗2

, ρ, u, v). We partition α into two groups

according to the first attribute as we did before.

• For any r s.t. r1 = 0, r2 < l∗2, tr,g0
k
≡ tr,g1

k
for k ∈ [2K−1]. Since β+

j = β̄
+
j , β−

j = β̄
−
j

for j > 1, tr, g0
k
≡ tr,g1

k
≡ t̄r, g0

k
≡ t̄r,g1

k
for k ∈ [2K−1]. To ensure T̄rp̄ = Trp, it suffices

to have 1 + ρ = u+ v.

73



• For any r s.t. r1 = 0, r2 = l∗2, it suffices to have β̄−
2,l∗2

+ ρβ̄+
2,l∗2

= uβ−
2,l∗2

+ vβ+
2,l∗2

. When

this is met, for any r s.t. r1 = 0, r2 > l∗2, T̄rp̄ = Trp also holds, since for l2 > l∗2,

β̄+
2,l2

= β+
2,l2

, β̄−
2,l2

= β−
2,l2

.

• For any r s.t. r1 = 1, r2 = 0, it suffices to have β̄−
1,1+ρβ̄+

1,1 = uβ−
1,1+ vβ+

1,1 to guarantee

T̄rp̄ = Trp. When this is met, for any r s.t. r1 > 1, r2 = 0, T̄rp̄ = Trp also holds.

Since for l1 > 1, β̄−
1,l1

= β−
1,l1

and β̄+
1,l1

= β+
1,l1

.

• For any r s.t. r1 6= 0 and r2 6= 0, we need β̄−
1,1β̄

−
2,l∗2

+ ρβ̄+
1,1β̄

+
2,l∗2

= uβ−
1,1β

−
2,l∗2

+ vβ+
1,1β

+
2,l∗2

.

With six parameters and four constraints, the equation system has infinitely many solutions.

Thus the construction exists. Thus the parameters are not identifiable and the condition

S2∗ is necessary.

Necessity of Condition S3∗. Suppose Q-matrix satisfies condition S1 and S2∗, but does

not satisfy condition S3∗, i.e., there exists two columns of the matrix




Q−1
1:K

QK+1:J



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are the same, and WLOG, assume they are columns 1 and 2. SinceQ satisfies S1, Q1
1:K = IK ,

so the Q-matrix can be written as

Q =




Q1

Q2

Q3:J




=




item 1





1 0 . . .

v1 v1 . . .

item 2






0 1 . . .

v2 v2 . . .

item (3 : J)

{

v v . . .




.

We partition α into four groups according to the first and the second attribute:

g00 = {α : α1 = 0, α2 = 0} = {α = (0, 0,α∗), α∗ ∈ {0, 1}K−2},

g10 = {α : α1 = 1, α2 = 0} = {α = (1, 0,α∗), α∗ ∈ {0, 1}K−2},

g01 = {α : α1 = 0, α2 = 1} = {α = (0, 1,α∗), α∗ ∈ {0, 1}K−2},

g11 = {α : α1 = 1, α2 = 1} = {α = (1, 1,α∗), α∗ ∈ {0, 1}K−2}.

So each group has 2K−2 attribute profiles, and we index the entries in each group by

g00
1 = (0, 0, 0), g00

2 = (0, 0, e1), . . . , g
00
K = (0, 0, eK−2), g

00
K+1 = (0, 0, e1 + e2), . . . , g

00
2K−2 =

(
0, 0,

∑K−2
k=1 ek

)
,

where e1, . . . , eK−2 ∈ {0, 1}K−2 have K − 2 elements. Similarly we index the elements of

g10, g01, g11. Therefore, g00
k , g10

k , g01
k and g11

k for k ∈ [2K−2] share the same attributes

except for the first and second attributes. Index the population proportion parameters p in
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the following way:

p =




p
g00

p
g10

p
g01

p
g11




, where p
g00 =




pg00
1

pg00
2

...

pg00
2K−2




, p
g10 =




pg10
1

pg10
2

...

pg10
2K−2




, p
g01 =




pg01
1

pg01
2

...

pg01
2K−2




and p
g11 =




pg11
1

pg11
2

...

pg11
2K−2




.

We now seek to construct (β̄
+
, β̄

−
, p̄) 6= (β+,β−,p) such that T̄rp̄ = Trp holds for ∀r.

1. Take β+
j = β̄

+
j , β

−
j = β̄

−
j for j > 2.

2. For l1 > 1, β̄−
1,l1

= β−
1,l1

and β̄+
1,l1

= β+
1,l1

; β̄+
1,1 = β+

1,1.

3. For l2 > 1, β̄+
2,l2

= β+
2,l2

and β̄−
2,l2

= β−
2,l2

; β̄+
2,1 = β+

2,1.

4. p
g11 = p̄

g11 , p
g00 = ρ1pg11 , p

g10 = ρ2pg11 , p
g01 = ρ3pg11 ,

p̄
g00 = u1pg11 , p̄

g10 = u2pg11 and p̄
g01 = u3pg11 .

So the remaining parameters are (β̄−
1,1, β̄

−
2,1, u1, u2, u3).

• For any r s.t. r1 = 0, r2 = 0, the response does not require α1 and α2, so tr, g00
k

≡

tr,g10
k
≡ tr,g01

k
≡ tr,g11

k
for k ∈ [2K−2]. Since β+

j = β̄
+
j , β

−
j = β̄

−
j for j > 1,

tr,g00
k
≡ tr, g10

k
≡ tr,g01

k
≡ tr, g11

k
≡ t̄r,g00

k
≡ t̄r, g10

k
≡ t̄r,g01

k
≡ t̄r,g11

k
, for k ∈ [2K−2].

To ensure T̄rp̄ = Trp, it suffices to have ρ1 + ρ2 + ρ3 = u1 + u2 + u3.

• For any r s.t. r1 = 1, r2 = 0, it suffices to have ρ1β
−
1,1 + ρ2β

+
1,1 + ρ3β

−
1,1 + β+

1,1 =

u1β̄
−
1,1 + u2β̄

+
1,1 + u3β̄

−
1,1 + β̄+

1,1 to ensure T̄rp̄ = Trp. Since β+
1,1 = β̄+

1,1, it suffices to
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have ρ1β
−
1,1 + ρ2β

+
1,1 + ρ3β

−
1,1 = u1β̄

−
1,1 + u2β̄

+
1,1 + u3β̄

−
1,1. When this is met, for any r s.t.

r1 > 1, r2 = 0, T̄rp̄ = Trp also holds, since for l1 > 1, β̄−
1,l1

= β−
1,l1

and β̄+
1,l1

= β+
1,l1

.

• For any r s.t. r1 = 0, r2 = 1, it suffices to have ρ1β
−
2,1 + ρ2β

−
2,1 + ρ3β

+
2,1 + β+

2,1 =

u1β̄
−
2,1 + u2β̄

−
2,1 + u3β̄

+
2,1 + β̄+

2,1 to ensure T̄rp̄ = Trp. Since β+
2,1 = β̄+

2,1, it suffices to

have ρ1β
−
2,1 + ρ2β

−
2,1 + ρ3β

+
2,1 = u1β̄

−
2,1 + u2β̄

−
2,1 + u3β̄

+
2,1. When this is met, for any r s.t.

r1 = 0, r2 > 1, T̄rp̄ = Trp also holds, since for l2 > 1, β̄−
2,l2

= β−
2,l2

and β̄+
2,l2

= β+
2,l2

.

• For any r s.t. r1 6= 0 and r2 6= 0, we also need ρ1β
−
1,1β

−
2,1 + ρ2β

+
1,1β

−
2,1 + ρ3β

−
1,1β

+
2,1 =

u1β̄
−
1,1β̄

−
2,1 + u2β̄

+
1,1β̄

−
2,1 + u3β̄

−
1,1β̄

+
2,1.

With five parameters and four constraints, the equation system has infinitely many solutions,

thus the construction exists. So the model parameters are not identifiable and condition S3∗

is necessary.

A.4 Proofs of Examples

Our proofs utilize certain results from existing literature, which we have summarized as

lemmas below.

Lemma 3. When K = 1, the parameters of the binary DINA model with the following

Q-matrix are identifiable.

Q =




1

1

1




(52)
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This lemma is a direct result from Theorem 1 in Gu and Xu (2019b).

Lemma 4. Given that the item parameters are known(identified), i.e., only the population

proportion parameters p need to be identified, and if the Q-matrix contains an identity ma-

trix, then the binary DINA model is identifiable.

This lemma is a result from Theorem 1 in Xu and Zhang (2016).

A.4.1 Proof of Example 7

Assuming that 0 < β−
j,l < β+

j,l ≤ 1, the Sequential DINA model parameters with the following

Q-matrix are identifiable:

Q =




item1





1 1

0 1

item2

{

1 1

item3

{

1 1

item4

{

1 0

item5

{

1 0

item6

{

1 0




and Q1 =




1 1

1 1

1 1

1 0

1 0

1 0




. (53)

Proof. If we consider the first categories of the first three items, whose Q-matrix can be
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written as

Q1
1:3 =




1 1

1 1

1 1




.

and we regard (1, 1) together as “one attribute”, then the above Q-matrix can be viewed

as the Q-matrix for the binary DINA model with only one attribute (1, 1). Using Lemma 3

and the equations Ts
r
p = T̄s

r
p̄ with r = ej , j ∈ [3] and their sums, we have p(11) = p̄(11),

β+
j,1 = β̄+

j,1 and β−
j,1 = β̄−

j,1 for j ∈ [3]. Similarly if we consider the first categories of the last

three items, we obtain p(10) + p(11) = p̄(10) + p̄(11) and β+
j,1 = β̄+

j,1, β
−
j,1 = β̄−

j,1 for j ∈ {4, 5, 6}.

Therefore, p(10) = p̄(10). Next we identify β+
1,2, β

−
1,2, p(00), p(01): consider equations Ts

r
p =

T̄s
r
p̄ with r ∈ {2e1, e2, e4} and their sums. With p(11) = p̄(11), p(10) = p̄(10) and β+

j,1 = β̄+
j,1,

β−
j,1 = β̄−

j,1 for j ∈ {1, 2, 4}, these equations give




0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

β−
1,1 β−

1,1 β−
1,1 β+

1,1 β−
1,1 β−

1,1 β−
1,1 β+

1,1

β−
1,1β

−
1,2 β−

1,1β
−
1,2 β−

1,1β
+
1,2 β+

1,1β
+
1,2 β−

1,1β̄
−
1,2 β−

1,1β̄
−
1,2 β−

1,1β̄
+
1,2 β+

1,1β̄
+
1,2

β−
2,1β

−
1,1 β−

2,1β
−
1,1 β−

2,1β
−
1,1 β+

2,1β
+
1,1 β−

2,1β
−
1,1 β−

2,1β
−
1,1 β−

2,1β
−
1,1 β+

2,1β
+
1,1

β−
4,1β

−
1,1 β+

4,1β
−
1,1 β−

4,1β
−
1,1 β+

4,1β
+
1,1 β−

4,1β
−
1,1 β+

4,1β
−
1,1 β−

4,1β
−
1,1 β+

4,1β
+
1,1

β−
2,1β

−
1,1β

−
1,2 β−

2,1β
−
1,1β

−
1,2 β−

2,1β
−
1,1β

+
1,2 β+

2,1β
+
1,1β

+
1,2 β−

2,1β
−
1,1β̄

−
1,2 β−

2,1β
−
1,1β̄

−
1,2 β−

2,1β
−
1,1β̄

+
1,2 β+

2,1β
+
1,1β̄

+
1,2

β−
4,1β

−
1,1β

−
1,2 β+

4,1β
−
1,1β

−
1,2 β−

4,1β
−
1,1β

+
1,2 β+

4,1β
+
1,1β

+
1,2 β−

4,1β
−
1,1β̄

−
1,2 β+

4,1β
−
1,1β̄

−
1,2 β−

4,1β
−
1,1β̄

+
1,2 β+

4,1β
+
1,1β̄

+
1,2







p(00)

p(10)

p(01)

p(11)

−p̄(00)

−p̄(10)

−p̄(01)

−p̄(11)




= 0,

if we abbreviate

p̃ = (p(00) p(10) p(01) p(11) − p̄(00) − p̄(10) − p̄(01) − p̄(11) − p̄(11))
⊤, (54)
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then




0 0 0 1 0 0 0 1

0 0 β−
1,1(β

+
1,2 − β−

1,2) β+
1,1(β

+
1,2 − β−

1,2) β−
1,1(β̄

−
1,2 − β−

1,2) β−
1,1(β̄

−
1,2 − β−

1,2) β−
1,1(β̄

+
1,2 − β−

1,2) β+
1,1(β̄

+
1,2 − β−

1,2)

0 0 β−
2,1β

−
1,1(β

+
1,2 − β−

1,2) β+
2,1β

+
1,1(β

+
1,2 − β−

1,2) β−
2,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
2,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
2,1β

−
1,1(β̄

+
1,2 − β−

1,2) β+
2,1β

+
1,1(β̄

+
1,2 − β−

1,2)

0 0 β−
4,1β

−
1,1(β

+
1,2 − β−

1,2) β+
4,1β

+
1,1(β

+
1,2 − β−

1,2) β−
4,1β

−
1,1(β̄

−
1,2 − β−

1,2) β+
4,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
4,1β

−
1,1(β̄

+
1,2 − β−

1,2) β+
4,1β

+
1,1(β̄

+
1,2 − β−

1,2)




p̃ = 0,

thus




0 0 β−
1,1(β

+
1,2 − β−

1,2) 0 β−
1,1(β̄

−
1,2 − β−

1,2) β−
1,1(β̄

−
1,2 − β−

1,2) β−
1,1(β̄

+
1,2 − β−

1,2) β+
1,1(β̄

+
1,2 − β+

1,2)

0 0 β−
2,1β

−
1,1(β

+
1,2 − β−

1,2) 0 β−
2,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
2,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
2,1β

−
1,1(β̄

+
1,2 − β−

1,2) β+
2,1β

+
1,1(β̄

+
1,2 − β+

1,2)

0 0 β−
4,1β

−
1,1(β

+
1,2 − β−

1,2) 0 β−
4,1β

−
1,1(β̄

−
1,2 − β−

1,2) β+
4,1β

−
1,1(β̄

−
1,2 − β−

1,2) β−
4,1β

−
1,1(β̄

+
1,2 − β−

1,2) β+
4,1β

+
1,1(β̄

+
1,2 − β+

1,2)




p̃ = 0,

(55)

which gives (β+
2,1−β−

2,1)β
+
1,1(β̄

+
1,2−β+

1,2) = 0, so we have β̄+
1,2 = β+

1,2. Taking this back to (55),

we have

β−
1,1



0 0 (β+

1,2 − β−
1,2) 0 (β̄−

1,2 − β−
1,2) (β̄−

1,2 − β−
1,2) (β+

1,2 − β−
1,2) 0

0 0 β−
4,1(β

+
1,2 − β−

1,2) 0 β−
4,1(β̄

−
1,2 − β−

1,2) β+
4,1(β̄

−
1,2 − β−

1,2) β−
4,1(β

+
1,2 − β−

1,2) 0


 p̃ = 0,

(56)

which gives

β−
1,1

(
0 0 0 0 0 (β+

4,1 − β−
4,1)(β̄

−
1,2 − β−

1,2) 0 0

)
p̃ = 0.

Assuming β−
1,1 > 0, we have β̄−

1,2 = β−
1,2. Taking this back to (56), we have

(
0 0 (β+

1,2 − β−
1,2) 0 0 0 (β+

1,2 − β−
1,2) 0

)
p̃ = 0.

Thus p(01) = p̄(01), and also p(00) = p̄(00). Therefore, the parameters of the Sequential DINA

model with the above Q-matrix (53) are identifiable.
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A.4.2 Proof of Example 8

The Sequential DINA model parameters with the following Q-matrix are not identifiable:

Q =




item 1

{

1 0

item 2

{

0 1

item 3

{

0 1

item 4






1 1

1 0




and Q1 =




1 0

0 1

0 1

1 1




.

Proof. Let β̄+
1,1 = β+

1,1, β̄+
2,1 = β+

2,1 β̄+
3,1 = β+

3,1, β̄+
4,2 = β+

4,2, β̄
−
2,1 = β−

2,1, β̄−
3,1 = β−

3,1, β̄
−
4,1 =

β−
4,1 = 0. Since β−

4,1 = 0, β−
4,2 is not defined (or equals 0). Then T̄p̄ = Tp holds if and only

if the following equations hold:





p̄(00) + p̄(10) + p̄(01) + p̄(11) = p(00) + p(10) + p(01) + p(11);

p̄(01) + p̄(11) = p(01) + p(11);

β̄−
1,1[p̄(00) + p̄(01)] + β+

1,1[p̄(10) + p̄(11)] = β−
1,1[p(00) + p(01)] + β+

1,1[p(10) + p(11)];

β̄−
1,1β

−
2,1p̄(00) + β̄−

1,1β
+
2,1p̄(01) + β+

1,1β
−
2,1p̄(10) + β+

1,1β
+
2,1p̄(11) = β−

1,1β
−
2,1p(00) + β−

1,1β
+
2,1p(01) + β+

1,1β
−
2,1p(10) + β+

1,1β
+
2,1p(11);

β̄+
4,1p̄(11) = β+

4,1p(11).

There are five equations with six parameters (p(00), p(10), p(01), p(11), β
−
1,1, β

+
4,1), thus there are

infinitely many solutions and the parameters are not identifiable.
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A.4.3 Proof of Example 9

The Sequential DINA model parameters with the following Q-matrix are not identifiable:

Q =




item 1

{

1 0

item 2

{

0 1

item 3





1 1

1 0

item 4

{

1 1




and Q1 =




1 0

0 1

1 1

1 1




.

Proof. Let β̄+
j,l = β+

j,l for all j and l ∈ [Hj], β̄
−
4,1 = β−

4,1, β̄
−
3,1 = β−

3,1 = 0, and p̄(11) = p(11).

Since β−
3,1 = 0, β−

3,2 is not defined (or equals 0). Then T̄p̄ = Tp holds if and only if the

following equations hold:





p̄(00) + p̄(10) + p̄(01) = p(00) + p(10) + p(01);

β̄−
1,1[p̄(00) + p̄(01)] + β+

1,1[p̄(10) + p(11)] = β−
1,1[p(00) + p(01)] + β+

1,1[p(10) + p(11)];

β̄−
2,1[p̄(00) + p̄(10)] + β+

2,1[p̄(01) + p(11)] = β−
2,1[p(00) + p(10)] + β+

2,1[p(01) + p(11)];

β̄−
1,1β̄

−
2,1p̄(00) + β̄−

1,1β̄
+
2,1p̄(01) + β+

1,1β
−
2,1p̄(10) + β+

1,1β
+
2,1p(11) = β−

1,1β
−
2,1p(00) + β−

1,1β
+
2,1p(01) + β+

1,1β
−
2,1p(10) + β+

1,1β
+
2,1p(11).

There are four equations with five parameters (p(00), p(10), p(01), β
−
1,1, β

−
2,1), thus there are in-

finitely many solutions and the parameters are not identifiable.
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A.4.4 Proof of Example 10

The Sequential DINA model parameters with the following Q-matrix are identifiable:

Q =




item 1





1 0

0 1

item 2





1 0

0 1

item 3





0 1

1 0

item 4






0 1

1 0




and Q1 =




1 0

1 0

0 1

0 1




. (57)

Proof. Consider equations Ts
r
p = T̄s

r
p̄ with r ∈ {e1, 2e1, e3, e4} and their sums. Using a

similar calculation, these equations give



0⊤
4 β̄−

1,1(β̄
−
1,2 − β−

1,2)(β̄
−
3,1 − β+

3,1) β̄+
1,1(β̄

−
1,2 − β−

1,2)(β̄
−
3,1 − β+

3,1) β̄−
1,1(β̄

+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1) β̄+
1,1(β̄

+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)

0⊤
4 β̄−

1,1(β̄
−
1,2 − β−

1,2)(β̄
−
3,1 − β+

3,1)β̄
−
4,1 β̄+

1,1(β̄
−
1,2 − β−

1,2)(β̄
−
3,1 − β+

3,1)β̄
−
4,1 β̄−

1,1(β̄
+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)β̄
+
4,1 β̄+

1,1(β̄
+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)β̄
+
4,1


 p̃ = 0,

(58)

where 04 denotes all-zero vectors of dimension four and p̃ is (54). Thus,

(
0⊤
5 β̄−

1,1(β̄
+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)(β̄
+
4,1 − β̄−

4,1) β̄+
1,1(β̄

+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)(β̄
+
4,1 − β̄−

4,1)

)
p̃ = 0.
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Therefore,

(β̄−
1,1p̄01 + β̄+

1,1p̄11)(β̄
+
1,2 − β−

1,2)(β̄
+
3,1 − β+

3,1)(β̄
+
4,1 − β̄−

4,1) = 0.

Since 0 ≤ β−
j,l < β+

j,l ≤ 1, (β̄+
1,2−β−

1,2)(β̄
+
3,1−β+

3,1) = 0. But if β̄+
3,1 6= β+

3,1 and β̄+
1,2 = β−

1,2, we can

swap the parameters β and β̄, and show that β+
1,2 = β̄−

1,2 by symmetry. Yet this will indicate

that β+
1,2 = β̄−

1,2 < β̄+
1,2 = β−

1,2, which leads to a contradiction, thus we must have β̄+
3,1 = β+

3,1.

By symmetry we can also show that β̄+
4,1 = β+

4,1, and similarly for β̄+
1,1 = β+

1,1 and β̄+
2,1 = β+

2,1.

Taking these back to equation (58), we have β̄−
1,2 = β−

1,2. Samely we obtain β̄−
j,2 = β−

j,2 for

j ∈ [4]. Thus all the item parameters are identified, and according to Lemma 4, we know

that when these parameters are known, the completeness of the Q-matrix will suffice to

identify parameters p. Therefore, we must have (β+,β−,p) = (β̄
+
, β̄

−
, p̄), i.e., the model

parameters are identifiable.

A.4.5 Proof of Example 11

The Sequential DINA model parameters with the following Q-matrix are identifiable:
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Q =




item 1





1 0

0 1

item 2





0 1

1 0

item 3

{

1 1

item 4

{

1 1

item 5

{

1 1




and Q1 =




1 0

0 1

1 1

1 1

1 1




.

Proof. Consider the last three items, similar to the proof in Example 7, according to Lemma 3,

we have p(11) = p̄(11), and β+
j,1 = β̄+

j,1, β
−
j,1 = β̄−

j,1 for j ∈ {3, 4, 5}. Next using equations

Ts
r
p = T̄s

r
p̄ with r = e1, e1 + e3, we have




β−
1,1 β+

1,1 β−
1,1 β+

1,1 β̄−
1,1 β̄+

1,1 β̄−
1,1 β̄+

1,1

β−
1,1β

−
3,1 β+

1,1β
−
3,1 β−

1,1β
−
3,1 β+

1,1β
+
3,1 β̄−

1,1β
−
3,1 β̄+

1,1β
−
3,1 β̄−

1,1β
−
3,1 β̄+

1,1β
+
3,1


 p̃ = 0,

which gives

(
0 0 0 β+

1,1(β
+
3,1 − β−

3,1) 0 0 0 β̄+
1,1(β

+
3,1 − β−

3,1)

)
p̃ = 0,

where p̃ is given by (54). Since p(11) = p̄(11), we must have β+
1,1 = β̄+

1,1. Next combining
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r = 2e1 and r = 2e1 + e3,




β−
1,1β

−
1,2 β+

1,1β
−
1,2 β−

1,1β
+
1,2 β+

1,1β
+
1,2 β̄−

1,1β̄
−
1,2 β̄+

1,1β̄
−
1,2 β̄−

1,1β̄
+
1,2 β̄+

1,1β̄
+
1,2

β−
1,1β

−
1,2β

−
3,1 β+

1,1β
−
1,2β

−
3,1 β−

1,1β
+
1,2β

−
3,1 β+

1,1β
+
1,2β

+
3,1 β̄−

1,1β̄
−
1,2β

−
3,1 β̄+

1,1β̄
−
1,2β

−
3,1 β̄−

1,1β̄
+
1,2β

−
3,1 β̄+

1,1β̄
+
1,2β

+
3,1


 p̃ = 0,

which gives β+
1,2 = β̄+

1,2. Similarly we can obtain β+
2,1 = β̄+

2,1 and β+
2,2 = β̄+

2,2. Next consider

r ∈ {e1, 2e1, e1 + e2, 2e1 + e2}, using similar calculations, we have,



0 0 β−

1,1(β
+
1,2 − β−

1,2) β+
1,1(β

+
1,2 − β−

1,2) β̄−
1,1(β̄

−
1,2 − β−

1,2) β+
1,1(β̄

−
1,2 − β−

1,2) β̄−
1,1(β

+
1,2 − β−

1,2) β+
1,1(β

+
1,2 − β−

1,2)

0 0 β−
1,1(β

+
1,2 − β−

1,2)β
+
2,1 β+

1,1(β
+
1,2 − β−

1,2)β
+
2,1 β̄−

1,1(β̄
−
1,2 − β−

1,2)β̄
−
2,1 β+

1,1(β̄
−
1,2 − β−

1,2)β̄
−
2,1 β̄−

1,1(β
+
1,2 − β−

1,2)β
+
2,1 β+

1,1(β
+
1,2 − β−

1,2)β
+
2,1


 p̃ = 0,

which gives

(β̄−
1,1p̄(00) + β̄+

1,1p̄(10))(β̄
−
1,2 − β−

1,2)(β̄
−
2,1 − β+

2,1) = 0,

thus we have β̄−
1,2 = β−

1,2. Finally we identify β−
2,1,




β−
1,1 β+

1,1 β−
1,1 β+

1,1 β̄−
1,1 β+

1,1 β̄−
1,1 β+

1,1

β−
1,1β

−
1,2 β+

1,1β
−
1,2 β−

1,1β
+
1,2 β+

1,1β
+
1,2 β̄−

1,1β̄
−
1,2 β+

1,1β̄
−
1,2 β̄−

1,1β
+
1,2 β+

1,1β
+
1,2

β−
1,1β

−
2,1 β+

1,1β
−
2,1 β−

1,1β
+
2,1 β+

1,1β
+
2,1 β̄−

1,1β̄
−
2,1 β+

1,1β̄
−
2,1 β̄−

1,1β
+
2,1 β+

1,1β
+
2,1

β−
1,1β

−
1,2β

−
2,1 β+

1,1β
−
1,2β

−
2,1 β−

1,1β
+
1,2β

+
2,1 β+

1,1β
+
1,2β

+
2,1 β̄−

1,1β̄
−
1,2β̄

−
2,1 β+

1,1β̄
−
1,2β̄

−
2,1 β̄−

1,1β
+
1,2β

+
2,1 β+

1,1β
+
1,2β

+
2,1




p̃ = 0

⇒



0 0 β−

1,1(β
+
2,1 − β−

2,1) β+
1,1(β

+
2,1 − β−

2,1) β̄−
1,1(β̄

−
2,1 − β−

2,1) β+
1,1(β̄

−
2,1 − β−

2,1) β̄−
1,1(β

+
2,1 − β−

2,1) β+
1,1(β

+
2,1 − β−

2,1)

0 0 β−
1,1β

+
1,2(β

+
2,1 − β−

2,1) β+
1,1β

+
1,2(β

+
2,1 − β−

2,1) β̄−
1,1β̄

−
1,2(β̄

−
2,1 − β−

2,1) β+
1,1β̄

−
1,2(β̄

−
2,1 − β−

2,1) β̄−
1,1β

+
1,2(β

+
2,1 − β−

2,1) β+
1,1β

+
1,2(β

+
2,1 − β−

2,1)


 p̃ = 0.

Hence

(
0 0 0 0 β̄−

1,1(β̄
−
1,2 − β+

1,2)(β̄
−
2,1 − β−

2,1) β+
1,1(β̄

−
1,2 − β+

1,2)(β̄
−
2,1 − β−

2,1) 0 0

)
p̃ = 0.
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Therefore, we have

(β̄−
1,1p̄(00) + β̄+

1,1p̄(10))(β̄
−
1,2 − β+

1,2)(β̄
−
2,1 − β−

2,1) = 0,

thus β̄−
2,1 = β−

2,1. Using the same strategy we can show that β̄−
2,2 = β−

2,2 and β̄−
1,1 = β−

1,1, which

completes the proof.
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