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Abstract

Cognitive Diagnosis Models (CDMs) provide a powerful statistical and psychome-
tric tool for researchers and practitioners to learn fine-grained diagnostic information
about respondents’ latent attributes. There has been a growing interest in the use of
CDMs for polytomous response data, as more and more items with multiple response
options become widely used. Similar to many latent variable models, the identifiability
of CDMs is critical for accurate parameter estimation and valid statistical inference.
However, the existing identifiability results are primarily focused on binary response
models and have not adequately addressed the identifiability of CDMs with polyto-
mous responses. This paper addresses this gap by presenting sufficient and necessary
conditions for the identifiability of the widely used DINA model with polytomous re-
sponses, with the aim to provide a comprehensive understanding of the identifiability

of CDMs with polytomous responses and to inform future research in this field.
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1. Introduction

Cognitive Diagnosis Models (CDMs), which serve as a powerful tool to infer subjects’ la-
tent attributes such as skills, knowledge, or psychological disorders based on their responses
to some designed diagnostic items in the cognitive diagnosis assessment, have drawn in-
creasing attention over the years. As a family of discrete latent variable models, its pop-
ularity is not limited to educational assessments (Junker and Sijtsma, 2001; von Davier,
2008; Henson et al., 2009; Rupp et al., 2010; de la Torre, 2011; Wang et al., 2018), psychi-
atric diagnosis of mental disorders (Templin and Henson, 2006; de la Torre et al., 2018), and
epidemiological and medical measurement studies (Wu et al., 2017; O’Brien et al., 2019).

Various CDMs have been developed with different diagnostic assumptions and model-
ing goals, among which the Deterministic Input Noisy output “And” gate model (DINA;
Junker and Sijtsma, 2001), which assumes that subjects are expected to complete an item
correctly only when they possess all required attributes, is one of the most popular ones. Fur-
thermore, the DINA model also serves as a basis for a larger range of more general CDMs,
including the general diagnostic model (von Davier, 2008), the log linear CDM (LCDM;
Henson et al., 2009), and the generalized DINA model (GDINA; de la Torre, 2011). As
tests with polytomous responses appear more frequently in practice, the study of CDMs
with polytomous responses has also grown in popularity (Culpepper and Balamuta, 2021).
Specifically, several models concerning polytomous responses were proposed, such as Gen-
eral Diagnostic Models (GDM; von Davier, 2008), General Polytomous Diagnosis Models
(GPDM; Chen and de la Torre, 2018), and Sequential Cognitive Diagnosis Models (Sequen-
tial CDM; Ma and de la Torre, 2016).

As is the case with many statistical methods, ensuring the models applied in the cog-



nitive diagnosis are statistically identifiable is fundamental to achieve reliable and valid
diagnostic assessment. Additionally, this is also a necessity for consistent estimation of the
model parameters of interest and valid statistical inferences. The study of identifiability
issue for CDMs has long been considered, such as DiBello et al. (1995), Maris and Bechger
(2009), Tatsuoka (2009), DeCarlo (2011), and von Davier (2014). Considerable identifia-
bility developments have been added to the CDM literature, such as DINA model and its
generalizations in recent years. For instance, Xu and Zhang (2016) and Gu and Xu (2019b)
discussed the sufficient and necessary condition for DINA model with binary responses. Xu
(2017), Gu and Xu (2019a, 2020), Chen et al. (2020) and Culpepper (2022) discussed identi-
fiability for more generally restricted latent class models. However, these results are targeted
for dichotomous responses specifically, and the requirements for the identifiability of mod-
els with polytomous responses have sparingly been taken into consideration. For instance,
Culpepper (2019) and Fang et al. (2019) discussed the sufficient condition for the identifia-
bility of general CDMs with polytomous responses, while the necessity of those conditions
remains an open problem.

Our paper fills this gap by providing sufficient and necessary conditions for the identifi-
ability of CDMs with polytomous responses. In particular, we focus on two commonly used
polytomous responses models under the DINA model setting: the GPDM (Chen and de la Torre,
2018) under the DINA model, which we refer as GPDINA, and the sequential CDM (Ma and de la Torre,
2016) under the DINA model, which we refer as Sequential DINA model. There are several
challenges in developing the identifiability of the polytomous responses models. Firstly, in
binary responses DINA models, the uncertainty of each item is charaterized by two item

parameters, whereas in polytomous responses models, each item generally involves more



than two parameters. Therefore, polytomous responses models have more parameters to
identify, which makes its identifiability more challenging. What is more intricate is that the
dependency structure between these parameters is different from that of the binary response
models. This is because, in addition to accounting for dependencies across items, polytomous
models must also consider the dependency of parameters within a single item. Moreover,
the technical tool, T-matrix (Liu et al., 2013; Xu, 2017), which has been widely used in the
identifiability literature, is restricted to binary responses models currently, to our knowledge.

To address these challenges, we generalize the T-matrix framework to the more complex
polytomous model settings. Based on different dependency structure of the parameters of the
two models, the generalizations of the T-matrix for the two considered models (i.e., GPDINA
and sequential settings) are also different. In particular, there is a significant difference in
the structure of the T-matrix for Sequential DINA model, as compared to the T-matrix for
binary DINA models, since the sequential modeling introduces more complex and challenging
structure than the binary DINA case. With this powerful tool, we establish sufficient and
necessary conditions for the identifiability of the GPDINA and the Sequential DINA models.
Our proposed conditions ensure the identifiability and also specify the practical requirements
that the two models need to process to be identifiable. Through the duality of the DINA
and DINO models (Chen et al., 2015), the identifiability finding can be immediately applied
to the two models under the DINO setting. Moreover, our results not only extend many
existing results aimed at binary data to the polytomous case, but also shed light on the study
of more general polytomous CDMs, which cover the considered DINA models as submodels.
Practically, the sufficient and necessary condition solely depends on the Q-matrix structure,

and this easily verifiable requirement would serve as a practical guideline for developing



cognitive tests that are both statistically valid and estimable.

The rest of the paper is organized as follows. Section 2 introduces the model setup
and brings up the definition of identifiability. Section 3 introduces a powerful tool T-matrix,
specific to the polytomous responses models and develops the identifiability results, examples
are also provided for illustration. Section 4 gives further discussion, and the supplementary

material provides the proofs for the main results.

2. Model Setup

Before we present our results, we first introduce some notations. Let e; = (0,...,1,0,..., O)T
denote the vector where only the j-th entry is 1. Let 1 = (1,...,1)" denote the vector of all
ones and 0 = (0,...,0)" denote the vector of all zeros. Let Zx denote the K-dimensional
identity matrix. For a positive integer m, we denote [m] = {1,...,m}. Let o denote the
-

Hadamard product (element-wise product) of vectors. For instance, for a = (aq, ..., an)

and b = (by,...,by,)", @aob = (ajby,...,amby)". Let ® denote the Kronecker product

between matrices. For example, for ¢ = (cy,...,¢,)" € R,
aic Lk
aoC 1 G,QIK KX K
a®c= eER™ a®ZTkg = e Rm™MH X,
ay,C amIK

Assume we have J polytomous items to measure K unobserved binary latent attributes,

and a binary latent attribute profile can be written as a = (o, ..., ax) ', where ay, € {0,1}.

So there are 25 attribute profiles in total. For j € [J], define positive integer H; to be the
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number of non-zero categories (levels) the j-th polytomous item has, therefore, item j has
H; + 1 categories in total, i.e., 0, 1, ..., H;. Accordingly, we define the observed random
variable response R = (Ry,..., R;)", with R; € {0,1,..., H,}, and denote the set of all
possible responses as S = {r = (ry,...7;) :r; € {0,1,..., H;}}.

In the CDM literature, the relationships between attributes and items are characterized
by the Q-matrix, which was proposed by Tatsuoka (1983). Different from CDMs with
binary responses, for polytomous responses, the interpretations of the entries in the Q-
matrix differ according to different modelings. In the following, we focus on two popular
models under the DINA assumption, the general polytomous diagnosis model (GPDINA) by
Chen and de la Torre (2018) and the Sequential DINA model by Ma and de la Torre (2016)

separately and introduce different ways of specifying the Q-matrix for polytomous CDMs.

2.1 The GPDINA model

In GPDINA (Chen and de la Torre, 2018) (the GPDM under the DINA assumption), for
models with J items and K attributes, we define a J x K binary Q-matrix. The entry
¢; of the Q-matrix is interpreted as follows: ¢j; = 1 means completing (responding) any
non-zero category of item j requires attribute k, and ¢;, = 0 means completing any non-zero
categories does not require attribute k. So the j-th row of the Q-matrix, q;, denotes the
attributes required to complete any non-zero categories for item j. Therefore, any non-zero
category of the same item requires the same attributes and shares the same q-vector. In
other words, non-zero categories of an item are indistinguishable, can be exchanged.

We consider the DINA assumption under the GPDINA framework. As in the DINA

model for binary data, we denote the ideal response ;o = I(a > q;). To further quantify



the uncertainty of the responses, define the item parameters as:

07, =P(R;=1|§a=1), L €[H] (1)

el_P( _l|£Ja: )7l€[Hj]v (2>

Js

where 9;1 means the probability of completing category [ of item j given the attribute profile
« is capable of completing it and 6, means the probability of completing category [ of item
j given the attribute profile « is not able to complete it. Then 1 — 67 1 can be interpreted
as slipping parameter and 6}, interpreted as the guessing parameter (Junker and Sijtsma,
2001), and we assume that 0 > 0, for | € [H;] and j € [J]. As we can see, although
the attributes required by different categories of the same item are the same, here we allow
the response uncertainty to be heterogeneous, i.e., 9;% and ¢, can be different across [. So
in total we have 2 ijl H; item parameters, and the multiplicity of the item parameters is
one of the aspects that makes polytomous responses models different from the binary DINA

models. For notation convenience, we also let

H;
P(Rj=0|(a=1)=1- Z 0, =07, (3)

P(R —0|£m—0—1—2 (4)

=1

When q; =0, §j o =1 for all a, then 6}, is not defined for all [ € [H;]. In the following
Proposition 1, we will show that excluding these zero g-vectors does not affect our analysis.
Let

9;_ = (9;:17 0;:27 “‘G;ZHJ-)T and 0 (9]_1’ 91_2’ "'ej_ij)T7



6" = (0)]_, and 6~ = (0;);_,, where there are Zj:l H; entries in both 6% and 6.
Denote p, as the proportion of attribute profile @ in the population and p := (pa : @ €
{0,1}%)7, which satisfies Zae{O,l}K Pa = 1, and we assume that p, > 0 for all a. Given

the attribute profile a, assume that a subject’s responses to the J items are independent.

For r = (ry,...,7;)" €8, we have

J
PR=7[Q,0%.6",p)= > pa]]6}, )06, ) 5. (5)
j=1

ac{0,1}¥
We use the following example to further the illustration of the model setup.

Example 1. Suppose there are two polytomous items, each with two non-zero categories, so
then J =2 and Hy = Hy = 2. Suppose only two attributes oy and oy are involved, and the

Q-matrix takes the following formula:

The dashline “- - -7 is used to separate different items. Therefore, the first and the second
categories of the first item both require solely oy, and the first and the second categories of
the second item both require solely . In particular, attribute profile o = (1,0) has {1.o = 1

and {3 = 0. Thus,

P(R1:1|a):9f1; P(R1:2\a):0f2; P(Ry=1]a)=10,,; P(Ry=2]|a)=0,,,



whereas for attribute profile oo = (0,1), {16 =0, o0 = 1, and

P(Ri=1]a)=07; P(Ri=2]a)=~0,; P(R2:1|a):9§f1; P(R2:2\a):«9§f2.

Therefore, attribute profile a« = (1,0) has higher probability of completing the two non-zero
categories of the first item but lower probability of completing the two non-zero categories of
the second item. Distributions for profiles with o = (1,1) and o« = (0,0) can be similarly

obtained as well.

Under the above GPDINA model setup, the model parameters include (0~,0", p). To
study the identifiability of these parameters, we formally introduce the definition in the

following, and we defer the identifiability result in Section 3.

Identifiability. We say that the GPDINA parameters are identifiable if there is no (0+, 0 ,p)

# (67,07, p) such that

PR=7|Q,07,0 ,p)=PR=r|Q,0,0 ,p)foralreds. (6)

To simplify our discussion of the identifiability issue, we assume that q; # 0 for all j € [J]

without compromising the validity of the analysis, thanks to the following proposition.

Proposition 1. Let A = {j € [J] : q; = 0} denote the set of items whose q-vectors are
zero, then the GPDINA model parameters with Q-matriz are identifiable if and only if the
GPDINA model parameters with Q_a-matriz are identifiable, where Q_aA is obtained by

removing the q-vectors in Q corresponding to the items in A.



2.2 The Seqential DINA model

Another popular modeling approach for polytomous responses is the Sequential DINA model,
proposed by Ma and de la Torre (2016). In the Sequential DINA model with .J items and K
attributes, we assume that the subject’s response to item j € [J], with R; = 0 indicates that
the subject fails to complete the first category, and R; = r; > 0 indicates that the subject has
completed categories 1,...,7; successfully and failed to complete category r; +1. R; = H;
simply means the subject successfully completed all the categories. Therefore, categories
within one item are not exchangeable, and such ordered categories make it different from
the previous GPDINA model setup.

Due to the sequential hierarchy of the categories, different categories could require differ-
ent attributes. What’s worth noticing is that, though response categories are assumed to be
attained sequentially, there is no required structure for the attributes required by different
categories. For each item j, its different categories should have their corresponding g-vectors.
In Ma and de la Torre (2016), they refer such Q-matrix as restricted Q-matrix. As defined,
the polytomous item j has H; non-zero categories, so for the associations between the at-
tributes and the polytomous item j, we have H; rows in the Q-matrix to characterize such
information. With each row having K entries indicating which attributes are required by the
category, the Q-matrix can be summarized as a (ijl H;) x K binary matrix. Specifically,
we index the Q-matrix in the following way: for [ € [H;], we define the (j,1)-th row of the
matrix, q;;, as a K dimensional binary vector indicating the association between the cate-
gory [ of item j and the K attributes. According to our model construction, the q;; vector
indicates the attributes required to complete category [ of item j, given that the subject has

successfully completed the previous categories 1,...,1 — 1. To further illustrate the model
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setup, we present an example in the following.

Example 2. Suppose there are two polytomous items with Hy = Hy = 2 and two attributes

a1 and as, and
(

category 1 qi1 =1[1 0]
category 2 qio = 1[0 1]
\

category 1 qoq = 1[0 1]

category 2 Qoo =[1 1]
\

Therefore, to complete the first category of the first item, a subject needs to require the first
attribute, and given that the subject has completed the first category, he/she needs to require

the second attribute to complete the second category of the first item.

Since different categories require different attributes, the ideal response needs to be
specified accordingly to different categories. We define the ideal response as ;o = (o >
q;;) for category [ of item j. This is also different from the setup in GPDINA, for which we
only need to define item-wise ideal response. To quantify the uncertainty of the response to
different categories, we define the item parameters specific to the Sequential DINA model

as:

]—{—l = P(R] Z { ‘ Rj Z [ — 1, gj,l,a = 1), l c [Hj], (8)

ﬁ'_l = P(R] > l | Rj > l— 1> gj,l,a = O)> l e [Hj]> (9)

s

ana we assume a =~ < P N ote a € 1mequality < -, 1S aSsuIme O
d that 0 < 87, < 8, < 1. Note that the i lity 8;, < B i dt

respect the monotonicity assumption of the latent attributes (Xu and Zhang, 2016), which

11



is also needed to avoid the label switching issue of the DINA model. Consequently, 5} is
permitted to take on values within the range [0, 1) while ﬁ;fl can take on values within the
range (0, 1]. These parameters characterize the probability of completing category [ of item
7 gwen a subject with attributes a has completed the previous categories. Furthermore,
1 - ;fl can be interpreted as the slipping parameter and B;l interpreted as the guessing

parameter (Junker and Sijtsma, 2001). Also notice that

P(R] >0 | gj,l,a = 1) = 17 l e [Hj]a

P(R] 20|£j,l,a20>:17 l e [Hj],

and we let B8y . = By 1 = 0.

To see how these item parameters are related to the model setup in Ma and de la Torre
(2016), we formulate several concepts in their paper as the following. The processing function
S;(l|a) in Ma and de la Torre (2016), which denotes the probability of completing category
[ of item j provided that they have already completed category [ — 1 successfully, given the

attribute profile a, can be written as

Si(lla) = (B])50(8;)) "t = P(R; > 1| R; > 1—1, ), 1€ [H]].

12



Let Sj(0|a) = P(R; > 0] a) =1 and Sj(H; + 1| ) = 0. Then noticing that

P(R;>ri|a)=][P@R;>1|R;>1-1, a)-P(R; >0 | )
=1

=[5l

rj
el A= \1—E o
= H( ;1)5”’ (8;2) S,
=1
given the attribute profile o, the probability of R; = r; can be written as

PRj=rj|la)=P(R; >rj|a) - P(R; >r;+ 1| )

— (1 Sy, 1] @) T[St .

=0

Similar to GPDINA, when q;; = 0, ;1o = 1 for all a, and then §;; is not defined. We
will show later in Proposition 2 that excluding these categories with q;; = 0 does not affect
our analysis. Note that when 57, = 0 (q;, is not necessarily 0), some model parameters
may not be well-defined. Suppose category [* is the first category in item j which appears
to have 8. = 0, i.e., 8;; > 0 for I < [*. If we denote I';,. := {a : {; 1+ o = 0} as the set
of attribute profiles that are not able to complete the [*-th category of item j ideally, and if
the probability of guessing correctly category [* of item j is also 0, then there’s no way for
the subject to complete higher categories of item j. So we define for a € I'} .,

=B, =0, for | > 1", (10)

Assume that a subject’s responses to the J items are conditionally independent given

13



the attribute profiles. We let

H; H;

B;-— jlu Bj—lﬁj—zan j—'l:l and/Bj_: B]Tla B;l ;zaHBJ_J , for j € [J]
=1 =1

and 8" = (87, Bs,....87). B~ =(B.By,-...B;), then

PR=r[QB" B ,p)= >, paHP =1l @). (11)

ac{0,1}X

The Sequential DINA model parameters consist of (3%, 37, p). Following the literature, we

formally define the identifiability for the Sequential DINA model in the following.

Identifiability. We say that the Sequential DINA model parameters are identifiable if

there is no (B+,B_,1_)) # (8%, 87, p) such that
PR=r|Q.B".0 .p)=PR=7[QB .5 ,p) foralres. (12)

Similar to GPDINA, in the following proposition, we show that excluding categories with
q;; = 0 does not influence our analysis of the identifiability. Therefore, for simplicity, we

assume that q;; # 0 for all [ € [H}], j € [J] in this paper.

Proposition 2. Let A* = {(j,1) : q;; = 0} denote the set of categories whose q-vectors are
zero, then the Sequential DINA model parameters with Q-matrixz are identifiable if and only
if the Sequential DINA model parameters with Q_as-matriz are identifiable, where Q_as is

obtained by removing the q-vectors in Q corresponding to the categories in A®.
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2.3 Relationship between GPDINA and Sequential DINA models

In this section, we briefly discuss the relation between the GPDINA model and the Sequential
DINA model.

Fundamentally, GPDINA and Sequential DINA models differ by the hierarchy of the
categories of items. In GPDINA, different non-zero categories of the same item can be
exchanged and share the same g-vector. Whereas in Sequential DINA model, different non-
zero categories are generally not exchangeable and need to be completed sequentially, and
different non-zero categories are allowed to have arbitrarily different g-vectors. However,
when all the non-zero categories of an item share the same qg-vector, the Sequential DINA
model becomes equivalent to GPDINA.

Formally, in Sequential DINA model, when q;; = ... = q; z,, such Q-matrix is referred
to as unrestricted Q-matrix (Ma and de la Torre, 2016), we have {; 1o = ... = & u, o for all
a and j € [J]. Under this Q-matrix, attribute profile e is either capable of completing all
the non-zero categories of an item or unable to complete any non-zero category. With these
constraints, such Q-matrix is also applicable to GPDINA, and we show that the two models
are equivalent by presenting a bijective mapping from the item parameters of GPDINA to the
parameters of the Sequential DINA model when the parameters are well-defined. Specifically,
for each item j € [J], we have the following relation between the two models’ parameters.

From Sequential DINA model to GPDINA:

P(Rj:l|€j7a:1):9;:l: (1_ ]—‘i:l-‘rl)HiL:lﬁ;:h’ forl > 1;

P(R;=1|&a=0)=0,,= 18,1 B forl>1
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From GPDINA to Sequential DINA model:

p

DI
P(Ry 21| Ry 2 1= 1,60 = 1) = B, = Zp——2, forl > 1;
Zhil—l‘gj,h
H; ,—
2.0
P(R; > 1| R, Zl—lfg‘,azo):ﬁf,z:%v for{ > 1.
L Zhil—lej,h

By examining the above equations, it becomes apparent that there is a one-to-one corre-
spondence between the parameters of the two models, demonstrating the equivalence of the

two models under the considered Q-matrix constraints.

3. Identifiability

This section introduces our identifiability results for the GPDINA model and the Sequential
DINA model. To provide a foundation for these results, we first generalize the T-matrix, a
powerful tool in the literature to establish the identifiability of CDMs with binary responses
(Liu et al., 2013; Xu and Zhang, 2016; Xu, 2017), to polytomous models in Section 3.1. Since
the structure of the two polytomous models differ, the T-matrix generalizations also differ,
and we provide examples to illustrate this. We then formally present our identifiability

results for the two models in Sections 3.2 and 3.3, respectively.

3.1 Generalized T-matrix for CDMs with polytomous responses

Directly working on the equations (6) and (12) from the definitions of identifiability is chal-
lenging. Alternatively, we work on the marginal probability matrix, the T-matrix, firstly
introduced by Liu et al. (2013), which sets up a linear dependence between attribute distri-

bution and the response distribution. However, under the DINA model setting, most existing
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literature only focuses on the T-matrix for binary responses. For polytomous response DINA
models, there are more parameters involved for each item, and these parameters can not be
naively treated separately. Our aim in this section is to generalize this powerful T-matrix

tool to polytomous response models adjusted accordingly to the model setup.

3.1.1 T-matrix for GPDINA

The T-matrix for GPDINA T(6%,07) is a H;.le(Hj +1) x 2% matrix, where the entries are
indexed by row index r € S with r; € {0,1,..., H;} and column index e € {0,1}*. The

r-th row and a-th column entry of T(6%,07), denoted by ¢, o(60",07), is defined as

a0 .07)=P| (V{Ri=r}1Q6% .60 0| =[] P(Ri=r;1Q.67.60".,0).

Jir; 70 Jir; 70

When 7 = 0, tgo(07,07) =1 for any o. When r =7, - e;,
tr,a(0+,0_) = P(R] =Ty | Q,9+,9_,a).

Let T,.(6%,07) be the row vector in the T-matrix corresponding to 7. Then for any r # 0, we

can write T,.(07,07) = o?éOTrj.ej(OJr, 07), where o is the element-wise product of the row
Jirj

vectors. Since there exists a one-to-one mapping between T, and P(R =7 | Q,0%,07,p)

for all » € &, we may substitute the original identifiability problem with an equivalent

statement as follows.

Lemma 1. Following the definition in (6) and letting the attribute o index of p be consistent

with the o index in T, the GPDINA parameters are identifiable if and only if there is no
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(67,67 ,p) # (0%,07,p) such that

Tp = Tp. (13)

To illustrate the construction of the T-matrix, we provide an example in the following.

Example 3. For the Q-matrix given in Example 1, the T-matriz for this Q-matriz is

«: (0,00 (1,00 (0,1) (1,1)
T\~ 0,0) 1 1 1 1
Tr=1,0) 11 07 11 01,
Tr—2,0) 1,2 075 1,2 07

T Tr—01) 0Oy 031 9;,1 9;,1

- — + +
T'r=(0,2) 2,2 2,2 92,2 055

- - + p— - pt+ + o+
Tr=(1,1) 91,1 2,1 91,1 2,1 6)1,192,1 6)1,192,1

- n— + - - 9t + g+
Tr=(2,1) 91,2 2,1 91,2 2,1 91,292,1 91,292,1

T'f:(l,?) 91_,192_,2 9{192_,2 91_19;2 ‘9{1922

) )

- - + p— - nt+ + p+
Tr=(2,2) 91,2 2,2 91,2 2,2 6)1,292,2 6)1,292,2

where T'r:(l,l) = T'r:(l,O)OT'r:(O,l); Tr:(z,l) = Tr:(2,0)OTr:(0,1), Tr:(1,2) = Tr:(l,O)OTr:(o,z),
Tr—22) = Tr—(20) © Tr—(0,2). We can see that the T-matriz’s structure is the same as the
classic T-matrix for binary DINA model, where the entries of the T-matrix involve at most

two parameters.

3.1.2 T-matrix for Sequential DINA model

Similarly, we generalize the T-matrix for the Sequential DINA model. However, due to the

special structure of the Sequential DINA model, the generalization of the T-matrix here is
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slightly different from the literature, which we denote as T*-matrix, where the “s” stands for
Sequential DINA model. Let the entries of T*-matrix T*(8",37) be indexed by row index
r € S and column index e € {0, 1}¥. The r-th row and a-th column entry of T*(8", 37),

denoted by 5 (8%, 87), is defined as

tf‘,a(ﬁ—i_aﬁ_) =P m {R] > Tj} | Q7ﬁ+7ﬁ_aa

Jir; 70
= H P(R] ZT] ‘ Q7/8+7/8_7a)
Jir;#0
— H H + 51106 1 5][(1
Jjir;7#0 1=1

Apparently, tg,a(ﬁJ’,ﬁ_) =1 for any a. When r =1, - e,

ty e BB )=PR;>r; | Q,8Y,8,a) = H( ;rl)sjza(ﬁﬂ)l—gj’l’a.

Let T:(B",87) be the row vector in the T*-matrix corresponding to r. Then for any

r # 0, we can write T3(8%,87) = O;AOTf’j‘ej (B7,87). Similarly, due to the one-to-one
jZTj

mapping between TS and P(R > r | Q,07,0,p) for all » € S, we may substitute the

original identifiability problem using the T®-matrix technique, we state this consequence in

the following lemma.

Lemma 2. Following the definition in (12) and letting the attribute o index in p be con-

sistent with the o index in T, the Sequential DINA model parameters are identifiable if and

only if there is no (B+,B_,13) # (B%,87,p) such that

Tp = T*p. (14)
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In the following, we present the T*®-matrix for the model given in Example 2. Due to the
unique structure of the Sequential DINA model, the T*-matrix is designed in a very different

way from a standard T-matrix for the DINA model.

Example 4. For the Q-matriz given in Example 2, the T*-matriz for this Q-matriz is

a (0,0) (1,0) (0,1) (1,1)
Ti:(O,O) 1 1 1 1
T, 10 Pia A B Bl
T, 20 Brabie BB BriBis BB s
T — r=(0,1) Ban Ban B3 B
T 02 551539 Ba1B29 B31620 831585
T_an Bi1bB2a B 161 Brabsa BB
To_01  Pribiabaa Bi1Brabaa BB 205, B 81585,
r—(12)  Prab21B2s Bi1Ba1Baa Br1B51 52 Bi1B5155

— = p— p— Pt p— p— A= A= R+ pt p— pt pt pt et
Tf«:(gg) 51,151,252,152,2 51,151,252,152,2 51,151,252,152,2 51,151,252,152,2

where T_an = Tcan o Thco)y Trceny = Thcpo) © Trcony Trca = Tocpe ©

T _02) and T = Tosen T

Unlike the T-matrix for GPDINA, the entries of the T*-matrix for the Sequential DINA
model usually involve more than two parameters, making identifying them technically more
challenging. For instance, T _ (2,2) 10 the Sequential DINA model has four parameters in each

entry, whereas T,_(29) in GPDINA only has two parameters in each entry. The following

sections give a more detailed discussion of the identifiability issue.
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3.2 Identifiability of the GPDINA model

In this section, we develop the sufficient and necessary condition for the identifiability of the
GPDINA model. To begin with, we introduce the terminology “completeness” for Q-matrix,
which was firstly proposed by Chiu et al. (2009). A Q-matrix is said to be complete if it can
differentiate all latent attribute profiles. Under the DINA model with binary responses, it
requires that for each attribute, there exists some item requiring solely that attribute, that
is, a complete Q-matrix must contain an identity matrix Zx up to some row permutations,
which can be written as

Q= : (15)

JXK

Similar to the binary response case (Xu and Zhang, 2016), the completeness of the Q-matrix
is necessary for the identifiability of the population proportion parameter p. Additionally,
each attribute must be required by a certain amount of items, and formally we state these

conditions as follows.

Condition C1. The Q-matriz must be complete, taking the form (15).

Condition C2. FEach of the K attributes is required by at least three items.

Condition C3. Any two different columns of the sub-matriz Q* in (15) are distinct.
Theorem 1. Conditions C1-C3 are sufficient and necessary for the identifiability of the
parameters of the GPDINA model.

Remark 1. When H; =1 for all j € [J], the model is reduced to binary DINA model, and

the result we develop here is consistent with the result in Gu and Xu (2019b).
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Remark 2. While the identifiability conditions are the same as those for the DINA model
with binary responses Gu and Xu (2019b), we would like to emphasize several significant
distinctions. In the case of the DINA model with binary responses, the uncertainty of each
item is characterized by two parameters — the slipping and guessing parameters. In contrast,
the GPDINA model with polytomous responses introduces more than two parameters for each
item, significantly complicating the models and rendering the study of identifiability more
challenging. In particular, as discussed in Section 3.1, one crucial theoretical tool commonly
employed in the literature to investigate the identifiability of the DINA model is the T-
matriz, which is primarily designed for binary response models (Xu, 2027; Gu and Xu, 2019).
However, when extending our focus to the polytomous response scenario such as the GPDINA
model, it cannot be directly applied and a generalization of this tool becomes necessary. The
first contribution of our work, detailed in Section 3.1, lies in this generalization, extending
the applicability of these analytical techniques to a broader class of cognitive diagnosis models.
Moreover, with the newly developed T-matriz tool, significant efforts and new techniques are
wnvolved in the establishment of our new results. From the sufficient condition perspective,
although conditions C1-C3 are also the counterparts of those of the DINA model, it is not
immediately evident if these conditions, transposed from the binary model, are still capable of
capturing the complexity and ensuring the identifiability of the more parameter-rich GPDINA
model. Addtionally, from the necessary condition perspective, evaluating the necessity of
conditions C1-C3 for the GPDINA model is more challenging than that of the DINA model
with binary responses, due to the increased complexity of the GPDINA model, as illustrated

in the following example and our proof of the theorem.

The completeness of the Q-matrix is necessary for the identifiability of the population
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proportion parameters, which follows from a similar argument as the binary DINA model
(Gu and Xu, 2019b). See our proof in Supplementary Material for more details. To illustrate
the necessity of the second condition C2 and the third condition C3, we consider a simple

case when K = 2 in the following example.

Example 5. We illustrate the necessity of the conditions C2 and C8 with an example with
K = 2. We first consider the necessity of the second condition. Suppose the Q-matriz
is complete, but does not satisfy condition C2. i.e., there exists some attribute which is
required by at most two items. Without loss of generality (WLOG), assume that this is the
first attribute. According to Proposition 1, q; # 0 for all j € [J], so the Q-matriz can be

written as one of the following:

10 1 0
1 0 1 1
Q=10 1 or Q=10 1 , (16)
0 1 0 1
Jx2 Jx2
where the dashline “ - -7 indicates the separation of different items. For simplicity, we

may assume that the Q-matrix takes the first formula. The case when the Q-matriz takes
the other formula can be similarly obtained. So then only the first and the second item
require ay. Under this Q-matriz, we show that the model parameters (07,0~ ,p) are not
identifiable by constructing a set of parameters (87,0 ,p) # (0%,07,p) which satisfy (6).
Take 87 = 61 and 9]-_ = 9]-_ for 3 > 2, and payy + Py = Pay + po1y- Next we show

that the remaining parameters (07,05, Doy, P(o1), P(10)) are not identifiable. Using the T-
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matrix tool, it can be shown that the non-identifiability occurs if the following equations
hold: P((Ri,Rs) = (r1,72) | Q>9+>9_>2_9) = P((R1,Ry) = (r1,m2) | Q,07,67,p) for all
r1 € {0,1,...Hi}, ro € {0,1,..., Hy}, where (Ry, Ry) are the first two entries of the random

response R. These equations can be further expressed as the following equations:

D(oo) + P(10) + P(o1) + P11y = P(oo) T P(10) + P(o1) + P(i1);

91—,11 [D(ooy + Peony] + efll [P0y + Pan] = 91—,11 [P00) + Pony] + efll[p(lo) +pay);

05, [P00) + Do) + 05, [P0y + Daan)] = 05, [P0y + Py + 63, [Paoy + pan);

01022, [P00) + Pron] + 013,053, [Pao) + Py = 014,024, [P0y + pion] + 013,055, [Pao) + panl;
(17)

where Iy € [Hy|, lo € [Hs]. Then there are (1 + Hy + Hy + H1 Hy) equations above in total.

If we further let some k € (0,1) s.t.

91_711 1_;1 92—712 2_71

2y o 2y D1
Tl =kt ], and =k for Iy € [Hy], Iy € [Ho],  (18)
+ + + +

011, 011 05, 031

o+ o+ O+ O+

91,l1 61,1 92712 92,1
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then equations (17) can be reduced to four equations

(

D(ooy T P10y + P(o1) + Pa1) = Po) + Pao) + Po1) + Par);

éf,l [P(00) + Prony) + 9f1 [P0y + Pav] = 0110y + pon] + 91 1 paoy + panl;

05 [p(00)+p01)]+921[ D(10) +p11]—921[ D(00) —I—p01]+921[ (10) + P(11));

91_,19_2_,1[17(00) + Doy + 91 105 1[19(10) +pan] = 01105, 1[29(00) + oy + 91 192 1[paoy + pan)-
(19)

\

For any (0,07, p), there are 4 constraints in (19) but 5 parameters (éil, 52_,1,25(00),]5(10),]5(01))
to solve. Therefore there are infinitely many solutions and (0©,0~,p) are non-identifiable.
As for the case when the Q-matriz takes the other formula, the proof can be easily obtained
with minor change of notation.

Next we prove the necessity of the third condition C3. Suppose the Q-matriz is complete,
according to Proposition 1, we may assume that the Q-matriz has the following form up to

some permutation:
I,
Q= : (20)
12 1,2 s

Take 87 = 61 and 9; = 0, jor j > 2, and pa1) = par). Next we show the remaining
parameters (07,05, poo), P(10), Po1y) are not identifiable. Using the T-matriz tool, again we
can show that the non-identifiability occurs if the following equations hold: P((Rl,Rg) =
(ri,m3) | Q.07,67, p) = P((R1,Rs) = (r1,m2) | Q,07,07,p) for all ri € {0,1,...Hy},
ro € {0,1,...,Hy}, where (Ry, R2) are the first two entries of the random response R.
These equations can be further expressed into (1 + Hy + Hy + HiHs) equations similar to
equations (17) with minor notation modification. Similarly, if we further let some k € (0,1)
s.t. equations (18) hold, then these equations can be reduced to only four equations.

For any (0%,07,p), there are four constraints but five parameters (9_1_,17 9_2_,1,]5(00),]5(10),]5(01))

to solve. Therefore there are infinitely many solutions and (07,07, p) are non-identifiable.
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Thus we have shown that that the conditions C2 and C8 are indeed necessary. For the proofs
of more general cases and the sufficiency of the conditions, see Supplementary Material for

more details.

3.3 Identifiability of the Sequential DINA model

To study the identifiability of the Sequential DINA model, different techniques need to be
developed. From the discussion in Sections 3.1 and 3.2, the structure of the T*-matrix for the
Sequential DINA model is different from the T-matrix defined for the GPDINA model, since
the rows of the T*-matrix of Sequential DINA corresponding to higher response categories
generally involve more than two item parameters, making it different from the usual DINA
model structure.

To address this issue, note that

T; = P(R; > 1]Q,B%,87,a) = (8/)%=(5;,)' 4 (21)

)

only involves two parameters ]+  and 35, which has a similar algebraic structure to that
for the DINA model with binary responses, and thus working on these parameters firstly
would be a good strategy to consider. The focus of these quantities can be interpreted
as follows: consider “binary” responses of the form I(item j > 1), the Sequential DINA
model is then reduced to a binary DINA model. According to equation (21), the uncertainty
parameters for this model are { ﬁ;{l, Bi1}jern- The corresponding T-matrix for this reduced
model consists of exactly vectors <T§j) and their element-wise products. That is, let

JeJ]

T! denote the T-matrix for the reduced model (here we compress the notation “s” in T¥),
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which is a submatrix of T®-matrix, then

T1:< 3 TZ;) for 41 <...<i;, jelJ].

l=i1

Furthermore, let Q' denote the submatrix of the Q-matrix for the first category of each
item, i.e., Q' = (qj1)jes. Then the Q-matrix for the above reduced model is Q*, as only the
attributes required for completing the first categories are in scope. For notation convenience,
we let Q1. denote the submatrix of the Q'-matrix that consists of the g-vectors for the first
categories of the first K items, and QJ. ., denote the submatrix of Q' that consists of the

g-vectors for the first categories of items (K +1),...,J, i.e.,

Ql _ Q%K

Q.lK-‘rl:J
To better illustrate this idea, we present an example in the following.

Example 6. The Q'-matriz and the T -matriz for the reduced model of Example 2 are:

a (0,0)  (1,0)  (0,1)  (1,1)
r=(0,0) 1 1 1 1

r—0) D1 B Bra AR I
r=01) P21 Baq B3 B3

) )

r=(1,1) 51_1@_1 ﬁfr1ﬁ2_1 51_15;1 ﬁfr152+1

where T}n:(m) =T, (1,0) © Ti:(o,l)‘

r—=

It turns out that the first category of each item plays a crucial role in the identifiability
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of the Sequential DINA model. Provided the first categories of the items are informative
enough, based on the identifiability results for the DINA model with binary responses, we can
identify the item parameters of the first categories and the population proportion parameters.
More interestingly, we can show that the item parameters of the other categories can be
identified based on these identified parameters without additional requirements. Motivated
by this, we have the following sufficient condition for the identifiability of the Sequential

DINA model.

Theorem 2. The Sequential DINA model parameters are identifiable if the Q' matriz sat-

isfies the following conditions S1-S3.

Condition S1. Q'-matriz is complete, i.c., under some permutation, Qi , = Tk
Condition S2. Fach of the K attributes is required by at least three items’ first categories.
Condition S3. Suppose Q1. = Lk, then any two different columns of Q. 4., are distinct.

Remark 3. Conditions S1-S3 are similar to conditions C1-C3, with different target. S1-
S3 are stated for Q'-matriz in the Sequential DINA model, whereas C1-C3 are stated for
Q-matriz in GPDINA. When H; = 1, both polytomous models are reduced to binary DINA

model, and conditions C1-C38 are equivalent to S1-53.

The conditions S1-S3, as sufficient conditions for identifying the Sequential DINA model,
provide guidelines for practitioners to design Q-matrix that validates identifiability. Based on
the theorem, it is suggested to design Q-matrix with informative first categories (satisfying
S1-S3) to ensure identifiability.

On the other hand, sufficient these conditions are, their requirements only rely on the

model’s first categories. With polytomous response data involving more categories, it is
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natural to ask whether other categories can aid in relaxing these conditions. It turns out
that relaxing these conditions necessitates careful consideration. In the following, we examine
the necessity of each condition, and our primary finding is that while these conditions are
challenging to relax, with certain constraints that allow for other informative categories to
help, they might be possible to be relaxed. The finding that these conditions are challenging
to relax comes from the intrinsic sequential structure of the model. Specifically, we will
show that condition S1 can not be relaxed and conditions S2 and S3 are hard to relax as
non-identifiable examples do exist with the absence of these conditions.

Our first claim is that without additional constraints, the first condition S1 can not be

relaxed, i.e., S1 is necessary.

Proposition 3 (Necessity of Condition S1). Condition S1 is necessary for the identifiability

of the parameters of the Sequential DINA model.
For the convenience of the following discussion, we present the proof of Proposition 3 below.

Proof of Proposition 3. Suppose that the Q-matrix does not satisfy condition S1, i.e., Q! is
not complete, then there exists some attribute that is not solely required by any item’s first
category. WLOG, assume that this is the first attribute, and thus any item’s first category
that requires the first attribute also requires some other attributes. We claim that the
model parameters are not identifiable for such an incomplete Q'-matrix. Specifically, take
Bi1 =0, forj e [J]. Then subjects with attribute profiles 0 and e; are not able to complete
the first categories of all the items. Since 5;; = 0, according to the model construction in
Section 2.2, subjects with 0 and e; cannot complete the other categories either, and for 0 and
e, ﬁ;”l = f§;; = 0 for [ > 1. Therefore, the two profiles po and pe, share the same probability

of completing all the categories of all the items, which is zero, i.e., t, o = t, o, = 0, Vr. Thus,
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parameters pg and pe, are not identifiable. O

In the above proof, we constructed a Sequential DINA model with 3;; = 0 so that the
parameters of higher categories are defined to be zero for attribute profiles 0 and e;. Note
that the identifiability definition requires any set of the parameters in the parameter space
to be identifiable. With the model parameters space including 0 < 57 < ;fl < 1, in the
proof of Proposition 3, showing the nonidentifiability of the case §;; = 0 would be enough
to establish our claim on the necessity of the completeness condition.

However, this example is tender and may no longer be valid if we add additional con-
straints for the model parameters, that is, we only focus on the identifiability of a subset of
the model parameters space. For instance, if we restrict our model parameters to the subset
0<g;,; < ;fl < 1, then the necessity of S1 may not hold anymore. This is because by
constraining 0 < f;; < B;fl < 1, we allow more categories to help identifying the parameters.
The following gives an example of the model with identifiable parameters whose Q-matrix

does not satisty condition S1 under the assumption that 0 < §;; < ﬁjfl <1

Example 7. Assume that 0 < ﬁj_J < ﬁjfl <1, and consider the case when K = 2 where the
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Q-matrix takes the following form:

1 1
iteml1
0 1 1 1
item?2 1 11
- 11
Q = | item3 1]|and Q' = [---- . (22)
------------------- 10
itemd<1 ol
itemb 0 10
1temb {1 0

Clearly, the Q'-matriz does not satisfy the completeness condition, but the model parameters

with this Q-matriz are identifiable, whose proof is presented in the Supplementary Material.

Remark 4. Through the above analysis, we can see that condition S1 is necessary in a strict
sense, which may impose overly stringent requirements for practical cognitive diagnostic tests.
Statistically, “strict sense” in this context refers to the standard identifiability definition
of the model parameters that requires any set of the parameters in the parameter space to
be identifiable (Gu and Xu, 2020). Contrary to the notion of strict identifiability is the
notion of generic identifiability (Allman et al., 2009; Gu and Xu, 2020), where we allow
for non-identifiability to happen within a zero-measure set. This slightly weaker notion can
often suffice for real data analysis purposes (Allman et al., 2009; Gu and Xu, 2020) and is
therefore useful in practice. The extent to which our necessary conditions can be relaxed for

generic identifiability of the Sequential DINA model needs further explorations in the future,
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and the above case with B;; =0 in the Sequential DINA model is one of such example.

Next we study the necessity of conditions S2 and S3. It turns out that the analysis for
conditions S2 and S3 is more complicated. We start by presenting two examples to illustrate

that.

Example 8. Consider the case when K = 2 with two attributes aq and oo, J = 4 items,

and the Q-matrix takes the following form:

item 1 1 0
item 2 0 1 19_
________________ ) 0 1
Q= item 3 0 1 and Q" = [------1 . (23)
____________________ 01
1 1 1 1
item 4
1 0

The above Q-matrix satisfies conditions S1 and S3, but does not satisfy condition S2, and

the model parameters are not identifiable.

Example 9. Consider the case when K = 2 with two attributes aq and oo, J = 4 items,
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and the Q-matrix takes the following form:

item 1 1 0
item 2 0 1 19_
________________ 01
Q = 1 1 and Ql = |- . (24)
item 3 11
I G 11
item 4 {1 1

The above Q-matrix satisfies conditions SI1 and S2, but does not satisfy condition S3, and

the model parameters are not identifiable.

We defer the proofs of the non-identifiability of the above two examples in Supplementary
Material. The preceding examples illustrate the difficulty in relaxing conditions S2 and S3,
even in simple cases such as J = 4 and K = 2, where non-identifiable examples exist when
these conditions are violated. For more general cases, relaxing these conditions could be
even more challenging.

However, the existence of these examples does not necessarily mean that conditions S2
and S3 are always necessary. In fact, we construct two identifiable examples that do not
satisfy conditions S2 and S3 in the following, which indicates that conditions S2 and S3 may
not be necessary in general. The identifiability of the following two examples relies on other
additional categories, which carry relevant information in place of the first categories. This is
also aligned with intuition, as we expect other categories to contribute to the identification
of the model parameters. In other words, with the help of other categories, the model

parameters could possibly be identified.
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Example 10. Consider the case when K = 2 with two attributes oy and oo, and J = 4

items. Fach item contains two categories and the Q-matrix takes the following form:

1 0
item 1
0 1
1 0
item 2 10
0 1 10
Q= |- Sonoones and Q' = |-~ : (25)
item3< |
0 1
1 0
____________ Ses—
0 1
item 4
1 0

The above Q' matriz does not satisfy the condition S2, yet the model parameters are identi-

fiable, whose proof is deferred to the Supplementary Material.

Remark 5. Condition S2 assumes each attribute is required by three items’ first categories.
In the above example, both attributes o and as are required by only two items’ first cate-
gories, yet the two attributes are also required by the second categories of other items, which
provides additional information and eventually makes the model parameters identifiable. This
suggests that the information provided by higher categories would also be helpful for the model

identifiability.

Similarly, as illustrated in the following example, the role of the first category in condition

S3 could also be replaced by other categories, which may make the model identifiable as well.
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Example 11. Consider the case when K = 2 with two attributes oy and as, and J =5

items, and the Q-matriz takes the following form:

1 0
item 1
0 1
------------ 10
o 1| |
item 2 01
Q= 1 0 and Q' =11 1
item 3 1 1 1 1
____________________ 11
item 4 1 1
tem 5491 1

The above Q' matriz does not satisfy the condition S3, yet the model parameters are identi-

fiable, whose proof is presented in the Supplementary Material.

While the above two examples imply that the conditions S2 and S3 may not be necessary
for the identifiability of the parameters for the Sequential DINA model, the following weaker
versions of S2 and S3 (denoted as conditions S2* and S3*) are necessary for the model

identifiability. This proposition is summarized as follows.

Proposition 4 (Necessity of Conditions S2* and S3*). The Sequential DINA model param-
eters are identifiable only if the Q-matriz satisfies the following conditions S2° and S3*.

Condition S2* Fach of the K attributes is required by at least three categories (not nec-
essarily the first categories), and the three categories must come from at least two different

items.
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Condition S3* Suppose Q-matriz satisfies S1, i.e., Q.x = Lk, and any two different

columns of the following matriz (which removes the identity matriz of Q}.; from Q)

-1
Ql:K

QK+1:J

are distinct, where Q. denotes the remaining submatriz of Qu.x after removing Q2.

We can see that conditions S2 and S3 are stronger versions of S2* and S3*, which means
that any Q-matrix satisfying condition S2 (S3) will satisfy condition S2* (S3*). We can
also see that the two identifiable models in Example 10 and Example 11 that do not satisfy
conditions S2 and S3 both satisfy condition S2* and condition S3*. For instance, the Q-
matrix in Example 10, does not satisfy condition S2 since there are only two items’ first
categories require o and only two items’ first categories require . However, it does satisfy
condition S2*, since there are two other items’ second categories require «; and other two
items’ second categories require «y. Similarly, the Q-matrix in Example 11, not satisfying
condition S3, does satisfy condition S3*, as the second category of the first item requires
only as and the second category of the second item requires only «;.

In summary, from the above discussions, we conclude that the sufficient conditions S1-
S3 are challenging to relax. Specifically, condition S1 can not be relaxed unless additional
constraints are imposed. While conditions S2 and S3 are also difficult to relax, we found
that other categories may assist in identifying the parameters.

In spite of the fact that the sufficient condition and the necessary condition proposed
in this section are different, filling the gap is not an easy task, as the model structure is

more subtle and the interactions between parameters are more complex. For instance, the
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T*-matrix structure is different from the T-matrix structure for the binary DINA model
except for the first categories. The T;-vectors for higher categories behave more similar to
the T,.-vectors for G-DINA model (de la Torre, 2011), as the uncertainty for these categories
are characterized by more than two parameters. Therefore, to study the identifiability of the

Sequential DINA model requires more techniques beyond the DINA setting.

4. Data Examples

In this section, we demonstrate the application of our proposed results by examining two
educational assessment datasets: a PISA 2000 reading assessment dataset using the GPDINA
model (Chen and de la Torre, 2018) and a TIMSS 2007 fourth-grade mathematics assessment

dataset using the Sequential DINA model (Ma and de la Torre, 2016).

Identifiability of the GPDINA model: a PISA 2000 data example. We con-
sider a dataset from the PISA 2000 reading assessment, which was previously studied in
Chen and de la Torre (2018). This assessment, released by the OECD (1999, 2006), com-
prised both polytomous and binary items. The dataset for this application comprises re-
sponses from 1,039 English examinees to 20 specific items from a designated test booklet.
Out of these 20 items, five are polytomous. Following Chen and de la Torre (2018), the
attribute definitions for the PISA dataset are given in Table 1 and the Q-matrix for this
application is presented in Table 2. Since in the GPDINA model, different categories within
the same item share the same g-vectors, it suffices to provide one g-vector for each item.
According to our Theorem 1, this Q-matrix does not contain an identity matrix, and thus

the model parameters are not identifiable. Specifically, since the matrix does not contain
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Table 1: Attribute Definitions for the PISA data (Chen and de la Torre, 2018)

Symbol | Description
c Number of categories
aq Retrieving information
Qg Forming a broad general understanding
Qs Developing an interpretation
oy Reflecting on and evaluating the content of a text
Qs Reflecting on and evaluating the form of a text

Table 2: Items and Q-matrix for the PISA data (Chen and de la Torre, 2018)

No. | Item Code | ¢ | a1 | ag | a3 | ay | a5 | No. | Item Code | ¢ | a1 | an | a3 | g | 5
1 R040Q02 |2 1 | O | 1 [ O | O] 11 |RO8QO4T 3| 1 | 0| 1] 0] 0
2 |RO40QO3A 2| 1 | O | 1 | 1[0 ] 12 |RO8QOST |20 | 1 | 1] 1]0
3 R040Q04 |2 0 [ 1 | 1 | 1 [0 | 13 | RO8QO7 [2| 0 | 1 | 0] 01
4 R040Q06 |2 1 [0 | 1 | O | 0] 14| R216Q01 |[2| O | 1 | 0| O] O
5 RO77Q03 3] 0 [ 1 |0 | 11| 15| R216Q02 [2| 1 | 0O | 0| 0|1
6 RO77Q04 |2 1 |1 |1 0] 0] 16 | R216Q03T |2 O | 1 | 1] 0] O
7 RO77Q05 |3 O | 1 |1 [ 1] 0| 17 | R216Q04 (2| O | 1 | 1] 0] O
8 RO77Q06 |2 O | 1 | O[O | 1] 18 | R216Q06 (2| O | 1 | O | 1] 0
9 RO88QO1 |2 0 |1 |1 [0 ] 0] 19| R236Q01 (2|1 [0 | 1]0]0
10 | ROS8QO3 |3 1 | 0| 1[0 ] 0] 20| R236Q02 {30 | 0|1 |1]0

el , e, el and e] , attribute profiles 0, e;, e3, e, and e5 have the same conditional response

distributions. Therefore, the parameters pg, De,, Pess Pe, and pe; can not be identified.

Identifiability of the Sequential DINA model: a TIMSS 2007 data example. We
consider the dataset in Ma and de la Torre (2016), which is derived from booklets 4 and 5
of the TIMSS 2007 fourth-grade mathematics assessment. This subset, originally utilized
by Lee et al. (2011), includes responses from 823 students to 12 items, which are linked to
eight of the original 15 attributes. Notably, items 3 and 9 are constructed-response items
scored polytomously across three response categories (0, 1, and 2). The dataset also features
items like 7a and 7b which, due to their heavy interdependence, can be treated as a single

polytomous item. We consider the Sequential DINA model in this example. Following
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Ma and de la Torre (2016), the attribute definitions for the TIMSS data are given in Table

3 and the Q-matrix is in Table 4. The corresponding Q!-matrix is also presented below.

Table 3: Attribute definitions for TIMSS 2007 data (Ma and de la Torre, 2016)

Attribute | Description

aq Representing, comparing, and ordering whole numbers as well as
demonstrating knowledge of place value

Q9 Recognizing multiples, computing with whole numbers using the
four operations, and estimating computations

Qs Solving problems, including those set in real-life contexts

oy Finding the missing number or operation and modelling simple sit-
uations involving unknowns in number sentence or expression

Qs Describing relationships in patterns and their extensions; generat-

ing pairs of whole numbers by a given rule and identifying a rule
for every relationship given pairs of whole numbers

Qg Reading data from tables, pictographs, bar graphs, and pie charts
% Comparing and understanding how to use information from data
as Understanding different representations and organizing data using

tables, pictographs, and bar graphs
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Table 4: Q-matrix for TIMSS 2007 data (Ma and de la Torre, 2016)

Attributes
Item | TIMSS item no. Category | oy |ag | a3 | au | a5 | ag | a7 | ag
1 M041052 1 11 1]70]0[0]0]01]O0
2 MO041281 1 o1 (10| 1[0]0]O0
3a MO041275 1 110]0]O0]O0]1]|0]1
3b MO041275 2 110]0]O0]O0]1]|0]1
4 M031303 1 o1 (1]0]0[0]0]O0
5 M031309 1 o1 (1]0]0[0]0]O0
6 M031245 1 oOoj(1(0|1]0[0]0]O0
Ta MO031242A 1 o110 1l0[0]O0
b MO031242B 2 Oojo0olo0|O0O]O[O]|1]0O0
8 MO031242C 1 0 1 1 0 1 0 1 0
9a M031247 1 o1 (1 |1]0[0]0]O0
9b M031247 2 o1 (1 |1]0[0]0]O0
10 MO031173 1 o1 (1]0]0[0]0]O0
11 MO031172 1 1(1]0]0]0]1 0|1

According to Proposition 3, since the Q'-matrix does not contain an identity matrix, the
model parameters are not identifiable. Specifically, since the matrix does not contain any e;
for j =1,2,...,8, if we take 8,7 = 0 for j = 1,2,...20, then subjects with attribute profiles
0 and e; for j = 1,2,...,8 are not able to complete the first categories of all the items.
Since §;; = 0, according to the model construction in Section 2.2, these attribute profiles
cannot complete other categories either. Therefore, attribute profiles 0, e; for j =1,2,...,8
have the same probability of completing all the categories of all the items, which is zero.

Therefore, the parameters po, pe, for j = 1,2,...,8 can not be identified.

Remark 6. For the above educational assessment examples, while the analysis shows non-
identifiability issues for the two considered models, this should not overshadow the potential
for analyzing these data using polytomous DINA or more general cognitive diagnosis mod-
els. First, as discussed in Section 3.3, although the two models in our application data fail

to satisfy the completeness condition, if we consider the more relaxed generic identifiabil-
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ity of the model parameters, that is, allowing nonidentifiability of parameters in a negligible
zero-measure set of the parameter space, the stringent completeness condition may not be nec-
essary, as discussed in Gu and Xu (2020). Second, the investigation of partial identifiability,
as proposed by Gu and Xu (2020), could also be extended to the current situation. Specifi-
cally, when the completeness condition is violated, partial identifiability may be established to
partially identify the nonidentifiable proportion parameters p up to their equivalent classes.
For example, in the first example, since attribute profiles 0, ey, es, e4 and es have the same
conditional response distributions, they can be grouped and considered as an equivalent latent
class. Partial identifiability then seeks to identify parameter (po + pe, + Pes + De, + Pes) aS a
whole, instead of treating each proportion parameter separately. Under such relazation, the
models applied to the data examples may be partially identifiable. Finally, beyond the DINA
models considered in this paper, general cognitive diagnosis models (Chen and de la Torre,
2018; Ma and de la Torre, 2016) may be more appropriate for the two datasets, and studying
the identifiability (Gu and Xu, 2020) of these models could be also of great interest. Further

explorations of these interesting extensions are promising future research directions.

5. Discussion

This paper presents the sufficient and necessary conditions for the identifiability of CDMs
with polytomous responses. Our results focus on two popular models under the DINA as-
sumption: the GPDINA model and the Sequential DINA model. For both models, we pro-
vide the sufficient and necessary conditions for their identifiability. The results can be easily
extended to the DINO (deterministic input; noisy “or” gate) model (Templin and Henson,

2006) through the duality between the DINA and DINO models. While the minimum re-
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quirements for more general CDMs are still unknown, our proposed necessary conditions
remain necessary for them since our polytomous DINA models are submodels of the general
CDMs. Therefore our results would also shed light on the study of their identifiability.

The popularity of polytomous data is not restricted to response data, and polytomous
attributes data is also receiving more and more attention (Haberman et al., 2008; von Davier,
2008; Chen and Torre, 2013; de la Torre et al., 2022). Yet the discussion on the identifiability
of such models has sparingly been considered. More interestingly, we may further study the
identifiability results under the general CDM framework with polytomous responses and
polytomous attributes.

The Q-matrix in this paper is assumed to be correctly specified. In practice, the Q-
matrix is usually constructed by the designers, which can be subjective and may not be
accurate. For this reason, researchers have proposed to estimate and validate the design
Q-matrix based on the response data, which motivates the study of the identifiability of the
Q-matrix (e.g., Liu et al., 2013; Chen et al., 2015; Xu and Shang, 2018; Culpepper, 2019;
Chen et al., 2020; Gu and Xu, 2021). Nevertheless, most of these existing works focus on
dichotomous responses, and only few have explored the identifiability of Q-matrix in the

polytomous data setting, which would also be an interesting future research topic.
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A. Supplementary Material

This supplementary material provides the proofs of the main theoretical results and conclu-
sions in Examples 7-11. Specifically, Section A.1 provides the proofs of Propositions 1 and
2, while the identifiability results for the GPDINA model and the Sequential DINA model
are presented in Sections A.2 and A.3, respectively. Additionally, the proofs of the examples

are provided in Section A .4.

A.1 Proofs of Propositions 1 and 2

This section deals with the zero g-vectors (q = 0) in Q-matrix. Our propositions show that,
for both the GPDINA model and the Sequential DINA model, excluding items or categories

whose corresponding g-vectors are all zero does not affect the identifiability results.

Proposition 1. Let A = {j € [J] : q; = 0} denote the set of items whose q-vectors are
zero, then the GPDINA model parameters with Q-matriz are identifiable if and only if the
GPDINA model parameters with Q_a-matriz are identifiable, where Q_a is obtained by

removing the q-vectors in Q corresponding to the items in A.

Proof. According to Lemma 1, it suffices to show that the GPDINA models with Q-matrix
and Qa-matrix yield the same equation system Tp = Tp. Let T and T’ denote the T-matrix
under the Q-matrix and Q_a-matrix separately, and let o denote the A-coordinates of 7.
Then T is a submatrix of T which excludes vectors T, in T with ro # 0. ie., T =
T U{T, : ra # 0}. We now show that {T, : 7o # 0} does not add additional constraints

to the equation system T'p = T'p. For j € A and | € [H,], recall that 17 = (1,1,...,1),
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since q;j =0 and 1'p=1"p = 1, we have

Az Tleap - éﬁllTﬁ - 9_;—1

S0 Tie;p = Tie, P gives 07, = 9+ for I € [H;]. Therefore, for j € A, parameters 6, are all
identifiable. Furthermore, for any 7 s.t. ra # 0, write r = > .\ rje; + ('r =D jea rjej>,

then T/ _y is a vector in T'-matrix, and
(r=%jearies)

TTZ(QEATWQ)OT(

JEATJEJ | I JT] ]EAT]eJ II ]TJ JEATJej).

JEA JEA

Similarly, we have T, = Hje A éjro(r_Z caries)’ Therefore, T,p = T,p is equivalent to
) j

el

T(T—ZjeA rie )P = )1_). Therefore, the model with Q-matrix and Qa-matrix

(""_ZjeA Tj€j

give the same equation system Tp = Tp. ]

Proposition 2. Let A* = {(j,1) : q;; = 0} denote the set of categories whose q-vectors are
zero, then the Sequential DINA model parameters with Q-matriz are identifiable if and only
if the Sequential DINA model parameters with Q_as-matriz are identifiable, where Q_as is

obtained by removing the q-vectors in Q corresponding to the categories in A®.

Proof. Similar to the previous analysis, we can show that 3f, = g, for (j,1) € A®. If | =1,

T7

since q;; = 0 and 1"p=1"p =1, we have

T T o 2+ 1T
Te,p=03/1"p=3}, Te,p=05/1"p=7]

g, J)1*

Thus, Te,p = Te,p gives 8, = 3. For I > 1, since q;; = 0, Ty, = BT a-1)e;, and since
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T(-1)e,P = T(-1)e,P, we have

Tie,p leT(l e, P = ﬁlez e, P ﬁle(l e, P = Tie, P.

Thus, ]z = B So the item parameters in A® are all identifiable. Furthermore, write

Z lej + Z lej |,

(4,h)eAs (4,)eAs

then Ty 57 earte)P = T(o-5 s te) P 204

T, = (O(j,l)eAs Tlej) OT("'—Z(j,l)eAS leJ H ﬁ]l =3 jeas leJ H =Y ineas lej)7
(7h)eAs (gh)eAs

similarly, we have T, = [] ieas é-;:ro(r_Z(j,l)eAs ley)* Therefore, T,p = T,p gives

T(T_Z(j,l)eAS lej)p - T(T_Z(j,l)eAS lej)p'

Therefore, the model with Q-matrix and Qas-matrix give exactly the same equation system

Tp = Tp. 0O

A.2 Identifiability of GPDINA

Theorem 1. Conditions C1-C8 are sufficient and necessary for the identifiability of the

parameters of the GPDINA model.

Proof of sufficiency. Suppose the Q-matrix satisfies conditions C1-C3. Using Lemma 1, we

show that Tp = Tp will give (07,07, p) = (9+, 0, p). Take one arbitrary non-zero category
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from each item, denoted by ¢(j) (1 < ¢(j) < H;), for j € [J]. We show that 9;{6(].) = é;fc(j)
and 8;.5) = 85

Our proof leverages the identifiability results of the binary DINA model. Consider
constructing the following binary DINA model: if we focus on solely the category ¢(j) of
each item j, for j € [J]. If we dichotomize each item j through category c(j), and reframe
the response as binary response I(R; = c(j));e[s, then the model is reduced to a binary
DINA model. According to the model construction, the Q-matrix for the reduced model is
equivalent to the Q-matrix for the original polytomous model, since every non-zero category
of the same item requires the same attributes. The T-matrix for this reduced model, i.e.,
the marginal probability distribution for the dichotomized response I(R; = ¢(j)), is simply
a submatrix of the original T-matrix. It is made up of the vectors that only involve category

c(y) of item j, i.e., (Tc(j).ej)j | and their element-wise products. The parameters for this

elJ

reduced model are {GJF N, 07 } , P ). So the reduced model is completely a binary
5¢(7) 73:¢@) f jer

DINA model. Since the Q-matrix for the reduced model satisfies conditions C1-C3, as a

direct result of Gu and Xu (2019b), Tp = Tp will give p = p, 0 = é;.fc(j), 0 ) =

0;)» for j € [J]. This holds for any c(j) € [H;], thus 67,67 ,p) = (07,07, p) and we

]70

complete the proof.

Proof of necessity. We prove separately each condition is necessary.

Necessity of condition C1. Suppose the Q-matrix is not complete, and WLOG, assume
that e ¢ (q;);_;. Then attributes profiles 0 and e; have the same conditional response

distributions. Therefore, the parameters pyp and p., are exchangeable, and thus can not be
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identified. Therefore, condition C1 is necessary.

Necessity of condition C2. Suppose the Q-matrix satisfies condition C1, but does not
satisfy condition C2, i.e., there exists some attribute which is only required by at most two
items. WLOG, assume this is the first attribute, and it is the first and second items that

require the first attribute, so the Q-matrix can be written as follows:

We partition a into two groups according to the first attribute:

g ={a:a; =0} ={a=(0,a"), a € {0,1}*},

g ={a:a, =1} ={a=(1,a"), a* c{0,1}*'},
so each group has 251 attribute profiles, and we index the entries in each group by

K-1
g? = (070)7 gg = (0761)7 <. 79(;{ = (anK—l)> g([){+1 = (0761 + 62)7 s 79(2)1(71 = (07 Z ek) )

g% = (1,0), g% =(1,ey),... ,g}( = (1l,ex_1), 9}<+1 =(l,e;1 +es),... ,g%K,l = (1, ek> ,
k=1

where ey, ...,ex 1 € {0,1} 7! have K — 1 elements. Therefore, the k-th (k € [2571]) entry

of g% and g', g% and gj share the same attributes except for the first one ;. Index the
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population proportion parameters p in the following way:

pg(l) pg{
Dgo Pqo Pal
p= g ,  where p o = = and p, = 72 (27)
P4
pggxfl pg;Kfl

We now seck to construct (87,87, p) # (87,07, p) such that (13) holds: take 9; = 0 for
j > 2 and é; = 0; for j € [J]. We claim that, with a simplified matrix 7T, for Tp = Tp
to hold, it suffices to have Tp = Tp. When the entries in p are indexed according to (27),

the T is given as follows:

1 1
h 07
T = ® I, (28)
0, 05

0, 20, 0205
where Z = Z,x-1. We now prove the claim.

e For any r s.t. r; = 7, = 0, T, does not involve 87, 87, 65, and ;. According to
the construction of the Q-matrix in (26), the response r does not require aq, so the
response distributions in both groups are the same, i.e., ¢, g0 =l gl for k € [2K-1].

T, 95

Since 9; = 0; and éj_ = 0 for j > 2, we further have

gy = tr g for ke 2577, (29)
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(3)

1
If we denote T,?’ as the first half of the vector T,, i.e., the response of group g¢°,

(3)

1
then equation (29) indicates that T,2’ is also the response of group g'. Moreover,

)

_ (1 1
T,(? = T,(F) and

1 1 1 _ _
T, = (17 7)) =T7(T T) =T (2 T)-T..
Therefore, equations (I I) p= (I I) p in (28) gives
N N E)) - _ ) _
T,p=T*(Z Z)p=T"(Z Z)p="T,p.

e For any 7 s.t. 1 #0,ry = 0, write 7 = 111 + (r — 7r1€1), then T, = T(,_; ;)0 Trpey,
and the response (r — r1e;) belongs to the case we analyzed previously. Therefore,

T(%) _ T(%)

(r—rie1) — (r—riex

) and

(3) 3
T('r—mel) = T(ﬁ—rlel) (I I) = T(i—rlel) (I I) = T(T—r1e1)a

which gives

—
=S
=
I
~—~
H
—
S
i
3
o
)
o)
H
5
3
(1]
N,
N—
=
I
]
3
|
3
3
o
A

Therefore, (él_ 9L 6] ® I)f) = (01_ T 0 ® I)p in equation (28) guarantees
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that for Vry € [Hy],

1,71 1,71 1,71 1,71

(é— T I)p: (e— T o I)p.
Therefore,

1,r1 1,r1 (r—rie1) 1,71 1,71

- 1 _ _ 1
T =T o (0inT 00, T)p =T, (00,T 01,T)p=Top.
e Similarly, for any = s.t. r; = 0,71y # 0, (92_ @I 9; ® I)f) = (02_ T 0] ® I)p
with @, = 0, guarantees that T,p = T,p.

e Similarly, for any r s.t. 7 # 0,72 # 0, (91_ ©0, 9T 6, 206, ®I)f) = (01_ ®0, ®

T 6/ ®6;® I)p guarantees T,p = T,.p.

Next we construct (éf, 9;, 0,,p) st. Tp=Tp holds. Let Dgt = P Pgo; Pgo = U Pgo,

and pgi = v - Pgo. Then Tp = Tp can be simplified to
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ie.,

I]_?go + pI]_?go = UI]_?go + UI]_?QO;
01, Ipgo + pOf, Ipgo = uby, Ipgo + v0f, IPgo, |l € [Hy);

H_Q_,lzzﬁgo + pe_;:lzI]_?go = u@;lzl'f)go + 'UH;:lQII_)gO, l2 € [HQ];

Then it suffices to have

p

I+p=u+wv;
91_,z1 + pé{h = uby, +v0y,, l € [Hy];

é;h + pé{lz = ubly,, +v05,, Iy € [Hy);

OOz, + 900,030, = ub, 05, + 007, 03,5 L€ [HL], 1o € [H).

Let some k € (0,1) s.t

91_1 6)2_,12 92_1
or ; b,
ERUESE I , and el ISREEST Bl (e l € [Hy], Iy € [Hy,
01’-1 9;& 9;1
01’-1 é;lz 9;1
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\é;,hé;’bngo + p0f 05, IDgo = uby, 05, Ipgo +v0), 05, IDy, L € [Hi], Iy € [Hy].

(30)

(31)



then equations (30) are reduced to the following four equations:

/

1+p=u+v;
011 + p0f, = uby, + 00

021 + P03, = uby, + vb3;

| 001051 + 01,05, = uby,05, + 067,63,

There are five parameters (p, u, v, 9{ 1 é; 1) with four constraints, so there are infinite many
solutions. Consequently, parameters (1,07, p) are not identifiable and condition C2 is

indeed necessary.

Necessity of condition C3. Suppose the Q-matrix satisfies conditions C1 and C2, but

does not satisfy condition C3. WLOG, we may write Q as

Q= ,WhereQ*:(v'vfff)-
Q*

JXK

We partition a into four groups according to the first and the second attributes:

900 = {a L0 = 0,0(2 = O} = {a = (0a07a*)7 o’ € {07 I}K_2}>
g’={a:a;=1,a,=0} = {a=(1,0,a"), a* € {0, 1}K_2},
'={a:a; =0, =1} ={a=(0,1,a"), a* € {0, 1}K_2},

gll = {a 0 = 1,@2 = 1} = {a = (17 1>a*)7 a’ € {07 I}K_Q}‘
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2K—2

So each group has attribute profiles. Index the entries in each group through the

following: in group g%,
g(l)o = (07 O, 0), g(2)0 = (O7 0, 61), e ,g(}? = (O; 07 eK—2)7 Q??.H = (07 07 €1 + 62)7 e ’9(2)9(*2 - (07 O’ ZkK:_12 Ek) ’

where ey, ...,ex_o € {0,1}%72 have K — 2 elements. Similarly we index the elements in
g'%, g%, g'', so that g0 gi% g% and g;i! for k € [2K72] share the same attributes except

for the first and second attributes. Index the population proportion parameters p in the

following way:

Pgoo Pgt0 Pgto Pgtt Pglt

Pgro Pgy Dgio Dgt Pgit
p= , where pgoo = ; Dgio = , Dgo1 = , Pgi1 =

Dgor

pgll pggtz)(—z pg;(})(—Q pgg}(—z pg;}(—2

Next, we seek to construct (9+,9_,13) # (07,07, p) such that (13) holds: take 9; = O;r
for all j, 8; = 65 for j > 2, and let pyn = pyu. If we let g~ = {g*, g'°, g°'} denote

the union of the other three groups, and denote its corresponding population proportion

parameters as
pgoo

Dg-11 = pglo s

Dgo1
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then using a similar strategy we can show that if Tp,-1.. = 77'1_)9711 holds, we have Tp = Tp,

where T is given as follows:

1 1 1
07 07 07

T = ®Z, (32)
0, 05 03

0y @0, 6726, 67 267

with Z = Z,x-2 being the identity matrix of dimension (K — 2) x (K — 2). We now prove

the claim.

e For any 7 s.t. r, = ry = 0, T, does not involve 8], 87, 65, 6, . According to the
construction of the Q-matrix, item 2,...,J either require both a; and as or require

neither, therefore the response distribution in groups g%, g'°, g are the same, i.e.,

tp g0 = tp gio =t gou for k € [2K-2]. Since é;r =07 6, =0 for j > 2, we further
have
_ _ _ 7 _r _ 7 _ 7 K—2
t,,,7ggo = t,,,7gi0 = t,,q7gg1 = t,,q7ggo = t'r,gio = t,,,hqgl, and t,,,7gi1 = t""vgil for ke [2%77).

(33)
1
Let Tsf) be the first quartile of the vector T,., and T be the last quartile of the vector
1
T, then T'7) is the response of group g*° and T is the response of group g'!. Then

)

1
equation (33) indicates that Ti“ is also the response of group g' and g”'. I.e., we
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have

T = [[ P(Ri=1,1Q.67,67a=¢")= [[ P(R=r,1Q06%6 ,a=g")

Jir;#0 Jir;#0
— H P(Rj =7, | Q,0+,0_,a:gm),
Jir;7#0
T, = [[P(Ri=r;1 Q67,0 . a=g").
Jir;#0

1 1 -
Then equation (33) also indicates that T = 18 and T} =T;. Thus,

1 1 1 1 _ (1 _
T, — <T£,4) T Tl Tj) _ <T£,4) (I I 1I) Tj) (Tgfl) (T T 1) Tj).

combining (I z I)f)gfu = (I T I)pgfu in (32) and p,u = pyu gives

— (1 _
:Tr4)(I z I)pgfll —|—T:—]_3g11

1
= T'(r4) (I z I)pgfu + T:_ Dy

= T'rp

e For any 7 s.t. 1 #0,ry = 0, write 7 = 111 + (r — 71€1), then T, = T, ;)0 Trpe, .

If we split the vector T, ., via the third quartile, i.e.,
T = T(%) T+ 34
riei ri€ex riey | ( )

3
where Ts«fgl is the first three-fourths of the vector and T} . is the last fourth part of
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)

3
the vector. Then we know that Tfnfel is the response of group g~ '! and T} . is the

response of group g'!, i.e.,

3
TV =P (R =7 Q6" 6 ,a=g"),

T+ :P(R1 =T | Q,0+,9_,a :gll) .

riei

. . . . . . ~+
Since item 1 only requires o, the entries of T} . are positive, and since 0 =0, we

have T, = T, _ . Furthermore, response (r —rye;) belongs to the case we analyzed

previously, therefore, we have

— 7(l) _

Tororen) = (T(;_m) (I I I T@_Tlel)) (35)
_ (3) +
_ (T(;‘_Tlel) (I I 71) T(r_ml)). (36)

Hence,

riei © D)

=i

= T(?‘—T1e1) (

(99) (T(%)

(r—rie1)

@
A

(TZI) Tj,.,) (Tneop)

B6) ( (D N _ )
T ((T(;“l—ﬁel) (I 1 I) T(r—r1e1)) © TT161) p

(34) (T&)

(r—rie1)

_ (3) — _
(I z I) o Tr’fe1 T?;«—meﬂ © Tv—:el ) p
& (4 T 4 ) S
= T(ﬁ—r1e1) (91’7,11 ¢9+ T 0 I)pgfu + T+ o T:—lelpgu

1, 1, (r—rie1)

o
= e (T 0T 00 T) Py s+ Ty © TPy

(r—rie1) \ " 1,1 1,r 1,r1 (r—riex
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Then (é; 9T 6,9 6 ®I) Py = (01— 9T 07 9L 67 ®I> p,-u1 in equation

(32) guarantees that for Vry € [Hy],

1,m1 1,m1 1,m 1,71 1,71 1,71

(0T 0.T 0,T)pp0 = (65,T 61,7 65,T)pyn

Therefore, T,p = T,p.

e Similarly, for any = s.t. r; = 0,79 # 0, (92_ T 0,T 9; ®I>1‘99711 =

(92— 9T 0,9 0 I) P, gives T,p = T,p.

e Similarly, for any = s.t. r; # 0, ry # 0, to ensure T,.p = T,p, it suffices to have
(éf@é; R 6,20, 6,20, ®I> Py = (0;@05@1 0720, 2T 0;@03@1) Py11-

Now we construct (67,0, ,Dgoo; Pgro, Pgor) that satisfies Tp = Tp as follows: let Pgio =

pP1- pgoo, pgo1 = P2 pgoo, f)goo =Uu- pgoo, f)gw = 'pgoo and f)gm =w- pgoo. Then 7']3 = Tp
can be simplified to
u - pgoo 1- pgoo
T v - ngO == T p1e ngO 5

w - pgoo P2 pgoo
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i.e., for [y

/

c [Hl], l2 c [Hg],

Ungoo + ’Ungoo + wngoo = ngoo + p1ngoo + szpgoo;

Then it suffices to have

(

u+v+w=1+p; + ps;
ugil1 + Uéih + wéih = eil1 + pleih + pQQih;

ué;h + vé;,z + wéz,fl2 = 0y,, + M0y, + p203,,;

Let some x € (0,1) s.t.

el,ll
61,l1

Jr
01,l1

N+
‘91,z1

11 021, 2,1

-1 011 051, ly—1 031
=K , and =K

+ + +

011 03 1, 031

o+ o+ o+

071 051, 031
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uby, Ipgoo + v0) Ipgoo + whyy Ipgon = 07y Ipgoo + pr6f), Ipgoo + pabyy IPgoos

ue_;,bngoo + ,UéQ_JQIp!)OO + we_;r,lzngoo = 02—7121—p900 + ple?_thgoo + pQHZZZIp!JOO;

- - ot - -t g - + o —- ot
\“91,l1‘92,l2 + 00y, 05, + w0y, 05, = 013,05, + 010705, + p2b1,,05,,.

for 1y € [Hy], Iy € [Hy],

| 1011,05,1,TPgo0 + 107,051, Ipgon + w0y 1,05, Ipgoo = 6y 1,05, Ipgoo + pry, 6051, TPgoo + paby 1,05, Ipgoo.

(38)



then equations (37) are now reduced to

/

u+v+w=1+p; + p2;
éljl + véffl + wéljl =01, + p107, + pab7 3
uégl + vé;l + wH_;fl = 05, + p105 + pa033;

U§1_,1§2_,1 + Uéf:lé;,l + wgl_,légr,l =010, + Pleflez_,l + P291_,19;,1~

\

The above equation system contains (u, v, w, éi 1 6’; 1) five parameters with four constraints,
which gives infinitely many solutions. Thus the model parameters are not identifiable and

condition C3 is necessary. 0

A.3 Identifiability of Sequential DINA model

Theorem 2. The Sequential DINA model parameters are identifiable if the Q' matriz sat-

i1sfies the following conditions S1-5S3.

Condition S1. Q'-matriz is complete, i.e., under some permutation, Qi . = Tx.
Condition S2. Fach of the K attributes is required by at least three items’ first categories.
Condition S3. Suppose Qi = Lk, then any two different columns of Qj ., are distinct.

Proof. We begin by showing that when Q! meets the conditions S1-S3, T*p = T*p gives
p = p and 7;& = B Bj_l = f3;,, for j € [J]. As discussed in Section 3.3, the parameters

J,1 J

(p, (ﬁ;ﬁ)jema (53'_,1)je[J]) can be interpreted as parameters in the reduced binary DINA
model. In this model, the binary item takes the form [(item j > 1), and the corresponding

g-vectors are (qj1);efs, which indicates the attributes required to complete the first cate-

gories. Moreover, Q! is the Q-matrix for this reduced DINA model, so the item parameters
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only involve (6;’1) jeln (Bj1)jeln- Since the Q-matrix for this reduced binary DINA model
satisfies conditions S1-S3, according to the sufficient condition for the binary DINA model
in Gu and Xu (2019b), parameters p, (ﬁ;fl)jem, (8j1)jen are identified, ie., p = p and

B = 61,8, =8, for j € [J].

+

Next we identify 3}, 8;;, for [ > 1, by induction. Suppose categories h (h < [) of item

J have been identified, i.e.,

3 =B, Bin =0, forh <l (39)

For each item j, we will use two rows of the T*-matrix in T*p = T*p to infer that _;.’l = B3

and Bg_z = [, For item j, its category [ requires some attribute, and WLOG, suppose this

is a1. There are two possible cases.

Case 1:  category [ of item j requires solely ay, i.e., q;; = €] . According to condition S2,
there exists some other item j' whose first category requires a. So the Q-matrix takes the

following form:
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In this case, &j/1.o < 1.« for all a, consider vectors

= P(R] Z l ‘ Q7/8+7/8_>7

lsej-i-ej/ = P(RJ > Z7Rj' >1 ‘ Q7ﬁ+’ﬁ_>’

According to the assumption in equation (39), we have tfl_l)ej o= 7‘&_1)% o Therefore,

+ _ + —
s Bj,l tfl—l)ej,a7 é-jvlva =1 — Jil (l 1ej,a 5) La — 1
tlej,a = ) tlej,a = : (41)
5]_7[ tfl—l)ej,a’ €j7l7a = 0 /Bj_,l tfl—l)ej,a’ gjvlva = 0
Since B = ,1, 5371 = B 1, we have
5ot §ita=1 Bt e =1
s ‘],71 l€j7a7 J e -5 leJ, J L
tlej—i-ej/,a = ) tlej-i-ej/,a = : (42)
5]'_/71 tlsej,aa gjﬂl,a =0 5]'_/,1 Elseﬁaa gj’,l,a =0

Since T:p = Tip for r = le; and r = le; + e, p = p, we have

ﬁj_’,l(Tlsej - Tlsej)p =0
(_ fej—i-ej/ - Tfej—i-ej/ )p = 0

[(5 i’ 1Tle - Tlej—i-e /) (5 i’ 1Tle - Tlej—i-e /)]p =0.
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Using equations (41-42), we have (3, — 37 ) Z (tle; .0 — tie;a) Pa = 0. According to

a: 53",1,&:1

the constructed Q-matrix (40), £71,o = 1 must imply &;; o = 1. Therefore,
(Bj_’,l - ;7,1)(7;',3 - ;rz) Z tfl—l)ej,a Pa =0,
a:Ej/yl,a:l

from which we conclude that 5+ = 87

j?l - j7l'
Next consider T§, : with 31, = 81, equation (41) can be written as
e] ]7 ]7
s 5;’:1 t?l—l)ej,a’ €j7l7a = 1 =5 ;,_l t?l—l)Ej,a’ gjvlva = 1
tlej,a = ) tlej,a = : (43)
B]_J tfl—l)ej,a7 gjvlva = 0 /6_]_,l tfl—l)ej7a’ £j7l7a = 0

With Tfejf) =T, p, p = p and equation (43), we have

lEj

(7fej - T?ej)p =0

=B =52 Y ti-neaPa=0

o 1,a=0

=0 =B,

Case 2: category [ of item j requires some other attribute. WLOG, assume that this is
the second attribute ay. Then according to condition S1, oy or as is required solely by some

other item’s first category. WLOG, assume that it is «q, and it is item j’s (j° # j) first
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category that requires vy, i.e., q;;; = €; . So the Q-matrix can be written as follows:

In this case, &1 < {j.1,o for all a. Consider vectors

= P(R] Z l ‘ Q7/8+7/8_>7

e, =PR; >Ry >11Q,8",8).

le; +ej

According to assumption (39), we have t-tye; 0 = 7?1_1)ej,a- Therefore,

+ s R— | 3+ ¢ _
s . 5‘]71 (l—l)ej,a’ 6]7l7a —s . jl (l 1 e] o’ gjvlva
lej,a — ) lej,a -
N ‘ . o
Bj,l t(l—l)ej,oﬂ é-j,l,a - 0 /le (l l eJ o’ gjylya -
Since B = , 1> By =B, we have
+ s _ + 7s _
j/71 tl€j7a7 é-j,717a - 1 _ j/,l tlej,a é-j,717a -
S _ S —
lej—l—ej/,a - ) lej—l—ej/,a -
— s o — ¥
5]",1 tlej,on 5]'/71704 =0 5]",1 tlej,a’ 5]'/717'1

68

1

=0

(44)

(45)

(46)

(47)



Since T:p = Tip holds for r = le; and r = le; + €, and p = p,

5 1(Tie, = T, )p =0

T's s _
( lej—i-ej/ - Tlej—i-ej/ )p - 0

= [( ]—'l;,lTlsej o Tlsej—l-ej/) o ( ]—'l;,lTlsej o Tlsej—l—ej/)]p =0.

Using equations (47-48), we have (8 | — 35 ;) Z (tle; .0 — tie;a) Pa = 0. According to
a: 53",1,04:0

the constructed Q-matrix (44), &1, = 0 must imply §;; o = 0. Therefore, using equation

(47), we have

Bia = BB =B Y. titye,aPa=0,

o £j/71’a:0

which we conclude that 5 1 = B;;- Next consider T : with B]_z = 0}, equation (47) can be

written as
ﬁ;rztfz Dej a0 Sida =1 Ere Sita =1
s ) —1l)e;,a? & s 7y (l 1 8 ,o) J5t, 0
tlej,a = ) tlej,a = . (49)
5‘]_71 t?l—l)ej,a’ €j7l7a = 0 /B‘Q_J tfl—l)ej7a7 gj,l,a - 0

Using T, e,p =T}, p and p = p, and equation (49), we have

( le; Tlej) =0

=( 7;1 — B Z ti—1)e;a Pa =0

o &jla=1

_l’_
=0} =B
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Therefore, for both cases, ﬁ;’l and f;; are identified. By induction, we conclude that all

parameters (37,37, p) are identifiable and conditions S1-S3 are sufficient. O

Proposition 4 (Necessity of Conditions S2* and S3*). The Sequential DINA model param-
eters are identifiable only if the Q-matrixz satisfies the following conditions S2° and S3*.
Condition S2* Fach of the K attributes is required by at least three categories (not nec-
essarily the first categories), and the three categories must come from at least two different
1tems.

Condition S3* Suppose Q-matriz satisfies S1, i.e., Qi.x = Lk, and any two different

columns of the following matriz (which removes the identity matriz of Ql.; from Q)

-1
Ql:K

QK+1:J

are distinct, where Q} denotes the remaining submatriz of Qi.x after removing Q! .

Proof.  We have shown the necessity of condition S1 in Proposition 3, so we may assume

that the Q-matrix satisfies condition S1.

Necessity of Condition S2*.  Suppose the Q! matrix satisfies condition S1, but does
not satisfy condition S2*. We first show that each attribute must be required by more than
one item. Suppose there exists some attribute that is only required by one item. WLOG,

assume this is attribute one a4, and is only required by the first item. So the Q-matrix can
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be written as

Q= * % . (50)

ten 2:0) (0 +)

We partition a into two groups according to the first attribute:

g ={a:a, =0} ={a=(0,a"), a* € {0, 1} '},

g ={a:a=1}={a=(1,a"), a* c {0, 1} '}
So each group has 2K~! attribute profiles, and we index the entries in each group by

K-1
g7 =1(0,0), g5=(0,e1),...,9% = (0,ex_1), ghy1 = (0,€1+€3),...,99x1 = (0, Z ek) ,
1
K-1
g =(1,0), g3 =(1,e1),...,95x = (L,ex_1), gry1 = (L, €1+ €3),...,g5x1 = (1, ek> :
where ey, ...,ex 1 € {0,1}*7! have K — 1 elements. Therefore, the k-th (k € [2571]) entry

of g° and g': g? and g}, share the same attributes except for the first one a;. Index the

population proportion parameters p in the following way:

Pg? Pg}
Pgyo Dg3 Dgl
p= , Wwhere pgo = and pg, =
pgl
pggxfl pg;Kfl
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H; _ S e Hj .
Recall that 8] = ( L BB - T2 ;{l), B; = (ﬁ»’l, BiiBia - TI2 5;’,1)7 for j €
[J]. Ttem parameters 8% = (3{,85,...,8F) and B~ = (87,B85,...,87). We now seek to

construct (8%, 87,p) # (87,8, p) such that (12) holds:
+ at+ - - .
1. Take B8] =3;, B; =B, for j > 1.
2. Bl_,l :Bl_,l = Ov Bill :ﬁf:h, Bl—Jl = Bl—,ll for ll > 1.
3. f’gl = p'pg()? pgo = u'ﬁg()? and pgl =v 'f)go‘

According to Lemma 2, in order for equation (12) to hold, it suffices to show that T,p = T,p

holds for Vr.

_ . =+ _ =5— .
o Forany rs.t. ri =0, g0 =1, g fork e 2571, Since B = B/, B; =B, forj > 1,

=t 1Et7

”"792 rygk r’Q%

t =t g for k € [25-1] to ensure T,p = T,p, it suffices to have

l+p=u+w.

e For any » s.t. 7 = 1, since B; = 0, ¢, go = 0, it suffices to have pBiy = vBf, to

guarantee T,.p = T,p.

e Forany rs.t. r; > 1, since 51_71 = (0 and Bffll = ﬁffll, Bl_,ll = 61_,l1 forly > 1, T,j) =T,p

holds without additional conditions.

With three parameters (u,v, ﬁff ) and two constraints, the equation system has infinitely
many solutions. Thus the construction exists. Therefore, each attribute must be required
by more than one item.

Now suppose the Q-matrix satisfies condition S1 and each attribute is required by at
least two items, and suppose that there exists some attribute which is required by at most

two categories. WLOG, assume this is oy, and it is the first and second items that require
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ay. Assume that category [ € [Hj| of item 2 requires «; and other categories of item 2 do

not require. So the Q can be written as

1 o
item 1
0 *
__________________ R
0 =x
Q= (51)
item 2 1 ol
0 =x
__________________ \ N
item 3:J {0 *

We now seek to construct (B+, B ,p) # (87,87, p) such that T,p = T,p holds for Vr.
1. Take Bj = B;r, B; = B]_ for j > 2.
2. For [, > 1, Bl—,ll = 0y, and Bffll = B,
3. For ly #13, B3, = By, for Iy € [Hy), B3, = By,
4. Pg1 = P Pgo, Pgo = U Pgo, and Py = v - Pgo.

So the remaining parameters are (ﬁffl,ﬁflaﬁ;flg,p,u,v). We partition « into two groups

according to the first attribute as we did before.

e For any v s.t. 11 = 0,r0 <13, 1, g0 =4, g1 fork € 2571, Since B = B;r, B, = B]_
for j>1,t, g0 =t g1 =t, g0 =1, g1 fork € [2K-1]. To ensure T,p = T,p, it suffices

to have 1+ p =u+v.
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e For any r s.t. r; = 0,1y =[5, it suffices to have 52_713 + pB;@ = uﬁz_@ + vﬁ;lg. When
this is met, for any r s.t. r =0, ry > I3, T,p = T,p also holds, since for I, > 13,

2+ _pt  p— -
B2,lg_/62,l27 B27l2_/62,l2'

e Forany rs.t. 7y =1, 7 = 0, it suffices to have 81, +pf;; = uB; +vB{, to guarantee
T,p = T,p. When this is met, for any r s.t. r; > 1, r, = 0, T,p = T,p also holds.

Since for [} > 1, Bl—h = B, and Bffll = Blfh.
e For any 7 s.t. r; # 0 and ry # 0, we need B;ﬁ;l; + prfﬁ;fl; = uﬁl—,lﬁilg + vﬁfflﬁgfl;.

With six parameters and four constraints, the equation system has infinitely many solutions.
Thus the construction exists. Thus the parameters are not identifiable and the condition

S2* is necessary.

Necessity of Condition S3*. Suppose Q-matrix satisfies condition S1 and S2*, but does

not satisfy condition S3*, i.e., there exists two columns of the matrix
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are the same, and WLOG, assume they are columns 1 and 2. Since Q satisfies S1, Q}.; = Tk,

so the Q-matrix can be written as

1 0
item 1
Q | | \_,lil_ _v_l_ .
————— (
Q=1Q, | = 0 1
————— item 2
Q3:J Vo Vo
__________ \ —_ — —_— —_— — — — ]
item (3:J) {,U v

We partition a into four groups according to the first and the second attribute:

900 = {a o = 0,0(2 - O} = {a = (anaa*)> o € {07 I}K_2}>
g’ ={a:a; =10, =0} = {a=(1,0,a"), a* € {0,1}72,
"' ={a:a;=0,00 =1} ={a=(0,1,a"), a* € {0,1}*72,

gll = {a P = 1,@2 - 1} = {a = (17 1>a*)7 o’ € {07 I}K_2}‘
So each group has 252 attribute profiles, and we index the entries in each group by
g?O = (0707 0>a g(Q)O = (07 Oa 61), s 7g(l)(0 = (07 07 6K72); g(l]?+1 = (07 07 €1 + 62), cee 7989{72 = (Oa Ov 252712 ek) )

where ey, ...,ex o € {0,1}%72 have K — 2 elements. Similarly we index the elements of

10 11 Therefore, g¥°, gi° g\' and gi! for k € [2672] share the same attributes

g% g", g

except for the first and second attributes. Index the population proportion parameters p in
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the following way:

pgoo
pglo

pgm

pgu

7

where pgoo =

00
DPgo

00
DPgy

00
ngK—Q

Pyt

Pgyo

pgm

oK —2

01
Dgo

Pgy!

01
p92K72

and Dgun =

Py}

Pgy!

pgll

oK —2

We now seek to construct (B+, B ,p) # (BT,B,p) such that T,p = T,.p holds for Vr.

1. Take ﬁ;r = B;, B, = BJ_ for j > 2.

2. For l; > 1, Bill = ﬁf,h and ﬁffh = 5ffll; ﬁﬁ = Bfrl

3. For Iy > 1, BQLJQ = ﬁ;lz and ﬁ2_,12 = 52_,12; ﬁ2+1 = 5;1

4. Dy = ]_9911, Pgoo = pP1Pg11;, Pgro = P2Pg11, Pgor = P3Pgi1,

]_9g00 = Ulpgn, pglo = nggn and ]_9901 = U3p911.

So the remaining parameters are (08, B34, U1, U2, u3).

e For any r s.t. 71 = 0,79 = 0, the response does not require oy and s, so t, 0 =
s 12 ’ 2 7,95

tr gio = tp gn =ty gn for k € [257%]. Since B = ﬁj, By =3, for j>1,

1y 9,

ty,

g% =t

T 9

1

o=t

r, g0 = tr,gk

11
T, 9

= tvug

00 = tm

giO — t 01

T 9

To ensure T,p = T,p, it suffices to have p; + py + ps = uy + us + us.

=t gn, forke (2572

e For any r s.t. 7, = 1,75 = 0, it suffices to have p;8;; + pgﬁffl + p3fi1 + Bffl =

U151_,1 + uzgffl + u351_71 + Bfl to ensure T,p = T,p. Since Bfl = Bffl, it suffices to
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have p1 81, + pgﬁffl +p3B11 = UleJ + uQBffl + U3Bil. When this is met, for any r s.t.

r1>1,ry =0, T,p = Tpp also holds, since for I; > 1, B, = B, and 5, = B, .

e For any r s.t. r = 0, r, = 1, it suffices to have p185; + p2f5; + pgﬁil + ﬁ;fl =
U1 Py + u2fyy + usPyy + B to ensure Tpp = Tpp. Since 5, = B35, it suffices to
have p1 35 + paBsy + psfPay = u1Bsy +uzBsy +usfs ;. When this is met, for any 7 s.t.

1 =0,79>1, T.p=T,p also holds, since for I > 1, 52_712 = f5,, and B;flz = B34,
e For any 7 sit. 11 # 0 and 75 # 0, we also need p187, 85, + p2B 155, + psBiifss =
ulBilBil + U26i152_71 + U36i153:1-

With five parameters and four constraints, the equation system has infinitely many solutions,
thus the construction exists. So the model parameters are not identifiable and condition S3*

is necessary.

A.4 Proofs of Examples

Our proofs utilize certain results from existing literature, which we have summarized as

lemmas below.

Lemma 3. When K = 1, the parameters of the binary DINA model with the following

Q-matrix are identifiable.

7



This lemma is a direct result from Theorem 1 in Gu and Xu (2019b).

Lemma 4. Given that the item parameters are known(identified), i.e., only the population
proportion parameters p need to be identified, and if the Q-matrixz contains an identity ma-

triz, then the binary DINA model is identifiable.

This lemma is a result from Theorem 1 in Xu and Zhang (2016).

A.4.1 Proof of Example 7

Assuming that 0 < B < ﬁ;rl < 1, the Sequential DINA model parameters with the following

Q-matrix are identifiable:

1 1
iteml1
0 1 1 1
item?2 1 11
] 11
Q = | item3 1 |and Q' = }------; ) (53)
------------------- 10
itemd<1 ol |7
itemb 0 10
1temb 1 0

Proof. 1f we consider the first categories of the first three items, whose Q-matrix can be
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written as

and we regard (1,1) together as “one attribute”, then the above Q-matrix can be viewed
as the Q-matrix for the binary DINA model with only one attribute (1,1). Using Lemma 3

and the equations Tép = T:p with r = e;, j € [3] and their sums, we have pu1) = p1),

= _;fl and 3;; = ; for j € [3]. Similarly if we consider the first categories of the last

three items, we obtain p(i0y + pa1) = Py + Py and ﬁ;,“l = 7;’“1, Bi1= Bj_l for j € {4,5,6}.

Therefore, pio) = pao). Next we identify ﬁlf 2 B12, P(00), Po1): consider equations Typ =

T;p with 7 € {2e;, ey, es} and their sums. With pa1) = pay), Paoy) = Paoy and B = B,

B, = Bj_l for j € {1,2,4}, these equations give

s

0 1 0 0 0 1 0 0 Do)

0 0 0 1 0 0 0 1 P(10)

Pra Pra Pra Bl Pra Bra Bra Bia P
BB Biabia  BubBls  BLBL BB Bubi. BBl BBk Pay | o
BaibBia BaibBria BaibBia B31Bia Ba1Bia Ba1Bia BB B31B1 —P(00) |

BiibBia Bi1Bia BaibBia Bi1Bi Biibia Bi1Br BB Bi1Bl —P(0)

BoabBiaBis PanBiabia BonBiiBla BiaBiaBls BaiBraBia BorBiiBrs PonBiiBis BIiBIBLa | | —Poy

BuriBribia BliSuibre BuiBiibils BLALAL Biibiibra BiiBiibre BubriBle BLALAL ) \—pay

if we abbreviate

D = (Poo) Pao) Po1) Par — Dooy — Paoy — D1y — Dar) —25(11))T7 (54)
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0 0 0 1 0 0 0 1
00 @fl(ﬁfz — Bia) sgf:l(ﬁ;k —Bra) Sfl(sz — Ba) Bia(Bra— Bra) ﬁfl(ﬁfz — Ba) [fﬁ(i?fz — Bra)
0 0 BoBia(Bia—Bra) BHiB(BF2 = Bia) BoaBia(Bia = Bra) BaiBia(Bra— Bia) PaaBra(Biz — Bra) B3B8 (B — Bia)

00 84_‘1/31_,1(/3?:2 - 31_z> 311[’){*,—1(6{%2 - /31_,2) /3;1/31_,1(F§fz - 513) 52—151_1(61_2 - 51_,2) /3;15‘91_,1<SI2 - 61_,2) leﬁil(ﬁiz - ;3f2)

p=0,

thus

00 Br(Bh—F) 0 BL(Bra—B) Bia(Bia—Bra)  BialBia—Bia) BB — B)
0 0 BoiBia(Bia—Bia) 0 BoaBia(Bia—Bra) BaaBia(Bia— Bia) BaaBia(Bia — Bra) BiBi(Biy — Bi) [P =0
0 0 BiaBia(Bia—Bia) 0 BiaBia(Bia—Bra) BiaBia(Bia—Bia) Biabia(Biy — Bia) BB (B, — B)

(55)

which gives (851 — 851) 581 1(B1 5 — B5) = 0, so we have B}, = 3f,. Taking this back to (55),

we have

(00 (Ba—Bia) 0 (Biy—fia) (Bra — Bia) (Bl —Bra) 0 _
51,1 p=0,

0 0 Bi(Bs—0512) 0 Biy(Bia—Bia) Bi(Bia—Bis) Bia(Bia—Bia) O
(56)

which gives

P <0 0000 (ﬁiﬁ_ﬁ&)(ﬂ_&_ﬁﬁ) 0 O)ﬁzo'

Assuming 3, > 0, we have 3, = 81 ,. Taking this back to (56), we have

<0 0 (Bia—=Fra) 00 0 (B, fia) 0)”15=0.

Thus p1) = Po1), and also poy = Pooy- Therefore, the parameters of the Sequential DINA

model with the above Q-matrix (53) are identifiable. O
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A.4.2 Proof of Example 8

The Sequential DINA model parameters with the following Q-matrix are not identifiable:

item 1 1 0
item 2 0 1 1_0_
"""""""""" . 0 1
Q=1 item3 0 1 and Q" = [------ .
____________________ 0 1
1 1 1 1
item 4
1 0

Proof. Let Bﬁ = ﬁf:la B2+1 = 52+1 6;1 = ﬁyib Bzz = 61:27 52_1 = 62_,1> B?,_1 = 63_,1a 64_,1 =
By, = 0. Since f;; = 0, 8, is not defined (or equals 0). Then Tp = Tp holds if and only

if the following equations hold:

P(oo) + Paoy + P(o1) + Pa1) = Poo) T Pao) + Po1) + Pa1);

D1y + Pa1) = Pe1) + Pau;

61_,1 [Booy + Poony) + 511 [Pao) + Pan] = Brilpoo) + Pon)] + Bffl [Paoy + panl;

Bilﬂiﬁ(%) + 5)1_,1/3;,115(01) + /3)1+,1ﬂ2_,117(10) + /3ff1ﬂ§f115(11) = B1182.1P00) + 51_,15;11)(01) + Bfflﬁz_,ﬂ)(lo) + Bffﬁzw(u);

Biibay = Bipay-

There are five equations with six parameters (p(o), P(10), P(o1): P(11)s B Bj:l), thus there are

infinitely many solutions and the parameters are not identifiable. 0
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A.4.3 Proof of Example 9

The Sequential DINA model parameters with the following Q-matrix are not identifiable:

item 1 1 0
item 2 0 1 1_0_
____________________ 0 1

Q - 1 1 and Ql = |------- .
item 3 11
I G 11
item 4 {1 1

Proof. Let 7;1 = 5;1 for all j and [ € [H,], B;l = B Bg_l = B3, = 0, and pa1y = pay).-
Since f3; = 0, B3, is not defined (or equals 0). Then Tp = Tp holds if and only if the

following equations hold:

D00y + Paoy + Po1) = P(oo) + P(10) + Po1);
BBy + Doon] + Bi1[Paoy + pav] = Bialpeo) + pov] + Bialpao) + pav);

B3[P0y + Daaoy] + B2 [Bor) + Pan] = Baalpoo) + Pao) + B[Py + pav);

B Baabooy + BraBaaboy) + BiiBrabaoy + BiaBiipa = BiaBripoo) + BiaBsipon + BiaBaipao) + BiBaipay.-

There are four equations with five parameters (p(o), P(10); P(01), B1.1, B2.1), thus there are in-

finitely many solutions and the parameters are not identifiable. O
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A.4.4 Proof of Example 10

The Sequential DINA model parameters with the following Q-matrix are identifiable:

.
1 0
item 1
0 1
____________ \ . _]
(
1 0
item 2 10
0 1 1 0
Q= |- > and Q' = |- : (57)
0 1 01
item3< |
01
1 0
____________ \ o ___]
(
0 1
item 4
1 0
\

Proof. Consider equations Tsp = Tp with r € {ey, 2e;, es, e,} and their sums. Using a

similar calculation, these equations give

(OI Bia(Bia—Bio)(Bsy = Bi) BB —Bia)(Bsy — Bi) BBy — Bia) (B — B BE(BH — Bia) (B — B) ) 50

0] Sia(Bia—Bia)(Bay — BBy Bia(Bia — Bia)(Bay — BBy Bia(Bis — Bia)(Biy — B)BL Bii(Biy — Bra) (B — BB

(58)

where 04 denotes all-zero vectors of dimension four and p is (54). Thus,

<°9 Bra(Biy = Bia) (B = B0 (Bh = Bia) Bi(Bi — Bia) (B — B5) (51 — M) p=0.
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Therefore,

(6512501 + Bilﬁll)(ﬁfb - 51_,2)(6111 - 5§1)(511 - 64_,1) = 0.

Since 0 < 87, < B, < 1, (B, —Bi) (B, —B51) = 0. Butif ) # G5, and 5, = B, we can
swap the parameters 3 and 3, and show that Bff g = Bl_ 5 by symmetry. Yet this will indicate
that 8;, = B;, < B, = Bi,, which leads to a contradiction, thus we must have 85, = 3.
By symmetry we can also show that 8, = £/, and similarly for 8, = 8, and 85, = 65,

Taking these back to equation (58), we have 61_2 = [1. Samely we obtain 69_2 = 3, for

3,2
j € [4]. Thus all the item parameters are identified, and according to Lemma 4, we know
that when these parameters are known, the completeness of the Q-matrix will suffice to

identify parameters p. Therefore, we must have (3%, 37,p) = (B+,B_,1_J), i.e., the model

parameters are identifiable. O

A.4.5 Proof of Example 11

The Sequential DINA model parameters with the following Q-matrix are identifiable:
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1 0
item 1
0 1
------------ Soonoes 10
o 1| [
item 2 01
Q= 1 0fand Q'=1]1 1
____________ \———————- e - - - - = =
item 331 1 1 1
____________________ 11
item 4 1 1
item D 1 1

Proof. Consider the last three items, similar to the proof in Example 7, according to Lemma 3,

3+

we have payy = pay, and Bf, = B, 87, = B, for j € {3,4,5}. Next using equations

Tip = TSp with r = e1, e; + e3, we have

- + - + 3— 3+ 3— 3+
51,1 61,1 61,1 61,1 61,1 61,1 51,1 51,1 -
p=0,
- - + g- - - + ot p=p—  pt p-  p— p- g+ ot
51,153,1 51,153,1 51,153,1 51,153,1 Bl,lﬁs,l Bl,lﬁs,l Bl,lﬁs,l Bl,lﬁs,l

which gives

(o 0 0 B1(85—B51) 000 Bﬁ(ﬁgl—ﬁ;o)ﬁ:&

where P is given by (54). Since pai = Pai), we must have S, = Bf;. Next combining
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r =2e; and r = 2e; + e3,

- p- - - - B— a2+ B— - B+ 2+ 3+
BrabPra Bi1Bra BrabBis Bi1BLs Brabra BiabPra Brabis Brabis
e - - - - 2- 3- 3— B+ B— 34— B Bt /- B+ gt gt

BraBrabsy »31+,151,2ﬁ3,1 51,15&53,1 ﬁfﬁﬂizﬁ;@ BiabBriaPsy BiaPrabsy Prabiabsy Biibiabsq

p=0,

which gives 37, = B{,. Similarly we can obtain 85, = 85, and 83, = 85,. Next consider

r € {e1,2e1, e1 + ey,2e; + ey}, using similar calculations, we have,

00 BB —Bia) B (By — Bia) Bia(Bra— Bra) B (Bra — Bia) Bra(By — Bra) B (B — Bia)

=0,
0 0 Bia(Bis—Bra)Bd BI(Bfa— Bia)Bay Bia(Bis— Bra)Ban Bii(Bra—Bia)Bay Bia(Bis — 82831 BBl — Bia)Ba
which gives
(Bl_,lﬁ(OO) + B;ﬁﬁ(lo))(ﬁiz - 51_2)(52_1 - /3;1) =0,
thus we have 61_ o = B1o- Finally we identify 3, 1,
B 8 A B B 8 B B
BB BB BB BB BB Bhib BB BLAL | 0
p —

- - — - A— A— + a— a— n+ + A+
61,1/82,1 ﬁilﬁ?,l 51,16;:1 /81_15;:1 51,1/32,1 ﬂl,lﬁQ,l 61,162,1 61,15271
- n— - + 50— - — o+ ot + o+ o+ p— - B- + Aa— pa— B A+ g+ + o+ o+

51,151,252,1 51,151,25271 51,1517252,1 517151,252,1 51,151,252,1 51,151,25271 5171517252,1 51,151,252,1

00 A=) BLBE - B BialBon=Bo)  Bla(Ban = Ba)  Bra(B—=Fa)  BL(BL = Ban) 50

0 0 BiaBia(Bay —Ban) BEBa(Bi = Ban) BiabBio(Bon — Ban) BiiBra(Bay — Bar) Biabia(Biy — Ban) BiiBia(Bay — Ban)

Hence

(0 000 61_1(61_2 - Bfrz)(gz_l - 52_1) 5?1(61_2 - 5?2)(62_1 - 52_1) 0 0> ﬁ =0.
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Therefore, we have

(Bl_,lﬁ(oo) + Bmﬁ(lo))(ﬁiz - 55)(551 - 52_1) =0,

thus 52_ 1 = f31- Using the same strategy we can show that 52_ o = B35 and Bl_ 1 = P11, which

completes the proof. O

87



	Introduction
	Model Setup
	The GPDINA model
	The Seqential DINA model
	Relationship between GPDINA and Sequential DINA models

	Identifiability
	Generalized T-matrix for CDMs with polytomous responses
	T-matrix for GPDINA
	T-matrix for Sequential DINA model

	Identifiability of the GPDINA model
	Identifiability of the Sequential DINA model

	 Data Examples
	Discussion
	Supplementary Material
	Proofs of Propositions 1 and 2
	Identifiability of GPDINA
	Identifiability of Sequential DINA model
	Proofs of Examples
	Proof of Example 7
	Proof of Example 8
	Proof of Example 9
	Proof of Example 10
	Proof of Example 11



