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Survey instruments and assessments are frequently used in many domains of social science. When
the constructs that these assessments try to measure become multifaceted, multidimensional item response
theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration,
and scoring. However, the computational challenge of estimating MIRT models prohibits its wide use
because many of the extant methods can hardly provide results in a realistic time frame when the number
of dimensions, sample size, and test length are large. Instead, variational estimation methods, such as
Gaussian variational expectation–maximization (GVEM) algorithm, have been recently proposed to solve
the estimation challenge by providing a fast and accurate solution. However, results have shown that
variational estimation methods may produce some bias on discrimination parameters during confirmatory
model estimation, and this note proposes an importance-weighted version of GVEM (i.e., IW-GVEM) to
correct for such bias under MIRT models. We also use the adaptive moment estimation method to update
the learning rate for gradient descent automatically. Our simulations show that IW-GVEM can effectively
correct bias with modest increase of computation time, compared with GVEM. The proposed method may
also shed light on improving the variational estimation for other psychometrics models.
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Developing, refining, and validating survey questionnaires that measure target latent traits
such as personality or cognitive abilities has always been a core agenda in education and psy-
chology, and this focus is also extended to health measurement and culminates in a multi-decade
initiative on patient-reported outcome measures. Psychometric methods and tools are an integral
part of achieving this focus. When the constructs that these assessments try to measure become
increasingly complex, multidimensional item response theory (MIRT), also known as item factor
analysis, provides a unified framework and convenient statistical tool for item analysis, calibra-
tion, and scoring. However, the increasing scale and complexity of survey designs, especially in
large-scale assessments (LSA), require MIRT models with many latent factors. For instance, the
English Language Proficiency Assessment for the 21st Century (ELPA21) across two gradebands
consists of eight domain-level traits measured by more than 600 items (CRESST, 2017). The
existing computational algorithms for fitting high-dimensional MIRT models are insufficient to
navigate the massive amount of assessment data, reflected by excessively long computation time
and unstable estimation results.
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MIRTprovides a powerful tool for enriching the information gained in educational assessment
(Hartig & Höhler, 2009). For instance, cognitive instructional psychology considers “science
knowledge” and “mathematical ability” as highly differentiated theoretical constructs that consist
of both basic facts and skills as well as deeper or higher-order understanding (Hamilton et al.,
1995; Kupermintz et al., 1995). As another example, the 2003 assessment framework of PISA
(OECD, 2003) contains a hierarchy of ability dimensions with general “knowledge and skills” at
the highest level, followed by reading, math, science, and problem solving. Then at the lowest
level are the sub-domains such as “space and shape,” “change and relationships,” and “quantity”
nested within math. Hence, dimensions on different levels vary in their degree of generality and
abstraction. Oftentimes, the highest level represents a broad competency level, whereas lower
levels represent narrower and more specific abilities. If the intention is to model both the overall
and lower-level abilities simultaneously, the model will be high dimensional (Briggs & Wilson,
2003).

Even though the research and development in statistics and psychometrics have provided
increasingly sophisticated measurement models to better assess constructs in social sciences,
the practice still lags behind (Cai & Hansen, 2018). Unidimensional IRT models continue to
dominate the current applications in many domains. One reason is that when the number of items,
sample size, and the number of dimensions are all large, the current computational algorithms for
MIRT estimation may not be powerful enough to produce results in a reasonable time frame (or
ever) (CRESST, 2017). For instance, due to the large number of students and items within each
gradeband, the operational analysis approach used for ELPA21 is a two-step approach: in the
first step, a unidimensional IRT model is fitted to the item response data for each domain subtest
to obtain item parameter estimates; then in the second step, a restricted hierarchical model [i.e.,
testlet model, Wainer et al. (2007), Gibbons and Hedeker (1992), Cai et al. (2011)] is fitted to
estimate the correlations between the four domains (Thissen, 2013). Such a two-step process has
two limitations: (1) the item parameter calibration errors are ignored in the second step, and (2) the
restricted hierarchical model is only an approximation to the independent-cluster MIRT model.
Various full-information methods have been proposed to deal with the computational challenge,
which are listed belowwith pros and cons. The list is by nomeans exhaustive, but it includes some
of the most popular methods that are available in commercial software packages or R packages.1

1. AdaptiveGaussian quadrature. Compared to the regularGauss-Hermite quadrature [e.g.,
Bock and Aitkin (1981)], even though the number of quadrature points per dimension
is reduced, the total number of quadrature points still increases exponentially with the
number of dimensions. Moreover, an extra step is needed to compute the posterior mode
and variance of latent factors in each iteration, which adds additional computation costs
(Pinheiro & Bates, 1995).

2. Monte Carlo techniques. This family of methods include, for instance, the Monte Carlo
EM algorithm (McCulloch, 1997; Wang & Xu, 2015), stochastic EM algorithm (von
Davier & Sinharay, 2010; Zhang et al., 2020), or Metropolis–Hastings Robbins–Monro
algorithm (Cai 2010a,b). Thesemethods circumvent intractable integrations by sampling
from the posterior distributions; however, they may still computationally intensive for
complicated high-dimensional models. Fully Bayesian estimation methods, such as
Markov chain Monte Carlo (MCMC; Albert, 1992; Patz & Junker, 1999) can also be
considered in this category. The Bayesian approach is also computationally costly as it
needs a long chain to converge for complex models, though it is preferable with smaller
sample sizes.

1The limited-information method such as weighted least squares is not reviewed here as it handles high-dimensional
models very differently, and it cannot handle missing data very well.
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3. Analytic dimension reduction. For models assuming certain conditional independence
among factors (such as the bi-factor models), the conditional independence relations
can be used to partition the joint space of all latent variables into smaller subsets. As a
result, brute force numerical integration over the joint latent space can be replaced by
a sequence of integrations over smaller subsets of latent variables, which helps reduce
the computation burden dramatically. This strategy to deal with high-dimensional inte-
gration challenges is known as analytic dimension reduction (Cai et al., 2011; Gibbons
& Hedeker, 1992; Rijmen et al., 2008). One limitation, though, is that the algebraic
manipulations of the likelihood of a specific model might become very complicated,
and they differ for different models (e.g., Cai et al., 2011; Gibbons & Hedeker, 1992).
Hence, there is no universal rule that applies to any model.

4. Laplace approximation. This method is based on second-order Taylor expansion of the
log-integrand around itsmode (Lindstrom&Bates, 1988) such that the high-dimensional
integral becomes tractable. This method is a classical and popularly used method for
generalized linear mixed-effects models (GLMM), and it is available in many software
packages, such as the “lem4” R package (Bates et al., 2014). However, this approxima-
tion may not be accurate when the dimension increases to 3 or higher, the sample size
is small (Jeon et al., 2017), or the likelihood function is skewed.

Besides the full-information methods above, a recent constraint joint maximum likelihood
estimation (CJMLE) was proposed by Chen et al. (2019), which is more computationally efficient
thanmanymarginal maximum likelihoodmethods, and the estimator has the theoretical guarantee
to be consistent under high-dimensional settings. Extending CJMLE, the singular value decompo-
sition (SVD)-based estimator was proposed by Zhang et al. (2020a), which further improves the
performance of CJMLE. These joint maximum likelihood methods enjoy the low computational
cost but sacrifice the flexibility of latent factors by treating them as fixed effects. For instance, it
would be hard conceptually to generalize the algorithm to a multiple-group condition in which
unbiased estimation of group-specific population distributions is often needed than estimation of
individual person’s latent trait as a fixed effect.

In light of the limitations of the above-mentioned methods, variational estimation methods
that leverage advances in statistical andmachine learning have recently gained increasing interests
in psychometrics (Cho et al., 2021, 2022; Jeon et al., 2017). Among numerous variational estima-
tion methods, Rijmen & Jeon (2013) was one of the first to use a variational estimation technique
for MIRT models that approximates the likelihood function by a computationally tractable lower
bound, but it only studied MIRT models with discrete latent factors. Later, a wide range of stud-
ies on variational methods were conducted for the estimation of more complex models (Hui et
al., 2017; Natesan et al., 2016). Recently, Jeon et al. (2017) proposed variational maximization–
maximization (VMM) algorithm for the generalized linear mixed models (GLMMs), which out-
performs Laplace approximation with a small sample size. However, they rely on some iterative
numerical algorithms to attain the solutions in each maximization step, resulting in a slow speed
in running the algorithm. To further increase computational efficiency, many researchers brought
up variational autoencoder (VAE), a deep learning-based variational method to tackle the esti-
mation problems in MIRT models (Curi et al., 2019; Wu et al., 2020). Extending from VAE,
the importance-weighted VAE (IW-VAE) is developed and exhibits competitive performances
to other estimation methods (Liu et al., 2022; Urban & Bauer, 2021) at large sample sizes.
However, the two IW-VAE methods lack theoretical support for the consistency of estimators.
In addition, although they are powerful in handling large-scale data, their performances in small
to medium-sample data may not be as well (see Appendix for more details). Cho et al. (2021,
2022) proposed a Gaussian variational expectation–maximization (GVEM) algorithm, which has
shown to be computationally fast and produces comparable and sometimes more accurate param-



PSYCHOMETRIKA

eter estimates than the MH-RM algorithm and than the CJMLE method in high-dimensional
exploratory item factor analysis models (i.e., M2PL and M3PL in Cho et al., 2021). Moreover,
Cho et al. (2021) proved that the estimated parameters fromGVEMalgorithm are consistent under
the high-dimensional setting. However, we found that directly applying the GVEM algorithm
in confirmatory MIRT models would generate relatively large bias on discrimination parameters,
especially when the correlations among factors are high and the sample size is not large (please
see Sect. 2 for the detailed simulation results). Such a bias issue happens commonly to variational
estimation for various statistical models (Bishop, 2006).

To correct the bias in the variational algorithms forMIRTmodels, we propose an importance-
weighted GVEM algorithm (denoted as IW-GVEM hereafter) , which is an extension of GVEM
algorithm by performing additional steps after GVEM convergence. The primary idea is to use an
importance-weighted variational inference technique to create a tighter variational lower bound
to the target, otherwise intractable, marginal likelihood. Because the variational lower bound
proposed in Cho et al. (2021, 2022) is replaced by a weighted average based on importance
sampling (Domke & Sheldon, 2018), the desirable closed-form solution in the M-step is no
longer applicable. Instead, we propose to use Adam (Kingma & Ba, 2014), a popular algorithm
for first-order gradient-based optimization. This computationally efficient algorithm updates the
objective function stochastically based on adaptive estimates of lower-order moments, and it is
especially well suited for large data and complex models. Moreover, different from the IW-
VAE methods rooted in deep neural network models where substantial theoretical works on the
consistency of the estimators remain to be done, our proposed IW-GVEM is a more transparent
method that comes with theoretical guarantees under the high-dimensional setting.

Inwhat follows, this note briefly describes theM2PLmodel and the originalGVEMalgorithm
and then introduces the IW-GVEM algorithm in Sect. 1, followed by a comprehensive simulation
study in Sect. 2. We end the paper with discussions and future directions.

1. Methods

1.1. M2PL

Multidimensional 2PLmodel is one of the most widely usedMIRTmodels in practice (Reck-
ase, 2009). WithM2PL, the item response function of the i th individual to the j th item is modeled
by

P(Yi j = 1 | θ i ) = exp(a�
j θ i − b j )

1 + exp(a�
j θ i − b j )

, (1)

where Yi j for i = 1, ..., N and j = 1, ..., J is a binary response, a j denotes a K -dimensional
vector of item discrimination parameters for item j , and b j specifies the corresponding difficulty
level with item difficulty parameter as b j/‖a j‖2. Following notations in Cho et al. (2021), we
use Y i to denote the response vector of the i th subject, and θ i to denote the latent trait vector
of the i th subject. We write A = (α j , j = 1, . . . , J ) and B = (b j , j = 1, . . . , J ). For model
identification, oftentimes the means and variances of θ are fixed as zeros and ones, respectively,
and the covariance (which is actually correlation) of θ is freely estimated.

1.2. GVEM

Let � = (A, B, ρ) denote the set of unknown parameters for M2PL, where ρ denotes the
correlations of θ . As discussed, the population means of θ are fixed at 0, and the population
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variances are fixed at 1. The correlations among θ’s can be freely estimated. Then, the log-
marginal likelihood of responses Y is

l(� | Y) =
N∑

i=1

log P(Y i | �) =
N∑

i=1

log
∫ J∏

j=1

P(Yi j | �, θ i )φ(θ i )dθ i , (2)

where φ denotes a K -dimensional Gaussian distribution of θ with mean 0 and covariance �θ . It
is the potentially high-dimensional integration in Eq. (2) that makes direct maximization of the
log-marginal likelihood computationally prohibitive. The log-likelihood of response Y has an
equivalent form

l(� | Y) =
N∑

i=1

∫

θ i

log P(Y i | �) × qi (θ i )dθ i ,

where qi (θ i ) can be any probability density function satisfying
∫
θ i
qi (θ i )dθ i = 1.

Themain idea behind variational inference is to approximate the intractable integral in Eq. (2)
with a computationally feasible form, known as the evidence lower bound (ELBO; Blei et al.,
2017; Ormerod & Wand, 2010). Because P(Y i | �) = P(Y i , θ i | �)/P(θ i | Y i ,�), we write
l(� | Y) as

l(� | Y) =
N∑

i=1

∫

θ i

log
P(Y i , θ i | �)

P(θ i | Y i ,�)
× qi (θ i )dθ i

=
N∑

i=1

∫

θ i

log
P(Y i , θ i | �)qi (θ i )

P(θ i | Y i ,�)qi (θ i )
× qi (θ i )dθ i

=
N∑

i=1

∫

θ i

log
P(Y i , θ i | �)

qi (θ i )
× qi (θ i )dθ i + K L{qi (θ i ) | P(θ i | Y i ,�)},

where K L{qi (θ i ) | P(θ i | Y i ,�)} = ∫
θ i
log qi (θ i )

P(θ i |Y i ,�)
× qi (θ i )dθ i is nonnegative. This is

because

−K L{qi (θ i ) | P(θ i | Y i ,�)} =
∫

θ i

log
P(θ i | Y i ,�)

qi (θ i )
× qi (θ i )dθ i

�
∫

θ i

(
P(θ i | Y i ,�)

qi (θ i )
− 1

)
× qi (θ i )dθ i

�
∫

θ i

P(θ i | Y i ,�)dθ i −
∫

θ i

qi (θ i )dθ i

= 1 − 1 = 0

Therefore, we have a lower bound of log-likelihood that

l(� | Y) �
N∑

i=1

∫

θ i

log
P(Y i , θ i | �)

qi (θ i )
× qi (θ i )dθ i
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=
N∑

i=1

Eqi (θ i )

[
log

P(Y i , θ i | �)

qi (θ i )

]
=: ELBO, (3)

where the last term
∑N

i=1 Eqi (θ i )

[
log P(Y i ,θ i |�)

qi (θ i )

]
is the ELBO for l(�|Y) in Equation (2). Max-

imizing the log-marginal likelihood is then approximated by maximizing ELBO, and qi (θ i ), the
variational distribution, needs to be carefully chosen tominimize the gap between the log-marginal
likelihood and its ELBO.

The key is to find qi (θ i ) so that ELBO approximates the marginal likelihood l(�|Y) as close
as possible. Note that when qi (θ i ) is the posterior density of θ i , i.e., qi (θ i ) = P(θ i | Y i ,�), maxi-
mizingELBO is equivalent toBock&Aitkin (1981)’smarginalmaximum likelihood/expectation–
maximization (MML/EM) algorithm. Instead, as the choice of qi (θ i ) determines the computa-
tional cost and success of the algorithm, Cho et al. (2021, 2022) proposed a choice of qi (θ i ) that
satisfied two criteria: (1) it is easy to maximize, and (2) it approximates the true log-marginal
likelihood well. Due to the independence of the students’ responses in general IRT models, qi (θ i )
is selected for each individual separately. Specifically, under M2PL, the joint distribution of θ i
and Y i is,

log P(Yi , θ i | α, b, ρ)

=
J∑

j=1

{
Yi j (α

�
j θ i − b j ) + log

1

1 + exp(α�
j θ i − b j )

}
+ logφθ (θ i )

≥
J∑

j=1

log
eξi j

1 + eξi j
+

J∑

j=1

Yi j (α
�
j θ i − b j ) +

J∑

j=1

b j − α�
j θ i − ξi j

2

−
J∑

j=1

η(ξi j ){(b j − α�
j θ i )

2 − ξ2i j } + logφθ (θ i ) (4)

:= l(Yi , θ i | α, b, ρ, ξi j ), (5)

where ξi j is the variational parameter for the i th subject, which will be updated iteratively in the
M-step of GVEM, and η(ξi j ) = (2ξi, j )−1[eξi, j /(1 + eξi, j ) − 1/2]. The derivation is as follows.
Because the difficulty of handling the marginal distribution of P(Y i ) mostly comes from the
logistic sigmoid function, which makes the integration over θ not a closed form in the E-step. As
a result, Cho et al. (2021) used a local variational approximation method (Jordan, 2004). Denote
xi j = b j −α�

j θ i , the local variational method gives the following variational lower bound for the
sigmoid function:

1

1 + exp(α�
j θ i − b j )

= exp(xi j )

1 + exp(xi j )

= max
ξi j

exp(ξi j )

1 + exp(ξi j )
exp

{
xi j − ξi j

2
− η(ξi j )(x

2
i j − ξ2i j )

}

� exp(ξi j )

1 + exp(ξi j )
exp

{
xi j − ξi j

2
− η(ξi j )(x

2
i j − ξ2i j )

}
,

and by applying the above lower bound to Eq. (4), we get Eq. (5), which provides a variational
lower bound for log P(Yi , θ i | α, b, ρ).
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By variational inference theory, we can show that the variational distributions qi (θ i ) (for
i = 1, ..., N ) that minimize the distances between the lower bound and the joint distribution
follow a Gaussian distribution with closed-form mean and variance, i.e., qi (θ i ) ∼ N (θ i | μi , �i )

where the mean parameter of the normal distribution is

μi = �i ×
J∑

j=1

{
2η(ξi, j )b j + Yi j − 1

2

}
α j (6)

and the covariance matrix is

(
�i

)−1 = (
�θ

)−1 + 2
J∑

j=1

η(ξi, j )α jα
�
j . (7)

In the confirmatory model estimation, we update population covariance matrix �θ by

�θ = 1

N

N∑

i=1

(�i + μiμ
�
i ). (8)

But because we need to fix the diagonal elements of �θ during estimation to fix the scale, we
propose to rescale �θ after the M-step converges, i.e.,

�∗
θ =

((√
diag(�θ )

)−1
)�

�θ

(√
diag(�θ )

)−1
,

and the discrimination parameter needs to be rescaled accordingly, i.e., α∗
j = α j

√
diag(�θ ).

For the exploratory analysis, �θ is fixed at an identity matrix during estimation, and a post hoc
rotation will then produce proper nonzero correlations. In the following, we assume that the
GVEM algorithm has converged and we fix the variational parameter ξi j as the final estimates.
In other words, we do not update ξi j in the later iterative steps and ξi j is fixed at the initialization
GVEM step in Algorithm 1.

1.3. Importance Sampling

Referring back to the basic idea underlying variational inference, i.e., the ELBO for log-
likelihood of response l(� | Y) in the inequality (3), it can be seen that a tighter lower bound is
attained when R ≡ P(Y i , θ i | �)/qi (θ i ) around its mean P(Y i | �). Therefore, we can consider
different random variables with the same mean that are more concentrated. For example, we can
draw M i.i.d. samples from q(z), and average the estimates as in importance sampling (IS):

RM = 1

M

M∑

m=1

Rm = 1

M

M∑

m=1

p(x, zm)

q(zm)
, zm ∼ q(·). (9)

This leads to a tighter “importance-weighted ELBO" (IW-ELBO) on log P(x),

IW-ELBOM = Eq(Z)

[
log

1

M

M∑

m=1

p(zm, x)

q(zm)

]
:= LM (x). (10)
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It is shown that LM (x) converge to log p(x) as M goes to infinity (Burda et al., 2015), which is
summarized in the following result.

Proposition 1. For all M, the lower bounds satisfy

log p(x) ≥ LM+1 ≥ LM .

Moreover, if p(x, z)/q(z|x) is bounded, then LM approaches log p(x) as M goes to infinity.

Motivated by this result, we use the importance sampling method and calculate the derivatives of
LM to further perform gradient-based optimization. Specifically, denote wm = p(x, zm)/q(zm),
then the derivatives of LM with respect to θ are

∇θLM (x) = ∇θ Eq(Z)

[
log

1

M

M∑

m=1

wm

]

= Eq(Z)

[
∇θ log

1

M

M∑

m=1

wm

]

= Eq(Z)

[
M∑

m=1

w̃m∇θ logwm

]
,

where w̃m = wm/
∑M

m′=1 wm′ and

∇θ logwm = ∇θ log p(x, zm) − ∇θ log q(zm). (11)

1.4. IW-GVEM

The primary idea of IW-GVEM is to replace Eq. (3) with importance-weighted ELBO as in
Eq. (10). That is, for each i = 1, . . . , N , we draw M samples from qi (θ i ) for S times:

θ
(s,m)
i ∼ qi (θ i ), for s = 1, . . . , S,m = 1, . . . , M.

Define w
(s,m)
i = p(Yi , θ

(s,m)
i )/qi (θ

(s,m)
i ), where p(Yi , θ

(s,m)
i ) = P(Yi , θ

(s,m)
i | α, b, ρ) as in

Eq. (4), and qi (θ
(s,m)
i ) ∼ N (θ

(s,m)
i | μi , �i ), then LM (Y) can be approximated by

LM (Y) ≈
N∑

i=1

(
1

S

S∑

s=1

[
log

1

M

M∑

m=1

w
(s,m)
i

])
.

Note w
(s,m)
i is a function of parameters (ξi ,α, b, ρ).

To learn parameters, we use a stochastic gradient ascent method, which needs to calculate
the gradients of LM (Y). Based on Eq. (11), the gradients can be approximated by

∇αLM (Y) ≈
N∑

i=1

(
1

S

S∑

s=1

M∑

m=1

w̃
(s,m)
i ∇α

[
log P(Yi , θ

(s,m)
i | α, b, ρ) − ∇α log qi (θ

(s,m)
i | Yi )

])
,
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where w̃
(s,m)
i = w

(s,m)
i /

∑M
m′=1 w

(s,m′)
i . Note that qi (θ

(s,m)
i | Yi ) does not depend on the param-

eters in the current iteration. Therefore, we only need to calculate w̃
(s,m)
i and ∇αP(Yi , θ

(s,m)
i |

α, b, ρ). Similarly we can calculate ∇bLM (Y) and ∇�θ
LM (Y). Specifically, we have

∇α j log P
(
Yi , θ

(s,m)
i | α, b, ρ

)
= w̃

(s,m)
i ∇α j

[
log P(Yi , θ

(s,m)
i | α, b, ρ)

]

= w̃
(s,m)
i

[(
Yi j − 1 + 1

1 + exp(α�
j θ

(s,m)
i − b j )

)
θ

(s,m)
i

]
,

∇b j log P
(
Yi , θ

(s,m)
i | α, b, ρ

)
= w̃

(s,m)
i ∇b j

[
log P(Yi , θ

(s,m)
i | α, b, ρ)

]
(12)

= w̃
(s,m)
i

[
1 − Yi j − 1

1 + exp(α�
j θ

(s,m)
i − b j )

]
,

∇�θ
log P

(
Yi , θ

(s,m)
i | α, b, ρ

)
= w̃

(s,m)
i ∇�θ

[
log P(Yi , θ

(s,m)
i | α, b, ρ)

]
(13)

= w̃
(s,m)
i

[
1

2
�θ − 1

2
θ

(s,m)
i (θ

(s,m)
i )�

]
. (14)

To summarize, in the (t + 1)th iteration, we perform the following:

1. For i = 1, . . . , N , draw M samples from qi (θ i ) for S times.
2. Calculate w

(s,m)
i = P(Yi , θ

(s,m)
i | α, b, ρ)/qi (θ

(s,m)
i ) and w̃

(s,m)
i

= w
(s,m)
i /

∑M
m′=1 w

(s,m′)
i .

3. Calculate the gradients according to Eqs. (12), (13), and (14).

Proper learning rate scheduling is important in gradient-based algorithms. In this work, we
apply the Adaptive moment estimation (Adam) method (Kingma & Ba, 2014), which has been
extensively used in deep learning research and applications, to adjust the learning rate in our
training process. In Adam, we compute individual adaptive learning rates for each parameter
from estimates of the first and second moments of the gradients. Specifically in the t th iteration,
we calculate exponential moving averages of the gradient (denoted as vt ) and the squared gradient
(denoted as st ) with exponential decay rates β1 and β2, respectively. The moving averages can be
seen as estimates of the first and second moments of the gradients. Then, we correct these biased
exponential moving averages by 1 − β t

1 and 1 − β t
2, respectively, and update parameters using

standardized gradients. The concrete steps of generic Adam are provided below, where gt is the
gradient (corresponding to that in Eqs. (12), (13) and (14), respectively) in the t th iteration:

1. vt = β1vt−1 + (1 − β1)gt (update biased first moment estimate)
2. r t = β2r t−1 + (1 − β2)g2t (update biased second moment estimate)
3. v̂t = vt/(1 − β t

1), r̂ t = r t/(1 − β t
2) (compute bias-corrected moment estimates)

4. ĝt = ηv̂t/(
√
r̂ t + ε), where η is learning rate (update the final gradient)

With this, the proposed importance-weighted Gaussian variational EM (IW-GVEM) algorithm is
summarized in Algorithm 1. For the choice of hyperparameters, we follow the suggestions in
Kingma & Ba (2014) and adopt the default setting that β1 = 0.9 and β2 = 0.999. Empirically in
our simulation studies, for better convergence performance, we let the learning rate of �θ to be
0.1η while the learning rate for a and b to be η, and we search for an optimal learning rate η with
the maximum ELBO over a list {0.01, 0.05, 0.1, 0.5}. Lastly, we set ε = 0.001.

In terms of convergence criteria, we evaluate the Euclidean normof the difference between the
estimated parameters of the current step and those of the previous step.When the difference is less



PSYCHOMETRIKA

Algorithm 1: IW-GVEM for M2PL

Data: Binary response matrix Y ∈ {0, 1}N×J .
Run GVEM algorithm and obtain μi,GV, �i,GV, αGV, bGV, �θ,GV, and ξi j . These values
will serve as initial values for IW-GVEM.
Set hyperparameters S, M for importance sampling, and β1, β2, η, and ε for Adam.
Set v(0)

α j = 0, v(0)
b j

= 0, v(0)
�θ

= 0, r(0)
α j = 0, r(0)

b j
= 0, r(0)

�θ
= 0.

while not converged do
In the t-th iteration,
for i ∈ [N ] do

draw M samples from qi (θ i ) = N (θ i | μi,GV,�i,GV) for S times.

for i ∈ [N ], s ∈ [S] and m ∈ [M] do
w

(s,m)
i = p

(
Y i , θ

(s,m)
i | α, b, ρ

)
/ qi

(
θ

(s,m)
i

)
, w̃

(s,m)
i = w

(s,m)
i /

∑M
m′=1 w

(s,m′)
i .

for j ∈ [J ] do
gα j

= ∑N
i=1

(
1
S

∑S
s=1

∑M
m=1 w̃

(s,m)
i

[
Yi j −1+1/

(
1+exp{α�

j θ
(s,m)
i −b j }

)]
θ

(s,m)
i

)
,

gb j
= ∑N

i=1

(
1
S

∑S
s=1

∑M
m=1 w̃

(s,m)
i

[
1 − Yi j − 1/

(
1 + exp{α�

j θ
(s,m)
i − b j }

)])
.

g�θ
= ∑N

i=1

(
1
S

∑S
s=1

∑M
m=1 w̃

(s,m)
i

[
�θ − θ

(s,m)
i (θ

(s,m)
i )�

]
/2

)
.

for j ∈ [J ] do
v

(t)
α j = β1v

(t−1)
α j + (1 − β1)gα j

, r(t)
α j = β2r

(t−1)
α j + (1 − β2)gα j

·gα j
,

v
(t)
α j = v

(t)
α j /(1 − β t

1), r(t)
α j = r(t)

α j /(1 − β t
2),

v
(t)
b j

= β1v
(t−1)
b j

+ (1 − β1)gb j
, r(t)

b j
= β2v

(t−1)
b j

+ (1 − β2)gb j
· gb j

,

v
(t)
b j

= v
(t)
b j

/(1 − β t
1), r(t)

b j
= r(t)

b j
/(1 − β t

2).

v
(t)
�θ

= β1v
(t−1)
�θ

+ (1 − β1)g�θ
, r(t)

�θ
= β2r

(t−1)
�θ

+ (1 − β2)g�θ
·g�θ

,

v
(t)
�θ

= v
(t)
�θ

/(1 − β t
1), r(t)

�θ
= r(t)

�θ
/(1 − β t

2).

for j ∈ [J ] do
ĝα j

= ηv
(t)
α j

/ (√
r(t)
α j + ε

)
, α̂

(t)
j = α̂

(t−1)
j + ĝα j

,

ĝb j
= ηv

(t)
b j

/ (√
r(t)
b j

+ ε
)
, b̂

(t)
j = b̂

(t−1)
j + ĝb j

.

ĝ�θ
= ηv

(t)
�θ

/ (√
r(t)
�θ

+ ε
)
, �̂

(t)
θ = �̂

(t−1)
θ + ĝ�θ

.

Output: α̂, b̂ and �̂θ .

than a certain tolerance value, the algorithm is stopped. For our simulation studies, in obtaining
the initial model parameter using theGVEMalgorithm, we reach convergence at (l+1)th iteration
if ‖αl+1

GV − αl
GV ‖2 + ‖bt+1

GV − btGV ‖2 + ‖�l+1
θ,GV − �l

θ,GV ‖2 � 0.0001. In IW-GVEM, we reach
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convergence at (t+1)th iterationwhenmax{‖αt+1−αt‖2, ‖bt+1−bt‖2, ‖�t+1
θ −�t

θ‖2} � 0.0001
or the iteration stops when it reaches certain maximum iteration number.

2. Simulation Studies

2.1. Design

We conducted comprehensive simulation studies to evaluate the performance of the proposed
method under various manipulated conditions. We follow similar designs as in Cho et al. (2021)
and consider different settings: (1) sample size: N = 200 or 500; (2) number of domains: K
= 2 or 5; (3) test length: J = 30 if K = 2 or J = 55 if K = 5; (4) both within and between
multidimensional structures; (5) factor correlations: low correlation r ∼ unif(0.1, 0.3) or high
correlation r ∼ unif(0.5, 0.7); and (6) confirmatory or exploratory analysis.

Similar to Cho et al. (2021), for the between-item multidimensional structure, we had equal
numbers of items loadedon each factor. For thewithin-itemmultidimensional structure,when K =
2, about one-third of the itemswere loaded onto thefirst, or the second, or both factors, respectively.
In the cases where K = 5, there were about one-third of the items loaded onto one, two, or three
factors, respectively. For the model parameters, we simulated the item discrimination parameters
α j,k from uniform distribution on [1, 2], and difficulty parameter b j from the standard normal
distribution. We generated the latent traits θ j from multivariate normal distribution N (0,�θ ),
where the diagonal elements of �θ were all 1 and off-diagonal elements were generated from
uniform distributions. Specifically, in high-correlation settings, the uniform distribution was set
to be unif(0.5, 0.7), whereas in the low-correlation settings we set it to be unif(0.1, 0.3).

For evaluation, we compared the bias and root-mean-squared errors (RMSEs) of model
parameters, aswell as computation timebetweenGVEMand IW-GVEM.For exploratory analysis,
we did a promax rotation after model convergence, and compared the rotated parameters to the
true values (Cho et al., 2022). For IW-GVEM,we first ran GVEMalgorithm to get initial estimates
of model parameters, and then ran several gradient descent steps using importance sampling to
correct the bias. To select a proper initial learning rate for the gradient algorithm, we first sampled
a set of data aside based on the GVEM estimates. After we got model parameter estimates using
importance sampling, we calculated the lower bound as in our objective function based on the
previously sampled data set, and chose the learning rate corresponding to the largest lower bound.
In the simulation studies, we set S and M to be 10. Our empirical experiments have shown that
increasing S and M did not result in significant improvements and 10 was large enough for the
simulation settings. The results were averaged over 100 repetitions.

2.2. Results

Figures 1 and 2 present the bias and RMSE of confirmatoryM2PLmodel when K = 2. Note
that in confirmatory analysis, there are discrimination parameters specified to be zeros. These zero-
constrained terms are excluded in the bias and RMSE computation. The two separately colored
boxes represent the distribution of respective criteria across 100 replications from IW-GVEM
(denoted as “IS” in the figure) and the original GVEM algorithm. As shown, GVEM already
performs well by producing close to 0 bias for b and�θ . It is the discrimination parameter, α, that
has a non-ignorable bias. The IW-GVEM algorithm effectively corrects such bias on α across all
conditionswithout deteriorating the estimation accuracy of other parameters. And because the bias
is corrected, the RMSE of α is also smaller consistently compared to that from GVEM, whereas
again, there is no appreciable difference between IW-GVEM and GVEM in terms of RMSE
on b and �θ . Sorting through the manipulated conditions, it is “within-item” multidimensional
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Figure 1.
Bias for K = 2 under confirmatory analysis.



BY CHENCHEN MA ET AL.

Figure 2.
RMSE for K = 2 under confirmatory analysis.
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structure in combination with high factor correlation tends to yield larger RMSE for both methods
and all parameters.

Figures 3 and 4 present the bias and RMSE of confirmatory M2PL model when K = 5. The
trend observed from the K = 2 condition continues to hold here. That is, IW-GVEM can correct
bias on α effectively and hence also brings down its RMSE, whereas bias on the other parameters
is already close to 0 from both methods and their RMSEs are also comparable. Increasing the
number of dimensions certainly makes the model estimation harder to converge, and the estimates
are also more variable, especially for b and �θ , as reflected by wider boxes for those parameters
in Fig. 3.

Figures 5, 6, 7, and 8 presents the results from exploratory estimation condition, in the same
order as before. For the exploratory M2PL model estimation, GVEM generally performs well
and the bias on α is already small to begin with. This is consistent with the results reported in
literature (Cho et al., 2021, 2022). Even so, under all settings, the RMSEs of IW-GVEM are
still smaller than or equal to that of GVEM. IW-GVEM can still further bring down the bias of
α to near 0 for most cases. The exceptional case when the bias of α from IW-GVEM is larger
than the bias from GVEM is for the “within item, correlation is high" condition. This case is
the most difficult case where the items were loaded on factors via a more complicated setting
and the correlations among factors are relatively high. Nonetheless, this special case has overall
good estimation performance as the estimation bias from IW-GVEM is still close to the bias from
GVEM, and the RMSE from IW-GVEM is lower than the RMSE from GVEM. In addition, when
K = 2 the bias of �θ appears to depart from 0 and IW-GVEM does not correct for such bias,
although the RMSE of �θ is kept small across the board. The bias of �θ gets closer to 0 when
K increases and when the factor correlation is low. Because in the exploratory estimation mode,
specific types of rotations will affect resulting factor correlations, the bias in �θ estimation is
less of a concern. Although the increase in the number of dimensions K could lead to a more
complicated model and bring challenges to parameter estimation, the increase in test length, on
the other hand, improves the estimation accuracy of parameters. Specifically, at K = 5, we use
test length J = 55 which is greater than J = 30 at K = 2. This increase in test length explains
the results that the biases at K = 5 are closer to 0 than that at K = 2 for some cases. Overall, the
results from GVEM and IW-GVEM are very close.

Table 1 presents the computation time for confirmatory M2PL estimation under both GVEM
and IW-GVEM algorithms. Understandably, IW-GVEM takes longer time under all condi-
tions because both the important sampling step and the gradient descent optimization are time-
consuming compared to closed-formupdates inGVEM.Unsurprisingly, bothmethods need longer
time for larger sample sizes. It is more interesting to note that, other things being equal, when the
multidimensional structure is “within-item,” GVEM almost doubles (when K = 2) or sometimes
even triples (when K = 5) the computation time compared to the “between-item” condition. But
for IW-GVEM, the computation time is rather stable across these twomultidimensional structures.
Similarly, high correlation among factors is known to be more challenging, hence computation
time increases by about 50% or more for GVEM from low to high-correlation conditions, but
the computation time of IW-GVEM seems to be unaffected. These all suggest that IW-GVEM
is better suited for more complex models. The same patterns remain for the exploratory M2PL
estimation, as shown in Table 2, although exploratory analysis in general takes longer time than
confirmatory analysis, simply because more parameters are needed to be updated simultaneously.

3. Discussion

In this note, we proposed an importance-weighted version of GVEM to correct its bias on
the α estimates in the confirmatory M2PL models. Because the evidence lower bound (ELBO),
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Figure 3.
Bias for K = 5 under confirmatory analysis.
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Figure 4.
RMSE for K = 5 under confirmatory analysis.
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Figure 5.
Bias for K = 2 under exploratory analysis.
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Figure 6.
RMSE for K = 2 under exploratory analysis.
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Figure 7.
Bias for K = 5 under exploratory analysis.
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Figure 8.
RMSE for K = 5 under exploratory analysis.
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Table 1.
Computation time (seconds) for the confirmatory M2PL estimation.

N r Model K = 2 K = 5
GVEM IW-GVEM GVEM IW-GVEM

200 Low Between 0.68 2.88 1.15 11.31
Within 1.17 2.89 4.96 11.59

High Between 1.06 2.98 2.33 12.81
Within 1.52 2.89 11.61 15.44

500 Low Between 1.52 6.88 2.29 33.98
Within 2.51 6.95 10.80 35.52

High Between 1.90 7.04 3.70 33.49
Within 3.35 6.95 21.62 34.45

Table 2.
Computation time (seconds) for the exploratory M2PL estimation.

N r Model K = 2 K = 5
GVEM IW-GVEM GVEM IW-GVEM

200 Low Between 0.93 2.00 6.17 25.67
Within 1.10 2.01 11.18 25.75

High Between 1.13 2.39 12.53 26.27
Within 1.38 2.03 20.55 26.18

500 Low Between 2.10 5.02 13.42 68.10
Within 2.51 4.98 24.16 68.04

High Between 2.66 5.91 21.60 69.43
Within 3.39 5.40 42.27 68.69

a key component of variational inference, is derived based on Jensen’s inequality, the ELBO will
approximate the log-marginal distribution (i.e., log P(X))more closelywhen R ≡ P(X, Z)/q(Z)

is more concentrated around its mean P(X). Hence, the primary idea of IW-GVEM is to replace
R with its sample mean by drawing i.i.d. samples from variational distribution q(z). In so doing,
we achieve a tighter bound of Jensen’s inequality, but at the slight cost of computational efficiency.
The added computation time is mainly due to sampling in the E-step and gradient descent in the
M-step. From our simulation results, the bias correction is effective for confirmatory models and
the extra computation time is acceptable because even with additional computational cost, the
total time is still short. In fact, the time increase fromGVEM to IW-GVEM is at a slow rate in that
the time ratio between the two methods is smaller for more complex models (i.e., K = 5, within-
item multidimensional structure, and high correlations). Note that for exploratory M2PL models,
the original GVEM is still recommended because it already produces almost unbiased results and
hence importance sampling seems unnecessary, although it does not introduce any undesirable
bias either. Theoretically, Cho et al. (2021) proved that the estimated factor loading matrix and
estimated latent factor from the GVEM algorithm is consistent as N → ∞ and J → ∞. The
proposed IW-GVEM algorithm is based on the GVEM estimation, hence with consistent initial
GVEM estimators, the final estimators from the IW-GVEM algorithm also have the theoretical
guarantee to be consistent in the high-dimensional setting. Moreover, compared to ELBO in
GVEM, the importance-weighted ELBOs are greatly improved after importance sampling. In
finite-sample simulations, importance-weighted ELBOs at M = 5, 10, 50, and 100 are all larger
than ELBO from GVEM and converge as M increases (See Appendix B).
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In IW-GVEM, we propose to use the adaptive moment estimation method to automatically
update the learning rate on the fly. Our preliminary results showed that the Adam algorithm
performsbetter thanfixed learning rate. Further,we also evaluated the effect ofMonteCarlo sample
size (i.e., S = 10, 50, 100) and sample size for the importance sampling step (i.e., M = 10, 50)
and noted essentially the same results. Hence, we set S = 10 and M = 10 in our simulation
study, which explains the only modest increase in computation time.

Aside from GVEM, another recently proposed fast algorithm for high-dimensional IRT esti-
mation is the joint maximum likelihood estimation (Chen et al., 2019). This method treats the
latent abilities as fixed effect parameters instead of random variables. Although this approach is
innovative and their algorithm appears to produce accurate parameter estimates efficiently, the
interpretation of person parameters is different such that caution needs to be exercised when
one intends to generalize findings to a certain population. Plus, treating each individual as a
separate fixed effect is, at the conceptual level, hard to justify when generalizing M2PL to a
multiple-group MIRT model. This is because the goal of a multiple-group extension is to allow
for unbiased marginal estimation of group-specific population distributions.

Instead, the GVEMmethod can be generalized to multiple-groupMIRT in amore straightfor-
ward fashion. Our other study exploring multiple-group GVEM for differential item functioning
detection (DIF) reveals that it can very well detect uniform DIF, but the power of detecting DIF
on discrimination parameter is low. This is likely due to the estimation bias on α from GVEM
in the confirmatory model estimation, and hence the IW-GVEM will likely improve detection
of the non-uniform DIF, in particular the DIF on discrimination parameters. Our study can also
be extended in other directions. For instance, like in Cho et al. (2021), the IW-GVEM can be
extended to M3PL models. Moreover, the current IW-GVEM algorithm does not automatically
output standard error of item parameter estimates, and hence future studies may consider combin-
ing it with the supplemented EM algorithm (Cai, 2008; Chen &Wang, 2021) to produce accurate
SE estimates. In addition to MIRT, the proposed method may also shed light on improving the
performance of the variational estimation for other psychometric models, such as generalized
linear mixed models (Jeon et al., 2017) and cognitive diagnosis models (Yamaguchi & Okada,
2020, 2020a).

Appendix A: Additional Comparative Studies

A.1: Comparing IW-GVEM with Importance-Weighted Variational Bayesian Method

In recent literature, researchers also proposed importance-weighted variational Bayesian (IW-VB)
methods for the estimation of MIRT models. In particular, Urban and Bauer (2021) and Liu et al.
(2022) proposed to use importance-weighted variational autoencoder (IW-VAE) for exploratory
factor analysis. This method is a deep learning-based variational method and is computationally
fast in large data sets. Although IW-VB methods handle large-scale data with high computational
efficiency, their performances at relatively small-sized andmedium-sized data are not competitive.
While MCMC could be an alternative method for small samples, in situations with small to
medium-sample sizes, our variational method is faster and more competitive than MCMC.

In this section, we provide additional finite-sample simulation results to show that our method
outperforms the IW-VB methods in small to medium samples. To illustrate it, we compare our
proposed IW-GVEM method and IW-VB method by Liu et al. (2022) at N = 200, N = 500
and N = 1000. Because their method focuses only on exploratory MIRT, we will compare the
performance of our method (denoted as “IS" in the figure) to IW-VB for exploratory analysis. The
simulation settings follow the same settings as in Sect. 2.1. The results are presented in Figures 9,
10, 11, 12, 13, 14, 15, and 16. From the results, we see the biases of IW-GVEM are closer to 0
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Figure 9.
Bias for K = 2 between item under exploratory analysis.

than the IW-VB method under all simulation settings. The RMSEs of our proposed method are
substantially smaller than the IW-VB in Liu et al. (2022).

A.2: Comparing IW-GVEM with Joint Maximum Likelihood Method

The joint maximum likelihood (JML) estimator is a computationally efficient estimator with the-
oretical consistency established. It is proved in Chen et al. (2019) that JML estimator is consistent
under high-dimensional settings and it outperforms the marginal maximum likelihood approaches
in terms of computational costs. However, different from our IW-GVEM method, the latent abil-
ities are treated as fixed effect parameters instead of random variables in JML method, which
may constrain its performances in settings where latent factors are correlated. The JML estima-
tion is also inconsistent in the setting when the number of items is fixed and the sample size
grows to infinity. Because the number of parameters in the joint likelihood function grows to
infinity, the standard theory for the maximum likelihood method cannot directly apply and the
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Figure 10.
Bias for K = 2 within item under exploratory analysis.

point estimation consistency for each item cannot be attained, which is known as Neyman–Scott
phenomenon (Neyman & Scott, 1948).

Extensive simulation studies were conducted in Cho et al. (2021) to compare GVEM to JMLE
method under the same simulation settings (sample sizes, within or between multidimensional
structures, factor correlations, etc.) and using the same evaluation criteria (bias and RMSE) as
in Sect. 2.1. Specifically, Figures 3 and 4 of Cho et al. (2021) compared the bias and RMSE of
GVEM and JML and showed that GVEM has much lower bias and RMSE than JML across all
settings. At certain challenging cases such as “within item, correlation is high", JML estimator
has even worse performances. This could be explained by that latent factors are fixed effects in
JMLE, whereas GVEM treats them as random effects with multivariate Gaussian distributions
accounting for the correlations among factors.

As an improvement of GVEMmethod, our IW-GVEMmethod outperformsGVEM in confir-
matory factor analysis and has overall comparable performances as GVEM in exploratory factor
analysis, across all simulation settings. For a detailed comparison of the simulation results of
IW-GVEM and GVEM, please refer to Sect. 2.2. As our IW-GVEM is comparable to, if not better
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Figure 11.
RMSE for K = 2 between item under exploratory analysis.

than, GVEM, the performance of our IW-GVEM is also better than JML under our simulation
settings.

Appendix B: Additional Simulation Study

In this section, we present finite-sample simulation studies to show that our proposed IW-GVEM
greatly improves the ELBO from GVEM. For the purpose of illustration, we consider the four
settings under N = 200 and J = 30: (1) within-item and low factor correlation; (2) between-
item and low factor correlation; (3) within-item and high factor correlation; (4) between-item and
high factor correlation. For each setting, we generate the ELBOs from the GVEM algorithm and
importance-weighted ELBOs for different sample sizes M = 5, 10, 50, and 100 at the importance
sampling step over 100 replications. The calculated ELBOs are presented in Fig. 17. From Fig. 17,
we see that the importance sampling step leads to a tighter importance-weighted ELBO (M =
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Figure 12.
RMSE for K = 2 within item under exploratory analysis.

5, 10, 50, 100) than that of GVEM. As the sample M in the importance sampling step increases,
the ELBOs converge, which is consistent with theoretical results in Proposition 1.
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Figure 13.
Bias for K = 5 between item under exploratory analysis.
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Figure 14.
Bias for K = 5 within item under exploratory analysis.
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Figure 15.
RMSE for K = 5 between item under exploratory analysis.
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Figure 16.
RMSE for K = 5 within item under exploratory analysis.
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Figure 17.
Importance-weighted ELBO at N = 200, J = 30
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