RACED: Routing in PAyment Channel NEtworks Using
Distributed Hash Tables

Kartick Kolachala
New Mexico State University
Las Cruces, NM, USA
kart1712@nmsu.edu

ABSTRACT

The Bitcoin scalability problem has led to the development of off-
chain financial mechanisms such as payment channel networks
(PCNs) which help users process transactions of varying amounts,
including micro-payment transactions, without writing each trans-
action to the blockchain. Since PCNs only allow path-based trans-
actions, effective, secure routing protocols that find a path between
a sender and receiver are fundamental to PCN operations. In this
paper, we propose RACED, a routing protocol that leverages the
idea of Distributed Hash Tables (DHTs) to route transactions in
PCNs in a fast and secure way. Our experiments on real-world
transaction datasets show that RACED gives an average transac-
tion success ratio of 98.74%, an average pathfinding time of 31.242
seconds, which is 1.65 X 103, 1.8 x 103, and 4 x 10% times faster
than three other recent routing protocols that offer comparable
security/privacy properties. We rigorously analyze and prove the
security of RACED in the Universal Composability framework.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; Dis-
tributed systems security; Security protocols.

ACM Reference Format:

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2024.
RACED: Routing in PAyment Channel NEtworks Using Distributed Hash
Tables. In ACM Asia Conference on Computer and Communications Security
(ASIA CCS °24), July 1-5, 2024, Singapore, Singapore. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3634737.3637653

1 INTRODUCTION

The development of cryptocurrencies, which began with the Bit-
coin white paper [39] in 2009, has disrupted banking and financial
processes across the globe. As of February 2023, Bitcoin’s market
capitalization stands at 453 Billion USD [10]. However, the through-
put of transactions involving cryptocurrencies is extremely low due
to the high latency of transaction confirmation on the blockchain.
For instance, the transaction processing speed of Bitcoin is 5-7
transactions per second and that of Ethereum is 15-30 transactions
per second [7-9, 11]. This is in sharp contrast with traditional fiat
currency’s throughput, e.g., Visa processes over 65,000 transactions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3637653

Mohammed Ababneh
New Mexico State University
Las Cruces, NM, USA
mababneh@nmsu.edu

Roopa Vishwanathan
New Mexico State University
Las Cruces, NM, USA
roopav@nmsu.edu

per second [60]. One of the most promising solutions to this prob-
lem is off-chain payment channels. Two parties create a payment
channel on a blockchain with some initial balance, following which
they can send an unlimited number of payments to each other using
that channel without writing anything to the blockchain. Access to
the blockchain is only needed either if there is a dispute or the two
parties involved decide to close the channel.

This idea can be extended to enable transactions between two
parties that may not have a payment channel currently open be-
tween them. Decentralized payment channel networks (PCNs) that
enable transitive payments have been proposed such as [19, 26, 35,
37, 51], where two unconnected users can send/receive payments
if there exists a path comprising of several users with payment
channels between them. The first such network was the Lightning
Network, which operates on top of the Bitcoin blockchain [26].
Lately, Lightning Network has become one of the fastest-growing
PCNs. Between January 2021 and December 2021, there were a total
of 28 Million unique channels opened in the Lightning Network,
with an average of 73,733 new channels created every day. The
number of unique nodes (unique public key pairs) involved in chan-
nel opening during this period was 6.5 Million [12]. The market
capitalization of Lightning Network is USD 1 Million as of 2023.
Several other payment channel networks and credit networks have
been developed, which have later evolved into blockchain-based
decentralized financial ecosystems, such as Ripple [44], which has
a current market value of 20 Billion USD [47], (increased from 9.97
Billion USD in 2017 and peaked at 64 Billion USD in April 2021) and
Stellar [55]. Between January 2021 to December 2021, there were a
total of 15 Million transactions recorded on the Ripple ledger, with
an average of 1 Million transactions recorded every month [45].
These numbers indicate the size and growth of PCNs.

A major advantage of PCNs is that they facilitate micro-payments
between users that can be as small as 10~7 BTC [30]. Apart from
this, the fees charged by PCNs to route payments are a fraction of
the on-chain transaction fees charged by the underlying blockchain.
The problem of finding an efficient route between a sender and
receiver in a PCN is challenging and has attracted considerable
attention from the research community [22, 35, 42, 43, 61]. While
there have been many elegant routing protocols developed recently
for PCNss, each one comes with its own set of limitations. Some rout-
ing protocols do not provide security of transactions nor privacy of
the users [51, 61, 62], while others do not support concurrent trans-
actions [29, 35, 53, 61, 62]. Some routing protocols need trusted
entities to route payments [35], while others implement source
routing, in which the network topology needs to be known to all
nodes [61]. In this paper, we present a novel routing mechanism

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

called RACED that uses distributed hash tables (DHT) to route the
payment from the sender to the receiver in PCN.

Current routing protocols for PCNs traverse the entire network
in the worst case to route a payment from a sender to a receiver,
with a maximum path length of n — 1 hops, in a network of n nodes.
Using DHTs will help us in reducing this path length since the
complexity of locating any node in a DHT is logarithmic in the
number of nodes in the DHT. This consequently reduces the overall
pathfinding time (time taken to find paths between two nodes in
the network) and routing time (time taken to route the payment).

All PCN routing protocols have an overall routing complexity
that is linear in the number of nodes in the PCN in the worst case.
Reducing this bound to sub-linear while preserving the privacy of
nodes and network topology and also ensuring the atomicity of the
payments is a significant research challenge.

Our contributions are:

1) We design an efficient decentralized routing protocol, RACED
with no trusted entities, using DHTs to reduce the routing time from
O(n) to O(logr + u), where n is the total number of users/nodes in
a PCN, r is the total number of routing helpers (untrusted nodes
that aid transaction routing), and u is the number of non-routing
helper nodes.

2) RACED preserves the privacy of nodes and their channel balances,
as well as maintains privacy of the network topology.

3) We experimentally demonstrate the scalability and efficiency of
RACED using transaction data from the Ripple network [45], and
prove its security in the Universal Composability (UC) framework.

Outline: In Section 2 we discuss relevant related work, in Sec-
tions 3 and 4, we explain our system and adversary models respec-
tively. In Sections 5 and 6 we present the construction of RACED,
in Section 7, we present our experimental evaluation. In Section
8 we analyze the security of RACED in the UC framework, and in
Section 9 we conclude the paper.

2 RELATED WORK

Routing protocols with security guarantees: The main security
property that we want for routing protocols in PCNs is that honest
parties should not lose funds because of malicious behavior by other
parties in the system. To this end Malavolta et al. [35] proposed
a routing protocol leveraging trusted entities called landmarks to
provide secure routing between the sender and the receiver. The
landmark finds a path between itself and the sender and itself and
the receiver; these sub-paths are combined to get the full path. The
idea of using untrusted entities to facilitate routing has been pro-
posed by Panwar et al. in [42] that uses a set of well-connected nodes
called routing helpers to facilitate routing. However, this protocol
has a very high communication overhead during the pathfinding
phase, in addition to using the blockchain as an auditing mechanism
which makes it very expensive to deploy in the real-world.

Roos et al. proposed a routing mechanism in [51] that uses graph
embedding, where the routing is carried out by constructing a
spanning tree of the entire network. While this work improved
upon [35] by supporting concurrent transactions, the sender picks
a random amount to be transmitted along a path without knowing
whether the path has sufficient liquidity, which could lead to a high
rate of transaction failure. Besides, frequently needing to update

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

the embedding for a dynamic network topology results in a heavy
computational overhead. The routing protocol proposed by Pietrzak
et al. in [43] uses the idea of Private Information Retrieval (PIR).
The shortest paths between all the nodes are computed and stored
in trusted servers which incur a large storage overhead. A honest
majority is assumed among the servers. When a payment needs to
be routed, the sender queries these trusted servers for the available
list of shortest paths to the intended receiver. This would also
require the sender to download the complete network topology.
The protocol proposed by Subramanian et al. [57] leverages the idea
of distributed hash tables to replenish the depleted link weights
of nodes in a PCN,; in a process called rebalancing, and does not
focus on pathfinding or routing of transactions, hence their work
is orthogonal to RACED. None of the aforementioned works can
route transactions in disjoint graphs.

Routing protocols with no privacy/security guarantees: There
are a few works that use breadth first search (BFS) or max-flow
algorithms to design routing protocols for PCNs [22, 29, 62] but do
not provide security/privacy of nodes in the PCN. Besides, using tra-
ditional max-flow algorithms such as Ford-Fulkerson (implemented
using Edmonds-Karp method) and Goldberg-Tarjan algorithms in-
cur significant overheads of O(|V||E|?) [15] and O(|V|?) [21] re-
spectively, in a graph G(V, E), which is not scalable to large PCNs.
The ideas proposed by Abdelrahman et al. in [2-4] present dis-
tributed versions of Dijkstra’s shortest path algorithm, and the
minimum cost flow problem, both of which can be potentially
applied to perform routing in PCNs. The distributed version of Di-
jkstra’s shortest path algorithm has a computational complexity of
O(|V?) + O(|V]), which makes it non-scalable to large scale PCNis.
The computational complexity of the distributed version of the
minimum cost-flow problem is O(|V|3log(|V|)) and the communi-
cation complexity is O(|V|°log(|V|)), which makes it infeasible to
be applied for large scale PCNs. Due to space constraints, we give a
detailed descriptions of the ideas proposed in [2-4] in Appendix A.

The idea proposed in [24] by Kadry et al. uses a machine learning-
based approach to find a path between the sender and receiver. This
work does not focus on route discovery but instead focuses on
selecting the best path amongst the ones that have already been
chosen using BFS. The work proposed in [53] uses buffers (called
Spider Routers) in the form of queues to store and route transactions.
However, it makes transactions wait for an indefinite amount of
time before they are routed, besides it does not take into account the
privacy of the nodes involved in a transaction. Other works such
as [64] and [17] have been proposed that do not provide privacy of
nodes in the PCN.

RobustPay+ [66] and its preliminary version, Robustpay [65] fo-
cus on building a routing protocol for PCNs that supports multiple
paths from a sender to a receiver from which the sender chooses
only one path to route the payment. Their main contribution lies in
constructing multiple paths such that there is no overlap in terms
of nodes between any pair of paths. This is done to prevent trans-
action failures caused by nodes becoming unresponsive or going
offline in the PCN. The idea proposed by Chen et al., MPCN-RP
[14], focuses on building a source routing protocol that minimizes
the transaction fees. This protocol presents a modified version of
Dijkstra’s algorithm, in which the length of the path (in terms of
hop-count) is taken into consideration along with the edge weights.

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Table 1: Comparison of Routing Protocols in PCNs

Routing protocols Concurrency| Privacy | Balance | Topology | Avoids | Decentralized | Atomicity | Disjoint
secu- privacy source graphs
rity routing

MPCN-RP [14] X X v X X X v X

Eckey et al. [17] X X v v v v v X

Vein [22] X X X X X X X X

Auto tune [23] X X X X X X X X

Kadry et al. [24] X X X X X X X X

FSTR [29] X X X X X X X X

SilentWhispers [35] | X v v v v v v X

Blanc [42] v v v v v v v X

SpeedyMurmurs [51]| v/ v X v v v X X

Spider [53] X X X X X X X X

Flash [61] X X X X X X v X

Coinexpress [62] v X X v v v v X

Webflow [64] X v X v v v X X

Robustpay [65] X X v X X X v X

Robustpay+ [66] X X v X X X v X

RACED v v v v v v v v

Unlike Robustpay and Robustpay+, [14] constructs only a single
path from the sender to the receiver and the entire amount is routed
along this path. Auto-Tune [23] proposed by Hong et al. is a routing
protocol that supports structured payments. Auto-Tune computes
a total of k shortest paths between a sender and receiver where
k, an arbitrary number, is decided by the sender. Unlike [14], the
amount to be transacted is split across these multiple paths and is
routed to the receiver. This work does not take into account the
presence of redundant nodes along the k shortest paths, which
makes it different from the ideas in [65, 66]. We refer the reader to
the Table 1 for the differences between RACED and [14, 23, 65, 66].

In Table 1, we give a qualitative comparison between RACED
and other routing protocols based on the comparison metrics de-
fined as follows. 1) Concurrency: Concurrency is achieved when
several transactions are routed simultaneously. 2) Privacy: Privacy
is achieved when the identity of a node is not known to any other
node in the network except its immediate neighbors. 3) Balance
Security: Security is achieved when no honest party loses funds
because of malicious behavior by other parties in the system. 4)
Topology privacy: Topology privacy is achieved when no node in
the network knows the entire network topology. 5) Avoids source
routing: Source routing is avoided when the sender does not con-
struct the entire path from itself to the receiver. 6) Decentraliza-
tion: Decentralization is achieved when there is/are no central
entity/entities that construct the path for the sender. 7) Atomicity:
Atomicity is achieved when all the link weights of the nodes along
the transaction path go back to the state that they were in before
the transaction was initiated in the event of a transaction failure. 8)
Disjoint graph applicability: A routing protocol is said to be appli-
cable to disjoint graphs, if it works even when the network graph
is not fully connected. For the routing protocols in Table 1, we con-
jecture that support for concurrency, privacy and atomicity can be
provided (in the protocols that do not already have them) by using

HTLCs [31] and the identity generation mechanism used in this pa-
per. Modifying these protocols to achieve the remaining properties
of topology privacy, avoiding source routing, decentralization, and
making them applicable for disjoint graphs is non-trivial and is not
a part of their design goals.

3 SYSTEM MODEL

Denise (1) Charlie (26)

Daniela (52)

150 150

. 200 . 100 .
Alice 5 Joe ;57— Charlie o Denése
20 ‘5
=1
. 200 200
Daniela George Bob

150 150

Figure 1: Three routing helpers in a DHT overlay over a PCN

In this section, we introduce the components of RACED, the parties
involved, and the terminology we use in the rest of the paper.

A PCN can be modeled as a directed graph where a directed edge
from a node i to j with an edge weight of « signifies the balance of
node i in the payment channel between i and j, denoted by Iw; j =
a. For instance, referencing Figure 1, in the link between Denise
and Bob, Iwpep, penise = 100 and Iwpenise,Bob = 150.

3.1 Parties

Routing Helpers (RH): In RACED, a routing helper (RH) is a node
that helps the sender and the receiver route transactions between
each other. We define a dynamic set RH that contains all the routing
helpers. RHs in RACED are similar to the “routing nodes" or tram-
poline nodes used by the real-world PCN, Lightning Network [28].

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

If a node volunteers to become an RH, it needs to join a Distributed
Hash Table (DHT) overlay and establish channels with a few other
nodes. This is independent of the underlying PCN topology. We do
not assume RHs are trusted, nor do we assume any honest majority
among them. In RACED, the RHs charge a fees for providing their
services and RACED is resilient to (n-2) RH failures for “n" RHs.
We organize all RH € RH as part of a DHT to ensure that they can
route transactions in O(log |[RH]|) time, using consistent hashing
to locate each other. In this paper we instantiate the DHT using
Chord [56], however, there are no technical impediments to using
other DHT protocols such as Pastry [52], Kademlia [36], Tapestry
[67] and more. In Figure 1, we depict three routing helpers, Charlie,
Denise and Daniela. The numbers adjacent to the routing helpers
represent their unique identifiers inside the DHT ring.

Sender and Receiver (sender, receiver): With respect to Figure 1,
the sender, Alice, is a node in the PCN who initiates a payment that
needs to be routed across the network to receiver Bob. She only
knows the link weights of her immediate neighbors. Once a path
has been found between Alice and Bob using RACED, Bob gener-
ates parameters needed for establishing HTLCs (Hashed Time-Lock
Contracts) [31] to complete the payment process. The purpose of
establishing HTLC is to ensure atomicity of payments. We assume
Alice and Bob can communicate with each other using a secure
out-of-band communication channel, but can only do path-based
routing of transactions. This is similar to real world PCNs, such
as the Lightning Network [26], where out-of-band communica-
tion channels are used by the receiver to communicate the digest
required to complete the HTLC payment to the sender.

End Routing Helper (endRH) and Nearest Routing Helper
(nearRH): endRH is the routing helper from the DHT ring that is
closest to Bob based on hop count. Similarly, nearRH is the nearest
routing helper based on hop count to Alice. If we assume that the
path taken is Alice — Joe — Charlie — Denise — Bob, the endRH
is Denise and nearRH is Charlie.

Blockchain: RACED can be deployed on any permissioned or per-
missionless blockchain that supports HTLCs. RACED is compatible
with the Lightning Network, which runs on top of the Bitcoin
blockchain. In RACED we only use the blockchain for dispute res-
olution and it is not used during transaction routing and processing.

3.2 Setup and Terminology

Keys setup: In RACED, every user i in the PCN has a long-term sign-
ing and verification keypair denoted by (sk;,vk;), and a pseudony-
mous, temporary signing and verification keypair (SK;,VK;). In
a decentralized network, each node generates its own keys. LA
node’s long-term public key in RACED is used within the network
to establish an encrypted and authenticated connection with its
neighbors. The temporary keys in RACED provide pseudonymity
and hide the real identity of the node from its non-neighboring
nodes in the PCN. To enable this, the temporary verification key is
signed by the long-term signing key to produce a signature: Signg,.
(VK;) — o. Each user i exchanges its temporary and long-term veri-
fication key with all its neighbors, who verify ¢ using i’s long-term

!For instance, in transactions involving Bitcoin in the Lightning Network, each node
generates a long-term keypair on Bitcoin’s secp256k1 elliptic curve [32].

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

verification key. Two nodes that are not immediate neighbors, use
their temporary signing keys to sign messages and their temporary
verification keys to verify the corresponding signatures. If Alice
intends to route a payment to Bob, we assume both of them will
know each other’s real identities, since a sender will not typically
route a payment to an unknown receiver.

Immediate Neighbor: Consider two nodes i and j that have a
payment channel between them with the link weights denoted
by lw; ; and Iwj ;. These two nodes are each other’s immediate
neighbors.

Pathfinding and routing times: We define the pathfinding time
as the time taken to find a path involving several intermediate
nodes between the sender and the receiver. Routing time is defined
as the time taken to route the payment after a path has been found.
Routing fees: In PCNs, every node charges fees for forwarding the
payment from its predecessor to its successor along the path; the
fee structure varies according to the PCN being used. For instance,
Lightning Network charges two types of fees, the base fee, which
is fixed irrespective of the transaction amount, and rate fees that
vary according to the amount being routed [27]. In this paper, we
assume a unit fee is charged per hop, making the routing fees and
the path length equal.

4 ADVERSARY MODEL

In this section, we outline the trust assumptions for the parties
involved in RACED, and state our security and privacy goals. The
sender and receiver in a transaction can be un-trusted and can ar-
bitrarily deviate from protocol steps. Either of them can choose to
abandon a transaction in-progress, or introduce delays in a transac-
tion, with the goal of locking up collateral along paths. In RACED,
we assume each sender and receiver have access to each other’s
real identities, and the receiver will know the amount, amt being
transacted between them, since users do not send payments to un-
known entities with unspecified amounts. All the nodes in the PCN,
including the sender and the receiver, will know the real identities
of all the routing helpers, RHs in the DHT ring, and will also know
the maximum amount that each RH can route to its finger table
entries. Every node in the PCN, including the routing helpers will
know the balances they have and will also know the balance of their
immediate neighbor in the payment channel between the node and
its immediate neighbor. In addition to this, the nodes in the PCN
present along the path for routing a transaction between a sender
and a receiver will know the real identities of all their immediate
neighbors and the amount being transacted between the sender
and receiver along that path. The nodes in the PCN that are not
along the path for a transaction between the sender and receiver
will only know the real identities of their immediate neighbors and
will not have access to any information regarding the transaction,
such as the amount, transaction id, etc.

The RHs in RACED can also be malicious. They can arbitrarily
deviate from the protocols, although we assume at least two RHs
will be available at a given point of time to route transactions. For
addressing distributed denial of service attacks where all the nodes
in a DHT are taken down by an adversary, we refer the reader
to existing mitigation strategies [6, 54, 59]. We also assume the
adversary will be economically rational, i.e., it will always try to

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

maximize its profit. The nearRH knows the pseudonymous identity
of the sender and the endRH will know the pseudonymous identity
of the receiver. Other routing helpers (which are neither nearRH or
endRH) will know the amount being routed for a transaction if they
are present in the finger table of the nearRH or if they are present
in the finger tables of RHs which are present in the nearRH’s finger
table. If a RH is present in both the finger table of nearRH and
endRH, it will have access to the amount being transacted.We now
give our security and privacy goals.

Defining our Security and Privacy Goals. 1) Balance Secu-
rity: No honest node along a transaction path should lose funds
even if all the other nodes, including the intermediaries, and/or
the sender, receiver, are malicious. If the nearRH or endRH turn
malicious at any point and decide to leak the identity of the sender
or the receiver, respectively, it will only reveal their pseudonymous
identities since the real identities of the sender and receiver are not
known to any RHs in the DHT ring. 2) Sender/receiver privacy:
The real identities of the sender and the receiver are only known
to each other and their immediate neighbors in the network. 3)
Link privacy: Every node only knows the balance in the channel it
shares with its immediate neighbors. 4) Atomicity: If a transaction
does not go through for any reason, all the link weights of the nodes
along the transaction path should go back to the state that they
were in before the transaction was initiated.

5 CONSTRUCTION

In this section, we present the challenges associated with leveraging
DHTs for secure routing in PCNs and we describe the key ideas
in RACED that solve these challenges and describe the detailed
construction of RACED.

To address the challenge identified in Section 1, our idea is to use
a DHT comprising of RHs which guarantees a logarithmic routing
time. We note that it is non-trivial to apply DHTs to perform secure
PCN routing due to the following challenges:

Challenge 1: DHTs were designed to facilitate information shar-
ing in a p2p network, whereas PCNs were developed for facilitating
financial transactions between users. Nodes in the DHT commu-
nicate with each other using the standard IPv4 communication
protocol. In PCNs, though nodes communicate with each other
using the same standard, they also need to exchange payments
between them for which the IPv4 communication standard cannot
be used. As a solution to this challenge, RHs in RACED open a
payment channel on the blockchain with each of the RHs in their
finger tables to facilitate payments.

Challenge 2: In DHTs, there is no notion of privacy; each peer
in the DHT knows the details of the file (information) segments
that every other peer is responsible for. Whereas in PCNs, the
local channel balance of a node is known only to its immediate
neighbor. In RACED, to safeguard its local channel balance in a
payment channel, each RH i decides on a maximum amount that it
can transact with its finger table entry k and only this maximum
amount is known to all the other nodes in the PCN, providing link
privacy to the RHs.

Challenge 3: In a DHT, the property of atomicity (defined in
Section 4) is not required since nodes only exchange information.
Whereas in PCNs atomicity is very important since it ensures that

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

no honest party loses their funds because of malicious behavior by
other parties in the system. In RACED atomicity is ensured since
RHs (and all the other non-routing helper nodes) process payments
between each other using HTLCs.

Challenge 4: Transacting money between nodes in the PCN
causes a depletion in the balance of node, whereas, no such deple-
tion exists in DHTs. We solve this challenge using the maximum
amount computation described in Protocol 1.

Addressing these challenges and utilizing DHTs to reduce the
overall routing complexity in PCNs requires careful design and
is non-trivial. In what follows, we first give a brief overview that
describes the working of RACED that solves all the aforementioned
challenges at a high level and we follow it up with a detailed de-
scription of its construction. For the reader’s easy reference, we give
a table of notations in Table 2. In RACED, we instantiate the DHT
using Chord [56]. Due to space constraints, we give an overview of
Chord in Appendix B.

Table 2: Notations

Notation Description ‘

A Security parameter
amt Amount to be paid by
the sender to the re-

ceiver

RH Set of routing helpers

n Number of nodes in the
PCN

I; Set of immediate neigh-
bors of a node i in the
PCN

Temporary and
long-term sign-
ing/verification keypair
of node i

(SKi,VK;), (ski, vki)

endRH, nearRH End routing helper and
nearest routing helper,
respectively

é Time interval for signa-
ture generation

max; ; Maximum amount that
can be transacted be-
tween nodes i and j

hci j Number of hops be-
tween nodes i and j

txid Transaction identifier
tci Current timestamp for
signature created on
maxi, j

tv; j Time until which the
signature created on
mayx; ; is valid

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

5.1 Technical Overview

Let us consider a sender Alice in a PCN, as depicted in Figure 2,
who intends to route an amount, amt = 50 coins to a receiver, Bob.
We use RHs, Charlie, Daniela, and Denise that belong to a set RH,
to route the payment. During the key-generation and setup phase
(described in Protocol 6), each node creates a pair of long-term and
temporary signing and verification keys. The temporary identity
of a node is tied into the long-term identity as described in Section
3. This is done to hide the real identity of a node in the PCN from
its non-neighboring nodes, which helps in achieving the goal of
sender/receiver privacy as described in Section 4. In the DHT setup
phase (described in Protocol 1), the first node that volunteers to be
an RH establishes the DHT overlay by creating a unique identifier
(depicted as the number next to an RH’s name) and populating its
local hash table. This local hash table is termed as a node’s finger
table in Chord [56]. Since we use Chord to instantiate the DHT in
RACED, for terminological consistency, we refer to a node’s local
hash table as finger table in the rest of the paper (we give a detailed
description of Chord in Appendix B). All the subsequent nodes that
volunteer to be RHs join the DHT, create unique identifiers and
populate their finger tables with the identifiers of other RHs. The
RHs create signatures (using their long-term signing keys) on the
maximum amount that they are willing to route to the other RHs in
their finger tables. This is done to hide the actual channel capacities
between the RHs in the DHT, which helps us in achieving our goal
of link privacy.

Alice finds a path to the RH nearest to her, nearRH using any
of the existing constructions such as [35, 42, 51]. These existing
routing algorithms have an end-to-end worst-case pathfinding time
complexity of O(n), where n is the number of nodes in the PCN.
Our goal in this paper is to improve this worst-case upper bound by
using DHTs. Inside the DHT, the worst case pathfinding complexity
is logarithmic in the number of nodes, O(log |RH]|) which improves
the overall complexity of pathfinding. Hence, we focus on routing
inside the DHT ring, and assume the sender/receiver can find a path
to RHs using existing methods. In Figure 2 we assume the nearRH
is Charlie. Alice requests Charlie to find paths from himself to all
the other RHs in the DHT ring, i.e., Denise and Daniela. Charlie has
to find paths such that the amount, amt to be sent by Alice is less
than or equal to the maximum amount, max; ; that each RHi on a
given path is willing to route to the next RH k in the path. Charlie
finds the paths in two phases. In Phase 1, Charlie finds paths from
himself to all the RHs that are a part of his finger table and that
can route the amount, amt specified by Alice and adds these RHs
to a stack P maintained locally by him. In Phase 2, Charlie finds
paths from himself to the RHs that are not part of his finger table
but can still route the amount, amt specified by Alice. These two
phases are described in detail in Protocol 3. Once the pathfinding
phases are complete, the stack P that contains the list of paths and
signatures is sent to Alice. Alice then verifies the signatures of the
RHs in the stack P on the maximum amount that they can route to
the RHs in their finger tables.

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Denise (1) Charlie (26)

Daniela (52)

200 250 50 200
0oe «——
Allcelg<6—> J Tov Charlie X Demsg
100 50 E

20 Lg]
200 200 <
George 5 Bob

Daniela #;

Figure 2: Alice transmitting 50 coins to Bob via RHs Charlie
and Denise in the DHT ring,.

Upon successfully verifying the signatures, Alice sends the endRH
in each path to Bob via a secure out-of-band communication chan-
nel. Bob then picks the endRH that is nearest to him based on hop
count. In Figure 2, the endRH is Denise. Bob notifies Alice about
his choice of the endRH via a secure out-of-band communication
channel. Alice then picks the path containing the RH picked by
Bob as endRH. This finalizes the path along which amt needs to
be routed inside the DHT ring. At any point, if the signatures do
not verify, Alice writes the publicly verifiable signature details to
the blockchain, at which point they can be verified by miners, and
others involved in the system. This ensures that cheating RHs will
be caught, and made to leave the DHT ring. Once Alice and Bob
have agreed on the endRH Denise, Bob chooses a random preimage
X, and hashes it to produce a digest Y. The payment mechanism is
initiated using HTLCs. Using HTLCs ensures that no honest party
loses any funds because of malicious behavior by other parties in
the system, which helps us in achieving our goal of balance secu-
rity. HTLCs also ensure that all the link weights of the nodes along
the transaction path go back to the state they were in prior to the
commencement of the transaction if the transaction fails for any
reason. This achieves our goal of atomicity.

5.2 Helper functions

We now describe the helper functions used in RACED’s protocols.
1) ChoosePath (P, endRH) — P’: This function picks a path for
routing the payment. It takes two parameters, stack P, and the
endRH as inputs, and returns a path P’ that contains the endRH as
the last node in the path. If multiple paths with the same RH as the
endRH are present, the last RH, it returns the shortest path.

2) NH (i, j)— hc; j: This function calculates the hop count between

two nodes, i and j inside the DHT ring.

3) PC.Open (VK;, VK, Iw; j, Iwj ;) — {success, failure}: This func-
tion opens a new payment channel between two nodes. It takes in
the temporary verification keys of the nodes involved in opening the
channel, denoted by VK; and VKj, and the amounts being deposited
on the links as input parameters. The nodes interested in opening
a payment channel create a transaction tuple that contains the VK
of the nodes and the amounts they individually intend to deposit
in the channel. This tuple is signed by both nodes with their tem-
porary signing keys, SK; and SK;, and is posted to the blockchain.
The two nodes involved in the opening of the payment channel
sign a single transaction tuple, making it a 2-2 multisig transaction.
For representational clarity, we have abstracted the description of
blockchain writes. Upon a successful opening of a payment channel

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

between the nodes, this function returns a succcess.

4) HTLC.Pay (vk;, vkj, txid, amt) — {success, failure}: This func-
tion completes the payment between two nodes once the preimage
used to create the digest is revealed by one node to another. It takes
the long-term verification key of the payer, vk;, the long-term veri-
fication key of the payee, vk;, the unique transaction id txid, and
the amt being transacted as inputs. Once the payee has revealed
the preimage using which the digest was produced, this function
checks if the preimage being revealed is correct. If yes, the payer up-
dates the link weights between them accordingly. Upon a successful
release of the correct preimage by the payee and the updating of
the link weights by the payer, it returns success. Else it returns a
failure.

5) FT.Lookup (i, j) — I: This function performs the lookup opera-

tion for a node nearest to a destination node based on node identifier.
It takes the node identifier of the source denoted by i and the node
identifier of the destination denoted by j as the inputs, and returns
the node I who has the largest node identifier and is less than or
equal to j from the finger table of i.

6) FT.Retrieve (i) — B;: This function retrieves the entries of a

node’s finger table. This function takes node identifier i of the node
in the DHT ring as an input and returns a stack containing the
node identifiers of the entries present in i’s finger table.

7) RetrieveNext (8) — i: This function takes a list as an input argu-

ment and returns the node identifier of the element that the head
of the list points to.
8) RetrieveNeighbors (vk;) — I;: This function is used to retrieve

the immediate neighbors of a node. It takes the long-term verifica-
tion key of a node i, vk;, as an input and outputs a list, I; containing
the verification keys of the immediate neighbors of the node i.

9) Succ.Lookup (i) — j: This function looks up the successor of a
node in the DHT ring. It takes the node identifier of a node denoted
by i, and returns its immediate successor which is defined as the
smallest node identifier in the DHT ring that is larger than i.

10) FT.Search (i,j) — {success, failure}: This function searches for

the presence of a node in another node’s finger table. It takes in the
node identifier of the node calling this function i and the node iden-
tifier of the node being searched j as inputs, and returns success if
Jj is present in the finger table of i.

6 PROTOCOLS

RACED consists of seven protocols: Key Setup (Protocol 6), DHT Setup

(Protocol 1), DHT Processing (Protocol 2), Find Path (Protocol 3),
Path Validation (Protocol 4), Node Joining And Node Leaving (Pro-
tocol 5), Routing Payment (Protocol 7).

The protocol Key Setup handles the generation of long-term and
pseudonymous identities for all the nodes in the PCN. These keys
are used to sign and verify messages in the subsequent protocols
of RACED. The steps of this protocol are self-explanatory. Due to
space constraints, we give the protocol and its full description in
Appendix C.

DHT Setup, Protocol 1: This protocol handles the DHT ring setup
and the computation of signatures on the maximum amount each
RH can route to the RHs in its finger table. The DHT ring setup
facilitates the joining of nodes as RHs and the signatures created
on the maximum amount from this protocol are used by the sender

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

while selecting a suitable path to route the amt to the receiver. Each
node i in the PCN that volunteers to be an RH hashes its IP address,
ipaddress; with a collision-resistant and consistent hash function.
The resulting digest of the hash becomes the node identifier of the
RH. Each RH i locally maintains two stacks 8; and J;, and a list
L;. RH i will then compute the list of RHs that are a part of its
finger table and adds them to the stack $;, which contains repeated
entries. The unique entries from $; are added to the stack (f;. RH i
creates signatures on the max amount that it can route to the RHs
in the stack ;. The computation of the maximum amount and the
corresponding signatures is done to hide the actual channel capac-
ities between the nodes in the DHT, which helps us in achieving
our goal of link privacy. These signatures are created by i and the
RHs in its finger table using their long-term signing keys and are
added to the list £;. In addition, two timestamps, tc, which is the
timestamp at which the signature was created, and tv, which is the
timestamp until which the signature is valid, are added to .£;. This
protocol can be run in parallel by all the RHs in the DHT ring.

DHT Processing, Protocol 2: This protocol handles the creation of

Protocol 1: DHT Setup

1 All RHs decide on the value of § «<$R* and a hash function
H:{0,1}* - {0, 1}™

2 for i = ;i < |RH|;i++ do

3 node i that joins the DHT ring hashes its ipaddress; and

creates a digest Y;: H(ipaddress;)— Y;

4 node identifier of i = Y;
5 node i will broadcast Y; and vk; to all the nodes in the
PCN.

6 node i maintains 8; =0, Ji=0and L; =0
7 ¥ j € [1..m] node i does B;.Add(i + 207D mod m)

8 node i does RemoveDuplicates(8;)— J;

9 while (J;.empty = False) do

10 Pop.(J7) — k

11 node k does Signgy, (max; ;) — a,’.fqaxi’k

12 node i does Signg, (max; k) = opay, , and

13 node i does .L; Add(max; g, J,inaxik, O'Il.f.]axik, tc; ko
t;) ’ ’

signatures on the new value of maximum amount, maxlf o that
each RH i can route to each RH k in its finger table once the time
epoch § expires, or when the maximum amount, max; . that can
be routed from a RH i to its finger table entry k exceeds the link
weight (balance) that an RH has in the payment channel with its
finger table entries. The signatures created in this protocol will be
used by the sender to check that the liquidity that exists between
RHs is sufficient to route the amt specified by her. The value of §
is a system parameter that the RHs decide during the DHT Setup
phase. Once the time epoch expires or when the maximum amount,
max; ;. that can be routed between an RH i and its finger table
entry k exceeds the balance, Iw; j that the RH i has in the payment
channel between i and k, each RH i (that satisfies either of the two
conditions in lines 3 or 16,) in the DHT ring retrieves the RHs from
its finger table, removes the duplicate entries, and adds the unique

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Protocol 2: DHT Processing

/* All members of RH check this condition */
1 for i=1;i < |[RH|;i++ do
2 node i does FT.Retrieve(i)— B; and
RemoveDuplicates(8;) — J;
3 while J;.empty = False do

4 node i retrieves (max; g, -, -, -, -) from .£;
5 if max; ;. > Iw; ;. then
6 node i assigns the maximum amount that can be

routed to node k to maxlf x and does

Signski(maxlf’k) - ot

maxi'k
. ’ k
7 node k does Slgnskk(maxi’k) - Umax;k and node
i does L;.Delete(max; ., :Enax,;j’ orlfmxlk, teik
k
tv;) and L;. Add(max crmaX . amax; R tclk,
tvl o
8 if (currtime mod 6 = 0) then
9 for i=1;i < |RH|;i++ do
10 node i does FT.Retrieve(i)— B; and
RemoveDuplicates(8;) — J;
11 while (J;.empty = False) do
12 node i does Pop.J; — k
13 node i retrieves (max; , -, *, -, -) from £;
14 node i assigns the maximum amount that can be
routed to node k for the current time epoch to
’
max;
15 if (max;x == max,) then
16 tU;,k =tojp+ 0
17 Update (max,—’k, B tvi,k) with (maxl—’k, D
’ 1 .
, tvi’k) in L;
18 else
. . ,
19 node i does Slgnski(maxi’k) - omax e
. ’ k
20 node k does Signgy, (maxi,k) — 0 max,ik
21 node i does L;.Delete(max; ., O'rinax,-k:
arlﬁ]axik, tejk, tv; k) and L;. Add(max’ ,,
i k ’ '
o—max;k’ O—max;. > tCl k’ to 'k)
22 return £;
23 else
24 ‘ do nothing

ones to the stack ;. Each RH i will compute the signatures on
max for each RH present in its finger table. These signatures are
computed by the RHs using their long-term signing keys. After the
computation of signatures, the signatures attesting to the max in
L; from the previous time epoch are replaced with the new ones. In
addition, the previous time stamps tc and tv are replaced with the
fresh ones in the list L. If for any reason, the max; . between a
RH i and its finger table entry k has not changed from the previous
time epoch, only the time stamp of the signature validity, tv will be
incremented by § and updated in the list £;. This protocol can be

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

run by each RH in parallel.

Find Path, Protocol 3: This protocol finds paths from the nearRH
to all the other RHs in the DHT ring that can route the amt spec-
ified by the sender. Initially, the sender, Alice, creates a random
transaction id, txid, contacts the nearRH and sends the txid, the
amt that she intends to route, her signature, oamt, and her tempo-
rary verification key VKajice through a path-based transaction to
nearRH. The vkyeceiver (in this case Bob), txid, amt are added to a
list K by Alice. Alice can be involved in several transactions with
several receivers. The list K helps Alice maintain a record of all the
transactions in which she is the sender. The path from the sender
to the nearRH can be calculated using the constructions described
n [35, 42, 51]; we do not describe this process in this paper. The
nearRH locally maintains two stacks P and W. Upon successful
verification of the signature of Alice on the amt, the txid, amt is
sent by nearRH to all the RHs in its finger table. For each entry,
in its finger table, the nearRH checks if amt is less than the max
that the nearRH can route to that RH in 8B,,.4,ry (stack containing
nearRH’s finger table entries). For each such entry, the nearRH ran-
domly samples a path identifier, denoted by pathid and adds the
pathid, the node identifier of nearRH, node identifier of the RHs
in its finger table, the corresponding max, the signatures of the
nearRH and the RH on the max, the time stamps of signature cre-
ation and signature validity and the tuple is pushed on to the stack
P. In this manner, nearRH finds paths from to all RHs in its finger
table. nearRH now finds paths from itself to the RHs in the stack
'W. The nearRH pops the first RH in W, denoted by p, and selects
the RH closest to p based on its node identifier and assigns it to i.
The nearRH checks if the liquidity between nearRH and i is suitable
to route the amt specified by Alice and sends a tuple consisting
of the txid, FindpathReq message and the node identifier of p to i.
This transfers the control flow from nearRH to i. i then checks for
the presence of p in its finger table. If present, i constructs a tuple
Qi = (i, p, maxp, orinaxiyp, O’r%ax;,p’ tci,p, tvj,p) and sends this tuple to

nearRH along with FindpathResp response message. If the RH p is
not present in the finger table of i, i looks up the closest RH to p
in its finger table based on node identifier. This RH is denoted by
k. i checks if the liquidity between i and k is sufficient to route the
amt specified by Alice, if yes, k is sent to nearRH. The nearRH then
assigns the node identifier of k to i. This process is repeated until
a suitable path to p is found. If a path to p is found, the nearRH
samples a path identifier, pathid, at random. The txid, pathid and
all the tuples Qj, for each RH i generated until this point are pushed
on to the stack P. Phase 2 is repeated until the stack W becomes
empty, upon which nearRH sends P to Alice. The nearRH can turn
malicious at any point in any of these phases and try to manipu-
late the contents of any tuple returned by the RHs. However, the
malicious behavior of nearRH will be caught when Alice verifies
the amounts and signatures in Protocol 4.

Path Validation, Protocol 4: Path Validation is the fifth protocol in
RACED. Alice calls this protocol once she receives the stack P con-
taining tuples of paths from the nearRH to all the RHs in the DHT
ring. In this protocol, Alice verifies the signatures of the RHs con-
tained in P on the max that can be routed between each pair of RHs
that are immediate neighbors in the DHT ring. Initially, Alice pops

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Protocol 3: Find Path

Protocol 4: Path Validation

1 Alice does k «s {0, 1}’1, H(k) — txid and sends (txid, amt,
oamt, VKalice) to nearRH, initializes a list K = 0, creates a
tuple (vkreceiver txid, amt) and adds it to K

2 nearRH initializes stacks P, W = 0 and does if

(VerinyKAme (amt, oamt) — 0) then

1 Alice maintains a list W 4;;., = 0 and receives P from the

nearRH

2 while (P.empty = False) do

3 ‘ return L
4 else
5 FT.Retrieve(nearRH) — BpearrH
6 VRH i € B,eqrH, nearRH sends (txid, amt, oamt,
VKalice) to each node i and V j € RH and j € Bnearrl
does W.Push(j)
7 while (B,eq,rH-empty = False) do
8 each node i € By,qry does if (VerinyKAh_ce (amt,
Oamt) — 0) then
9 ‘ return L
10 else
1 Pop.(Bhearrr) — i
12 if (amt < maxyeqry,i) then
13 nearRH picks pathid «s {0,1}" and does
P.Push(txid, pathid, nearRH, i, maXpeqrH,i>
O—rinax,,ea,RH'ia rrxlq‘g(rii{mvp LCnearRH,i> tUnearRH,jis
VKalice)
14 while (W.empty = False) do
15 nearRH checks if (FindPathResp, k, txid) has been
received then
16 nearRH does i = k, sends (txid, FindPathReq, p)
toi
17 else
18 nearRH does Pop.(W)— p,
FT.Lookup(nearRH,p) — i
19 nearRH checks if (amt < maxyeqrp,i) then
20 nearRH sends (txid, FindpathReq, p) to i
/* Node i runs steps 21-25 */
21 if (NH(@i,p == 1)) then
22 if (amt < max;p) then
23 i retrieves (max;p, ar'naxi'p, a,’;axi,p, teip and
tv;p) from £L; and constructs a tuple Q; = (i,
p, maxip, O'maX: R O’max:o s LCip, tvi,p) and
sends the tupley(txid, FindpathResp, Q) to
nearRH. nearRH samples pathid «s
{0, 1}* and does P.Push(ixid, pathid, Q;)
21 else
25 i construct a tuple (txid, FindpathResp, i, p,
1) sends it to nearRH
26 else
27 i does FT.Lookup(8;) — k, sends (txid, amt,
VKalice) to k if (amt < max;) then
28 i constructs a tuple Q; = (i, k, max; ., C’;naxi,k’
orknaxi o €k 10k VKalice) and sends (txid,
Findp;athResp, k, Q;) to nearRH
29 nearRH sends P to Alice

3 Alice does Pop.(P) — txid

4 Alice does if Pop.(P)— pathid then

5 Alice records a message (New Path) and does

W.Add(pathid)

6 else

7 Alice maintains a list K4y, = 0

8 Alice does Pop.(P) = Qj = (j, j + 1, maxj j+1,

O'rjnaxjgj“’ 0-{11-'—31)(1'_]'4.1’ tCj j+1s tUj,j+1’VKA|ice)

9 if (amt < max; j;+1) then

10 if (currijme < tvj j+1) then

11 if (\/erifyvkj (max;,j+1, O'{naxj)jﬂ) — 1) then
12 if Verifyvijr1 (max;,j+1, aé;l,(j‘ﬁl) — 1

then

13 ‘ add j, j+1to Kajjce

14 else

15 BC.Write(j, j +

L max; jat, O st VKalice)

16 else

17 BC.Write(j +

1, j,max;, j+1, Tmac] VKalice)

18 else

19 ‘ do nothing

20 else

21 ‘ BC.Write(j, j + 1, amt, max; j+1, VKajice)
22 for i=1; i< |W| g55¢e ; i++ do

23 if W; = W;41 then

24 BC.Write(Vkpnearris Vkatices Wi, Wit1)

the txid and the pathid from the stack P. This stack now contains
the tuples Q;, where i € [1..(|RH| — 1)]. Alice adds the pathid in
each tuple to a list W that she locally maintains. Alice retrieves each
tuple and initially verifies if the amount that she intends to route is
less than the maximum amount that can be routed between the RHs
in the tuple. If this verification fails, Alice writes the max, the long-
term verification key of the routing helpers involved, and the amt
she intends to route to the blockchain. Upon successful verification,
Alice checks if the time stamp of signature validity, tv, is less than
that of the current system time, currgjme. Upon successful verifica-
tion, the signatures on the maximum amount created by the RHs
are verified. If the signature verification does not pass, Alice posts
node identifiers of the malicious routing helpers involved, the amt
she intends to route, the max that can be transacted between the
RHs and the signature of the malicious RH to the blockchain. The
nature of punitive actions taken against malicious parties in RACED
may vary across PCNs, and across implementations of RACED, e.g.,
banning malicious parties temporarily or permanently, reporting
them to law enforcement, etc. Describing them is beyond the scope
of this paper.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Protocol 5: Node Leaving and Node Joining the DHT

/* Node leaving */
1 Let L be the leaving node and L does FT.Retrieve(L) — B
2 if (BL.empty = False) then
3 ‘ L does FT.Delete(B)

4 else
/* The lines 7-20 only run at the expiration
of epoch § */

5 for i=1;i< |RH|;i++ do
6 if (L € B;) then
7 each node i does Succ.Lookup(L) — S
8 if (FT.Search(S, i)— success) then
9 ‘ do nothing
10 else
11 if (PC.Open(vks, vk;,
12 Iwykg vk;» IWyk; vks) — stccess) then
13 channel is established
14 else
15 ‘ do nothing

/* New node joining */

16 Let the joining node be J and J does H(ipaddress)) — J,
FT.Compute(J) — B) and] does RemoveDuplicates(B)) —
J) and] does

17 while (J).empty = False) do

18 Pop(J)) — i

19 if (PC.Open(vky, vk, Iwy vk, IWyk; vk;) = success)

then
20 ‘ channel is established

Node Leaving and Node Joining the DHT, Protocol 5: This proto-
col handles the joining of a node in the PCN as a RH and also
handles the leaving of an existing RH from the DHT ring. First, we
give a description of the process of an existing RH leaving the DHT
ring and follow it up with a description of a node in the PCN joining
as RH. We denote the RH leaving the DHT ring by L. Initially, L
calls the PC.Close function to close all the payment channels with
the RHs in its finger table. L maintains local storage that stores
the long-term verification keys of its neighbors. These keys are
retrieved from this storage during the closing of payment channels;
for brevity, we have abstracted these details in the protocol. Once
all the payment channels have been closed, the RHs in whose finger
table L was a member finds L’s successor, S. S performs a search
operation to find the RH in whose finger table L was a member, but
S is not a member. S then establishes payment channels with all
such RHs. Upon successful establishment of the payment channels,
the process of an existing RH leaving the DHT ring is completed.
The second part of this protocol handles the joining of a new node
as a RH in the DHT ring. The node that joins the DHT ring is de-
noted by J. It initially finds its successor based on its node identifier
in the DHT ring, denoted by currsycc. Using the node identifier of
Currsyce, J computes the RHs in its finger table and adds them to
the stack).] opens payment channels with all the RHs in). This
completes the process of a new node joining as a RH in the DHT.

10

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

The protocol Routing Payment, Protocol 7 handles the routing of
payment between Alice and Bob using HTLCs [31]. The steps for
this protocol are self explanatory. Due to space constraints, we give
the protocol and its full description in Appendix C.

7 EXPERIMENTAL EVALUATION

In this section, we explain our dataset collection, experimental
setup and the results of our evaluation.

7.1 Dataset and Simulation Setup

In RACED, we use the transaction data from Ripple for our experi-
mental evaluation. Transaction data about the most popular PCN,
the Lightning Network, in particular, the data about the number
and the amount of transactions is not publicly available. Due to this,
and the fact that Lightning and Ripple are the only PCNs in use
currently, we use transaction data from Ripple for our experiments.
RACED, however, can be deployed on Lightning Network without
any modification to the underlying structure of Lightning Network.
The only overhead that RACED causes when deployed on Lightning
Network and Ripple is the opening of payment channels in Light-
ning Network (called trustlines in Ripple [49]) by the RHs with the
entries in their finger tables and the creation and verification of
pseudonymous identities for every node in the PCN.

Table 3: Number of cryptographic operations performed/TX.
Legend: LM: landmark, d: size of the hash digest used in
the DHT, T: number of cryptographic operations performed
outside the DHT.

Operations Protocols
RACED | Blanc SW
Signing 1+T 13 8|LM]| +1
Verification | |[RH|+T | 12 7+ |LM]|
Hash 3+T 7 0
Encryption | T 7 0
Decryption | T 6 0
FT.Lookup | O(logd) | 0 0
FT.Compute | logd 0 0

For the experiments, we collected transaction data from the
Ripple network from 01-01-2021 to 12-31-2021 [44]. We chose to
collect Ripple data due to the fact that Ripple’s XRP token, has the
sixth largest capitalization for a cryptocurrency and Ripple’s market
cap is the largest among all payment channel networks [46]. We
used the Ripple API [45] to collect all the “Payment” transactions
that were recorded on the Ripple ledger during the aforementioned
time period. We only consider the “Payment” transactions since
they are path-based transactions that involve several intermediate
nodes between the sender and receiver. These transactions were
recorded in several different currencies. Direct transactions between
a sender and receiver pair which do not involve intermediaries
were excluded from our collected data. We collected a total of
15,634,656 path-based transactions. We pre-processed the collected
data to remove two types of anomalies that we have noticed: invalid
currencies, and incomplete hash digests of transactions. Once the
transaction data was collected and pruned, we created a directed

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

graph using the Ripple APIs [49] for every month from January 2021
to December 2021. We removed the edges with negative and zero
link weights and converted all the link weights to USD. This gave
us a graph of 225,264 nodes and 1,717,347 edges which was used in
our experiments. All our experiments were run on a single machine
equipped with AMD ™ EPYC processor (64 bit architecture) with
16 cores and 512 GB of RAM and a clock speed of 3.2 GHz. The
code for all the routing algorithms was written in Python 3.8 and
the NetworkX library [41] was used for simulations.

7.2 Evaluation And Results

We implement and experimentally compare RACED with several
other comparable routing algorithms, specifically with SilentWhis-
pers [35], SpeedyMurmurs [51] and Blanc [42] and show our results
in Table 4. For all the experimental settings, we set the RHs for
RACED and Blanc [42], and the number of landmarks for Silen-
tWhispers [35] and SpeedyMurmurs [51] to eight. These routing
helpers/landmarks were picked as the nodes with the highest out-
degree in the graph. In our experiments, we constructed the graph
for each month in 2021 and routed the transactions accordingly.
By doing so, we capture the growth of the Ripple network over
the year through our graph. Our experiments thus simulate the
network’s evolving, dynamic nature. The graphs for each month
constructed from the Ripple data were disjoint. Hence we extracted
the largest strongly connected component for each month’s graph
and routed the transactions (involving the USD currency) by se-
lecting the sender-receiver pairs and routing helpers from that
component. This is the “RACED-1-SCC” setting in the Table 4. In
order to demonstrate the effectiveness of having the routing helpers
connected via a DHT such as Chord (which is the central idea of
RACED), we extracted the top eight (by node count) strongly con-
nected components for each month. We selected one routing helper
from each strongly connected component (based on the highest
out-degree), connected them via a Chord ring, and all the trans-
actions that were recorded for the USD currency in our dataset
were routed through these RHs. We randomly sampled the sender
and receiver from the dataset to ensure that no sender and receiver
pair is from the same SCC. This is the “RACED-k-SCC” setting in
Table 4.

We measured a total of four metrics for each month: 1) the trans-
action success ratio, which is the ratio of the number of transactions
successful to the total number of transactions routed, 2) the average
path length found, which is the total number of hops between the
sender and receiver, 3) pathfinding time, which is the time taken to
find a path between the sender and the receiver, and 4) routing time,
which is the time taken to route the payment (nodes adjusting link
weights) along the path from the sender to the receiver. We com-
puted the mean of each metric across all twelve months along with
the standard deviation. A total of 52,943 transactions which is the
number of transactions that took place with the currency as USD
during 2021-2022 on the Ripple ledger were routed concurrently.

Message passing between nodes in the course of a routing pro-
tocol in a p2p network such as PCN is an implementation-specific
scenario that depends on the network in which the routing pro-
tocols are deployed. For instance, the Lightning network uses the
in-built IPv4 or IPv6 connection that exists between the nodes in

11

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

the PCN for message passing. For more information on this, we
refer the reader to [33]. Ripple uses the Ripple Protocol Consensus
Algorithm (RPCA) [48], which internally handles message pass-
ing. Similar to these, in our simulations for RACED, we use the
NetworkX library, which handles message passing internally.

We used Dijkstra’s shortest path algorithm to simulate the pathfind-
ing outside the DHT in RACED. In RACED, the number of edges |E|
is significantly lower than |V|2/log |V| for the PCN graph G(V, E),
hence we implemented the priority queue for Dijkstra’s algorithm
using a binary heap [16]. For RACED, the shortest path (in terms
of the hop count) was chosen to route the payment from sender
to nearRH, nearRH to other RHs in the DHT ring, and endRH to
receiver. If multiple paths with the same hop count were present,
the paths with the highest liquidity were chosen. If the hop-count
and the liquidity between paths were the same, then a path was
randomly chosen.

For the simulation of SilentWhispers [35], the number of land-
marks was chosen as eight, and the landmarks were chosen as the
nodes with the highest out-degree. Unlike RACED, SilentWhispers
cannot be applied to disjoint graphs, since it uses BFS (breadth first
search) to find a path between the sender and receiver. Even though
BFS is asymptotically more efficient than Dijkstra’s algorithm, the
routing time and pathfinding times are significantly higher than
RACED, since the overhead contributed by the number of crypto-
graphic operations (signing and verification) is very high. Besides,
unlike RACED, [35] offers no support for concurrent transactions.
In RACED the path length inside the DHT ring is always 3 hops
since we have chosen a total of 8 routing helpers.

SpeedyMurmurs [51] uses an embedding-based routing mech-
anism called VOUTE [50]. VOUTE uses a BFS-based approach to
compute the embedding of all the nodes in the network with re-
spect to their distances from the landmark. Apart from this, the
BFS needs to be run by all the landmarks when a new node joins
or an existing node leaves the network, which gives this protocol
a high stabilization overhead. Hence the pathfinding time for this
is higher than RACED. However, since there are no cryptographic
operations involved, the pathfinding time is lower than that of
SilentWhispers. The routing time for this protocol is also less than
that of SilentWhispers and Blanc since the actual payment routing
does not involve any cryptographic operations. This protocol also
offers no privacy guarantees unlike RACED, where we offer sender,
receiver, and transaction privacy.

The routing protocol Blanc [42], was simulated with the number
of RHs chosen as eight similar to all the other protocols. It needs two
RHs between the sender and the receiver, one picked by the sender
and the other picked by the receiver. The routing/pathfinding time
is very high in this protocol in comparison to the other protocols,
since the pathfinding phase uses broadcasting in three segments:
sender to RH1, RH1 to RH2, RH2 to receiver. Blanc does not ad-
dress the issue of multiple SCCs. The routing time is higher than
RACED, SilentWhispers, and SpeedyMurmurs, because Blanc in-
volves the creation of pair-wise contracts (after the pathfinding
phase) between nodes involved along the path attesting to the
amount that will be transacted. Table 3 represents the number of
cryptographic operations performed by each routing protocol per
every transaction being routed. The transaction processing time for

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Table 4: Performance of different pathfinding and routing protocols. Legend: PL: path length, 1-SCC: one large strongly
connected component in the PCN graph, k-SCC: k strongly connected components. Metrics: success ratio (higher is better),
mean path length (lower is better), pathfinding time (lower is better), routing time (lower is better).

Protocols Success ratio Mean PL (hop- | Pathfinding time | Routing time
count) (sec) (millisec)

RACED 1-SCC (sin- | 98.85 + 0.027 6.64 + 0.287 31.24169 + 56.144 | 3.126 + 0.0254

gle graph)

RACED k-SCC (sev- | 98.73 + 0.148 7.31 £ 0.295 31.24289 + 56.147 | 3.165 £ 0.03

eral disjoint graphs)

SM 1-SCC (single | 98.23 + 1.64 4.21 + 0.245 12460.0688 + | 3500 + 0.042

graph) [51] 11089.897

SW 1-SCC (single | 94.63 + 7.08 7.87 + 0.387 51707.89 + | 225000 + 630

graph) [35] 11651.260

Blanc 1-SCC (single | 97.92 + 0.029 10.983 + 0.754 56344.229 + | 391164 + 725.458

graph) [42] 186149.669

fiat currencies varies from a couple of hours to a couple of days de-
pending on the geographical location of the sender and the receiver
[18, 20, 40]. Our experimental evaluation shows that the average
pathfinding time for RACED is 31 seconds and the average routing
time is 3 milliseconds across 52,000 transactions that were recorded
for an year. This shows the efficiency of RACED in particular.

Setup time analysis: The setup time for Blanc and SilentWhis-
pers is equal (4.565 seconds) since their setup involves only the
creation of the signing and verification keys for the nodes and the
creation and verification of pseudonymous identities. This step can
be parallelized. The setup time for SpeedyMurmurs is the highest,
~ 5.9 hours since it involves computation of the embedding coordi-
nates of nodes in the PCN. The one-time setup time for RACED is
also significantly high, ~ 4.12 hours since it involves an additional
setup for the establishment of the DHT ring and the creation and
verification of a node’s long-term and pseudonymous identities.

Tradeoffs: RACED introduces a delay whenever the finger table
of an RH needs to be updated in the event of another RH joining
or leaving the DHT ring. In a DHT, at most log(m) entries in a
node’s finger table can be distinct where m is the size of the digest
obtained by the hashing the node’s IP address. Updating an existing
RH’s (when another RH leaves the DHT) finger table or a newly
joined RH creating a finger table involves the existing RH or the
newly joined RH opening payment channels with their finger table
entries. In the worst case, a RH night need to open log(m) payment
channels. This introduces a delay of @, where « is the time to process
payment channel openings depending on the blockchain on which
RACED will be deployed. The payment channels between RHs and
their finger table entries can be opened in parallel. For BTC this
delay varies from 60 to 90 minutes.

The payment channels opened by the RHs can be used for rout-
ing multiple transactions, which amortizes the delay o over several
thousands of transactions. Our evaluations show this delay being
amortized over 52,000 transactions with an average pathfinding
time of thirty one seconds and an average routing time of three
milliseconds. In other words, the setup time of RACED, which is
close to four hours is amortized over routing 52,000 transactions
being routed in three milliseconds. In addition to this, updating
the maximum amount at the end of each time epoch (8) introduces

12

a delay of B, which is the time taken for a RH and a correspond-
ing finger table entry to sign the maximum amount that can be
transacted between them. This makes the total delay introduced by
RACED as (a + p).

8 RACED SECURITY ANALYSIS

In this section, we provide a formal analysis of RACED. We define
an ideal functionality FRacep, that consists of six functionalities:
Finits FDHT> Faux Frindpath> FPayment and Fpy1c, and two helper
functionalities Fs;g [13], and Fp ¢ o [34]. The definition of the ideal
functionalities and the proof of the following theorem is given in
the full version of the paper [25].

THEOREM 8.1. Let FRacep be an ideal functionality for RACED.
Let A be a probabilistic polynomial-time (PPT) adversary for RACED,
and let S be an ideal-world PPT simulator for Fracep. RACED UC-
realizes FRacep for any PPT distinguishing environment Z.

9 CONCLUSION

In this paper, we have designed RACED, a PCN pathfinding and
routing protocol that uses distributed hash tables to route transac-
tions in PCNs. Our protocol does not need the presence of a trusted
third party, is fully decentralized and can route concurrent trans-
actions. RACED also ensures the privacy of sender and receiver,
and atomicity of payments. We have demonstrated the efficiency
of raced RACED by evaluating it on real-world transaction data,
and have proven the security of RACED in the UC framework. The
ideas presented in RACED can potentially be leveraged to decen-
tralized networks in diverse domains such as edge computing and
IoT networks.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Award No. 2148358, 1914635, and the Department
of Energy. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation
and the Department of Energy.

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

REFERENCES [28] Lightning Pool [n.d.]. Lightning Pool. https://lightning.engineering/lightning-
[1] Moaath Alshaikh and Akram Morie. 2022. Development of Multipath Dynamic p'()(?l—\yhlte'pap'er.pdf X
[29] Siyi Lin, Jingjing Zhang, and Weigang Wu. 2020. FSTR: Funds Skewness

Address Routing Protocol in MANET to Improve Data Transfer in Poor Infras-
tructure Environment. In 2022 International Conference on Computer Science and
Software Engineering (CSASE). 368-373. https://doi.org/10.1109/CSASE51777.
2022.9759630

Abdelrahaman Aly. 2015. Network flow problems with secure multiparty compu-
tation. Ph.D. Dissertation. Catholic University of Louvain, Louvain-la-Neuve,
Belgium.

Aware Transaction Routing for Payment Channel Networks. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
464-475. https://doi.org/10.1109/DSN48063.2020.00060

[30] LN minimum payment [n.d.]. LN minimum payment. https://dci.mit.edu/
lightning-network

[31] LNDHTLC [n.d.]. LND HTLC. https://docs.lightning.engineering/the-lightning-
network/multihop-payments/hash-time-lock-contract-htlc

&

[3] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Mathieu ! . ¢ - .
Van Vyve. 2013. Securely solving simple combinatorial graph problems. In [32] LND keypair [n.d.]. LND keypair. https://github.com/lightning/bolts/blob/
Financial Cryptography and Data Security: 17th International Conference, FC 2013, master/OS—tranqurt.md
Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17. Springer, 239-257. [33] LND message passing [de.']‘ LND message passing. https://github.com/lightning/
[4] Abdelrahaman Aly and Mathieu Van Vyve. 2015. Securely Solving Classical bolts/blob/master/07-routing-gossip.md

Network Flow Problems. In Information Security and Cryptology - ICISC 2014, [34] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

Jooyoung Lee and Jongsung Kim (Eds.). Springer International Publishing, Cham, vatsan R_avi. 2017. Concurrency and privacy with payment-channel netwgrks_. In
205-221. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. 455-471.

[5] Abdelrahaman Aly and Mathieu Van Vyve. 2016. Practically Efficient Secure At X i
Single-Commodity Multi-market Auctions. In Financial Cryptography and Data (35] Giulio Malavolta, Pedro A. Moreno-Sanchez, Aniket Kate, and Matteo Maffei.
Security - 20th International Conference, FC 2016, Christ Church, Barbados, February 2016. SilentWhispers: Enforgng Security and Privacy in Decentralized Credit
22-26, 2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9603), Networks. IACR Cryptol. eP) rint Arcl?, 2016 (2016), 1054.)
Jens Grossklags and Bart Preneel (Eds.). Springer, 110-129. https:/doi.org/10. [36] Petgr Maymounkov and David Mam'eres. 2002. Kgdemha: A peer-to-peer infor-
1007/978-3-662-54970-4 7 mation system based on the xor metric. In International Workshop on Peer-to-Peer

[6] Hakem Beitollahi and Geert Deconinck. 2008. Comparing Chord, CAN, and Systems. Springer, 53-65.

[37] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.

Pastry overlay networks for resistance to DoS attacks. In 2008 Third International X .]
Sprites: Payment Channels that Go Faster than Lightning. (02 2017).

Conference on Risks and Security of Internet and Systems. 261-266. https://doi.

0rg/10.1109/CRISIS. 2008.4757488 [38] Saleh Khalaj Monfared and Saeed Shokrollahi. 2023. DARVAN: A fully decentral-
[7] Bitkan Explorer [n.d.]. Bitkan Explorer. https://bit.ly/3LTPiYN ized anonymous and reliable routing for VANets. Computer Networks 223 (2023),
[8] Blockchair [n.d.]. Blockchair. https://blockchair.com/ethereum 109561_‘ L .
[9] BIC, ETH tx throughput [n.d.]. BTC, ETH tx throughput. https:/academy. [39] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review (2008), 21260.

binance.com/en/glossary/transactions-per-second-tps “Ov0), ala .
[40] Nerdwallet. 2023. Xoom limit minimum. https://bit.ly/3QnPOAu.

[10] BTC market cap [n.d.]. BTC market cap. https://coinmarketcap.com/currencies/

bitcoin/ [41] Networkx library [n.d.]. Networkx library. https://networkx.org/
[11] BTC tx throughput [n.d.]. BTC tx throughput. https://www.blockchain.com/ [42] Gauray Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. Blanc:
explorer/charts/transactions-per-second Blockchain-based anonymous and decentralized credit networks. In Proceedings
[12] BTCPAY Server [n.d.]. BTCPAY Server. https://bitly/3q30AIU of the Ninth ACM Conference on Data and Application Security and Privacy. 339-
[13] Ran Canetti. 2004. Universally composable signature, certification, and authenti- 350. . X . . .
cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. [43] Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, and Michelle Yeo. 2021. LightPIR:
IEEE. 219-233. Privacy-Preserving Route Discovery for Payment Channel Networks. In 2021

IFIP Networking Conference (IFIP Networking). 1-9. https://doi.org/10.23919/
IFIPNetworking52078.2021.9472205

=
it

Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2022.
MPCN-RP: A Routing Protocol for Blockchain-Based Multi-Charge Payment ; > ‘
Channel Networks. IEEE Transactions on Network and Service Management 19, 2 [44] Ripple [n.d]. Ripple. https:/ripple.com/

(2022), 1229-1242. https://doi.org/10.1109/TNSM.2021.3139019 [45] Ripple API [n.d]. Ripple APLhttps://data.ripple.com/

[15] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. [46] Ripple current cap [n.d.]. Ripple current cap. https://www.slickcharts.com/

Introduction to algorithms. MIT press. currency . e .
[16] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008. [47] R?pple market value '[n.d4]. Ripp l? market cap 1tahzat'10n. http S://blt'lyBAGVHTO
Algorithms. McGraw-Hill Higher Education New York. [48] Ripple message passing [n.d.]. Ripple message passing. https://ripple.com/files/

ripple_consensus_whitepaper.pdf

[17] Lisa Eckey, Sebastian Faust, Kristina Hostakova, and Stefanie Roos. 2020. Splitting L 8 - . X
[49] Ripple trustline API [n.d.]. Ripple trustline API. https://xrpl.org/account_lines.

Payments Locally While Routing Interdimensionally. JACR Cryptol. ePrint Arch.

2020 (2020), 555. html)) '
[18] Experian. 2023. Zelle limit. https://bit.ly/49lkpr6. [50] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Voute-virtual overlays
[19] Flare PCN [n.d.]. https:/flare.xyz/the-flare-network/ using tree embeddings. arXiv preprint arXiv:1601.06119 (2016).
[20] Forbes. 2023. xoom. https://bit.ly/47iPMKkt. [51] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.
[21] AV Goldberg and R E Tarjan. 1986. A New Approach to the Maximum Flow Settling Payments Fast and Private: Efficient Decentralized Routing for Path-

Problem. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Based T'ransactions. In 25th Ar'znual Ne'twar.k and Distributed System Security

Computing (Berkeley, California, USA) (STOC ’86). Association for Computing Symposium, 'NDSS 2018, San Diego, California, USA, February 18-21, 2018. The

Machinery, New York, NY, USA, 136-146. https://doi.org/10.1145/12130.12144 Internet Society. i
[22] Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jing- [52 Aqtony Rovastron and szter Druschel. 2001. Pastry: Scalable, decentralized

dong Xu. 2021. VEIN: High Scalability Routing Algorithm for Blockchain- object lo_catlon, and routing f(_)r l_arge—scale peet-to-peer systems. In I_FIP_/ACM

based Payment Channel Networks. In 2021 IEEE 20th International Conference on Interna'twnal Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 329-350.

Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathy Ruan, Pari-
marjan Negi, Lei Yang, Radhika Mittal, Mohammad Alizadeh, and Giulia Fanti.

Trust, Security and Privacy in Computing and Communications (TrustCom,). 43-50.
https://doi.org/10.1109/TrustCom53373.2021.00024

[23] Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2022. Auto-Tune: Effi- ; L
cient Autonomous Routing for Payment Channel Networks. In 2022 IEEE 47th 2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.
Conference on Local Computer Networks (LCN). 347-350. https://doi.org/10.1109/ aer:1809405'088 [esNI]
LCN53696.2022.9843633 [54] Mudhakar Srivatsa and Ling Liu. 2009. Mitigating Denial-of-Service Attacks on

[24] Heba Kadry and Yasser Gadallah. 2021. A Machine Learning-Based Routing the Chord Ove?laY Network: A Location Hiding Approach. IEEE Transactions on
Technique for Off-chain Transactions in Payment Channel Networks. In 2021 Parallel and Distributed Systems 20, 4 (2009), 512—-527. https://doi.org/10.1109/

IEEE International Conference on Smart Internet of Things (SmartloT). 66-73. https: TPDS.2008.125

[53

//doi.org/10.1109/SmartIoT52359.2021.00020 [55] Stellar Network [n.d.]. Stellar Network. https://www.stellar.org/?locale=en
[25] Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2023. [56] ?on Stoica, Robert Morris, David Karger, M. Frans Kaashoe}(, and Hari Balakr-

RACED: Routing in Payment Channel Networks Using Distributed Hash Ta- lshna? 2001. Chord: A Scalable Peer-to-Peer Lookup SerAv1cAe for Internet AP'

bles. arXiv:2311.17668 [cs.CR] plications. In Proceedings of the 2001 Conference on Applications, Technglogzgs,
[26] Lightning Network [n.d.]. Lightning Network. https://lightning.network/ Architectures, and Protocols for Computer Communications (San Diego, California,

USA) (SIGCOMM °01). Association for Computing Machinery, New York, NY,
USA, 149-160. https://doi.org/10.1145/383059.383071

Lalitha Muthu Subramanian, Roopa Vishwanathan, and Kartick Kolachala. 2020.
Balance transfers and bailouts in credit networks using blockchains. In 2020 IEEE

[27] Lightning Network Fees [n.d.]. Lightning Network Fees. https://github.com/

lightning/bolts/blob/master/07-routing- gossip.md#htlc-fees (57

13

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 1-3.
Hieu Tran, Miao Miao, Farokh Bastani, and I-Ling Yen. 2023. Multi-Keyword
Based Information Routing in Peer-to-Peer Networks. In 2023 International Con-
ference on Information Networking (ICOIN). 791-796. https://doi.org/10.1109/
ICOIN56518.2023.10049045

Zied Trifa. 2019. Preventing Sybil attacks in chord and Kadem-
lia protocols. International Journal of Internet Protocol Technol-
ogy 12, 3 (2019), 157-166. https://doi.org/10.1504/IJIPT.2019.101364
arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/IJIPT.2019.101364
VISA transactions [n.d.]. VISA transactions. https://www.visa.co.uk/dam/VCOM/
download/corporate/media/visanet-technology/aboutvisafactsheet.pdf ~ Ac-
cessed: 2023-02-23.

Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: Efficient Dynamic Rout-
ing for Offchain Networks (CoNEXT ’19). Association for Computing Machinery,
New York, NY, USA, 370-381. https://doi.org/10.1145/3359989.3365411
Ruozhou Yu, Guoliang Xue, Vishnu Kilari, Dejun Yang, and Jian Tang. 2018.
CoinExpress: A Fast Payment Routing Mechanism in Blockchain-Based Payment
Channel Networks. 1-9. https://doi.org/10.1109/ICCCN.2018.8487351

Saleem Zahid, Kifayat Ullah, Abdul Waheed, Sadia Basar, Mahdi Zareei, and
Rajesh Roshan Biswal. 2022. Fault tolerant DHT-based routing in MANET.
Sensors 22, 11 (2022), 4280.

Xiaoxue Zhang, Shougian Shi, and Chen Qian. 2021. WebFlow: Scalable and
Decentralized Routing for Payment Channel Networks with High Resource
Utilization. CoRR abs/2109.11665 (2021). arXiv:2109.11665 https://arxiv.org/abs/
2109.11665

Yuhui Zhang and Dejun Yang. 2019. RobustPay: Robust Payment Routing Protocol
in Blockchain-based Payment Channel Networks. In 2019 IEEE 27th International
Conference on Network Protocols (ICNP). 1-4. https://doi.org/10.1109/ICNP.2019.
8888094

Yuhui Zhang and Dejun Yang. 2021. RobustPay+: Robust Payment Routing With
Approximation Guarantee in Blockchain-Based Payment Channel Networks.
IEEE/ACM Transactions on Networking 29, 4 (2021), 1676-1686. https://doi.org/
10.1109/TNET.2021.3069725

Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and
John D Kubiatowicz. 2004. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on selected areas in communications 22, 1 (2004), 41-53.

[58]

[59]

[60

(62

[63

[64

[65

[66

(67

A EXTENDED RELATED WORK

The distributed version of Dijkstra’s shortest path algorithm pre-
sented in [2-4] requires each vertex in the graph to reveal the
vertices it is not connected to, to an “algorithm designer” who runs
the algorithm. Revealing this information eventually reveals the
entire network topology and cannot be leveraged to PCNs because
of privacy violations.

The solution presented in [2-4] for the minimum cost-flow prob-
lem also has the same assumptions as the distributed version of the
Dijkstra’s shortest path algorithm.

The minimum mean cycle problem presented in [2-4] is or-
thogonal to our work since it focuses on finding cycles in graph
which have the least number of edges, whereas RACED focuses
on performing secure routing in PCNs. The idea proposed by Ab-
delrahman et al. in [5] proposes an auction mechanism in which
sellers sell the maximum flow that is transmittable through them
and the bidders bid for these maximum flows. This idea assumes
the total amount of flow transmittable through the network (the
network throughput) to be public and also requires a trusted en-
tity called “control agency” that oversees the auction. This idea
cannot be leveraged to perform secure routing in PCNs. PCNs are
distributed networks where having a central root of trust is not
possible. Revealing the complete throughput of the network for
PCNss is a violation of privacy.

DHTs were developed initially to facilitate file-sharing among
a set of cooperating peers [36, 52, 56, 67]. DHTs are also being ex-
plored for solving routing challenges in MANETSs (Mobile Ad-hoc
Networks), VANETs (Vehicular Ad-hoc Networks), and for data

14

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

sharing across IoT (Internet Of Things) devices [1, 38, 58, 63]. How-
ever, in the case of PCNs, nodes (peers) do not share data/files but
send and receive money. Peer-to-peer routing protocols that use
DHT do not take part in any payment channel opening/closing, do
not interact with a blockchain, and do not route payments among
each other. Finally, in DHTs it suffices if a node is able to locate
another node in the network for peer-to-peer communication. How-
ever in PCNs, in addition to finding efficient paths between nodes,
the paths should also have enough liquidity to route the amount
specified by the sender.

B OVERVIEW OF CHORD

Chord [56] is a scalable, peer-to-peer, distributed lookup protocol
that locates a node that stores a particular data item in p2p networks.
It uses a consistent hashing mechanism that enables the lookup to
be completed in time that is logarithmic in the number of nodes
present in the DHT ring. The nodes in Chord are placed in the form
of a circle called the identifier circle. Each node hashes its IP address
to produce an m bit digest that acts as its node identifier, denoted by
the numbers next to each node in Figure 3. Each node in the Chord
ring in Figure 3 is responsible for storing a key (represented as a
digest) that points to a certain fragment of data. This key, k is the
digest obtained by hashing the identifier of the key with the same
hash function that was used to create the node identifiers. Each key
k will be assigned to the node whose identifier is equal to or follows
the identifier of k in the identifier circle. Each node in the Chord ring
maintains a look-up table called finger table that contains at most m
entries with log(m) being distinct. Each node also maintains a table
containing its first log(n) successors, called the successor table. The
first entry in a node’s finger table is the node’s immediate successor
in the identifier circle. Consider Figure 3, where seven nodes are a
part of a Chord ring. The finger table entries of a node identified
by i are computed thus: (i + 201 mod m). If we set m = 6, the
finger table entries of node Charlie are: (26 + 2° mod 2°), (26 + 2!
mod 2°), (26 + 22 mod 2°), (26 + 2* mod 2°), (26 + 2¢ mod 2°),
(26 + 2° mod 26) which gives us the set of identifiers {27, 28, 30,
34, 38, 61}, which map to nodes [Amit, Amit, Amit, Amit, Jill and
Garcia]. In case the identifier is not assigned to any node in the
Chord ring (27 in this example), the corresponding finger table
entry would be the next node in the ring whose identifier is greater
than 27, in this case, Amit. In Chord, when a node receives a request
to locate a key k that is not in its possession, it forwards the request
to the closest predecessor of k in its finger table. For example, if
Denise wants to resolve a query to locate node Jill, Denise needs to
locate the node that precedes Jill in the Chord ring, which is Amit.
Now from Denise’s finger table shown in Figure 3, the node closest
to Amit (based on node identifiers) in Alice’s finger table, which
contains [Rajiv, Rajiv, Rajiv, Rajiv, Rajiv, Amit] is Amit himself (Amit
is in the finge table of Denise), and Jill is the first node in the finger
table of Amit which contains [Jill, Daniela, Garcia, Denise]. Hence
the distance between Denise and Amit is greater than the distance
between Amit and Jill, so Amit is closer to Jill than Denise. Hence
Denise passes the request of locating Jill, to Amit. Since the finger
table of Amit contains [Jill, Daniela, Garcia, Denise], Jill reaches
Amit in one hop. In this manner, the number of steps is halved
every time a node locates another node in the identifier circle. This

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

[Denise, Rajiv, Amit] Garcia (59)

[Garcia, Denise, Rajiv] Daniela (52)

[Daniela, Garcia, Denise] Jill (48)

[Jill, Daniela, Garcia, Denise] Amit (39)

Denise (1) [Rajiv, Amit]

Rajiv (19) [Charlie, Amit, Jill]

[Amit, Jill] Charlie (26)

Figure 3: An example Chord ring with 7 routing helpers. The values in parenthesis adjacent to the node represents the node
identifier. The values in the square brackets [...] represent finger table entries. In each finger table, we only show unique entries.

reduces the lookup time to log(n), where n is the number of nodes
in the Chord ring.

C PROTOCOLS

Protocol 6: Key Setup

1 fori=1;i <mi++do

2 node i does KeyGen(l’l) — skj, vk;

/* creating temporary identities */
3 node i does KeyGen(lA) — SKj, VK;

4 node i does Signg . (VK;) — oy,

5 node i calls RetrieveNeighbors(vk;) — I;
6 node i sends vk; to all the nodes in [;

7 for j=1;j< |I;|;j++ do

8 if Verify, (VK;, oyk;) — 0 then

9 ‘ j returns L

10 else

1 | PC.Open(VK;, VKj, Iw; j, Iwj ;)

Key Setup, Protocol 6: This protocol handles the generation of long-

term and temporary identities for all the nodes in the PCN. These
keys are used to sign and verify messages in the subsequent proto-
cols of RACED. Initially, all the nodes create their temporary and
long-term signing and verification keypairs, denoted by (SK, VK)
and (sk, vk) respectively using the KeyGen function. All the nodes
in the PCN send their long-term verification key to their immedi-
ate neighbors. Nodes that are immediate neighbors of each other
exchange payments in the PCN and hence they need to know each
other’s real identities. The temporary verification key of each node
is signed using the long-term signing key to produce a signature.
This signature ties the long-term identity of a node to its tempo-
rary identity. This signature is then verified by all the immediate
neighbors of a node using the node’s long-term verification key. If
the signature verifies, the two nodes open a payment channel. The
creation of temporary identities is done to hide the real identity of
anode in the PCN from its non-neighboring nodes. This helps us
achieve our goal of sender/receiver privacy.

Routing Payment, Protocol 7: This protocol facilitates the routing
of payment between Alice and Bob. Initially, Alice retrieves the
endRH from each path tuple sent to her in the stack P by the nearRH

15

Protocol 7: Routing Payment

1 Alice maintains a list T = 0

2 for i =Li < |P|;i++ do

3 ‘ Alice performs T.Add(endRH;)

4 Alice sends T to Bob out-of-band and Bob picks and sends
endRHp,, = min(hcepgr, Bop) Vi€ T

5 Alice calls ChoosePath(P, endRHp,) — P’

6 Bob does X «s{0,1}*, H(X) — Y and sends Y to Alice

7 for each pair of consecutive nodes i, j along the path of txid
from Alice to Bob do

8 Alice retrieves the txid for the transaction to be sent to
Bob from the tuple K = (., txid, -)

9 previous = i, next = j

10 previous sends (inPath, Y, txid) to next and

1 previous establishes HTLC with next and previous =

next and next = previous +1
12 for every pair of consecutive nodes along the path of txid
from Bob to Alice do

13 if previous reveals X to next then

1 if HTLC.Pay (vVkpreviouss VKnext, txid, amt) —
success then

15 ‘ previous = next and next = previous -1

16 else

17 ‘ return L

18 else

19 ‘ return L

at the end of Protocol 3. The node identifier of the endRH is the last
value in each tuple present in P. These endRHs are added to the list
T that Alice maintains locally. Alice sends this list to Bob using a
secure out-of-band communication channel. Bob picks one endRH
that is closest to him based on the minimum hop count between him
and the endRH. Bob notifies Alice regarding his choice of endRH
using the same channel. Alice chooses the shortest path that con-
tains the RH picked by Bob as the endRH using the ChoosePath
function. This function returns the path, P’. Bob samples a random
pre-image X, hashes it to produce a digest Y, and sends Y to Alice.
For each consecutive node along the path from Alice to Bob, every
node sends the tuple (inPath, Y, txid) to its immediate neighbor.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Upon receiving this tuple, every node along the path establishes an
HTLC with its immediate neighbor. Every pair along the path from
Bob to Alice reveals the secret used for the HTLC. Upon successful
revealing of this secret from every node to its immediate neighbor

along the path from Bob to Alice, the payment process is completed.

Using HTLCs ensures that no honest party loses any funds because

16

Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

of malicious behavior by other parties in the system, which helps
us in achieving our goal of balance security. HTLCs also ensure
that all the link weights of the nodes along the transaction path go
back to the state they were in prior to the commencement of the
transaction if the transaction fails for any reason. This achieves our
goal of atomicity.

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Parties
	3.2 Setup and Terminology

	4 Adversary Model
	5 Construction
	5.1 Technical Overview
	5.2 Helper functions

	6 Protocols
	7 Experimental Evaluation
	7.1 Dataset and Simulation Setup
	7.2 Evaluation And Results

	8 RACED Security Analysis
	9 Conclusion
	Acknowledgments
	References
	A Extended Related Work
	B Overview of Chord
	C Protocols

