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ABSTRACT: A method for the squaramide-organocatalyzed enantio-
selective addition of a silyl-protected masked acyl cyanide (MAC)
reagent to various S-nitrostyrenes is described. Reactions are carried
out in a freezer and provide products cleanly and in high
enantioselectivities at very low catalyst loadings. Adducts are then
unmasked, providing various oxidation state 3 functional groups,
thereby highlighting the utility of these MAC reagents and a new

strategy for the preparation of f-amino acids.

N ontraditional umpolung reactivity has allowed seemingly
impossible bond forming reactions to be realized." An
acyl anion equivalent is an umpolung synthon of the acyl
carbon, reversing the electrophilic site to be employed as the
nucleophile. The acyl anion synthon is deprotonated to
generate the nucleophilic oxidation state 2 species. Examples
include cyanide, dithiane,” hydrazone,3 metalated enol, and
nitronate.” The power of the synthon is further realized when
it serves as a traceless linchpin, bringing together two
components. These equivalents contain an increased oxidation
state such as silyl dithiane,® trichloromethylcarbinol,” and
masked acyl cyanides (MAC)® (Figure 1).
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Figure 1. Representative acyl anion equivalents.

The synthesis of MAC reagents involves an intermediate
hydroxymalononitrile, allowing derivatization to various
protecting groups as in Scheme 1 (R = silyl (TBS, TIPS,
TBDPS), ester (Ac and other derivatives), and acetal (MOM,
EE)).”™"* Unlike traditional umpolung reagents, the increased
acidity of the methine hydrogen does not require stron§
alkyllithium bases to generate the acyl anion equivalent.”
Weak tertiary amine bases or bicarbonates are sufficient to
achieve deprotonation, allowing both TBS-MAC and MOM-
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MAC, and to a lesser extent Ac-MAC, to be exploited in a
variety of bond transformations including alkylations,”'*"*
addition to imines®'>'® and aldehydes,'"'”"*" as well as
conjugate addition to enones'””' and quinone methides.””
MAC has also been used as a one carbon homologue in the
total synthesis of complex natural products.”>~** Only recently
has the enantioselective addition of MAC reagents been
realized through the organocatalyzed addition to imines'® and
enones'’ and an iridium-catalyzed allylic alkylation."*

Our group utilizes MAC reagents to access chiral building
blocks and in the design of small molecule inhibitors of the
HIV integrase enzyme.”” Our interest in various projects
necessitated gram scale preparation of the silyl-protected MAC
reagent, TBS-MAC, which we have recently developed in a
scalable and detailed }'ZJreparation.12 Given the importance of
chiral f-amino acids,” we envisioned an organocatalyzed
addition of MAC to substituted phenyl f-nitrostyrenes to
access the precursor a-aryl-f-nitropropanoic esters (Scheme
2¢, after unmasking). In 2015, Zhang reported an enantiose-
lective iridium-catalyzed hydrogenation of a-aryl-B-nitro-
acrylates to yield a-aryl-f-nitropropanoic esters (Scheme
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Scheme 2. Approaches to Chiral f*-Amino Acid Precursors

(a) Zhang 2015: hydrogenation of the nitroacrylate

Ar Ir (2.5 mol%) Ar
RO NO, 50 atm H, . o NO,
2 DCM, 70 °C, 48 h 2
90-96% yield 92-98% ee
(b) Wu 2018: arylation of the nitroacrylate
Rh(l) (3 mol%) Ar
ArB(OH),, KHF 2 NO
N0z > N0z
ROL tol, 60 °C, 24 h 0,
____________________________ 7-63% yield _TZ9kee .
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TBSO /\/NO2 SQ (2 mol%) TBSO>|/'\/N02
Ar R ” NC \S\ unmask
NC CN DCM, -15 °C,24 h CN as the
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2a).”" In 2018, Wu described the rhodium-catalyzed addition
of aryl boronic acids to nitroacrylate (Scheme 2b).*' Our
approach is complementary, both in design of the substrate
and the catalyst type, to provide valuable chiral building blocks
as precursors to chiral f*-amino acids.

We identified both squaramide (SQ) and thiourea (TU)
catalysts as ideal for the conjugate addition as they can activate
both S-nitrostyrene and TBS-MAC via noncovalent inter-
actions. Accordingly, we screened commercially available SQ
I-III (entries 1—6) and TU IV-V (entries 7—11) with
unsubstituted phenyl f-nitrostyrene la with TBS-MAC 2 in
DCM at 0 °C (Table 1). Reactions were monitored by TLC at
1, 4, 8, and 24 h. These initial results were quite promising
with full conversion to 3a observed within 24 h at very low
catalyst loadings of only 0.5 mol % for all but TU IVd, which

Table 1. Screen of Organocatalysts”

OTBS catalyst TBSO CNCN
Ph/\/Noz )\ (0.5 mol%) L 3a
NC”™ “CN DCM (0.3 M) NO,
1a 2 0°C,24h Ph
entry catalyst time (h) conv” (%) yield® (%) ee? (%)

1 I 24 100 65 50
2 11 8 100 84 72
3 IIla 24 100 74 79
4 1I1b 24 100 79 S1
S IIIc 24 100 80 75
6 11d 24 100 76 81
7 IVa 8 100 83 66
8 Vb 8 100 78 70
9 IVc S 98 92 28
10 wd 24 77 60 17
11 Vv 24 98 76 12

“Reaction conditions: catalyst (0.5 mol %) was added to la (0.2
mmol) and 2 (1.1 equiv) in DCM (0.3 M) at 0 °C and stirred 24 h.
Reactions were filtered through a small SiO, plug and rinsed with
DCM (3 X 1 mL) to remove the catalyst. “Reactions were monitored
by TLC at 1, 4, 8, and 24 h. Once complete by TLC, they were
checked by "H NMR for conversion in relation to starting la. “Yield
refers to isolated pure 3a. “The ee of 3a was determined by chiral
HPLC.

contains a bulky isoindoline ring (entry 10). The ee’s were
>50% for all the SQ catalysts (entries 1—6) and 2 of the TU
catalysts (entries 7 and 8). Three of the highest selectivities
observed were with catalysts containing the piperidine ring
(79% ee for SQ Illa (entry 3), 81% ee for SQ IIId (entry 6),
and 66% ee for TU IVa, entry 7). We chose SQ IIId and
undertook a solvent screen to maximize ee.

sQ o o@ o] o] 0 o]
j : 3 N Ay N[j

H H H
o rNMR

| N Il
llla: R = —(CH3)4—
TU S s lllb: R = CH3
, Illc: R = —(CH,)4CH
A . Ar )L Fa 24mTs
r\H)LH\ Q NN O llld: R = ~(CHa)s—;
N v HN Ar = 4-(CF3)CgHy

IVa: R = -(CH3)4— IVe: R = CH3; Ar = CgF5
IVb: R = —-(CH,)4,CH3 1Vd: R = isoindoline

Ar = 3,5-(CF3),CgH3
unless otherwise noted

Table 2 summarizes the results of a solvent screen
conducted at 0 °C (full screen in the Supporting Information).
A wide range of solvents were well tolerated and resulted in the
formation of product (3a) at the same low catalyst loading as

Table 2. Solvent Screen with Squaramide IIId“

OTBS SQ-llld (0.5 mol%) TBSO B
—_—

CN

X NO, 3a
NO

0°C,24h Ph 2

solvent (0.3 M)

NC CN
1a 2
entry solvent yieldb (%) ee (%)
1 hexanes 67 77
2 toluene 79 77
3 C4H,CF, 86 82
4 CH,Cl, 76 81
5 CHC, 74 86
6 cal, 76 78
7 Et,0 85 61

“General conditions: SQ-ITId (0.5 mol %) was added to 1a (0.2
mmol) and 2 (1.1 equiv) in solvent (0.3 M) at 0 °C and stirred for 24
h. Reactions were filtered through a small SiO, plug and rinsed with
DCM (3 X 1 mL) to remove the catalyst. bYield refers to isolated
pure 3a. “The ee of 3a was determined by chiral HPLC.
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in Table 1. The best solvents were those that are nonpolar
(entries 1—6). Halogenated solvents showed slight improve-
ment over their hydrocarbon equivalents (entry 3 vs entry 2;
entries 4—6 vs entry 1). Solvents containing a heteroatom such
as oxygen, nitrogen, or a free OH provided moderate
conversions but low selectivities, presumably due to disruption
of noncovalent interactions (entry 7). Overall, chloroform
provided the best yield and enantioselectivity (entry S, 74%
yield, 86% ee).

We then studied the temperature and order of the addition
of reagents to increase ee. The solvent screen was run with
reactions in the refrigerator (0 to 2 °C). We found that moving
the reaction to the freezer (—15 to —18 °C) provided a slightly
higher enantioselectivity (86% — 88% ee for 3a). We also
varied the order of addition. Our original procedure was in
adding the SQ_ catalyst last, as noted in related conjugate
additions.'® We found an increase in ee if we added the catalyst
first with 1a (88% — 92% ee), indicating that precomplexation
of SQ with 1a was important prior to adding the nucleophile.
We then moved forward to a substrate screen in which we
maintained the lower temperature (—15 °C) and addition of 2
last.

We examined various aryl, heteroaryl, and alkyl f-nitro-
styrenes (Scheme 3). The initial catalyst loading had to be

Scheme 3. Scope of f-Nitrostyrene Substrates

OTBS  SQ-llld (2.0 mol% CN
oo, T ( k) TBSO.[ CN
R NC” O CN CHCl; (0.3 M)
;

NO
1a-l 2 _15°C R 2
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CN CN
TBSO CN TBSO CN TBSO CNCN
NO, NO, NO,
3a 3b 3c
99% vyield 90% yield ClI 85% vyield
92% ee 92% ee 88% ee
N
TBSO CNCN TBSO ¢ CN
NO, NO,
3d 3e
FsC 91% yield MeO" 939 yield 96% yield
90% ee 85% ee OMe 90% ee
CN CN
850NN TBSO.[CN TBSO.[-CN
NO, N NO, Gi/ NO,
3g » 3h \_o0 3i
Br 98% yield N™  99% yield 91% yield
87% ee 83% ee 89% ee
CN CN CN
TBSO CN TBSO CN TBSO CN
\I/NOZ N02 \/\L N02
©/\ 3j 3k 3l
99% vyield 94% vyield 83% vyield
81% ee 90% ee 88% ee

increased to 2.0 mol % to achieve full conversion within 24 h
(5 mol % for alkyl derivatives). Para-substituted electron
withdrawing (3c,d) and donating (3b,e) nitrostyrenes under-
went the reaction with high yields and selectivities. Ortho (3g)
or meta (3f) substitution did not negatively impact the
selectivity. The reaction also tolerated heteroaryl nitrostyrenes
with minimal impact to the enantioselectivity (pyridyl 3h and
furyl 3i). A separate background reaction with pyridyl 1h and 2

ascertained that the lower ee was due to self-catalysis from the
slight basicity of the pyridyl nitrogen (~5% conversion).
Cinnamoyl 1j, which could undergo 1 16->” or 1,4-addition was
found to only undergo the latter (3j). Even branched alkyl 1k
and straight chain 11 converted in good yield and selectivity.
Substitution at the S-position (f-Me derivative of 1la, not
shown) did not react, even at 25 °C, and instead resulted in
decomposition of the nitrostyrene.

Our next efforts were to unmask the TBS-MAC adduct,
which generates the intermediate acyl cyanide that can be
trapped as an oxidation state 3 functional group. It also allowed
us to prove the absolute stereochemistry. We could scale up
the reaction to yield 650 mg of product utilizing only 2 mol %
SQ-IIId (3a, 91% ee, Scheme 4). Using slight modification to

Scheme 4. Unmasking and Stereochemical Determination

1) HF+pyr, THF Oy OMe  ----o-o-ooooo- .
3a 1) HFepyr, THE \o, | R4(88%ee) |
91%ee  2) MeOH, EtsN 21 [alp =+150.1 |
-35°C, 4 h (c=2.8, CHCI3)!
TBAF | spoc\ 95%, 91% ee R-4 L ref32
BuNH, | %% - lo]p = +116.6 ===
THF (¢ = 1.0, CHCI3)
H 1) HF-pyr 3 M aq HCI
(6} N. THF [e) OH reflux, 3 h
BU 1\ 2) 1,0
NO, NO,
-35°Cto rt
6 19h 5  51%, 87% ee from 4

78%, 91% ee 62%, 84% ee from 3a

the procedure developed by Rawal,"’ we unmasked 3a to form
the methyl ester (4) in good yield while maintaining ee
(Scheme 4). The optical rotation of 4 was the same as the
Zhang group,’” but opposite the Du group,” of which they
determined through chemical comparison as the S-enantiomer
(S-4), leading to our assignment as the R-configuration (R-4,
Scheme 4). Other adducts 3b—31 (Scheme 3) were assigned R
by analogy. Nitroacid § was formed by saponification’ of ester
R-4 using HCl with minimal loss to ee (91% — 87% ee).
Attempts to unmask 3a directly to the acid with TBAF'**
were not successful. However, using a similar unmasking step
as the ester (HF-pyr) but quenching with water instead of
MeOH/Et;N did provide acid § in 62% yield, albeit with
slightly lower ee than saponification (84% vs 87% ee, Scheme
4). Nitroacid § has been shown to be a precursor to the f-
amino acid after hydrogenation of the nitro group.”
Formation of amide 6 was smooth with no epimerization,
following conditions similar to Nemoto’s.*®

Since the order of the addition was important to achieving
higher selectivity, we propose the following mechanism in
which the catalyst SQ-IIId first complexes to S-nitrostyrene 1a
(7, Figure 2). From unpublished work using Gaussian16 to
find the most stable conformers of 1a and SQ-IIId, we found
single point binding of one oxygen of S-nitrostyrene is favored
(as in 7). We then propose that MAC 2 orients to the re face of
1a where the tertiary amine is positioned for deprotonation (as
in 8), leading to adduct 9 with the anion adjacent to the NO,
group. Proton transfer with SQ-IIId-H" yields the product 3a
and regenerates the catalyst. An alternative mechanism where
the anion of 2 is in the catalyst pocket, as determined in the
SQ-catalyzed conjugate addition of pentanedione to 1a, cannot
be ruled out without further investigation.’’

In summary, we have developed an enantioselective
conjugate addition of the masked acyl cyanide TBS-MAC to

https://doi.org/10.1021/acs.joc.3c01838
J. Org. Chem. 2023, 88, 16666—16670


https://pubs.acs.org/doi/10.1021/acs.joc.3c01838?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.3c01838?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.3c01838?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.3c01838?fig=sch4&ref=pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.3c01838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Organic Chemistry

pubs.acs.org/joc

3a >/>
sQ-lild
TBSO:CE/ FK %\
9

R No2 @
0,

j;[ Nl‘07
@ % N

OTBS
NC* CN

Figure 2. Proposed mechanism of the SQ-catalyzed conjugate
addition of TBS-MAC 2 to f-nitrostyrene la.

various aryl, heteroaryl, and alkyl f-nitrostyrenes. SQ_ IIId,
which contains a chiral cyclohexyl piperidine, effectively
promotes the reaction with low catalyst loadings through
two unique modes of hydrogen bonding to produce the
adducts in high yields and excellent enantioselectivities. The
adducts can be unmasked to various oxidation state 3
functional groups, thereby providing an entry to the synthesis
of f*-amino acids.
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