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Abstract

Blood velocity and red blood cell (RBC) distribution profiles in a capillary vessel cross-section in the microcirculation are generally
complex and do not follow Poiseuille’s parabolic or uniform pattern. Existing imaging techniques used to map large microvascular
networks in vivo do not allow a direct measurement of full 3D velocity and RBC concentration profiles, although such information is
needed for accurate evaluation of the physiological variables, such as the wall shear stress (WSS) and near-wall cell-free layer (CFL),
that play critical roles in blood flow regulation, disease progression, angiogenesis, and hemostasis. Theoretical network flow models,
often used for hemodynamic predictions in experimentally acquired images of the microvascular network, cannot provide the full 3D
profiles either. In contrast, such information can be readily obtained from high-fidelity computational models that treat blood as a
suspension of deformable RBCs. These models, however, are computationally expensive and not feasible for extension to the
microvascular network at large spatial scales up to an organ level. To overcome such limitations, here we present machine learning
(ML) models that bypass such expensive computations but provide highly accurate and full 3D profiles of the blood velocity, RBC
concentration, WSS, and CFL in every vessel in the microvascular network. The ML models, which are based on artificial neural
networks and convolution-based U-net models, predict hemodynamic quantities that compare very well against the true data but
reduce the prediction time by several orders. This study therefore paves the way for ML to make detailed and accurate hemodynamic
predictions in spatially large microvascular networks at an organ-scale.
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Significance Statement

Existing techniques to image capillary blood vessel networks in vivo do not allow a direct measurement of hemodynamic variables
such as the wall shear stress (WSS) that play critical roles in health and disease conditions. Here we present artificial intelligence
(AI) techniques that provide highly accurate and fully 3D quantification of blood velocity, red blood cell concentration, WSS, and other
critical hemodynamic variables in every vessel in a vascular network. This study paves the way for Al to make hemodynamic predic-
tions in organ-scale capillary vessel networks while retaining the subcellular scale details and overcoming the limitations of the in
vivo imaging techniques, with potential applications in hematological and microvascular disorders, angiogenesis, and vascular-
mediated drug delivery.

Introduction distribution in the microvascular network, therefore, is of im-
mense physiological importance.

The blood velocity and RBC concentration profiles over the
cross-section of a microvessel are generally complex and estab-
lished under multiple, and often competing, mechanisms related

to RBC deformation and fluid motion in the mosaic-like topology

Capillary vessels, the smallest blood vessels in the body, are re-
sponsible for delivering oxygen and other metabolites to tissues.
Together with vascular bifurcations and mergers, they form a
complex network of vessels referred to as the microvascular net-
work (1-3). The distribution of blood flow and red blood cells

(RBCs) in the network is critical to the healthy function of the
body as it dictates the oxygen and nutrient delivery and waste re-
moval (4, 5). The microvascular network also plays a critical role
during vascular remodeling and in diseases, e.g. cardiac and cere-
bral disorders, diabetes, tumor growth, sickle cell anemia, and
malaria. These conditions are known to alter the blood flow and
RBC distribution (6-9). A knowledge of the blood flow and RBC

of the microvascular network (10, 11). The velocity profile is not
parabolic (i.e. Poiseuille’s profile) as is the case for a single-phase
fluid flowingin a long, straight tube. The RBC concentration is also
nonuniform: Being highly deformable, RBCs undergo a cross-
stream migration which tends to increase their concentration
near the vessel center and reduce toward the wall, where a cell-
free layer (CFL) develops (12, 13). The complexity of the profiles
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increases further in the presence of vascular junctions and vessel
tortuosity. Downstream of a vascular bifurcation, the velocity and
concentration profiles tend to skew toward opposite sides of a ves-
sel (14-16). The degree of skewness may alter as RBCs flow
through subsequent bifurcations (15). Vessel tortuosity also af-
fects the profiles by skewing them toward the side with higher
curvature (17, 18).

Obtaining such full, 3D profiles of blood velocity and RBC con-
centration is important not only for understanding the hemophy-
sics of microvascular flow and for predicting tissue perfusion, but
also for an accurate evaluation of critical physiological quantities,
such as the wall shear stress (WSS) and CFL. The WSS and its gra-
dient, to which the endothelial cells respond to trigger vasomo-
tion, can be accurately evaluated from the full velocity profile
(19-21). The CFL provides a means to reduce the apparent blood
viscosity in small vessels as illustrated by the Fahraeus—
Lindqvist effect (3, 11-13, 22). A full 3D description of the CFL
can be accurately obtained from the corresponding RBC concen-
tration profile (12, 16, 18). The CFL further provides a diffusion bar-
rier to the gas exchange and facilitates platelet and leukocyte
margination which are critical to hemostasis and the immune re-
sponse of the body (3, 11-13).

Although recent advances in imaging techniques in vivo have
enabled high-resolution, 3D mapping of the microvascular net-
work at large spatial scales up to an organ level (5, 23-25), meas-
urement of the full, 3D profiles of blood velocity and RBC
concentration in every vessel of the network remains difficult
(25). Low-dimensional theoretical models of network blood flow
are often used to predict vessel-averaged hemodynamic quan-
tities in such experimentally acquired images (26, 27). These mod-
els, however, treat each vessel as 1D conduit and assume
Poiseuille’s law. As such, they cannot provide the full, 3D profiles
of the velocity, concentration, WSS, and CFL. In contrast, such de-
tailed information is readily obtained by high-fidelity computa-
tional models that retain the three-dimensionality of the vessels
and treat blood as a suspension of deformable RBCs. Such models
have been used to predict hemodynamics in single microvessels,
bifurcations, and physiologically realistic microvascular net-
works, e.g. Refs. 12, 15, 16, and 28-33. Such models, however,
tend to become computationally expensive with the increasing
size of the network, therefore, they are not feasible for use in large
networks at organ-scale.

To overcome this limitation of high-fidelity models, we con-
sider a machine learning (ML) approach. In recent years, ML
techniques have been applied to various microscale hemo-
dynamics studies. Examples include the classification of RBC
shapes (34), predicting RBC deformation and trajectory in micro-
fluidic devices (35), estimation of cell deformability (36-38), fast
processing of in vivo images (39), and estimating RBC flux in cor-
tical capillary networks (40). ML was also used to integrate im-
ages of blood flow with underlying physical laws to infer the
flow field in microaneurysm (41).

Recently, our group has developed an ML model to predict
blood flow rate and vessel-averaged RBC concentration in the
microvascular network (42). This prior model was a spatially 1D
model as the velocity and concentration profiles over a vessel
cross-section were not considered. In this study, we develop ML
models to predict the full 3D blood velocity, RBC concentration,
WSS, and CFL profiles in every vessel in the network. Such detailed
information can otherwise be obtained only from the high-fidelity
models. We demonstrate that the ML predictions compare against
the true data with a mean-squared error <0.1 but reduce the pre-
diction time by several orders compared to a high-fidelity

a Vasculature A (o]

Fig. 1. Data generation via high-fidelity RBC-resolved simulations. a and
b) A visualization from the simulations for vasculature A and B. Black
arrows indicate inlets/outlets. The images are in x, y plane and looking
down z axis. ¢) A close-up showing RBC deformed shapes. d and e)
Time-averaged velocity and RBC concentration at a vessel cross-section
showing nonuniform and highly skewed profiles. Red and green arrows
indicate vessels where (c) and (d and e) are sampled.

simulation. This study therefore paves the way for ML to bypass
expensive computations and provide highly accurate and full 3D
hemodynamic data in spatially large microvascular networks at
organ-scale.

Data generation

Our data comes from high-fidelity, 3D simulations of the flow of
deformable RBC suspension in two physiologically realistic micro-
vascular networks which are built in silico resembling in vivo im-
ages (43). We refer to these networks as vasculatures A and B
(Fig. 1); the first is used for training, and the second for testing.
Each vasculature is geometrically complex with multiple (~50)
vessels, bifurcations (~21), and mergers (~20) and represents a tis-
sue area of ~ 0.135 mm?. Blood as a suspension of RBCs and plas-
ma flows through the in silico vasculatures, and at any instant of
time, there are about 1,000 RBCs present in each. The physical
flow time simulated is about 1.5 s, which is more than an average
cardiac cycle.

The numerical methodology used in the high-fidelity simula-
tions is based on a coupled finite volume/finite element/
immersed-boundary method and is detailed in our previous stud-
ies (30, 43). Briefly, the in silico vasculatures are built using CAD
software and contained in the computational domain that is dis-
cretized by ~ 160 million mesh points. Fluid motion is governed
by the unsteady Stokes equations and continuity equations. A
physiologically relevant flow rateis specified as the boundary con-
dition at the network inlets. A ghost-node immersed-boundary
method is used to implement the no-slip boundary condition on
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the vessel surfaces. RBCs are injected at the inlets with an average
hematocrit of 30%, and they distribute throughout the vascula-
ture by the flow. Each RBC is modeled as a viscous liquid made
of hemoglobin enclosed by a membrane with the undeformed
shape of a biconcave discocyte. The membrane is assumed to pos-
sess a resistance against shearing, area dilation, and bending. The
viscosity difference between hemoglobin and plasma is also taken
into consideration. A continuous forcing immersed-boundary
method is used to model the two-way coupling between the fluid
and RBCs.

A visualization of the RBC distribution in one instant and a
close-up of RBC shapes in a vessel segment are shown in Fig. la—c.
Heterogeneous RBC distribution, which is a hallmark of the micro-
vascular blood flow, is predicted in our simulation. Highly de-
formed RBC shapes, characterized as parachute and slipper
shapes as observed in vivo, are also predicted.

The simulations provide 3D, time-resolved fluid velocity
u(x,y,zt) and RBC concentration H(x,y,z, t) distributions in
every vessel in the vasculature. Our specific interest is the time-
averaged but spatially varying velocity and concentration
profiles defined as u=u(xvy,z):=lulxy,z t)/dt/T and
H=H({x,y, z):=11x,y, z, t)dt/T, respectivel;T/, where Tis the simu-
lation time, x, y,Tz represents the Eulerian space, and I is an indi-
cator function thatis one inside a cell and zero outside. The WSS
and CFL are readily obtained from u(x, y, z) and H(x, y, z). Three
hundredinstances of data are used to obtain the averages. Were-
fer to these averages as the direct simulation results or DSR.
Figure 1d and e shows u(x, y, z) and H(x, y, z) at one vessel cross-
section. As seen, u(x, y, z) and H(x, y, z) are nonuniform, nonpar-
abolic, and highly skewed. The WSS and CFL similarly have com-
plex distributions. Our goal is to develop ML models that can
predict such complex spatial distributions.

ML models and results

Each vascular network is composed of three components: ves-
sels, bifurcations, and mergers. The flow dynamics of RBCs
and the mechanisms leading to complex velocity and hemato-
crit distributions in each vascular component are different.
Thus, three separate ML modes are built for each component.
Furthermore, the RBC concentration and blood velocity profiles
are coupled together due to the coupling between RBC deform-
ation and fluid motion, and hence, they must be predicted
simultaneously.

We first build the ML models for each of the three vascular
components using the DSR data from vasculature A. Then, we
test the models and predict hemodynamic variables in vascula-
ture B in two steps. First, we consider each vascular component
inisolation: For example, for a bifurcation in vasculature B, we spe-
cify the DSR velocity and RBC concentration as the input immedi-
ately upstream of the bifurcation and predict the output at the
daughter vessels immediately downstream. Next, we consider
the entire vasculature-wide prediction. In this, we only specify
the DSR data as the input at the inlet of the vasculature and pre-
dict the concentration and velocity profiles as they evolve in the
entire vasculature by progressing through the hierarchy of ves-
sels, bifurcations, and mergers.

Furthermore, we develop both 2D and 3D models. For the 2D
model, the velocity and concentration distributions over the mid-
dle z plane of the network are considered so that u=u(x, y) and
H=H(x, y) (see Fig. 1a and b). The advantage of 2D models is
that they are less complex and require less amount of training
data. For this, we use the artificial neural network (ANN).

Thereafter, we consider a 3D model to predict u(x,y,z) and
H(x,y, z) for which we use a convolution neural network-based
U-net model.

2D ML models

Bifurcations and Vessels and Mergers sections describe ML mod-
els for vascular components in isolation, and Vasculature-Wide
Prediction section for the whole vasculature-wide prediction.

Bifurcations

The goal here is to predict the velocity and RBC concentration
profiles in the daughter branches downstream of a bifurcation,
namely, ug (£1), Ha1(¢1), uaa(£2), Hao(¢) when the corresponding
conditions in the mother vessel, un(&n), Hn(én), are known,
where &, &, &, indicate, respectively, a local coordinate along
the diameters of the daughter and mother vessels (Fig. 2a). As
RBCs flow through a bifurcation their concentration becomes
biased toward the side of a daughter vessel that is closer to the
apex of the bifurcation, while the velocity profile is biased to
the opposite side. With respect to a global coordinate, each pro-
file is thus oppositely biased in the two daughter vessels. To ap-
propriately include such bias, & and & should be globally
opposite but locally from the similar (e.g. apex side) side in
each daughter vessel.

The DSR data is first prepared to generate the input and

output vectors for training as [Um,, Umy - .o Um-.o... Umy s
[Hmy, Himy oo oo Hioon Hpyl,  [Ua1,, Uaz, - - -0 Ugg,oenne Ug1y ],
etc., where i=1, .....N represents the collocation points. Since

the number of finite volume mesh points differs between vessels
of different diameters, each vessel’s DSR data were interpolated
to vectors of length N =56 via cubic spline interpolation. Also,
the data is smoothened using spline smoothing to have a well-
converged model.

Additional input features required for the ML model are the ra-
tio of the daughter to mother vessel cross-sectional area, i.e.
(d1/d)? and (da/dim)?.

Figure 2b shows the ANN structure for the bifurcation.
The inputs (di/dm)’, (do/dm)’ Um and Hn, i=1, ...N,
are passed through several layers. A concatenation is
required to convert the scalar inputs into vectors as
[(@/dn)’ (di/dn)® (d2/dn)? ... | and  [(do/d)’ (do/dm)
(do/dm)® ... | and stack them with up,. The concatenated in-
putis then passed to the next layer to combine with Hy, . We found
that a concatenation done before the first hidden layer yields the
best result, since there is no transformation of the velocity. The
velocity and diameter squared give the information about volume
flow rate which is preserved, and hence provides a better correl-
ation between input and output. However, this is not the case if
we concatenate in other layers where velocity is transformed.
Also, since each of the four inputs represents separate physical
variables, they must be passed as four different vectors, instead
of combining into one vector.

A single ML model is developed using the data from all bifur-
cations in vasculature A. The training process starts with a ran-
domly selected bifurcation and the loss function using mean

N 2
squared error (MSE = Z(ugDSR)—ugML)) /N for velocity and
i=1

1

N 2
\/2% (H§D8R> - H(ML)) /(N - max{H?}) is minimized. The process is re-
i=

peated for all bifurcations resulting in one epoch. The training
ends when the error is sufficiently reduced after several epochs.
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Fig. 2. a) Schematic of the ML model and b) the structure of the ANN for a bifurcation. Notations are defined in the text. ) Comparison of the DSR and ML
in the training process in a daughter vessel of one bifurcation in vasculature A. d) Convergence of training error for different numbers of hidden layers.
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Fig. 4. Schematic of the ML model for (a) vessels and (b) mergers. c-e) Predictions for vessels, and f-h) for mergers. Black represents velocity, and red
hematocrit. Continuous curves are DSR data, and dash curves are ML prediction.

Numerical experiments were performed by varying different hy-
perparameters to obtain the best prediction. Figure 2d shows the
error for various numbers of hidden layers. The final model has
seven hidden layers each with 80 neurons, the Adam optimizer
with a learning rate of 1073, and the rectified linear activation
function (ReLU). A dropout layer is implemented after each hid-
den layer to prevent overfitting. Without this, the error in predic-
tion can be large even though the error in training is small.
Figure 2c compares the DSR data and the training result, demon-
strating high accuracy of training.

Once the ML model is trained, we test it for each isolated bifur-
cation of vasculature B. For this, the DSR data in the mother vessel
is used as the input. The model then predicts u and H profiles in
the two daughter vessels as the output. Figure 3 shows a compari-
son of the ML-predicted profiles against the DSR data in three se-
lected bifurcations. The agreement between them is excellent. An
additional comparison is given in Fig. S2. The average MSE of the
ML prediction is ~0.1 for u and ~0.08 for H. In relative to typical
average values, this amounts to ~4 — 5% error in u and ~10% error
in H. Figure 3 also compares the mean and skewness of u and H for

all bifurcations as obtained in the DSR and predicted by the ML,
which also shows good agreement between the two.

Vessels and mergers

Next, we build ML models for the remaining two vascular compo-
nents, i.e. vessels and mergers. For vessels, the inputs are the vel-
ocity and concentration u;(¢) and Hq(¢) at an upstream location,
vessel diameter d, and length [; the outputs are u,(¢) and Hy(¢) at
a downstream location (Fig. 4a). For mergers, inputs are uq(¢é),
Ha(8), us(&), Ha(&) in upstream vessels, and area ratios (di/dn)’
and (dy/d,n)%; the outputs are uy (&) and Hp (&) in the downstream
merged vessel (Fig. 4b). Note that in the current model, outputs
are predicted only at the end of the vessel length [, not at the inter-
mediate locations s < I. If predictions are needed at intermediate
locations, the model needs to be modified. The ANN structures
are given in Fig. S3. The scalar inputs are concatenated with vel-
ocity and then passed to the first hidden layer along with hemato-
crit. The similar hyperparameters as in the previous section are
used except for 10 hidden layers for the merger model. One ML
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Fig. 5. Vasculature-wide 2D prediction following two different paths shown by arrows. ML and DSR results are compared at the end of the paths. Black
and red colors represent u and H, respectively. Solid and dash curves represent DSR and ML prediction, respectively.

model is built using the data from all vessels in vasculature A, and
another for mergers. Similar convergence as in the previous sec-
tion yielding high training accuracy is also achieved.

Figure 4c-e shows ML-predicted u; and H; in three vessels in
isolation from vasculature B. Results for mergers are shown in
Fig. 4f-h. Additional data are given in Figs. S4 and S5. For vessels,
the average MSEis ~ 0.1 for u and 0.07 for H; for mergers, they are ~
0.1and 0.08, respectively, suggesting good agreement between the
DSR and ML.

Vasculature-wide prediction

We now test the models to make vasculature-wide predictions. For
this, the DSR data is specified as input only at the vasculature inlet,
and predictions are made sequentially through the hierarchy of the
bifurcations, vessels, and mergers, with the prediction from one
vascular component used as the input to the next component.
Figure 5 compares the ML and DSR data at the end of two different
paths that include multiple vascular components. Predictions
along additional paths are given in Fig. S6. The MSE based on all
vascular components in each path predicted is ~ 0.07—0.1 for u
and H, suggesting good agreement between the DSR and ML.

3D ML models

The 3D problem is schematically shown in Fig. 6a. Given us (&1, 77) :=
u(s =s1, ¢1, 1) and Ha (&, 1) :=H(s =s1, &1, 17), We seek to predict
Ua(&o, mp) 1= (s =82, &, 11p) and Ha(&o, 1p) :=H(s = S2, &, 1), Where
s represents the streamwise coordinate, s; and s; are upstream
and downstream locations, respectively, and &;, #, and &, #, are lo-
cal coordinates over the vessel cross-section at those locations. As

such, we now deal with data arranged in an N x N matrix, where
N is the number of collocation points in each direction. A vector-like
(i.e. flattened) arrangement of the data will cause a loss of correl-
ation in one spatial direction. We therefore consider a U-net model
which is one form of the convolution neural networks (CNN) having
both the feature extraction through a contracting path (also called
down-sampling or encoder) and feature addition through an ex-
panding path (i.e. decoder or up-sampling).

Through numerical experiments, we found that at least N =32
is needed to capture the spatial variation of u and H. A data aug-
mentation is done by incrementally rotating the DSR data by a
small, arbitrary angle Ag, with each rotation giving a additional
data. For each vascular component, about 100 such additional
data are created. Also, the data from two bifurcations in vascula-
ture B are used to further augment the training data since 3D pre-
dictions require more data due to increased size (N x N) of the
variables.

The U-net structure is shown in Fig. 6b for bifurcations. The
encoder path is made of a sequential application of two consecu-
tive regular convolutions using trainable filters of size 3x3 fol-
lowed by a max-pooling which extracts the maximum value
associated with a feature and reduces the size of the data. The
down-sampling process continues until the data is flattened.
Then a concatenation is performed to include geometric param-
eters, e.g. d1/dm, d2/dm, and AB. Note that the velocity and concen-
tration profiles are biased in specific manner relative to the
geometry of a bifurcation. If the data is rotated, this relative
orientation (Ap) with respect to the bifurcation geometry must
be provided. The up-sampling path is composed of transposed
convolutions and a regular convolution. Additionally, at each
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layers with the feature maps from the encoder.

up-sampling layer, the feature maps from the down-sampling
layer are concatenated.

Three U-net models corresponding to each vascular compo-
nent are built. The nonlinear ReLU activation is used for all. A con-
stant learning rate of 5x10~* and 6 x 10* epochs is used for
bifurcations and vessels. For mergers, variable learning rates
and a higher number of epochs are used as follows: 5x 10~* for
the first 5x 10* number of epochs, followed by 10~ for the next
3x10%, and 5x 10~° for the final 3 x 10* epochs. These rates are
determined by numerical experiments and only applied to the
training process, and hence using the training data only.

Figure 7 compares the ML prediction and DSR data for individ-
ual vessels, bifurcations, and mergers in isolation. Additional data
are in Figs. S7-S9. The 3D predictions compare well against the
DSR as the average of the mean absolute error (MAE) is ~0.09.

Figure 8 shows the vasculature-wide prediction using the 3D
model. The ML and DSR results are compared at three locations
along a selected path. Results for additional paths are given in
Figs. S10-S12. In all cases, the MAE is 0.07—0.12 for u and 0.07—
0.1 for H, suggesting a good agreement.

WSS and CFL

The WSS and CFL can be obtained from ML-predicted u and H and
compared against the DSR data for each vascular component in iso-
lation and for the vasculature-wide prediction, both in 2D and 3D
(Figs. 9 and S10-S14). The WSSis obtained as the product of the radial
gradient of uand plasma viscosity since the numerical stencil used to
calculate the radial gradient is inside the near-wall CFL (21). The CFL
is the distance from the wall where H ~ 0.085, which delineates the
interface between the CFL and cell-rich core. This threshold value
is decided based on a direct evaluation of the CFL using RBC data
(18). Before computing the WSS and CFL, the ML-predicted u and H

are filtered to remove small-amplitude noise. Our results show
that the ML predictions compare well against the DSR data.

Timing comparison

In terms of computation time, the high-fidelity simulation of each
vasculature took about 75,000 core-hours (wall-clock time x number
of cores) on Intel Xeon Gold 6230 (Cascade Lake) CPUs to simulate
one second of blood flow. In contrast, the training of the ML models
took on average about seven hours on NVIDIA Tesla T4 GPU, and the
predictions took only a few seconds. Additional few hours were also
needed for data preparation. The ML models, therefore, reduce the
time for hemodynamic prediction by several orders.

Discussions and conclusions

Existing imaging techniques of capillary vessel networks in vivo
do not allow direct measurements of blood velocity and RBC con-
centration profiles over each vessel cross-section. Such informa-
tion is needed to obtain physiologically important hemodynamic
variables such as the WSS and CFL. High-fidelity, RBC-resolved
simulations can provide such details, but they are computational-
ly expensive. Here we presented ML models that can bypass such
expensive computations but predict blood velocity and RBC con-
centration profiles in every vessel in a network. To train and test
the models, we acquire data from high-fidelity simulations of de-
formable RBC suspension flowing in physiologically realistic in sil-
ico microvascular networks. A regression-type ANN model is used
for 2D prediction, and a convolution-based U-net model is used for
3D. The models are first tested for individual vessels, bifurcations,
and mergers. Thereafter, vasculature-wide predictions following
different flow paths that involve multiple vascular components
are considered. ML predictions compare against the high-fidelity
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Fig. 7. 3D ML prediction in isolated bifurcations, vessels, and mergers.
The left column is u and H at an upstream location used as input to the
model. The right column is the output. The ML prediction is compared
against the DSR data.

simulation data with ~0.1 MSE, correctly predicting the highly
nonuniform, skewed profiles of the blood velocity and RBC
concentration.

The time taken by the ML models to predict the hemodynamic
quantities in the networks considered here is found to be several
orders less than that of the high-fidelity model. Indeed, the
high-fidelity models are based on fundamental principles, provide
a large amount of information, and reveal new physics. In many
applications, only a few, specific hemodynamic variables may
be of interest and the discovery of new physics is not intended. An
example is the WSS distribution in a network which is often the in-
tended hemodynamic variable. In such situations, the high-fidelity
model can be avoided, and the ML models, instead, can be used to
provide highly accurate, detailed data. The high-fidelity models
also require high-performance computing resources and specific ex-
pertise of the user, whereas the ML models can be run on web-based
platforms and by users with wider domain expertise.

The vasculatures used here span over relatively smaller tissue
regions compared to what current in vivo imaging techniques can

map atanorgan-scale, e.g. the humanretina (5), and whole mouse
brain (23). Detailed and accurate hemodynamic quantities in such
massive networks would be useful, for example in understanding
the progression of retinopathy, Alzheimer’s disease, and demen-
tia, but cannot be feasibly obtained from high-fidelity simulations.
In contrast, the significant reduction in the prediction time makes
the ML models highly viable for this.

Although the present ML models are trained and tested using
simulated RBC flow in microvasculature in silico, they can also
be used for predictions using in vivo images and experimental
data. Since simultaneously imaging the vasculature and measur-
ing the profiles of RBC concentration and blood velocity is not pos-
sible, the ML models presented here can be an effective tool that
can accurately predict detailed, 3D hemodynamic parameters
in every vessel of the in vivo networks. Remarkably, using the cur-
rent ML “bank”, the models can be used to predict hemodynamics
in the entire vasculature that could consist of a large number of
vessels and vascular junctions. It also implies thatin complex vas-
cular topologies, for which some hemodynamic information may
be missing, the ML model can be applied to fill such voids. Also,
the approach is generalizable to multiple inlets as is the case
for the testing vasculature used here. If several inlets act as arter-
ies, the vessel and bifurcation models can be applied sequentially
to each of them. If several of the inlets are veins, the vessel and
merger models can also be applied sequentially.

As in any ML application, the error reduces with an increasing
amount of training data. The amount of data used here is deemed
to be modest. Furthermore, the error depends on how closely the
training and testing vasculatures match in terms of both their
geometry and controlling hemodynamic parameters, such as flow
rate and vessel hematocrit. The distribution of vessel diameter
over successive generations generally follows Horton's law (2) which
provides some sort of commonality of the topology in two vascula-
tures. However, when compared at the level of individual vascular
components, there are differences between the two networks.
These competing factors resulted in varying accuracy between dif-
ferent vessels. The availability of additional training data spanning
a larger parameter space, both in terms of geometry and controlling
flow parameters, will reduce the error. Furthermore, for the
vasculature-wide prediction, continuous growth of error is not ob-
served, implying that a limited number of trained models can be
used for predictions in large networks. If the geometry and flow con-
ditions are very different in two networks, then the error will be
high. Also, both vasculatures have similar number of vascular com-
ponents and span over similar tissue area. If the testing vasculature
has a lot more vascular components that differ from the training
vasculature, the error is expected to grow.

Some limitations of the current ML models can be noted. The
vessels considered here are cylindrical and have constant diameter.
As such, the ML model as presented here is not applicable to noncir-
cular vessels and those with changing diameters both of which can
affect H (44). Also, the vessel curvature effect is not considered.
However, these additional features can be considered in future
models by introducing appropriate geometric parameters as add-
itional inputs. Also, the ML models are not vasculature-specific; vas-
culatures can be swapped for training and testing (42). Furthermore,
the model inputs are local concentration and velocity profiles for
each vascular component; so even though the DSR data is obtained
for a fixed inflow hematocrit and flow rate, the model is not limited
to this. The current model, however, is limited to time-averaged
hemodynamics. Time-dependent quantities, e.g. WSS fluctuations
cannot be predicted by this model. Additionally, the DSR data are
generated on a healthy vasculature under normal conditions with
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regular vascular geometry; as such the ML models developed here
can only be used under such conditions. To enable predictions for
unhealthy conditions and transient changes in specific vessel con-
ditions, one must first generate the relevant data. Modifications to
the model may also be necessary to represent abnormal conditions.

The current ML models are not physics-informed models. No
explicit physical constraint was imposed. The model tries to learn
the physics from the DSR data which obeys the conservation laws.
The models are constructed such that the inputs, e.g. u, H, and d,
enable to preserve the flow rate and RBC flux. We did not see any
loss in such conserved quantities except one or two bifurcations
which have very different geometry and flow conditions com-
pared to the training vasculature.

The current ML models, which to our knowledge are the first of
their kind, are highly promising for image-based predictions of
subcellular resolved capillary hemodynamics in organ-scale net-
works (24, 26). ML models following the same techniques pre-
sented here can be built for predicting hemodynamics in blood
cell disorders, such as sickle cell anemia, malaria, and diabetes
mellitus, that are characterized by reduced RBC deformability
(6, 7,45, 46). They can also be used to predict transport of biomo-
lecules and drugs in diseased vasculature, e.g. tumor microvascu-
lature (8, 9). Further extensions can predict altered
hemodynamics during vascular adaptation, e.g. during embryonic
development, angiogenesis, vasculopathy, and cerebrovascular
dysfunction. They can also be applied to nonbiological
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applications, such as fluids and tracer transport in porous media
resolved with pore-scale details.
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