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Abstract
Blood velocity and red blood cell (RBC) distribution profiles in a capillary vessel cross-section in the microcirculation are generally 
complex and do not follow Poiseuille’s parabolic or uniform pattern. Existing imaging techniques used to map large microvascular 
networks in vivo do not allow a direct measurement of full 3D velocity and RBC concentration profiles, although such information is 
needed for accurate evaluation of the physiological variables, such as the wall shear stress (WSS) and near-wall cell-free layer (CFL), 
that play critical roles in blood flow regulation, disease progression, angiogenesis, and hemostasis. Theoretical network flow models, 
often used for hemodynamic predictions in experimentally acquired images of the microvascular network, cannot provide the full 3D 
profiles either. In contrast, such information can be readily obtained from high-fidelity computational models that treat blood as a 
suspension of deformable RBCs. These models, however, are computationally expensive and not feasible for extension to the 
microvascular network at large spatial scales up to an organ level. To overcome such limitations, here we present machine learning 
(ML) models that bypass such expensive computations but provide highly accurate and full 3D profiles of the blood velocity, RBC 
concentration, WSS, and CFL in every vessel in the microvascular network. The ML models, which are based on artificial neural 
networks and convolution-based U-net models, predict hemodynamic quantities that compare very well against the true data but 
reduce the prediction time by several orders. This study therefore paves the way for ML to make detailed and accurate hemodynamic 
predictions in spatially large microvascular networks at an organ-scale.
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Existing techniques to image capillary blood vessel networks in vivo do not allow a direct measurement of hemodynamic variables 
such as the wall shear stress (WSS) that play critical roles in health and disease conditions. Here we present artificial intelligence 
(AI) techniques that provide highly accurate and fully 3D quantification of blood velocity, red blood cell concentration, WSS, and other 
critical hemodynamic variables in every vessel in a vascular network. This study paves the way for AI to make hemodynamic predic
tions in organ-scale capillary vessel networks while retaining the subcellular scale details and overcoming the limitations of the in 
vivo imaging techniques, with potential applications in hematological and microvascular disorders, angiogenesis, and vascular- 
mediated drug delivery.
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Introduction
Capillary vessels, the smallest blood vessels in the body, are re
sponsible for delivering oxygen and other metabolites to tissues. 
Together with vascular bifurcations and mergers, they form a 
complex network of vessels referred to as the microvascular net
work (1–3). The distribution of blood flow and red blood cells 
(RBCs) in the network is critical to the healthy function of the 
body as it dictates the oxygen and nutrient delivery and waste re
moval (4, 5). The microvascular network also plays a critical role 
during vascular remodeling and in diseases, e.g. cardiac and cere
bral disorders, diabetes, tumor growth, sickle cell anemia, and 
malaria. These conditions are known to alter the blood flow and 
RBC distribution (6–9). A knowledge of the blood flow and RBC 

distribution in the microvascular network, therefore, is of im
mense physiological importance.

The blood velocity and RBC concentration profiles over the 
cross-section of a microvessel are generally complex and estab

lished under multiple, and often competing, mechanisms related 

to RBC deformation and fluid motion in the mosaic-like topology 

of the microvascular network (10, 11). The velocity profile is not 

parabolic (i.e. Poiseuille’s profile) as is the case for a single-phase 

fluid flowing in a long, straight tube. The RBC concentration is also 

nonuniform: Being highly deformable, RBCs undergo a cross- 

stream migration which tends to increase their concentration 

near the vessel center and reduce toward the wall, where a cell- 

free layer (CFL) develops (12, 13). The complexity of the profiles 
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increases further in the presence of vascular junctions and vessel 
tortuosity. Downstream of a vascular bifurcation, the velocity and 
concentration profiles tend to skew toward opposite sides of a ves
sel (14–16). The degree of skewness may alter as RBCs flow 
through subsequent bifurcations (15). Vessel tortuosity also af
fects the profiles by skewing them toward the side with higher 
curvature (17, 18).

Obtaining such full, 3D profiles of blood velocity and RBC con
centration is important not only for understanding the hemophy
sics of microvascular flow and for predicting tissue perfusion, but 
also for an accurate evaluation of critical physiological quantities, 
such as the wall shear stress (WSS) and CFL. The WSS and its gra
dient, to which the endothelial cells respond to trigger vasomo
tion, can be accurately evaluated from the full velocity profile 
(19–21). The CFL provides a means to reduce the apparent blood 
viscosity in small vessels as illustrated by the Fahraeus– 
Lindqvist effect (3, 11–13, 22). A full 3D description of the CFL 
can be accurately obtained from the corresponding RBC concen
tration profile (12, 16, 18). The CFL further provides a diffusion bar
rier to the gas exchange and facilitates platelet and leukocyte 
margination which are critical to hemostasis and the immune re
sponse of the body (3, 11–13).

Although recent advances in imaging techniques in vivo have 
enabled high-resolution, 3D mapping of the microvascular net
work at large spatial scales up to an organ level (5, 23–25), meas
urement of the full, 3D profiles of blood velocity and RBC 
concentration in every vessel of the network remains difficult 
(25). Low-dimensional theoretical models of network blood flow 
are often used to predict vessel-averaged hemodynamic quan
tities in such experimentally acquired images (26, 27). These mod
els, however, treat each vessel as 1D conduit and assume 
Poiseuille’s law. As such, they cannot provide the full, 3D profiles 
of the velocity, concentration, WSS, and CFL. In contrast, such de
tailed information is readily obtained by high-fidelity computa
tional models that retain the three-dimensionality of the vessels 
and treat blood as a suspension of deformable RBCs. Such models 
have been used to predict hemodynamics in single microvessels, 
bifurcations, and physiologically realistic microvascular net
works, e.g. Refs. 12, 15, 16, and 28–33. Such models, however, 
tend to become computationally expensive with the increasing 
size of the network, therefore, they are not feasible for use in large 
networks at organ-scale.

To overcome this limitation of high-fidelity models, we con
sider a machine learning (ML) approach. In recent years, ML 
techniques have been applied to various microscale hemo
dynamics studies. Examples include the classification of RBC 
shapes (34), predicting RBC deformation and trajectory in micro
fluidic devices (35), estimation of cell deformability (36–38), fast 
processing of in vivo images (39), and estimating RBC flux in cor
tical capillary networks (40). ML was also used to integrate im
ages of blood flow with underlying physical laws to infer the 
flow field in microaneurysm (41).

Recently, our group has developed an ML model to predict 
blood flow rate and vessel-averaged RBC concentration in the 
microvascular network (42). This prior model was a spatially 1D 
model as the velocity and concentration profiles over a vessel 
cross-section were not considered. In this study, we develop ML 
models to predict the full 3D blood velocity, RBC concentration, 
WSS, and CFL profiles in every vessel in the network. Such detailed 
information can otherwise be obtained only from the high-fidelity 
models. We demonstrate that the ML predictions compare against 
the true data with a mean-squared error ≲0.1 but reduce the pre
diction time by several orders compared to a high-fidelity 

simulation. This study therefore paves the way for ML to bypass 
expensive computations and provide highly accurate and full 3D 
hemodynamic data in spatially large microvascular networks at 
organ-scale.

Data generation
Our data comes from high-fidelity, 3D simulations of the flow of 
deformable RBC suspension in two physiologically realistic micro
vascular networks which are built in silico resembling in vivo im
ages (43). We refer to these networks as vasculatures A and B 
(Fig. 1); the first is used for training, and the second for testing. 
Each vasculature is geometrically complex with multiple (∼50) 
vessels, bifurcations (∼21), and mergers (∼20) and represents a tis
sue area of ∼ 0.135 mm2. Blood as a suspension of RBCs and plas
ma flows through the in silico vasculatures, and at any instant of 
time, there are about 1,000 RBCs present in each. The physical 
flow time simulated is about 1.5 s, which is more than an average 
cardiac cycle.

The numerical methodology used in the high-fidelity simula
tions is based on a coupled finite volume/finite element/ 
immersed-boundary method and is detailed in our previous stud
ies (30, 43). Briefly, the in silico vasculatures are built using CAD 
software and contained in the computational domain that is dis
cretized by ∼ 160 million mesh points. Fluid motion is governed 
by the unsteady Stokes equations and continuity equations. A 
physiologically relevant flow rate is specified as the boundary con
dition at the network inlets. A ghost-node immersed-boundary 
method is used to implement the no-slip boundary condition on 

Fig. 1. Data generation via high-fidelity RBC-resolved simulations. a and 
b) A visualization from the simulations for vasculature A and B. Black 
arrows indicate inlets/outlets. The images are in x, y plane and looking 
down z axis. c) A close-up showing RBC deformed shapes. d and e) 
Time-averaged velocity and RBC concentration at a vessel cross-section 
showing nonuniform and highly skewed profiles. Red and green arrows 
indicate vessels where (c) and (d and e) are sampled.
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the vessel surfaces. RBCs are injected at the inlets with an average 
hematocrit of 30%, and they distribute throughout the vascula
ture by the flow. Each RBC is modeled as a viscous liquid made 
of hemoglobin enclosed by a membrane with the undeformed 
shape of a biconcave discocyte. The membrane is assumed to pos
sess a resistance against shearing, area dilation, and bending. The 
viscosity difference between hemoglobin and plasma is also taken 
into consideration. A continuous forcing immersed-boundary 
method is used to model the two-way coupling between the fluid 
and RBCs.

A visualization of the RBC distribution in one instant and a 
close-up of RBC shapes in a vessel segment are shown in Fig. 1a–c. 
Heterogeneous RBC distribution, which is a hallmark of the micro
vascular blood flow, is predicted in our simulation. Highly de
formed RBC shapes, characterized as parachute and slipper 
shapes as observed in vivo, are also predicted.

The simulations provide 3D, time-resolved fluid velocity 
u(x, y, z, t) and RBC concentration H(x, y, z, t) distributions in 
every vessel in the vasculature. Our specific interest is the time- 
averaged but spatially varying velocity and concentration 
profiles defined as u ≡ u(x, y, z) := ∫

T
u(x, y, z, t)dt/T and 

H ≡ H(x, y, z) := ∫
T

I(x, y, z, t)dt/T, respectively, where T is the simu
lation time, x, y, z represents the Eulerian space, and I is an indi
cator function that is one inside a cell and zero outside. The WSS 
and CFL are readily obtained from u(x, y, z) and H(x, y, z). Three 
hundred instances of data are used to obtain the averages. We re
fer to these averages as the direct simulation results or DSR. 
Figure 1d and e shows u(x, y, z) and H(x, y, z) at one vessel cross- 
section. As seen, u(x, y, z) and H(x, y, z) are nonuniform, nonpar
abolic, and highly skewed. The WSS and CFL similarly have com
plex distributions. Our goal is to develop ML models that can 
predict such complex spatial distributions.

ML models and results
Each vascular network is composed of three components: ves
sels, bifurcations, and mergers. The flow dynamics of RBCs 
and the mechanisms leading to complex velocity and hemato
crit distributions in each vascular component are different. 
Thus, three separate ML modes are built for each component. 
Furthermore, the RBC concentration and blood velocity profiles 
are coupled together due to the coupling between RBC deform
ation and fluid motion, and hence, they must be predicted 
simultaneously.

We first build the ML models for each of the three vascular 
components using the DSR data from vasculature A. Then, we 
test the models and predict hemodynamic variables in vascula
ture B in two steps. First, we consider each vascular component 
in isolation: For example, for a bifurcation in vasculature B, we spe
cify the DSR velocity and RBC concentration as the input immedi
ately upstream of the bifurcation and predict the output at the 
daughter vessels immediately downstream. Next, we consider 
the entire vasculature-wide prediction. In this, we only specify 
the DSR data as the input at the inlet of the vasculature and pre
dict the concentration and velocity profiles as they evolve in the 
entire vasculature by progressing through the hierarchy of ves
sels, bifurcations, and mergers.

Furthermore, we develop both 2D and 3D models. For the 2D 
model, the velocity and concentration distributions over the mid
dle z plane of the network are considered so that u = u(x, y) and 
H = H(x, y) (see Fig. 1a and b). The advantage of 2D models is 
that they are less complex and require less amount of training 
data. For this, we use the artificial neural network (ANN). 

Thereafter, we consider a 3D model to predict u(x, y, z) and 
H(x, y, z) for which we use a convolution neural network-based 
U-net model.

2D ML models
Bifurcations and Vessels and Mergers sections describe ML mod
els for vascular components in isolation, and Vasculature-Wide 
Prediction section for the whole vasculature-wide prediction.

Bifurcations
The goal here is to predict the velocity and RBC concentration 
profiles in the daughter branches downstream of a bifurcation, 
namely, ud1(ξ1), Hd1(ξ1), ud2(ξ2), Hd2(ξ2) when the corresponding 
conditions in the mother vessel, um(ξm), Hm(ξm), are known, 
where ξ1, ξ2, ξm indicate, respectively, a local coordinate along 
the diameters of the daughter and mother vessels (Fig. 2a). As 
RBCs flow through a bifurcation their concentration becomes 
biased toward the side of a daughter vessel that is closer to the 
apex of the bifurcation, while the velocity profile is biased to 
the opposite side. With respect to a global coordinate, each pro
file is thus oppositely biased in the two daughter vessels. To ap
propriately include such bias, ξ1 and ξ2 should be globally 
opposite but locally from the similar (e.g. apex side) side in 
each daughter vessel.

The DSR data is first prepared to generate the input and 
output vectors for training as [um1 , um2 .. . . . . umi

. . . . . . umN ], 
[Hm1 , Hm2 .. . . . . Hmi

. . . . . . HmN ], [ud11
, ud12

.. . . . . ud1i
. . . . . . ud1N

], 
etc., where i = 1, . . . ..N represents the collocation points. Since 
the number of finite volume mesh points differs between vessels 
of different diameters, each vessel’s DSR data were interpolated 
to vectors of length N = 56 via cubic spline interpolation. Also, 
the data is smoothened using spline smoothing to have a well- 
converged model.

Additional input features required for the ML model are the ra
tio of the daughter to mother vessel cross-sectional area, i.e. 
(d1/dm)2 and (d2/dm)2.

Figure 2b shows the ANN structure for the bifurcation. 
The inputs (d1/dm)2, (d2/dm)2, umi and Hmi , i = 1, . . . N, 
are passed through several layers. A concatenation is 
required to convert the scalar inputs into vectors as 
[(d1/dm)2 (d1/dm)2 (d1/dm)2

. . . . . . . . . ] and [(d2/dm)2 (d2/dm)2 

(d2/dm)2 . . . . . . . . . ] and stack them with umi
. The concatenated in

put is then passed to the next layer to combine with Hmi
. We found 

that a concatenation done before the first hidden layer yields the 
best result, since there is no transformation of the velocity. The 
velocity and diameter squared give the information about volume 
flow rate which is preserved, and hence provides a better correl
ation between input and output. However, this is not the case if 
we concatenate in other layers where velocity is transformed. 
Also, since each of the four inputs represents separate physical 
variables, they must be passed as four different vectors, instead 
of combining into one vector.

A single ML model is developed using the data from all bifur
cations in vasculature A. The training process starts with a ran
domly selected bifurcation and the loss function using mean 

squared error (MSE =

�������������������������
􏽐N

i=1
(u(DSR)

i − u(ML)
i )

2
/N

􏽳

for velocity and 

���������������������������������������
􏽐N

i=1
(H(DSR)

i − H(ML)
i )

2
/(N · max{H2

i }

􏽳

) is minimized. The process is re

peated for all bifurcations resulting in one epoch. The training 
ends when the error is sufficiently reduced after several epochs. 
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Fig. 2. a) Schematic of the ML model and b) the structure of the ANN for a bifurcation. Notations are defined in the text. c) Comparison of the DSR and ML 
in the training process in a daughter vessel of one bifurcation in vasculature A. d) Convergence of training error for different numbers of hidden layers.

Fig. 3. a–c) comparison of ML prediction and DSR data for three isolated bifurcations in 2d. Black curves are for u, and red for H. Dash curves represent ML 
and solid curves represent DSR. The mean and skewness of u and H profiles are compared in (d–g).
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Numerical experiments were performed by varying different hy
perparameters to obtain the best prediction. Figure 2d shows the 
error for various numbers of hidden layers. The final model has 
seven hidden layers each with 80 neurons, the Adam optimizer 

with a learning rate of 10−3, and the rectified linear activation 
function (ReLU). A dropout layer is implemented after each hid
den layer to prevent overfitting. Without this, the error in predic
tion can be large even though the error in training is small. 
Figure 2c compares the DSR data and the training result, demon
strating high accuracy of training.

Once the ML model is trained, we test it for each isolated bifur
cation of vasculature B. For this, the DSR data in the mother vessel 
is used as the input. The model then predicts u and H profiles in 
the two daughter vessels as the output. Figure 3 shows a compari
son of the ML-predicted profiles against the DSR data in three se
lected bifurcations. The agreement between them is excellent. An 
additional comparison is given in Fig. S2. The average MSE of the 
ML prediction is ∼0.1 for u and ∼0.08 for H. In relative to typical 
average values, this amounts to ∼4 − 5% error in u and ∼10% error 
in H. Figure 3 also compares the mean and skewness of u and H for 

all bifurcations as obtained in the DSR and predicted by the ML, 
which also shows good agreement between the two.

Vessels and mergers
Next, we build ML models for the remaining two vascular compo
nents, i.e. vessels and mergers. For vessels, the inputs are the vel
ocity and concentration u1(ξ) and H1(ξ) at an upstream location, 
vessel diameter d, and length l; the outputs are u2(ξ) and H2(ξ) at 
a downstream location (Fig. 4a). For mergers, inputs are u1(ξ), 
H1(ξ), u2(ξ), H2(ξ) in upstream vessels, and area ratios (d1/dm)2 

and (d2/dm)2; the outputs are um(ξ) and Hm(ξ) in the downstream 
merged vessel (Fig. 4b). Note that in the current model, outputs 
are predicted only at the end of the vessel length l, not at the inter
mediate locations s < l. If predictions are needed at intermediate 
locations, the model needs to be modified. The ANN structures 
are given in Fig. S3. The scalar inputs are concatenated with vel
ocity and then passed to the first hidden layer along with hemato
crit. The similar hyperparameters as in the previous section are 
used except for 10 hidden layers for the merger model. One ML 

Fig. 4. Schematic of the ML model for (a) vessels and (b) mergers. c–e) Predictions for vessels, and f–h) for mergers. Black represents velocity, and red 
hematocrit. Continuous curves are DSR data, and dash curves are ML prediction.
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model is built using the data from all vessels in vasculature A, and 
another for mergers. Similar convergence as in the previous sec
tion yielding high training accuracy is also achieved.

Figure 4c–e shows ML-predicted u2 and H2 in three vessels in 
isolation from vasculature B. Results for mergers are shown in 
Fig. 4f–h. Additional data are given in Figs. S4 and S5. For vessels, 
the average MSE is ∼ 0.1 for u and 0.07 for H; for mergers, they are ∼ 
0.1 and 0.08, respectively, suggesting good agreement between the 
DSR and ML.

Vasculature-wide prediction
We now test the models to make vasculature-wide predictions. For 
this, the DSR data is specified as input only at the vasculature inlet, 
and predictions are made sequentially through the hierarchy of the 
bifurcations, vessels, and mergers, with the prediction from one 
vascular component used as the input to the next component. 
Figure 5 compares the ML and DSR data at the end of two different 
paths that include multiple vascular components. Predictions 
along additional paths are given in Fig. S6. The MSE based on all 
vascular components in each path predicted is ∼ 0.07—0.1 for u 
and H, suggesting good agreement between the DSR and ML.

3D ML models
The 3D problem is schematically shown in Fig. 6a. Given u1(ξ1, η1) := 
u(s = s1, ξ1, η1) and H1(ξ1, η1) := H(s = s1, ξ1, η1), we seek to predict 
u2(ξ2, η2) := u(s = s2, ξ2, η2) and H2(ξ2, η2) := H(s = s2, ξ2, η2), where 
s represents the streamwise coordinate, s1 and s2 are upstream 
and downstream locations, respectively, and ξ1, η1 and ξ2, η2 are lo
cal coordinates over the vessel cross-section at those locations. As 

such, we now deal with data arranged in an N × N matrix, where 
N is the number of collocation points in each direction. A vector-like 
(i.e. flattened) arrangement of the data will cause a loss of correl
ation in one spatial direction. We therefore consider a U-net model 
which is one form of the convolution neural networks (CNN) having 
both the feature extraction through a contracting path (also called 
down-sampling or encoder) and feature addition through an ex
panding path (i.e. decoder or up-sampling).

Through numerical experiments, we found that at least N = 32 
is needed to capture the spatial variation of u and H. A data aug
mentation is done by incrementally rotating the DSR data by a 
small, arbitrary angle Δβ, with each rotation giving a additional 
data. For each vascular component, about 100 such additional 
data are created. Also, the data from two bifurcations in vascula
ture B are used to further augment the training data since 3D pre
dictions require more data due to increased size (N × N) of the 
variables.

The U-net structure is shown in Fig. 6b for bifurcations. The 
encoder path is made of a sequential application of two consecu
tive regular convolutions using trainable filters of size 3×3 fol
lowed by a max-pooling which extracts the maximum value 
associated with a feature and reduces the size of the data. The 
down-sampling process continues until the data is flattened. 
Then a concatenation is performed to include geometric param
eters, e.g. d1/dm, d2/dm, and Δβ. Note that the velocity and concen
tration profiles are biased in specific manner relative to the 
geometry of a bifurcation. If the data is rotated, this relative 
orientation (Δβ) with respect to the bifurcation geometry must 
be provided. The up-sampling path is composed of transposed 
convolutions and a regular convolution. Additionally, at each 

Fig. 5. Vasculature-wide 2D prediction following two different paths shown by arrows. ML and DSR results are compared at the end of the paths. Black 
and red colors represent u and H, respectively. Solid and dash curves represent DSR and ML prediction, respectively.
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up-sampling layer, the feature maps from the down-sampling 
layer are concatenated.

Three U-net models corresponding to each vascular compo
nent are built. The nonlinear ReLU activation is used for all. A con
stant learning rate of 5 × 10−4 and 6 × 104 epochs is used for 
bifurcations and vessels. For mergers, variable learning rates 
and a higher number of epochs are used as follows: 5 × 10−4 for 
the first 5 × 104 number of epochs, followed by 10−4 for the next 
3 × 104, and 5 × 10−5 for the final 3 × 104 epochs. These rates are 
determined by numerical experiments and only applied to the 
training process, and hence using the training data only.

Figure 7 compares the ML prediction and DSR data for individ
ual vessels, bifurcations, and mergers in isolation. Additional data 
are in Figs. S7–S9. The 3D predictions compare well against the 
DSR as the average of the mean absolute error (MAE) is ∼0.09.

Figure 8 shows the vasculature-wide prediction using the 3D 
model. The ML and DSR results are compared at three locations 
along a selected path. Results for additional paths are given in 
Figs. S10–S12. In all cases, the MAE is 0.07—0.12 for u and 0.07— 
0.1 for H, suggesting a good agreement.

WSS and CFL
The WSS and CFL can be obtained from ML-predicted u and H and 
compared against the DSR data for each vascular component in iso
lation and for the vasculature-wide prediction, both in 2D and 3D 
(Figs. 9 and S10–S14). The WSS is obtained as the product of the radial 
gradient of u and plasma viscosity since the numerical stencil used to 
calculate the radial gradient is inside the near-wall CFL (21). The CFL 
is the distance from the wall where H ≈ 0.085, which delineates the 
interface between the CFL and cell-rich core. This threshold value 
is decided based on a direct evaluation of the CFL using RBC data 
(18). Before computing the WSS and CFL, the ML-predicted u and H 

are filtered to remove small-amplitude noise. Our results show 
that the ML predictions compare well against the DSR data.

Timing comparison
In terms of computation time, the high-fidelity simulation of each 
vasculature took about 75,000 core-hours (wall-clock time × number 
of cores) on Intel Xeon Gold 6230 (Cascade Lake) CPUs to simulate 
one second of blood flow. In contrast, the training of the ML models 
took on average about seven hours on NVIDIA Tesla T4 GPU, and the 
predictions took only a few seconds. Additional few hours were also 
needed for data preparation. The ML models, therefore, reduce the 
time for hemodynamic prediction by several orders.

Discussions and conclusions
Existing imaging techniques of capillary vessel networks in vivo 
do not allow direct measurements of blood velocity and RBC con
centration profiles over each vessel cross-section. Such informa
tion is needed to obtain physiologically important hemodynamic 
variables such as the WSS and CFL. High-fidelity, RBC-resolved 
simulations can provide such details, but they are computational
ly expensive. Here we presented ML models that can bypass such 
expensive computations but predict blood velocity and RBC con
centration profiles in every vessel in a network. To train and test 
the models, we acquire data from high-fidelity simulations of de
formable RBC suspension flowing in physiologically realistic in sil
ico microvascular networks. A regression-type ANN model is used 
for 2D prediction, and a convolution-based U-net model is used for 
3D. The models are first tested for individual vessels, bifurcations, 
and mergers. Thereafter, vasculature-wide predictions following 
different flow paths that involve multiple vascular components 
are considered. ML predictions compare against the high-fidelity 

Fig. 6. a) Schematic of 3D prediction. b) U-net model for a bifurcation. The left-hand side is the contraction (encoder) path, and the right side is the 
expansion (decoder) path. Each horizontal continuous arrow represents two consecutive convolutions, downward arrow represents max-pooling and 
upward arrow represents transposed convolutions. The horizontal dashed arrow represents concatenation of the output of the transposed convolution 
layers with the feature maps from the encoder.
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simulation data with ∼0.1 MSE, correctly predicting the highly 
nonuniform, skewed profiles of the blood velocity and RBC 
concentration.

The time taken by the ML models to predict the hemodynamic 
quantities in the networks considered here is found to be several 
orders less than that of the high-fidelity model. Indeed, the 
high-fidelity models are based on fundamental principles, provide 
a large amount of information, and reveal new physics. In many 
applications, only a few, specific hemodynamic variables may 
be of interest and the discovery of new physics is not intended. An 
example is the WSS distribution in a network which is often the in
tended hemodynamic variable. In such situations, the high-fidelity 
model can be avoided, and the ML models, instead, can be used to 
provide highly accurate, detailed data. The high-fidelity models 
also require high-performance computing resources and specific ex
pertise of the user, whereas the ML models can be run on web-based 
platforms and by users with wider domain expertise.

The vasculatures used here span over relatively smaller tissue 
regions compared to what current in vivo imaging techniques can 

map at an organ-scale, e.g. the human retina (5), and whole mouse 
brain (23). Detailed and accurate hemodynamic quantities in such 
massive networks would be useful, for example in understanding 
the progression of retinopathy, Alzheimer’s disease, and demen
tia, but cannot be feasibly obtained from high-fidelity simulations. 
In contrast, the significant reduction in the prediction time makes 
the ML models highly viable for this.

Although the present ML models are trained and tested using 
simulated RBC flow in microvasculature in silico, they can also 
be used for predictions using in vivo images and experimental 
data. Since simultaneously imaging the vasculature and measur
ing the profiles of RBC concentration and blood velocity is not pos
sible, the ML models presented here can be an effective tool that 
can accurately predict detailed, 3D hemodynamic parameters 
in every vessel of the in vivo networks. Remarkably, using the cur
rent ML “bank”, the models can be used to predict hemodynamics 
in the entire vasculature that could consist of a large number of 
vessels and vascular junctions. It also implies that in complex vas
cular topologies, for which some hemodynamic information may 
be missing, the ML model can be applied to fill such voids. Also, 
the approach is generalizable to multiple inlets as is the case 
for the testing vasculature used here. If several inlets act as arter
ies, the vessel and bifurcation models can be applied sequentially 
to each of them. If several of the inlets are veins, the vessel and 
merger models can also be applied sequentially.

As in any ML application, the error reduces with an increasing 
amount of training data. The amount of data used here is deemed 
to be modest. Furthermore, the error depends on how closely the 
training and testing vasculatures match in terms of both their 
geometry and controlling hemodynamic parameters, such as flow 
rate and vessel hematocrit. The distribution of vessel diameter 
over successive generations generally follows Horton’s law (2) which 
provides some sort of commonality of the topology in two vascula
tures. However, when compared at the level of individual vascular 
components, there are differences between the two networks. 
These competing factors resulted in varying accuracy between dif
ferent vessels. The availability of additional training data spanning 
a larger parameter space, both in terms of geometry and controlling 
flow parameters, will reduce the error. Furthermore, for the 
vasculature-wide prediction, continuous growth of error is not ob
served, implying that a limited number of trained models can be 
used for predictions in large networks. If the geometry and flow con
ditions are very different in two networks, then the error will be 
high. Also, both vasculatures have similar number of vascular com
ponents and span over similar tissue area. If the testing vasculature 
has a lot more vascular components that differ from the training 
vasculature, the error is expected to grow.

Some limitations of the current ML models can be noted. The 
vessels considered here are cylindrical and have constant diameter. 
As such, the ML model as presented here is not applicable to noncir
cular vessels and those with changing diameters both of which can 
affect H (44). Also, the vessel curvature effect is not considered. 
However, these additional features can be considered in future 
models by introducing appropriate geometric parameters as add
itional inputs. Also, the ML models are not vasculature-specific; vas
culatures can be swapped for training and testing (42). Furthermore, 
the model inputs are local concentration and velocity profiles for 
each vascular component; so even though the DSR data is obtained 
for a fixed inflow hematocrit and flow rate, the model is not limited 
to this. The current model, however, is limited to time-averaged 
hemodynamics. Time-dependent quantities, e.g. WSS fluctuations 
cannot be predicted by this model. Additionally, the DSR data are 
generated on a healthy vasculature under normal conditions with 

Fig. 7. 3D ML prediction in isolated bifurcations, vessels, and mergers. 
The left column is u and H at an upstream location used as input to the 
model. The right column is the output. The ML prediction is compared 
against the DSR data.
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regular vascular geometry; as such the ML models developed here 
can only be used under such conditions. To enable predictions for 
unhealthy conditions and transient changes in specific vessel con
ditions, one must first generate the relevant data. Modifications to 
the model may also be necessary to represent abnormal conditions.

The current ML models are not physics-informed models. No 
explicit physical constraint was imposed. The model tries to learn 
the physics from the DSR data which obeys the conservation laws. 
The models are constructed such that the inputs, e.g. u, H, and d, 
enable to preserve the flow rate and RBC flux. We did not see any 
loss in such conserved quantities except one or two bifurcations 
which have very different geometry and flow conditions com
pared to the training vasculature.

The current ML models, which to our knowledge are the first of 
their kind, are highly promising for image-based predictions of 
subcellular resolved capillary hemodynamics in organ-scale net
works (24, 26). ML models following the same techniques pre
sented here can be built for predicting hemodynamics in blood 
cell disorders, such as sickle cell anemia, malaria, and diabetes 
mellitus, that are characterized by reduced RBC deformability 
(6, 7, 45, 46). They can also be used to predict transport of biomo
lecules and drugs in diseased vasculature, e.g. tumor microvascu
lature (8, 9). Further extensions can predict altered 
hemodynamics during vascular adaptation, e.g. during embryonic 
development, angiogenesis, vasculopathy, and cerebrovascular 
dysfunction. They can also be applied to nonbiological 

Fig. 8. Vasculature-wide 3D prediction. Black arrows indicate the path. ML and DSR results are compared at three locations as marked by green arrows.

Fig. 9. CFL and WSS prediction. a and b) 2D model. Black symbols: individual vascular component; red: vasculature-wide prediction along the paths 
shown in Fig. 5. c–e) 3D model for individual vascular components. f–i) 3D model for vasculature-wide prediction following the path shown in Fig. 8. The 
CFL and WSS are shown at three locations (A, B, C) as in that figure. In (c), (d) and (f)–(h) the interface between the plasm layer and RBC-core is shown in 
color (blue: DSR, red: ML), and the vessel boundary is indicated by black circle. The WSS in 3D prediction is shown along the circumference (horizontal 
axis in the plot) of the vessel. Numbering of the vessels is given in Figs. 8 and S1.
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applications, such as fluids and tracer transport in porous media 
resolved with pore-scale details.
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