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A B S T R A C T

Accurate service demand forecasts at critical facilities are fundamental for efficiently managing resources and
promptly providing essential services to people and community. However, it has received little attention in the
literature, mainly due to the unavailability of granular data and the lack of sophisticated forecasting methods.
To address this gap, we provide a new perspective on sensing service demands at critical facilities leveraging
fine-grained human mobility data, and propose a novel data-driven framework to forecast mobility patterns
at the neighborhood level. Specifically, we develop a two-stage forecasting scheme to manage large-scale and
complex human movement information. The first stage is to decompose the large-scale mobility data into spa-
tial and temporal patterns, whereas the second stage is to model complex temporal dynamics using multivariate
time series analysis. The proposed framework is implemented using real human mobility data obtained from
mobile phone users. The results show that our model demonstrates the best predictive performance for varying
forecast horizons, when compared to multiple benchmark methods including traditionally-used statistical and
deep learning models. We also performed model robustness checks, showing that the proposed model is robust
in making short-term and long-term forecasts. The proposed predictive framework could help businesses and
local governments accurately forecast service demands for critical facilities for better allocating their resources.
1. Introduction

Critical facilities play a pivotal role in providing essential services
to the communities, ensuring that our society can function smoothly
and effectively (Logan & Guikema, 2020). Examples of critical facilities
include hospitals, pharmacies, gas stations, and grocery stores, where
people visit these facilities on a regular basis to fulfill their basic
needs. Effectively managing critical facilities, such as inventory control,
often requires forecasting customers’ demand for future services (Fildes,
Ma, & Kolassa, 2022). To support such service demand forecasts, it
is of critical importance to build effective information management
systems to analyze demand patterns from historical data (Nguyen, Tran,
Thomassey, & Hamad, 2021). This often requires both high-quality data
to characterize the behavior of customers and advanced analytics tools
to make accurate and timely forecasts (Petropoulos et al., 2022).

Traditionally, service demands at critical facilities are often charac-
terized by various data, such as sales data (Bi, Adomavicius, Li, & Qu,
2022; Loureiro, Miguéis, & da Silva, 2018), economic data (Osadchiy,
aur, & Seshadri, 2013), and social media data (Schaer, Kourentzes,
Fildes, 2019). However, these traditional data used for sensing and
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predicting service demands often fall short of capturing dynamic cus-
tomers’ behaviors, such as how far they travel and where they come
from (Petropoulos et al., 2022). These behaviors are deemed to be
fundamental for businesses to understand their catchment/service areas
and improve service demand forecasts (Belavina, 2021; Waddington,
Clarke, Clarke, & Newing, 2018).

Recently, the burgeoning of large-scale mobility sensing data ob-
tained from mobile phone users opens unique opportunities for better
capturing human movement patterns, which are valuable to reveal the
behavior of customers in visiting critical facilities (Liu, Liu, Lu, Teng,
Zhu, & Xiong, 2017). This is because individuals can ‘‘vote with their
feet’’, suggesting that people travel to different service places that can
better match their preferences and satisfy their needs (Tiebout, 1956).
Analyzing human mobility patterns can offer instructive insights into
understanding the demand behaviors of people in accessing critical
facilities (Wei & Mukherjee, 2023). However, most of the previous
studies use descriptive analysis to describe human mobility patterns
at various locations including public parking (Nie et al., 2021) and
recreational spaces (Marcelo et al., 2022). Descriptive analysis falls
vailable online 27 September 2023
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short of predicting future service demand patterns, which are crucial
for resource prepositioning at critical facilities. Therefore, our study
focuses on developing a novel predictive framework that utilizes human
mobility data to forecast service demand patterns for critical facilities.

Despite the availability and accessibility of large amount of mobile
phone data, predicting human mobility patterns is still challenging.
This is because the people’s movement behaviors involve complex spa-
tiotemporal dependencies, and have nonlinear interactions with various
contextual factors such as sociodemographics (Wang, Currim, & Ram,
2022). This complexity of mobility patterns requires more sophisticated
predictive techniques (Cheng, Trepanier, & Sun, 2022). The traditional
statistical methods such as autoregressive integrated moving average
(ARIMA) often require the assumption of stationarity and linear func-
tional form in the data, thus limiting their ability to analyze complex
nonlinear time series patterns (Harvey, 1990). In contrast, conventional
machine learning models (e.g., random forest, support vector regres-
sion) are flexible in handling high-dimensional and nonlinear data,
but they often fall short of capturing temporal dependencies in the
variable (Au, Choi, & Yu, 2008). To model time-dependent patterns,
deep learning models including the Long Short-Term Memory (LSTM)
are utilized to analyze dynamic patterns that vary over time. However,
deep learning models are difficult to interpret (Herm, Heinrich, Wan-
ner, & Janiesch, 2023), and may not be suitable to incorporate static
contextual information such as sociodemographics in the analysis (Ray,
Jank, Dutta, & Mullarkey, 2023). Some studies have developed hybrid
models that combine the strength of various models in order to produce
better forecast results (Punia & Shankar, 2022; Van Steenbergen & Mes,
2020). Still, the design of hybrid models needs to consider potential
issues such as overfitting and model selection, which have received less
attention in the literature. Therefore, to overcome the existing chal-
lenges in time series modeling to handle complex and high-dimensional
data, we aim to develop a data-driven framework to provide accurate
and timely forecasts by exploring human mobility patterns.

To the best of our knowledge, this is the first study exploring the use
of human mobility data to analyze and forecast the service demands.
The large-scale big data on human mobility patterns obtained from
mobile phone data exhibit complex spatial and temporal dependencies,
posing significant challenges to most traditional methods, mostly owing
to higher computational cost and complexities. Traditional methods
such as ARIMA and VAR often fall short of modeling complex relation-
ships efficiently, leading to inaccurate forecasting results. To address
these challenges, we propose a novel two-stage predictive framework to
efficiently handle large-scale and complex time series human mobility
data. Specifically, the first stage of the framework aims to reduce the
size of mobility data by extracting the key spatial and temporal patterns
leveraging decomposition method. However, the conventional matrix
decomposition methods are not suitable for time-series forecasting.
To overcome this limitation, we introduce the second stage of our
framework to incorporate the time dynamics required for time-series
prediction. We also illustrate the extension of the proposed framework
by integrating various contextual variables (e.g., sociodemographics)
of interest. In a nutshell, the contribution of this research to the extant
literature is summarized as follows.

• This paper provides a new perspective to analyze and forecast ser-
vice demands leveraging human mobility patterns. This point of
view allows businesses and governments to identify dynamic ser-
vice demands of people at a fine-grained spatial scale (i.e., neigh-
borhood level), which may not be apparent from traditional data
that focused on either the state or county level.

• We propose a novel two-stage forecasting framework that incor-
porates data decomposition and multivariate time series modeling
techniques. This framework can capture both complex spatial and
temporal dependencies of large-scale data, and flexibly incorpo-
rate contextual information, which hold promise for providing
better forecast results.
2

• We perform a series of experiments, including sensitivity analysis
and robustness checks, to demonstrate the capabilities of the
proposed framework using the real-world mobile phone data. We
also illustrate superior predictive performances of our model in
comparison to a variety of benchmark methods including the
traditionally-used statistical (e.g., ARIMA, VAR) and deep learn-
ing models (e.g., LSTM).

The remainder of the paper is organized as follows. Section 2
ummarizes the related literature which motivates and supports the
mportance of this paper. Section 3 provides an overview of the design
f our two-stage predictive framework. Section 4 presents a case study
o illustrate the applicability of the framework. Section 5 provides
umerical experiments to show the model performance. Discussions
nd conclusions of this study are summarized in Section 6 and Section 7
espectively.

. Related work

In this section, we first highlight the gaps related to the various
ata used for service demand characterization. Thereafter, we present
he various challenges associated with the different traditionally-used
orecasting models for service demand prediction.

.1. Service demand characterization

To accurately capture service demand patterns at critical facilities
s a crucial step for service demand forecasting. Traditionally, there is
variety of data that can be leveraged to characterize service demand
atterns. For example, sales data refers to information collected on the
ales transactions of a business. It often exhibits strong temporal trends
nd seasonal variations, which can be used to understand the demand
f customers in retail establishment (Choi, Yu, & Au, 2011; Vallés-Pérez
t al., 2022). Waddington et al. (2018) explore the temporal fluctu-
tions of store sales to understand the demand to grocery stores and
ighlight the needs of integrating the information across multiple stores
o generate more accurate demand in a region. However, sales data
s typically classified as proprietary commercial information, which is
ot publicly accessible (Fildes et al., 2022). In other words, sales data
ollected by one store may not be readily available to others, hindering
he stakeholders such as local governments from making informed deci-
ions at the regional level (Waddington et al., 2018). Another limitation
f sales data is that it often results in an underestimation of service
emand under certain scenarios such as out-of-stock situations (Chen
Ou, 2009).
Economic data or macroeconomic information is another type of

ata used to reveal service demand patterns, where a significant eco-
omic upswing (or downturn) is highly correlated with growth (or de-
line) in demand (Osadchiy et al., 2013; Sagaert, Aghezzaf, Kourentzes,
Desmet, 2018). Osadchiy et al. (2013) develop a statistical model to
redict the sales at retailer stores based on financial indicators such as
arket return information. Suryani, Chou, and Chen (2010) consider
conomic conditions such as Gross Domestic Product (GDP) to capture
he demand of people at airports, and to predict the future air travel
emand. Since economic information is frequently gathered at coarse
patiotemporal scales, it is not adequate to reflect the nuanced and
etailed customer’s demand at the micro level, which is the key for
nventory management (Fildes et al., 2022).
Social media such as Twitter and Meta is another data source to un-

over service demands by providing information about customers’ pref-
rences, opinions, and emotions. Papanagnou and Matthews-Amune
2018) investigate the use of internet information including Google
earch intensity and YouTube watch video duration to understand the
emand patterns to pharmacies and highlight the importance of text
ining technique in demand forecasting. Even though the value of so-
ial media data has been pronounced in previous studies (Cui, Gallino,
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Moreno, & Zhang, 2018; Terroso-Saenz, Flores, & Muñoz, 2022), there
are also some concerns regarding its usage such as high bias and limited
coverage, especially when users fail to provide accurate information in
their social media (Seyedan & Mafakheri, 2020).

With the recent advancement of global positioning system (GPS)
echnology, human mobility data is becoming increasingly accessible
nd abundant, which has the potential to characterize the dynamic
emand patterns of people at critical facilities (Liu et al., 2017). For
example, an increased frequency of visits to grocery stores in the face of
natural disaster often suggests a greater level of demand among people
due to a panic buying behavior (Wei & Mukherjee, 2022). Nie et al.
2021) utilize human mobility data at parking facilities to understand
he public parking demand at different time of day. Human mobility
ata overcomes the limitations of traditionally-used data in capturing
ustomers’ behaviors in access to critical facilities, and provides a new
erspective to characterize the demand patterns of people (Marcelo
t al., 2022). However, most studies only utilize descriptive analysis
to gain insights on what has happened in the past, without focusing on
what mobility patterns will occur in the future. Therefore, there is a
need to conduct predictive analysis that can make accurate estimations
about service demand forecasts for critical facilities in the near future.

2.2. Matrix decomposition

Matrix decomposition (or matrix factorization) refers to the trans-
formation of a matrix into a canonical form, which has been widely
applied in a variety of applications such as missing data imputation,
feature extraction, and dimensionality reduction (Fanaee-T & Gama,
2016; Kolda & Bader, 2009). Tensor is a generalized matrix to rep-
resent multidimensional data. Growing attention has been paid to
extracting latent patterns from human movements using decomposition
techniques. For instance, Fan, Song, and Shibasaki (2014) use the
tensor factorization method to decompose the population flow into
various components representing basic mobility patterns for working,
commuting and entertaining fields. Du, Zhou, Liu, Cui, and Xiong
(2019) develop a framework based on tensor decomposition to identify
underlying citywide transit service hot spots using public transit data.
To address the missing data issues in human mobility patterns, Chen,
He, and Sun (2019) present a Bayesian tensor decomposition approach
for spatiotemporal traffic data imputation.

However, the standard matrix/tensor decomposition methods often
fall short of capturing the dynamics of temporal patterns in the data,
thus making them unsuitable for time series forecasting (Kargas et al.,
2021). To facilitate times-series prediction, linear time series models
are often incorporated into the matrix decomposition process to ac-
count for temporal evolution. For example, Yu, Rao, and Dhillon (2016)
develop a temporal matrix factorization model, where autoregressive
(AR) process is embedded to model latent temporal factors from the
matrix decomposition. Chen and Sun (2021) present a Bayesian tempo-
ral factorization framework that combines vector autoregressive (VAR)
process and matrix factorization for modeling spatiotemporal data with
missing values. However, these studies apply the linear time series mod-
els to the matrix decomposition process, which can restrict the ability to
handle complex nonlinear data. These challenges call for development
of more sophisticated models to forecast large-scale complex time series
data, which we will discuss in the next section.

2.3. Forecasting methods

In general, time series forecasting models could be broadly classi-
fied into three main categories: statistical time-series models, machine
learning (including deep learning) methods, and hybrid methods (Punia
& Shankar, 2022). In what follows, we discuss the strengths and weak-
nesses of these different types of models, highlighting the research gaps
in their application for service demand forecasting, which serve as the
motivation for our work.
3

A number of statistical models, such as autoregressive integrated
moving average (ARIMA), seasonal ARIMA (SARIMA), and vector au-
toregression (VAR), have been utilized to forecast the service demand.
For example, Papanagnou and Matthews-Amune (2018) use VAR model
to predict medicine demands using external variables such as Google
search intensity and YouTube video watch duration. Xu, Qi, and Hua
(2010) apply ARIMA model to predict the demand for agricultural com-
modities at different whole foods markets. The simple statistical models
often assume certain form of the relationship in the data (e.g., linear),
which may limit the handling of complex nonlinear data with high
frequency and volatility (Harvey, 1990).

In contrast, supervised machine learning models have been widely
used to analyze nonlinear patterns, as they are flexible without the
specification of certain functional form in the data (Cavalcante, Fraz-
zon, Forcellini, & Ivanov, 2019). The benefit of using machine learning
is highlighted in previous studies on demand forecasting (Carbonneau,
Laframboise, & Vahidov, 2008; Loureiro et al., 2018). Ferreira, Lee, and
Simchi-Levi (2016) illustrate the effectiveness of regression trees with
bootstrap aggregation (a.k.a., bagging) in the prediction of both flash
sales and new products. To further account for temporal patterns, deep
learning models such as Long Short-Term Memory (LSTM) are often
used to model complex time series patterns (Nguyen et al., 2021). Wang
et al. (2022) propose a context-aware LSTM model to forecast time-
dependent ridership demand using bus GPS trajectory and automatic
fare collection (AFC) data. Zhu, Ninh, Zhao, and Liu (2021) consider
the cross-series information for predicting pharmaceutical demands
using recurrent neural network (RNN). However, training deep learning
models can be computationally expensive as it requires to learn a large
amount of model parameters, making it difficult to deploy these models
in resource-constrained environments in a timely manner (Yang, Xue,
Ding, Wu, & Gao, 2021).

Hybrid models that involve the combination of various models could
jointly improve the overall forecast accuracy. Choi et al. (2011) develop
a hybrid scheme for sales forecasting at apparel retail stores where the
classic statistical method and wavelet transformation are combined to
show the improved predictive accuracy. Arunraj and Ahrens (2015)
introduce a hybrid model integrating SARIMA and quantile regres-
sion to forecast the daily demand in retail stores. Punia and Shankar
(2022) present another hybrid model combining LSTM and random
forest for demand forecasts of packaged food products considering both
structured and unstructured data (Punia & Shankar, 2022). Hybrid
models provide ways of incorporating the strengths of various models,
but those studies simply assemble models that share same or similar
functionality, without fully accounting for the issues of model selection
and overfitting.

To summarize, most studies on demand forecasting for critical
facilities utilize univariate models, which solely account for a single
autoregressive variable in the analysis (Arunraj & Ahrens, 2015; Choi
et al., 2011; Loureiro et al., 2018). The univariate models often fall
short of capturing the interdependencies of multiple response variables,
which may constrain the model’s predictive power. On the contrary,
the multivariate model that considers the joint effect of multiple re-
sponse variables is found to have superior predictive performance over
univariate models (Wei, Narin, & Mukherjee, 2022). However, little
attention has been paid to exploring multivariate time series models
that can allow the incorporation of multiple autoregressive patterns
into the demand forecasting for critical facilities (Fildes et al., 2022).
To overcome the above-mentioned challenges in time series forecasting
and to further enhance predictive performance, this paper develops a
novel two-stage forecasting framework by integrating data decomposi-
tion technique and multivariate time series modeling. Our framework
is different from the most existing demand forecasting schemes in
two ways. On the one hand, the proposed framework first extracts
the main spatial and temporal patterns from human mobility data in
the first stage, and then models the dynamics of temporal patterns

for prediction in the second stage. The synthesis of these two stages
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could efficiently handle large-scale and complex spatiotemporal data.
On the other hand, our framework is flexible to incorporate contextual
information, which is valuable for businesses to understand the key
factors related to service demand patterns.

3. Methodological framework

In this section, we introduce the proposed two-stage forecasting
framework. Stage I is described in Section 3.1, and Stage II is presented
in Section 3.2. We also illustrate how our framework can be extended
by incorporating contextual information in Section 3.3. The schematic
epresentation of the proposed two-stage forecasting framework with
ontextual information is represented in Fig. 1.

.1. Stage I: Decomposition

The first stage aims to discover the latent features in the data by
ecomposing the original data to a more compact form. Specifically,
e use 𝒀 = {𝑦𝑖𝑡,∀(𝑖, 𝑡)} to represent the service demands that vary
cross both neighborhoods (𝑖 = 1,… , 𝑛) and time (𝑡 = 1,… , 𝑙). The
ecomposition allows 𝒀 ∈ R𝑛×𝑙 to be factorized into neighborhood-
pecific latent factor 𝒂𝑖 = [𝑎𝑖1, 𝑎𝑖2,… , 𝑎𝑖𝑘]𝑇 and time-specific latent
actor 𝒃𝑡 = [𝑏𝑡1, 𝑏𝑡2,… , 𝑏𝑡𝑘]𝑇 . Mathematically, it can be written as

𝑖𝑡 ≈ 𝒂𝑇𝑖 𝒃𝑡 =
𝑘
∑

𝑟=1
𝑎𝑖𝑟𝑏𝑡𝑟, for 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑙. (1)

Here 𝒂𝑖 ∈ R𝑘×𝑛, 𝒃𝑡 ∈ R𝑘×𝑙, and 𝑘 < min(𝑛, 𝑙). The use of such a
decomposition technique in Eq. (1) enjoys several benefits including
feature extraction and data compression. On the one hand, the latent
factors could reveal certain characteristics of original data across each
dimension (Kolda & Bader, 2009). On the other hand, it can save
computational expense by reducing original data (with the size of 𝑛× 𝑙)
to more compact data (with the size of (𝑛+𝑙)×𝑘), while still maintaining
data fidelity. This can substantially improve computation efficiency,
especially when dealing with a large-scale dataset (Chen, He, & Wang,
2018).

To find 𝑨 = [𝒂1,… ,𝒂𝑛] and 𝑩 = [𝒃1,… , 𝒃𝑙] to represent 𝒀 (i.e., 𝒀 ≈
𝑨𝑇𝑩), we formulate this as an optimization problem to minimize a loss
function (𝑨,𝑩), which is given by

min
𝑨,𝑩

(𝑨,𝑩) =
∑

(𝑖,𝑡)∈𝛺

(

𝑦𝑖𝑡 − 𝒂𝑇𝑖 𝒃𝑡
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reconstruction error

+ 𝜆
(

𝑛
∑

𝑖=1

‖

‖

‖

𝒂𝑖
‖

‖

‖

2

2
+

𝑙
∑

𝑡=1

‖

‖

‖

𝒃𝑡
‖

‖

‖

2

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

𝐿2 regularization

(2)

The first term in (𝑨,𝑩) describes the reconstruction error between
the actual value and its estimation, while the second term is the 𝐿2
regularization to improve the generalization performance of the model
by avoiding overfitting. The parameter 𝜆 controls the extent of regular-
ization, 𝛺 = {(𝑖, 𝑡) ∶ 𝑦𝑖𝑡 is observed} represents the set of observed data,
and ‖⋅‖2 is the Frobenius norm defined as the square root of the sum of
the element-wise absolute squares. Note that, (𝑨,𝑩) is a non-convex
function due to the 𝒂𝑇𝑖 𝒃𝑡 term, thus is a NP-hard to optimize (Hillar
& Lim, 2013). To address this challenge, we apply the Alternating
east Squares (ALS) method, with the idea of iteratively optimizing one
4

atrix at a time while holding the other matrices constant. In other
ords, it alternates between updating the neighborhood matrix and
he time matrix, until convergence. Specifically, when fixing 𝒃𝑡, we can
ptimize 𝒂𝑖 through

𝒂̂𝑖 = argmin
𝒂𝑖

∑

{𝑡∶(𝑖,𝑡)∈𝛺}

(

𝑦𝑖𝑡 − 𝒂𝑇𝑖 𝒃𝑡
)2

+ 𝜆‖𝒂𝑖‖22, 𝑖 = 1,… , 𝑛. (3)

Similarly, when holding 𝒂𝑖 as a constant, 𝒃𝑡 can be optimized through

𝒃̂𝑡 = argmin
𝒃𝑡

∑

{𝑖∶(𝑖,𝑡)∈𝛺}

(

𝑦𝑖𝑡 − 𝒂𝑇𝑖 𝒃𝑡
)2

+ 𝜆‖𝒃𝑡‖22, 𝑡 = 1,… , 𝑙. (4)

From Eqs. (3) and (4), it can be observed that the algorithm solves a
east squares problem to obtain the latent factors, which is a convex
roblem. We further derive the closed form solution to update 𝒂̂𝑖 and
̂ 𝑗 through the first-order conditions (i.e., setting the partial derivatives
qual to zero). Then, we have

̂ 𝑖 =
(

∑

𝑡∶(𝑖,𝑡)∈𝛺
𝒃𝑇𝑡 𝒃𝑡 + 𝜆𝐼

)−1 ∑

𝑡∶(𝑖,𝑡)∈𝛺
𝑦𝑖𝑡𝒃𝑡, 𝑖 = 1,… , 𝑛, (5)

̂ 𝑡 =
(

∑

𝑖∶(𝑖,𝑡)∈𝛺
𝒂𝑇𝑖 𝒂𝑖 + 𝜆𝐼

)−1 ∑

𝑖∶(𝑖,𝑡)∈𝛺
𝑦𝑖𝑡𝒂𝑖, 𝑡 = 1,… , 𝑙, (6)

here 𝐼 is the identify matrix that has dimension of 𝑘 × 𝑘.

.2. Stage II: Prediction

In Stage I, the mobility patterns are decomposed into two latent
actors (i.e., neighborhoods and time), where the time-specific factor
ignals the time only up to 𝑙. However, we are interested in predicting
he future timestamps such as 𝑙 + 1. The matrix decomposition often
alls short of predicting the future dynamics based on static latent
actors (Yu et al., 2016). To address this problem, we further impose
emporal dynamics on the latent time factor 𝒃𝑡, so that it can evolve
ver time. Note that, we have a total of 𝑘 different time series according
o the matrix 𝑩 ∈ R𝑘×𝑙. To fully utilize the interdependency of multiple
ime series, we leverage multivariate time series approach to simulta-
eously model various dependent variables co-evolving over time. This
pproach overcomes the assumption of univariate analysis that often as-
umes each time series pattern is independent (Tsay, 2013). Therefore,
in this paper, we utilize dynamic mode decomposition (DMD) method
for multivariate time series forecasting. There are several advantages of
using the DMD method. On the one hand, it is a data-driven algorithm
that does not require any prior knowledge of the data being analyzed,
which is well-suited for nonlinear data (Yu et al., 2016). On the other
hand, it works by extracting dominating dynamic modes from the data
and predicting multiple time series simultaneously, which is ideal for
multivariate analysis (Cheng et al., 2022). In what follows, we present
the details of how we use DMD to predict the latent time factors in our
study.

Given the matrix 𝑩 obtained from Stage I, we first partition it
into two matrices denoted by 𝑩̄ = [𝒃1,… , 𝒃𝑙−1] ∈ R𝑘×(𝑙−1) and 𝑩̄′ =
[𝒃2,… , 𝒃𝑙] ∈ R𝑘×(𝑙−1) with the same size, where 𝑩̄′ is just shifted one

̄
time step ahead from 𝑩. The goal of DMD is to find a best fit operator
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𝑫 ∈ R𝑘×𝑘 that can advance 𝑩̄ into 𝑩̄′, which is mathematically given
y

̄ ′ ≈ 𝑫𝑩̄. (7)

Then, we compute a low-rank approximation to 𝑩̄ by applying the
runcated singular value decomposition (SVD) method, while retaining
he 𝑟 largest singular values and vectors (Yu et al., 2016). This can be
xpressed as

̄ ≈ 𝑩̄𝑟 = 𝑼 𝑟𝜮𝑟𝑽 ⊤
𝑟 , (8)

here 𝑼 𝑟 ∈ R𝑘×𝑟 and 𝑽 𝑟 ∈ R(𝑙−1)×𝑟 are unitary matrices, and 𝜮𝑟 ∈ R𝑟×𝑟

is a diagonal matrix with 𝑟 non-zero singular values. Based on Eqs. (7)
and (8), we can solve 𝑫 through the following equation

𝑫 ≈ 𝑩̄′𝑩̄+ ≈ 𝑩̄′𝑩̄+
𝑟 = 𝑩̄′(𝑼 𝑟𝜮𝑟𝑽 ⊤

𝑟 )
+ = 𝑩̄′𝑽 𝑟𝜮−1

𝑟 𝑼⊤
𝑟 . (9)

Note that 𝑩̄+ denotes the Moore–Penrose inverse of a matrix 𝑩̄, whereas
𝑩̄′ is just a representation of a collection of time-specific factors.

Next, instead of computing the full matrix 𝑫, which is often com-
putationally expensive, the low-rank projection 𝑫̃ ∈ R𝑟×𝑟 is derived
through the following equation:

𝑫̃ = 𝑼+
𝑟 𝑫𝑼 𝑟 ≈ 𝑼+

𝑟 𝑩̄
′𝑽 𝑟𝜮−1

𝑟 𝑼⊤
𝑟 𝑼 𝑟 = 𝑼+

𝑟 𝑩̄
′𝑽 𝑟𝜮−1

𝑟 . (10)

Here 𝑩̄′ is an output of Stage I, 𝑼 𝑟, 𝜮𝑟, and 𝑽 𝑟 can be derived
from Eq. (8). It can be noted that 𝑫̃ and 𝑫 both have the same nonzero
leading eigenvalues (Tu, Rowley, Luchtenburg, Brunton, & Kutz, 2014).
Based on eigendecomposition, we have 𝑫̃𝑾 = 𝑾𝜦, where the columns
of 𝑾 are eigenvectors, and the entries of the diagonal matrix 𝜦 are the
corresponding eigenvalues. The DMD modes (i.e., the eigenvectors of
𝑫) can be derived by 𝜱 = 𝑩̄′𝑽 𝑟𝜮−1

𝒓 𝑾 . That is, each column of 𝜱 is a
DMD mode corresponding to a particular eigenvalue in 𝜦. To this end,
with the approximated eigenvalues and eigenvectors of 𝑫 in hand, we
can predict the next time step, which is analytically constructed as

𝒃𝑡 = 𝜱𝜦𝑡𝒃0, for 𝑡 = 𝑙 + 1,… . (11)

The vector 𝒃0 = 𝜱−1𝒃1 represents the initial amplitude of each DMD
mode. It is worth noting that Eq. (11) provides a closed form of
prediction for latent time factors, so that no numerical iteration is
needed. This can greatly reduce the computational expenses.

To summarize, based on the proposed two-stage forecasting frame-
work, the predicted values across neighborhoods at the future time
stamps are calculated through

̂𝑖𝑡 = 𝒂̂𝑇𝑖 𝒃𝑡, for 𝑡 = 𝑙 + 1,… , (12)

where 𝒂̂𝑖 can be numerically estimated by Eq. (5), and 𝒃𝑡 can be
analytically obtained through Eq. (12).

3.3. Integrating contextual information

The proposed two-stage framework can be extended by integrat-
ing contextual information (e.g., sociodemographic backgrounds and
weather conditions). To achieve this, we first denote 𝑿 as a set of
independent variables of interest. This can be, for example, 𝑿 =
{𝒙tavg,𝒙pop}, where 𝒙tavg indicates average temperature and 𝒙pop is
population. Then, we represent 𝑔(⋅) as the regression model of interest
(e.g., linear model, regression tree) that can build the relationship
between dependent variable 𝒀 and independent variables 𝑿, i.e., 𝒀 =
𝑔(𝑿) + 𝝐. In this study, we select random forest as the regression
model, as it has shown to be effective in regression analysis in terms of
both predictability and interpretability (Breiman, 2001; Ferreira et al.,
2016). With contextual information, we can apply our framework using
residuals 𝝐 as model inputs rather than 𝒀 . Analyzing the residuals
allows our model to capture the unexplained variability in the data,
which could further improve model predictive performance.

To summarize, the key innovation of our framework lies in how
these three components depicted in Fig. 1 (data preparation, decom-
5

position, and prediction) are combined and integrated seamlessly to
Algorithm 1 Two-stage forecasting framework with contextual infor-
mation
1: Input: 𝒀 , 𝑿
2: Output:

{

𝑔(𝑿) + 𝑒𝑖𝑡
}

for 𝑖 = 1,⋯ , 𝑛 and 𝑡 = 𝑙 + 1
3: Initialization: 𝒂𝑖 and 𝒃𝑡 with random values
4: Perform regression analysis 𝑔(⋅) and obtain residuals 𝜖 = 𝒀 − 𝑔(𝑿)
5: 𝑦𝑖𝑡 ← 𝑒𝑖𝑡, ∀(𝑖, 𝑡)
6: repeat ⊳ Stage I: decomposition
7: Update 𝒂̂𝑖 using Equation (5), 𝑖 = 1,⋯ , 𝑛
8: Update 𝒃̂𝑡 using Equation (6), 𝑡 = 1,⋯ , 𝑙
9: until convergence
0: Predict 𝒃𝑡 for 𝑡 = 𝑙 + 1 using Equation (11) ⊳ Stage II: prediction
1: Calculate 𝑦̂𝑖𝑡 for 𝑡 = 𝑙 + 1 using Equation (12)
2: 𝑒𝑖𝑡 ← 𝑦̂𝑖𝑡, ∀(𝑖, 𝑡)

achieve better predictive performance from complex human mobility
data. The algorithm for our proposed two-stage forecasting frame-
work with contextual information is illustrated in Algorithm 1. This
algorithm could benefit readers and practitioners by helping them
implement our framework more effectively, as we have provided an-
alytical solutions and numerical iterations for the equations in the
algorithm to make their usage easier.

4. Experimental setting

In this section, we present how to demonstrate the applicability
of our proposed framework using real-world human mobility data. An
overview of the steps involved in the model implementation is shown
in Fig. 2. Specifically, we begin with an introduction of human mobility
data collected from SafeGraph company and other types of data in
Section 4.1. Then, we provide a brief introduction to benchmark models
that are used to compare our model in Section 4.2. Following that,
the details on model implementation and performance evaluation are
described in Section 4.3.

4.1. Data preparation

We apply our framework to analyze and predict the service demand
of the gas stations in the Harris County, Texas, U.S. The county seat
is the city of Houston, which is the largest city in Texas and fourth
largest city in the U.S. The selection of gas station is due to two main
reasons. First, gas stations are critical facilities that provide essential
service for transportation on a daily basis. Second, accurate predictions
of gasoline demand are critical for ensuring the continuity of energy
supply, considering the fact that more than 90% of households in Harris
County reported owning at least one vehicle (Houston State of Health,
2023).

4.1.1. Human mobility data
Human mobility data from mobile phone users in Harris County is

obtained from SafeGraph, which is a company that gathers geospatial
data from mobile phone users (SafeGraph, 2020). Specifically, two
types of data are collected from SafeGraph. One is human mobility
information, expressed in the CSV (Comma-Separated Values) format,
including the daily number of people who left their neighborhood
(where their homes are located) and the daily number of visitors at each
service facility. Another type of data is the geographical information,
which is stored in the JSON (JavaScript Object Notation) format and
includes geographic coordinates for service locations and polygons for
neighborhoods. The mobility data is anonymous and aggregated at each
census block group (CBG) to protect individual privacy (SafeGraph,
2020). Here, the CBG is a geographic area defined by the U.S. Census
Bureau that contains between 600 and 3000 people, and used to rep-
resent the residential neighborhood. The data also contains foot traffic
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Fig. 2. An overview of the steps in model implementation.
c

Fig. 3. Comparison between the sampled mobile phone users and the census popula-
ion. Each hexagon is color-coded based on the number of neighborhoods within each
in.

nformation at various types of points-of-interest (POI) including retail
tores and gas stations. Each POI is associated with a business type
ased on the North American Industry Classification System (NAICS)
ode. Based on the methodology developed in previous work to con-
ect CBGs and POIs (Wei & Mukherjee, 2023), we obtained the daily
human movement patterns to gas stations (NAICS code: 447110) at
each CBG in our study region. In our analysis, the response variable
𝑦𝑖𝑡 represents the daily number of customers visiting a gas station in
each neighborhood. This response variable could signal the demand
of people for gasoline service across varying neighborhoods. Daily
mobility patterns to gas stations were recorded for each neighborhood
for the first three months of 2021, totaling 12 weeks. In brief, our
database covers 0.32 million mobile phone users, which account for
around 7% of that census population, across 2142 CBGs for 12 weeks
in our study region. Here, we assume that the CBG population remains
constant during our analysis period of 12 weeks, which is a reasonable
and practical assumption since the census population generally remains
constant during a short- or medium-term period.

To ensure that mobility data being collected is representative, we
implemented the representation test, where the sampled data is com-
pared with the census data. First, a hexbin (a.k.a., hexagonal binning)
plot is used to visualize the distribution of the sampled data to the
census data using hexagonal bins. As shown in Fig. 3, each hexagon
is color-coded based on the number of neighborhoods within each bin,
where the lighter (darker) colors indicate more (less) neighborhoods
in each bin. It can be observed that most hexagons are centered
around the regression line, which suggests a strong positive correlation
between the sampled data and the census population. Second, a quan-
titative analysis is performed by calculating the Pearson correlation
6

coefficient (denoted as 𝜌). We confirmed that the sampled data is highly
correlated with the census data (𝜌 = 0.81) across all neighborhoods,
and this relationship is statistically significant (𝑝 < 0.05). The results
of these analyses suggest that our dataset does not contain significant
biases to the census population. This is also in line with the previous
study that shows SafeGraph data is generally representative of the
census data (Brelsford, Moehl, Weber, Sparks, Tuccillo, & Rose, 2022).

4.1.2. Contextual information
We then collected climate information and sociodemographic char-

acteristics pertaining to our study region. The climate data are gathered
from the National Oceanic and Atmospheric Administration (NOAA)
(NOAA, 2021). The sociodemographic variables are obtained from
the American Community Survey (ACS) 5-year estimates of the U.S.
Census Bureau (US Census Bureau, 2020). We also introduced an
indicator variable to represent the day of week. The description of the
quantitative variables is exhibited in Table 1.

Table 1 also displays the Pearson’s correlation coefficient (Pearson’s
𝜌) and the corresponding 𝑝-value for each quantitative variable with
respect to our response variable. All variables depicted in Table 1 are
ontinuous and measured at the CBG level. Here, the 𝑝-value is a statis-
tical measurement used to validate the significance of a hypothesis test.
A low 𝑝-value (typically below a significance level of 0.05) indicates
that we have enough evidence to reject the null hypothesis, indicating
that there is a significant correlation between the independent variable
and the dependent variable. We observe that all the variables are statis-
tically significant based on the 𝑝-values, suggesting that the inclusion of
these information may help understand and predict mobility patterns
for the gas stations. For climate variables, mobility behaviors are nega-
tively correlated with daily precipitation, wind speed, and air pressure,
but positively linked to average air temperature. For sociodemographic
variables, a higher proportion of white, older, and low-income people
is linked to fewer mobility movements. On the contrary, the proportion
of people who have not completed high school is positively associated
with mobility patterns to gas stations, which may be attributed to work
activities.

4.2. Benchmark models

Our proposed model is compared with four benchmark models
including naive forecasting, autoregressive integrated moving average
(ARIMA), vector autoregression (VAR), and long short-term memory
(LSTM), which are widely used for time series forecasting in the lit-
erature (Ferreira et al., 2016; Nguyen et al., 2021; Xu et al., 2010).
The naive forecast simply predicts the future value by taking the mean
value of the historical data, which is a useful baseline to compare
more complex forecasting methods. ARIMA and VAR are representative
examples of parametric models, which often restricts the data being an-
alyzed to follow a particular distribution or assumption (e.g., linearity).
On the other hand, LSTM is representative example of non-parametric
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Table 1
Description of quantitative variables from the data.
Variable Description (Unit) Pearson’s 𝜌 𝑝-value

tavg The average air temperature (◦C). 0.037 𝑝 < 0.05
prcp The daily precipitation (mm). −0.032 𝑝 < 0.05
wspd The average wind speed (km/h). −0.027 𝑝 < 0.05
pres The average sea-level air pressure (hPa). −0.018 𝑝 < 0.05
total population Census population (count) 0.847 𝑝 < 0.05
white population Proportion of population identified as white (%). −0.052 𝑝 < 0.05
older population Proportion of population aged 65 and older (%). −0.201 𝑝 < 0.05
less than high school Proportion of population have not completed high school (%). 0.08 𝑝 < 0.05
low income households Proportion of population below $59,999 household income (%). −0.043 𝑝 < 0.05
R

𝑅

N
t
c
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model without the specification of certain functional form in the data. A
short description of these models is presented here. For more details on
these time series models, readers may refer to the book (Box, Jenkins,
Reinsel, & Ljung, 2015).

ARIMA is a univariate statistical model that is made up of three
parts (Box et al., 2015). The first part is autoregressive that captures
the linear relationship between an observation and previous lagged
observations. The second part is integration that accounts for the rate
of change of the growth/decline in the data. The last part is moving
average that explores the lagged forecast errors.

VAR is a multivariate statistical model that is able to capture the
joint behavior of multiple time series variables. It is an extension of the
univariate autoregressive models. In the VAR model, a set of time series
variables are modeled as linear functions of their historical values, as
well as the historical observations of the other variables in the system.
This allows for the modeling of interdependencies among the variables
that are co-evolving over time (Box et al., 2015).

LSTM model is a machine learning model designed for learning
long-term dependencies in time series data. LSTM introduces a memory
cell with three gates (input gate, forget gate, and output gate) to
control the flow of information (Hochreiter & Schmidhuber, 1997).
Specifically, the input gate controls the weight of information (current
input and previous state) to be added into the cell state. The function
of the forget gate is to determine what information to discard from the
cell state. Lastly, the output gate allows the model to selectively output
information from the current cell state.

Note that, ARIMA is a univariate model and often deals with a
single time series, whereas VAR and LSTM are multivariate models
allowing for modeling multiple time series simultaneously. Thus, we
apply ARIMA to model the mobility patterns in each neighborhood indi-
vidually, while VAR and LSTM are implemented for all neighborhoods
at once.

4.3. Implementation details

To implement all the models, we split the data into three sets –
training, validation, and test sets – based on the chronological order
to preserve temporal dependencies in the data. The training set is
utilized to train a model, the validation set is applied to tune the
model hyperparameters, and the test set is leveraged to evaluate the
predictive capability of the model (Hastie, Tibshirani, Friedman, &
Friedman, 2009). From the collected data, we use the first nine weeks
as the training set, the week ten as the validation set, and the last two
weeks as the test set. To identify the best configuration of the model,
we adopt the grid search strategy, which is a widely used method for
hyperparameter tuning (Hastie et al., 2009). The proposed model has
three parameters to be optimized: (a) the size of lower-dimensional
matrix 𝑘, (b) the regularization term 𝜆, and (c) the number of singular
values 𝑟. For each combination of model parameters, the model is
trained on the training set and evaluated on the validation set. The
optimal combination of hyperparameters that yields the best model
performance is selected as the final model. Following that, the final
model is evaluated on the test set. For model evaluation, three widely-
adopted statistical metrics are utilized, namely, mean absolute error
7

(MAE), root mean square error (RMSE), and 𝑅2, which are given by

MAE = 1
|𝛺′

|

∑

(𝑖,𝑡)∈𝛺′
|𝑦𝑖𝑡 − 𝑦̂𝑖𝑡| (13)

MSE =
√

1
|𝛺′

|

∑

(𝑖,𝑡)∈𝛺′
(𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)2. (14)

2 = 1 −
∑

(𝑖,𝑡)∈𝛺′ (𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)2
∑

(𝑖,𝑡)∈𝛺′ (𝑦𝑖𝑡 − 𝑦̄𝑖𝑡)2
(15)

ote that, 𝑦𝑖𝑡 and 𝑦̂𝑖𝑡 are the actual and predicted values, 𝑦̄𝑖𝑡 represents
he mean of the actual values. and |𝛺′

| is the cardinality of the
orresponding set. The smaller values of MAE and RMSE, or the larger
alues of 𝑅2, indicate the better predictive performance of the model.

5. Results

In this section, we discuss the results from our numerical experi-
ments. The predictive performance of our proposed model and multiple
benchmark models is reported in Section 5.1. Then, we present the
sensitivity analysis and robustness checks of the proposed model in
Section 5.2 and Section 5.3 respectively. All the numerical analyses are
performed using Python 3.9.13 on a 64-bit Dell Precision 3650 Tower
with an 11th Gen Intel(R) Core(TM) i7-11700K processor running at
3.60 GHz.

5.1. Model performance

Table 2 shows the predictive performance of models for one-day
ahead forecast on the test set. The values in boldface indicate the best
predictive performance. We observe that our model performs the best
(with the smallest MAE and RMSE, and the largest 𝑅2) in comparison
with the benchmark models. Note that the MAE for our model is 33.8,
meaning that the predicted number of people visiting the gas stations
in each CBG is off by 33.8 on average from the observed number of
people visiting the gas stations. It can also be observed that the Naive
forecast performs the worst, since it only takes the mean of historical
data for future forecasts. Compared with the linear models (i.e., ARIMA
and VAR), our model can better capture the nonlinear patterns in the
data. Specifically, our model is 20% and 9% better than ARIMA and
VAR respectively in terms of predictive performance measured by MAE.
Compared with the LSTM, the results show that our model is better
suited for multivariate time series data, as it is capable of capturing
the interdependencies among other variables. Our model is 10% better
than LSTM with respect to predictive performance measured by MAE.
In addition, we performed statistical 𝑡-test and showed that the average
performance of the proposed model is statistically better than all the
other models (𝑝 < 0.05).

We also plot the distribution of predictive errors on the test set for
all the models, as shown in Fig. 4. The distribution of errors indicate
the uncertainty in the model prediction. It can be observed that LSTM
produces few outliers that are outside of the box plots. Naive forecast
and ARIMA tend to have the larger spread of errors measured by the

interquartile range, suggesting these models have a higher uncertainty
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Table 2
Predictive performance comparisons between benchmark models and the proposed model in terms of MAE, RMSE, and 𝑅2: mean (standard
deviation).

Naive ARIMA VAR LSTM Our model

MAE 49.17 (11.61) 41.19 (12.97) 36.96 (10.85) 37.76 (9.97) 33.80 (9.00)
RMSE 73.04 (19.42) 61.32 (18.84) 54.86 (15.57) 57.09 (14.24) 50.86 (13.61)
𝑅2 0.79 (0.11) 0.89 (0.09) 0.91 (0.06) 0.89 (0.1) 0.93 (0.04)
Fig. 4. Box plots for predictive performance of benchmark models and the proposed
odel. The hollow dots indicate the mean values.

n their predictions and are less stable in providing accurate predic-
ions. On the other hand, our proposed model has the smallest variance
or MAE, RMSE, and 𝑅2. The low variance typically indicates that the
model is more stable in predictions with less uncertainty, which is
desirable for accurate and reliable demand forecasts.

To further check the indispensability of the matrix decomposition
in the first stage, we implemented an ablation experiment by removing
the first stage from our two-stage framework. Specifically, we only use
the DMD in the second stage for time-series forecasting. The results
from the DMD model show that the MAE, RMSE, and 𝑅2 are 40.35,
8.74, and 0.9 respectively. In contrast, our two-stage forecasting
ramework, which integrates both matrix decomposition and the DMD
odel for time-series prediction, can achieve better forecasting results
ith 33.80, 50.86, and 0.93 for MAE, RMSE, and 𝑅2 respectively.
his confirms the necessity of including decomposition as the first
tage to further enhance forecast results. As a result, the proposed
wo-stage forecasting framework and its various components should
e implemented altogether to fully realize its potential for time-series
ervice demand forecasting.

.2. Sensitivity analysis

We performed sensitivity analysis to examine the performance of
he proposed method with respect to changes in a model parameter,
hile holding the other parameters constant. Fig. 5 displays the one-
ay sensitivity analysis for three model parameters: 𝑘, 𝜆, and 𝑟. The

vertical axis indicates the predictive performance measured by MAE on
the validation set. The optimal values of model parameters are marked
as the vertical dashed lines (i.e., 𝑘∗ = 30, 𝜆∗ = 100, 𝑟∗ = 20), which are
obtained from the grid search strategy.

We observe that the predictive error initially increases and sub-
sequently decreases considerably, as the value of 𝑘 increases. This
indicates adding more latent factors could enhance the model per-
formance, but this improvement becomes less significant as 𝑘 grows.
Similarly, it can be noticed that the predictive error of the model
decreases rapidly as the value of 𝜆 rises to 100, and then stabilizes
around 32.5 irrespective of the increase in 𝜆. For parameter 𝑟, it can
be seen that the predictive error first decreases and then increases, as
the growing of 𝑟. When the value of 𝑟 gets larger, the model tends to
have a higher prediction error, suggesting that the model is prone to
overfitting the data.
8

5.3. Robustness check

The purpose of robustness check is to assess the robustness of the
model’s performance to different settings, and to provide greater con-
fidence in the reliability of the model’s conclusions. We first evaluated
the model predictive performance by adjusting the forecast horizon
from the one-day ahead to ten-day ahead forecasts. Here, the forecast
horizon refers to the length of time into the future for which a model
is used to generate forecasts (Box et al., 2015). We choose the unit
of forecast horizon as consecutive days, as it could help businesses
make informed operational decisions (e.g., inventory management) and
strategic planning (e.g., pricing).

Fig. 6 displays the model performance with the changing of fore-
cast horizons. It can be seen that the predictive accuracy decreases
(reflected by the increasing of MAE), as forecast horizon gets larger.
This is because, in general, longer forecast horizons are associated with
more uncertainty where potential changes may occur in the system over
a longer period. But still, our proposed model outperforms other mod-
els for all forecast horizons, suggesting that the proposed forecasting
framework can be well suited for different forecast horizons.

Next, to check whether the residuals of our model (defined as the
difference between actual values and predicted values) exhibit spatial
autocorrelation or not, we calculated the Moran’s I statistic (Li, Calder,
& Cressie, 2007). Specifically, Moran’s I measures the degree of spatial
similarity among residuals in the study region, which is given by

𝐼 = 𝑛
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑤𝑖𝑗

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑤𝑖𝑗 (𝑥𝑖 − 𝑥̄)(𝑥𝑗 − 𝑥̄)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄)2
. (16)

Here, 𝑛 is the total number of neighborhoods, 𝑤𝑖𝑗 is a measure of spatial
proximity between neighborhoods 𝑖 and 𝑗, 𝑥𝑖 (𝑥𝑗) is the residual of the
neighborhoods 𝑖 (𝑗), and 𝑥̄ is a mean of residuals. We calculated 𝑤𝑖𝑗
using the inverse of the Haversine distance between the centroids of
neighborhoods. Note that, the value of Moran’s I ranges between −1
and +1. In particular, the positive (negative) value indicates positive
(negative) spatial autocorrelation, meaning that the residuals across
neighboring locations tend to have similar (dissimilar) values. The
value of 0 indicates no spatial autocorrelation, so that the residuals
are independent across neighborhoods. The Moran’s I for our model
residuals is found to be 0.0004, suggesting that there is no spatial
autocorrelation in the residuals. This satisfies the assumption of in-
dependence of the error terms in the model, which could produce
unbiased estimates of model parameters (Li et al., 2007). In addi-
tion, Fig. 7 displays the spatial distribution of model residuals in our
study region, where the coded colors are based on the quantiles of
the residuals. The positive residuals marked as dark red indicate that
predicted values are less than actual values, meaning that the model has
underestimated the number of people visiting gas stations. The negative
residuals marked as light red indicate that the model has overestimated
the actual number of people in access to gas stations. Overall, we can
observe that the patterns are random and do not exhibit clustered
patterns, which confirms the absence of spatial autocorrelation in the
residuals.

6. Discussion

This paper contributes to the existing literature related to demand
forecasts by developing a novel two-stage predictive framework to

provide accurate forecasts for service demands, leveraging large-scale
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Fig. 5. Sensitivity analysis for model parameters.
Fig. 6. Predictive performance over different forecast horizons.

Fig. 7. Spatial distribution of the residuals of the proposed model. The legend indicates
he quantiles of the residuals, which are defined as the differences between actual and
redicted values of the proposed model. The darker (lighter) shades indicate the regions
here the model underestimates (overestimates) the actual values.

nd complex human mobility information. In a nutshell, the proposed
ramework has several benefits. On the one hand, the first stage in-
olves reducing the input spatiotemporal data into smaller pieces while
till maintaining data fidelity. This decomposition technique can ex-
ract the main characteristics (i.e., latent spatial and temporal factors)
rom the original data, thereby preventing the overfitting issue and
itigating computational costs. On the other hand, the second stage
9

involves utilizing multivariate time series modeling to explore the com-
plex spatiotemporal dependencies of the service demands. By taking
into account the interdependencies of multiple time series patterns,
the model’s predictive performance could be further enhanced. The
synergy of these two stages is capable of making an accurate and timely
prediction by learning nonlinear data with complex spatiotemporal
dependencies.

This work also has practical implications. The proposed forecasting
framework can produce more accurate mobility forecasts, which could
play a vital role in information management by enabling effective
resource allocation, supporting planning and decision making, and
optimizing supply chain operations. The improved predictive accuracy
could significantly help decision makers to better understand the ser-
vice demand of people in visiting critical facilities, which is the key
for supply chain Marra, Ho, and Edwards (2012). For example, if the
demand for a service is projected to increase in the area in the near
future, businesses can utilize this forecast to expand their operations
to meet the increased demand. Similarly, emergency planners would
significantly benefit from more accurate forecasts, as it would allow
them to pre-allocate relief resources such as foods and medicines to the
areas with high demands, potentially saving lives in the face of natural
disaster (Fuqua & Hespeler, 2022). In addition, sensitivity analysis is
performed to examine the sensitivity of the model with respect to
the change of model parameters. This could guide decision makers
to select the optimal values in the model by trading off between
accuracy and efficiency. For instance, exploring more latent factors in
the data may result in a smaller reconstruction error, but may also
require more computational resources. By and large, this work can be
considered one of the key building blocks to help businesses shift from
the traditional style of demand sensing to a more hybrid approach that
utilizes advanced predictive analytics for demand forecasting.

7. Conclusions and future work

Understanding the service demand of people in visiting critical facil-
ities at finer spatiotemporal resolutions plays a critical role in resource
management. But, it is challenging to characterize people’s service
demand behaviors due to data unavailability and lack of sophisticated
predictive techniques. To address these challenges, this study pro-
vides a new venue to characterize people’s service demand to critical
facilities by their mobility patterns. Specifically, we propose a two-
stage forecasting framework that integrates data decomposition and
multivariate time series analysis to provide better mobility forecasts to
critical facilities at the neighborhood level. Our model demonstrates
the superior performances over multiple benchmark models including
ARIMA, VAR, and LSTM, in terms of predictive accuracy and stability.
The proposed framework could help businesses harness the value of
mobility information of customers to better analyze and predict service
demand patterns, which could support informed decision-making in the
allocation of resources.
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In this study, we recognize certain limitations that could be studied
in the future research. On the one hand, this paper collects the human
mobility data in Houston, Texas, and provides a case study to forecast
mobility patterns to gas stations. Future work could expand the use of
the proposed framework to other regions and other critical facilities
(or services) of interest, which may provide additional insights on the
heterogeneities of the service demands in different areas. Comparing
the demand patterns of neighborhoods with varying socioeconomic
characteristics (e.g., low-income vs high-income) would help govern-
ments better allocate resources and funding to mitigate the existing
socioeconomic disparities among population groups. On the other hand,
even though human mobility data has merits to reveal people’s dy-
namic movement behaviors at critical facilities at finer spatiotemporal
resolutions, it also exhibits some limitations. Mobility data is often
passively collected from mobile phone users, which may not reveal
the personal information such as opinions and emotions regarding the
services. Mobility data may not be fully observed for all segments of
the population. Thus, future research could consider the integration of
multiple sources of data such as human mobility data, social media
data, and sales information to further explore the potential of en-
hancing predictive accuracy. The fusion of different data sources often
requires the development of more advanced Artificial Intelligence (AI)
technology for business organizations. Another potential direction for
future work would be to further extend our framework by examining
how comparative methods can affect the model performance through
comparative analysis.

CRediT authorship contribution statement

Zhiyuan Wei: Conceptualization, Methodology, Formal analysis,
riting – original draft, Writing – review & editing. Sayanti Mukher-

jee: Conceptualization, Methodology, Writing – review & editing, Su-
pervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Funding

(1) National Science Foundation
Grant/Award Number: Award#2324616; Award#2308524

(2) Center for Geohazards Study, University at Buffalo (SUNY)

References

Arunraj, N. S., & Ahrens, D. (2015). A hybrid seasonal autoregressive integrated moving
average and quantile regression for daily food sales forecasting. International Journal
of Production Economics, 170, 321–335.

u, K.-F., Choi, T.-M., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural
networks. International Journal of Production Economics, 114(2), 615–630.

Belavina, E. (2021). Grocery store density and food waste. Manufacturing & Service
Operations Management, 23(1), 1–18.

i, X., Adomavicius, G., Li, W., & Qu, A. (2022). Improving sales forecasting accuracy:
A tensor factorization approach with demand awareness. INFORMS Journal on
Computing, 34(3), 1644–1660.

ox, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Brelsford, C., Moehl, J., Weber, E., Sparks, K., Tuccillo, J. V., & Rose, A. (2022). Spatial

and temporal characterization of activity in public space, 2019–2020. Scientific
Data, 9(1), 379.
10
Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning
techniques for supply chain demand forecasting. European Journal of Operational
Research, 184(3), 1140–1154.

Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised
machine learning approach to data-driven simulation of resilient supplier selection
in digital manufacturing. International Journal of Information Management, 49,
86–97.

hen, X., He, Z., & Sun, L. (2019). A Bayesian tensor decomposition approach for
spatiotemporal traffic data imputation. Transportation Research Part C: Emerging
Technologies, 98, 73–84.

hen, X., He, Z., & Wang, J. (2018). Spatial-temporal traffic speed patterns dis-
covery and incomplete data recovery via SVD-combined tensor decomposition.
Transportation Research Part C: Emerging Technologies, 86, 59–77.

hen, F., & Ou, T. (2009). Gray relation analysis and multilayer functional link network
sales forecasting model for perishable food in convenience store. Expert Systems with
Applications, 36(3), 7054–7063.

hen, X., & Sun, L. (2021). Bayesian temporal factorization for multidimensional time
series prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(9), 4659–4673.

heng, Z., Trepanier, M., & Sun, L. (2022). Real-time forecasting of metro origin-
destination matrices with high-order weighted dynamic mode decomposition.
Transportation Science, 56(4), 904–918.

hoi, T.-M., Yu, Y., & Au, K.-F. (2011). A hybrid SARIMA wavelet transform method
for sales forecasting. Decision Support Systems, 51(1), 130–140.

ui, R., Gallino, S., Moreno, A., & Zhang, D. J. (2018). The operational value of social
media information. Production and Operations Management, 27(10), 1749–1769.

u, B., Zhou, W., Liu, C., Cui, Y., & Xiong, H. (2019). Transit pattern detection using
tensor factorization. INFORMS Journal on Computing, 31(2), 193–206.

an, Z., Song, X., & Shibasaki, R. (2014). CitySpectrum: A non-negative tensor
factorization approach. In Proceedings of the 2014 ACM international joint conference
on pervasive and ubiquitous computing (pp. 213–223).

anaee-T, H., & Gama, J. (2016). Tensor-based anomaly detection: An interdisciplinary
survey. Knowledge-Based Systems, 98, 130–147.

erreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer:
Demand forecasting and price optimization. Manufacturing & Service Operations
Management, 18(1), 69–88.

ildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice.
International Journal of Forecasting, 38(4), 1283–1318.

uqua, D., & Hespeler, S. (2022). Commodity demand forecasting using modulated rank
reduction for humanitarian logistics planning. Expert Systems with Applications, 206,
Article 117753.

arvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.
Cambridge University Press.

astie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction, vol. 2. Springer.

erm, L.-V., Heinrich, K., Wanner, J., & Janiesch, C. (2023). Stop ordering machine
learning algorithms by their explainability! A user-centered investigation of per-
formance and explainability. International Journal of Information Management, 69,
Article 102538.

illar, C. J., & Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal of the
ACM, 60(6), 1–39.

ochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

ouston State of Health (2023). Households without a vehicle.
argas, N., Qian, C., Sidiropoulos, N. D., Xiao, C., Glass, L. M., & Sun, J. (2021). Stelar:
spatio-temporal tensor factorization with latent epidemiological regularization. In
Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 6 (pp.
4830–4837).

olda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM
Review, 51(3), 455–500.

i, H., Calder, C. A., & Cressie, N. (2007). Beyond Moran’s I: testing for spatial
dependence based on the spatial autoregressive model. Geographical Analysis, 39(4),
357–375.

iu, Y., Liu, C., Lu, X., Teng, M., Zhu, H., & Xiong, H. (2017). Point-of-interest demand
modeling with human mobility patterns. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 947–955).

ogan, T. M., & Guikema, S. D. (2020). Reframing resilience: Equitable access to
essential services. Risk Analysis, 40(8), 1538–1553.

oureiro, A. L., Miguéis, V. L., & da Silva, L. F. (2018). Exploring the use of deep
neural networks for sales forecasting in fashion retail. Decision Support Systems,
114, 81–93.

arcelo, G.-T., Constance, B., Joseph, M., Kay, A., David, Z., Maarten, V. S., et al.
(2022). Do we have enough recreational spaces during pandemics? An answer
based on the analysis of individual mobility patterns in Switzerland. Landscape
and Urban Planning, 221, Article 104373.

arra, M., Ho, W., & Edwards, J. S. (2012). Supply chain knowledge management: A
literature review. Expert Systems with Applications, 39(5), 6103–6110.

guyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and
anomaly detection approaches using LSTM and LSTM Autoencoder techniques with
the applications in supply chain management. International Journal of Information
Management, 57, Article 102282.

http://refhub.elsevier.com/S0957-4174(23)02200-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb21
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb31
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb37


Expert Systems With Applications 238 (2024) 121698Z. Wei and S. Mukherjee

P

R

S
S

S

W

W

W

W

X

Y

Y

Z

Nie, Y., Yang, W., Chen, Z., Lu, N., Huang, L., & Huang, H. (2021). Public curb
parking demand estimation with poi distribution. IEEE Transactions on Intelligent
Transportation Systems, 23(5), 4614–4624.

NOAA (2021). National oceanic and atmospheric administration: Climate data online.
Osadchiy, N., Gaur, V., & Seshadri, S. (2013). Sales forecasting with financial indicators

and experts’ input. Production and Operations Management, 22(5), 1056–1076.
Papanagnou, C. I., & Matthews-Amune, O. (2018). Coping with demand volatility in

retail pharmacies with the aid of big data exploration. Computers & Operations
Research, 98, 343–354.

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K.,
Taieb, S. B., et al. (2022). Forecasting: theory and practice. International Journal of
Forecasting.

unia, S., & Shankar, S. (2022). Predictive analytics for demand forecasting: A
deep learning-based decision support system. Knowledge-Based Systems, 258, Article
109956.

ay, A., Jank, W., Dutta, K., & Mullarkey, M. (2023). An LSTM+ model for managing
epidemics: Using population mobility and vulnerability for forecasting COVID-19
hospital admissions. INFORMS Journal on Computing.

afeGraph (2020). Maintaining a high quality, global POI database is hard.
agaert, Y. R., Aghezzaf, E.-H., Kourentzes, N., & Desmet, B. (2018). Tactical sales
forecasting using a very large set of macroeconomic indicators. European Journal
of Operational Research, 264(2), 558–569.

chaer, O., Kourentzes, N., & Fildes, R. (2019). Demand forecasting with user-generated
online information. International Journal of Forecasting, 35(1), 197–212.

Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain
demand forecasting: methods, applications, and research opportunities. Journal of
Big Data, 7(1), 1–22.

Suryani, E., Chou, S.-Y., & Chen, C.-H. (2010). Air passenger demand forecasting
and passenger terminal capacity expansion: A system dynamics framework. Expert
Systems with Applications, 37(3), 2324–2339.

Terroso-Saenz, F., Flores, R., & Muñoz, A. (2022). Human mobility forecasting with
region-based flows and geotagged Twitter data. Expert Systems with Applications,
203, Article 117477.

Tiebout, C. M. (1956). A pure theory of local expenditures. Journal of Political Economy,
64(5), 416–424.

Tsay, R. S. (2013). Multivariate time series analysis: With R and financial applications.
John Wiley & Sons.
11
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., & Kutz, J. N. (2014). On
dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, [ISSN: 2158-2491] 1(2), 391–421. http://dx.doi.org/10.3934/jcd.2014.
1.391.

US Census Bureau (2020). American community survey (ACS). URL https://www.
census.gov/programs-surveys/acs.

Vallés-Pérez, I., Soria-Olivas, E., Martínez-Sober, M., Serrano-López, A. J., Gómez-
Sanchís, J., & Mateo, F. (2022). Approaching sales forecasting using recurrent
neural networks and transformers. Expert Systems with Applications, 201, Article
116993.

Van Steenbergen, R., & Mes, M. R. (2020). Forecasting demand profiles of new products.
Decision Support Systems, 139, Article 113401.

Waddington, T. B., Clarke, G. P., Clarke, M., & Newing, A. (2018). Open all hours:
Spatiotemporal fluctuations in UK grocery store sales and catchment area demand.
The International Review of Retail, Distribution and Consumer Research, 28(1), 1–26.

ang, Y., Currim, F., & Ram, S. (2022). Deep learning of spatiotemporal patterns
for urban mobility prediction using big data. Information Systems Research, 33(2),
579–598.

ei, Z., & Mukherjee, S. (2022). Mapping human mobility variation and identifying
critical services during a disaster using dynamic mobility network. In IIE annual
conference. proceedings (pp. 1–6). Institute of Industrial and Systems Engineers
(IISE).

ei, Z., & Mukherjee, S. (2023). Examining income segregation within activity spaces
under natural disaster using dynamic mobility network. Sustainable Cities and
Society, Article 104408.

ei, Z., Narin, A. B., & Mukherjee, S. (2022). Multidimensional population health
modeling: A data-driven multivariate statistical learning approach. IEEE Access, 10,
22737–22755.

u, X., Qi, Y., & Hua, Z. (2010). Forecasting demand of commodities after natural
disasters. Expert Systems with Applications, 37(6), 4313–4317.

ang, X., Xue, Q., Ding, M., Wu, J., & Gao, Z. (2021). Short-term prediction of passenger
volume for urban rail systems: A deep learning approach based on smart-card data.
International Journal of Production Economics, 231, Article 107920.

u, H.-F., Rao, N., & Dhillon, I. S. (2016). Temporal regularized matrix factorization for
high-dimensional time series prediction. Advances in Neural Information Processing
Systems, 29.

hu, X., Ninh, A., Zhao, H., & Liu, Z. (2021). Demand forecasting with supply-
chain information and machine learning: Evidence in the pharmaceutical industry.
Production and Operations Management, 30(9), 3231–3252.

http://refhub.elsevier.com/S0957-4174(23)02200-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb43
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb52
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.3934/jcd.2014.1.391
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02200-5/sb65

	Analyzing and forecasting service demands using human mobility data: A two-stage predictive framework with decomposition and multivariate analysis
	Introduction
	Related Work
	Service Demand Characterization
	Matrix Decomposition
	Forecasting Methods

	Methodological Framework
	Stage I: Decomposition
	Stage II: Prediction
	Integrating Contextual Information

	Experimental Setting
	Data Preparation
	Human Mobility Data
	Contextual Information

	Benchmark Models
	Implementation Details

	Results
	Model Performance
	Sensitivity Analysis
	Robustness Check

	Discussion
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	
	References


