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Abstract
This paper proposes a novel simulation-based hybrid approach coupled with
time-dependent Bayesian network analysis to model multi-infrastructure vul-
nerability over time under physical, spatial, and informational uncertainties
while considering cascading failures within and across infrastructure networks.
Unlike existing studies that unrealistically assume that infrastructure managers
have full knowledge of all the infrastructure systems, the proposed approach
considers a realistic scenario where complete information about the infras-
tructure network topology or the supply–demand flow characteristics is not
available while estimating multi-infrastructure vulnerability. A novel heuris-
tic algorithm is proposed to construct a dynamic fault tree to abstract the
network topology of any infrastructure. In addition, to account for the unavail-
ability of exact supply–demand flow characteristics, the proposed approach
constructs the interdependence links across infrastructure network systems
using different simulated parameters considering the physical, logical, and geo-
graphical dependencies. Finally, using parameters for geographical proximity,
infrastructure managers’ risk perception, and the relative importance of one
infrastructure on another, the multi-infrastructure vulnerability over time is
estimated. Results from the numerical experiment show that for an opportunis-
tic risk perception, the interdependencies attribute to redundancies, and with
an increase in redundancy, the vulnerability decreases. On the other hand,
from a conservative risk perspective, the interdependencies attribute to deficien-
cies/liabilities, and the vulnerability increases with an increase in the number of
such interdependencies.

1 INTRODUCTION

Modern society is critically dependent on lifeline infras-
tructure systems such as the electric power, telecommuni-
cation, water, transportation, and others. In recent years,
the construction and operation of such interdependent
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infrastructure system in a sustainable way are becoming
integral for assuring the overall sustainability of the soci-
ety (Zavadskas et al., 2018). Most of these infrastructure
systems comprise multiple components interconnected by
physical, logical, geographical, or cyber interdependen-
cies, rendering them suitable to bemodeled as a network of
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networks or “system-of-systems” as described by Eusgeld
et al. (2011). To enhance the resilience of a community,
analyzing multiple infrastructure systems’ vulnerability
in conjunction while considering the interdependencies
between them is of paramount importance (Mahmoud &
Chulahwat, 2018).
In a network-of-network system, failure of a key compo-

nent may lead to a cascading failure of the entire system,
which is not desirable (Dong et al., 2020; Faturechi &
Miller-Hooks, 2014). In literature, modeling the reliability
of an infrastructure is well studied (O’Connor & Kleyner,
2012). One of the most popular methods used to model
system reliability is the fault tree (FT) method (Dugan
et al., 1992). In a FT analysis, a top event (failure of the
whole system) is represented as a Boolean combination
(AND, OR, NOT) of the basic events (e.g., failure of some
switch(s), substation(s), transformer(s)). In this method,
at first, the failure probabilities are assigned to the basic
events and then the failure probability of the top event
is calculated through Boolean modeling and calculations
of probabilities (Watson, 1961). The main advantage of
such deterministic models is that they are easily inter-
pretable and encourage a procedural way of modeling the
dependencies of components in an infrastructure. How-
ever, the main disadvantage is that being static models,
they cannot capture the dynamics of failure propagation
with time. Several research studies have extended the
static FTs into dynamic fault trees (DFTs) that use differ-
ent advanced gates (e.g., the spare gates, priority gates)
to capture the temporal dynamics of the failure prop-
agation (Dugan et al., 1992). Time-dependent Bayesian
networks (BNs) such as the discrete-time Bayesian net-
works, the continuous time Bayesian networks (CTBNs),
and the dynamic Bayesian networks (DBNs) have been
used to model the DFT in the literature (Codetta-Raiteri
& Portinale, 2015). However, the methods for developing
a FT or DFT are not generalized enough to be applied to
different infrastructure systems. Even for a single infras-
tructure system like electricity infrastructure, different FTs
are proposed based on the components or events con-
sidered, such as the failure of generators, switches, and
substations (Volkanovski et al., 2009) or the disruption
of distribution generators and output flow paths (Song
et al., 2014). Nonetheless, a generalized approach to con-
struct aDFTwould be particularly useful for infrastructure
managers. Moreover, the exact DFT of one infrastruc-
ture may not be available to the other infrastructure
managers. In this case, for understanding the vulnerabil-
ity of interdependent infrastructure systems, a heuristic
algorithm to construct an approximate DFT of the other
interdependent infrastructures can be useful for the infras-
tructure managers. Hence, to address this research gap,
a procedural approach to construct an approximate DFT,
which can be applied to multiple infrastructure systems

in the absence of exact information, is proposed in this
paper.
Since the infrastructure systems are interdependent,

analyzing a single infrastructure system is not ideal as it
underestimates the risk of failure. Hence, recently several
studies have focused on modeling the vulnerability and
reliability of multiple interdependent infrastructure sys-
tems in conjunction (Galbusera et al., 2018; Lu et al., 2018)
and accordingly optimize the recovery process of inter-
dependent infrastructure system (Sharma et al., 2020).
Rinaldi et al. classified infrastructure interdependencies
into four categories: (1) physical interdependency, which
emerges from physical linkages or connections among ele-
ments of the infrastructures; (2) cyber interdependency,
when the state of one infrastructure depends on infor-
mation/data transmitted from/through another infrastruc-
ture; (3) geographical interdependency, if there exists close
spatial proximity between elements of different infrastruc-
tures; and (4) logical interdependency, when the state of
one infrastructure depends on the state of others viamech-
anisms that are not captured by the physical, cyber, or
geographic connections (Rinaldi et al., 2002). Although
there exist distinct characteristics for each of these interde-
pendencies, they are not mutually exclusive as mentioned
by Rinaldi et al. (2002). Different other types of inter-
dependencies such as functional interdependency have
also been studied in the literature (Wallace et al., 2003;
Zhang & Peeta, 2011). Furthermore, several interdepen-
dencies may arise while considering the repair process
of an infrastructure (Xiong et al., 2020). Nocera et al.
considered that the interdependencies between different
infrastructures can exist at the interfaces, or the bound-
aries where the different infrastructure networks interact
with one another (Nocera & Gardoni, 2022). Ouyang pro-
vided a thorough survey of the literature focusing on the
interdependent infrastructure systems modeling (Ouyang,
2014). Previous studies also established that for accurate
estimation of overall system performance, the connec-
tions between different networks need to be considered
by analyzing the overall system and individual network
performance (Hernandez-Fajardo & Dueñas-Osorio, 2013;
Krishnamurthy et al., 2016). Yagan et al. identified that the
robustness of an interconnected system is dependent on
the bidirectional interdependencies existing between the
networks of the system (Yagan et al., 2012).
As depicted by Zio and Sansavini (2011), according to

the methodology of modeling the critical infrastructure
systems, the existing literature can be broadly classified
into six categories: (1) aggregate supply–demand method-
ology, which considers the supply–demand relationships
by evaluating the total required demand for infrastructure
services in a region, and the ability to satisfy that demand
by the infrastructure system (Adachi & Ellingwood, 2008;
Apostolakis & Lemon, 2005); (2) dynamic simulations,
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which employ simulation techniques like discrete event
simulation or system dynamics techniques (Dueñas-
Osorio et al., 2007); (3) agent-based models, which
consider the physical components of an infrastructure to
be modeled as agents and allow them to interact for the
analysis of the operational characteristics and physical
states of infrastructures (Casalicchio et al., 2007; Nan &
Sansavini, 2017); (4) physics-based models, which consider
the physical aspects of infrastructure using standard
engineering techniques (Yang et al., 2020); (5) population
mobility models, which capture the movement of entities
through geographical regions considering a very high
resolution of modeling approach (Casalicchio et al., 2009);
(6) Leontief input–output models, which consider the
economic flows among infrastructure sectors to provide a
linear, aggregated, time-independent analysis of the gen-
eration, flow, and consumption of various commodities in
the various sectors (Haimes & Jiang, 2001).
Along with the above-mentioned methods for mod-

eling the infrastructure interdependencies, several other
modeling techniques like economic inoperability input–
output model (IIM) (Barker & Haimes, 2009a) and the
dynamic inoperability input–outputmodel (DIIM) (Barker
& Haimes, 2009b) have been used in the literature to
capture the inoperability that propagates through inter-
dependent infrastructure systems in a quantitative man-
ner. Duenas-Osorio et al. analyzed the performance of
interdependent infrastructure systems for different net-
work topologies exposed to external or internal disrup-
tions (Dueñas-Osorio et al., 2007). Utne et al. developed
a simplified cascade diagram–based model for risk estima-
tion of an interdependent infrastructure system. However,
their model does not account for the within-infrastructure
failure propagation (Utne et al., 2011). Aghababaei et al.
considered the interaction and dynamics between several
systems like schools, households, businesses, healthcare,
and lifeline infrastructures (e.g., water supply network and
electric power network) within a community using an
agent-based model (Aghababaei & Koliou, 2022). A spa-
tial network model has been proposed by Fu et al. to
simulate the growth and evolution of interdependent criti-
cal infrastructure systems like electricity transmission and
distribution system, gas infrastructure, and transportation
infrastructure systems (Fu et al., 2016).
A considerable fraction of literature that aims to model

the interconnected infrastructure systems uses the supply–
demand modeling approaches by explicitly identifying the
interconnections or interdependencies between different
infrastructure systems (Cavallaro et al., 2014; Cavdaroglu
et al., 2013). For example, Lee et al. proposed a detailed
mathematical programming formulation for a network
flow–based model that explicitly incorporates the inter-
dependencies among a set of civil infrastructure systems.

However, this model requires a large set of parameters to
be known in advance for the model to run (Lee II et al.,
2007). Mixed integer linear programs (MILPs) (Ouyang &
Fang, 2017), multistage optimization models (Fang & Zio,
2019), and other optimization techniques (Alinizzi et al.,
2018) have beenwidely used in the literature formodeling a
resilient system of interdependent infrastructure systems.
Chen et al. proposed anMILPmodel for optimalmitigation
and restoration strategies of interdependent infrastructure
networks considering time-dependent strategies (Chen
et al., 2021). Similar methodologies focusing on mathe-
matical programming have been widely used for interde-
pendent network design problem (INDP) (González et al.,
2016), network reconstruction, restoration, and reliability
modeling (Veremyev et al., 2014), resilience assessment
of an interdependent infrastructure system (Wang et al.,
2022), and integrated interdependent network design and
scheduling problem (Nurre et al., 2012). Najafi et al. pro-
posed a framework to evaluate flood-induced risk of an
interdependent infrastructure system, where the interde-
pendencies are obtained through expert opinions (Najafi
et al., 2021). Zhang et al. proposed a multiobjective opti-
mization model for community resilience enhancement
considering the water and traffic network (Zhang et al.,
2022). Leveraging a genetic algorithm, they analyzed the
impact of the interdependence of services among build-
ings to enhance the resilience of a community under
earthquake disaster. Another multiobjective optimization
model for minimizing the construction cost and num-
ber of repairs for an interdependent infrastructure system
in a post-earthquake scenario is considered by Wang
et al. (2017). In these flow-based models incorporating
deterministic optimization techniques, all the connec-
tor variables between different infrastructure systems are
required to be known in advance (González et al., 2017).
Such methods assume that the entire set of functional
dependency links between the two infrastructure systems
is knownbeforehand. Furthermore, these flow-basedmod-
els require large amounts of data for realistic modeling of
the interdependent infrastructure systems (Ouyang et al.,
2009).
However, one of the main challenges related to vulner-

ability assessment of interdependent infrastructure sys-
tems is the unavailability of data (Rinaldi et al., 2002).
Reilly et al. reviewed different types of aleatory and epis-
temic uncertainties that may arise during the vulnerability
assessment of interdependent infrastructure systems. They
identified that uncertainty is vastly understudied in litera-
ture and often the exact interdependencies are assumed to
be well known for modeling convenience, which in real-
ity is not a realistic assumption (Reilly et al., 2021). Baroud
et al. proposed a mechanism to generate a synthetic crit-
ical infrastructure network under unavailability of data.
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However, the proposed methodology cannot incorporate
the within-infrastructure failure propagation (Wang et al.,
2022). Talebiyan et al. considered operational decisions
under uncertainty in an interdependent context using a
Bayesian hierarchical model (Talebiyan & Duenas-Osorio,
2020). Furthermore, there are uncertainties associated
with natural hazards, which can impact the infrastructure
systems, and are often modeled using stochastic meth-
ods in literature (Allen et al., 2022; Zhang & Alipour,
2023). Hence, considering the importance of information
sharing between different infrastructure systems (Sharkey
et al., 2015), and the lack of it in the real-life scenario
(Bjerga et al., 2018), a new holistic framework is needed to
capture the vulnerability of interdependent infrastructure
systems under uncertainties. The dynamic simulation-
based approaches solve this problem by abstracting the
physical details of the services provided by the infras-
tructures in almost all aspects—making the model simple
and feasible to use (Brown et al., 2004; Dueñas-Osorio
et al., 2007). Franchin et al. developed an object-oriented
model to capture the interactions between different inter-
connected systems and analyzed the impact of sources of
uncertainty and key vulnerability factors on the resilience
of such systems through simulation (Franchin & Cava-
lieri, 2022). However, often such methods are inherently
incapable of capturing most of the dimensions of physi-
cal, logical, and geographical interdependencies between
the infrastructure systems (Zio & Sansavini, 2011). Hence,
a hybrid approach is required that can model most of the
interdependence dimensions of the infrastructure systems
while considering that a minimal number of parameters is
known beforehand.
Therefore, although the interdependent infrastructure

reliability and vulnerability assessment is well studied in
the literature, there exist notable research gaps. Hence,
in this paper, a generalized framework is proposed to
model the vulnerability of an infrastructure system arising
from both the cascading failure within the network and
the failure of its components induced by other interdepen-
dent infrastructure component failures. In the proposed
model, instead of assuming that all the flow characteris-
tics are available to the infrastructure managers, different
scenarios can be realized to estimate the vulnerability
of interdependent infrastructures according to the risk
perception of infrastructure managers. Specifically, con-
sidering the vulnerability estimation problem from the
perspective of the manager of a child infrastructure that
is dependent on other parent infrastructures, we aim to
address the following research gaps, identified through our
comprehensive literature review, in a systematic manner
as listed below. Note, in this paper, when an infras-
tructure provides service to another infrastructure, the
service-providing infrastructure is termed as a parent infras-

tructure, and the service-receiving infrastructure is termed
as a child infrastructure. Furthermore, we consider single-
commodity infrastructure systems in our study, where
every infrastructure system produces one type of commod-
ity.

∙ * Gap: There is a lack of a holistic framework to esti-
mate the vulnerability of interdependent infrastructure
systems. A significant fraction of literature considering
the vulnerability of interdependent infrastructure sys-
tems either focuses on a single infrastructure system
vulnerability or only the vulnerability induced by the
interdependent infrastructure systems. Not being able
to model the infrastructure vulnerability from a holis-
tic perspective often underestimates the compound risk
of failure induced by multiple interdependent infras-
tructure systems failures. * Contribution: We propose an
integrated framework to calculate the time-dependent
vulnerability of infrastructure systems measured by the
probability of service failures while considering both
the within-infrastructure cascading failure and the fail-
ure induced by other interdependent infrastructures’
failures. The within-infrastructure vulnerability is effi-
ciently measured using DFTs, whereas using a simula-
tion framework, the cross-infrastructure vulnerability is
estimated. Finally, both these estimates of vulnerability
are integrated into a singlemetric such that it can encap-
sulate both thewithin-infrastructure cascade and failure
induced by other infrastructure systems. This overall
estimate of vulnerability is referred to as the comprehen-
sive vulnerability for the subsequent discussions in this
paper.

∙ * Gap: To estimate the failure propagation within a net-
work,DFTs arewell studied.However, depending on the
infrastructure under consideration, the component and
connectivity of the DFTs can significantly vary. For sev-
eral infrastructure systems, DFTs do not even exist in
the literature. Furthermore, complex DFTs may suffer
from state space explosion problems. The lack of a gen-
eralized approach for constructing DFTs for all types of
infrastructure systems may hinder efficient assessment
of the reliability and vulnerability of the infrastructure
systems. * Contribution: Therefore, to address this gap, a
heuristic algorithm to construct a DFT of an infrastruc-
ture, which is generalized enough to be applied to mul-
tiple infrastructure systems is presented. Although the
DFTs developed using the proposed heuristic approach
are not exact, in the absence of data, this method can
provide a close approximation of the exactDFT, and thus
can aid in efficient vulnerability and reliability assess-
ment of the infrastructure systems under incomplete
information. Furthermore, for more realistic modeling,
we extended the derivation of the closed-form solutions
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of the failure probabilities of the DFT gates from the
existing literature as depicted in Section 2.

∙ *Gap: In contrary to the real-life scenario, often themost
realistic models assume that all the supply–demand
characteristics are well known to all the infrastruc-
ture systems’ managers in advance. In doing so, such
models relax the intrinsic dimensions of the interde-
pendencies while trying to abstract the supply–demand
characteristics. Not considering all the dimensions of
interdependencies may underestimate the actual risk of
failure of the infrastructure systems. Additionally, when
a child infrastructure depends onmultiple parent infras-
tructures at the same time, the relative importance of
dependencies of different infrastructures may not be the
same. *Contribution: To address this problem, a general-
ized framework that can capturemost of the dimensions
of the interdependencies, while requiring minimal data,
is proposed. To estimate the vulnerability of the inter-
dependent infrastructure systems, it is assumed that the
managers only have knowledge of the types of existing
interdependencies; however, the exact supply-demand
flow characteristics between different infrastructures
are unknown and simulated according to the man-
ager’s risk perception. Specifically, leveraging different
parameters decided by themselves, the infrastructure
managers can efficientlymodel the physical, logical, and
geographical dimensions of interdependencies across
multiple infrastructure systems while accounting for
their relative importance.

According to Reilly et al., physical uncertainty is related
to the quantities characterizing the flow between the sys-
tems, thus dictating how the failure may cascade from one
infrastructure to another. In our study, we have accounted
for this type of uncertainty (Reilly et al., 2021). Specif-
ically, we assumed that the exact supply–demand flow
from one infrastructure to another is unknown, and simu-
lated the flow links according to the risk perception of the
infrastructure managers. Furthermore, the spatial uncer-
tainty, which depicts the uncertainty related to the spatial
distribution (i.e., proximity vs. farness) of the collocated
infrastructure systems, is also considered in our analysis.
It is done through the introduction of a parameter in the
modeling approach, which controls the neighborhood size
as considered by the infrastructure managers. Finally, the
informational uncertainty, which accounts for the unavail-
ability of information from the perspective of the manager
of a child infrastructure about the state of the parent infras-
tructure, is also considered in our proposed framework. To
do so, first, it is assumed that the exact DFT of the parent
infrastructure is not available to the child infrastruc-
ture manager, which is often the case in reality. Second,
rather than fixing the importance of one infrastructure on

another, a relative importance matrix is proposed, using
which the impact of one infrastructure on another can be
simulated by the manager of the child infrastructure. To
implement the proposed generalized vulnerability assess-
ment framework, we leverage the Bayesian network (BN)
to model the DFTs for each infrastructure system, which
can efficiently capture the failure propagation dynamics
within a particular infrastructure referred to as the intra-
infrastructure failure. Then, over a grid-based geo-map,
a network of interdependent infrastructure networks is
created, which can quantitatively measure the physical,
logical, and geographical interdependencies that may exist
between every pair of infrastructure systems. Thereafter,
using a simulation-based approach, the failure dynamics
of the components of the child infrastructure that may
be induced by the failure of interdependent infrastructure
systems, referred to as the inter-infrastructure failure, is
calculated. Finally, the compound risk of failure, that is,
the comprehensive vulnerability of a network of infras-
tructure systems, which may be caused by either the
intra-infrastructure failure or inter-infrastructure failure is
computed. The proposed framework is implemented and
validated using existing synthetic data on electricity, water,
and supply chain networks. The remainder of the paper
is organized as follows. In Section 2, the detailed method-
ology employed in this paper is described. In Section 3,
the data collection and preprocessing methods for the spe-
cific case study are described, followed by summarizing the
results and key findings in Section 4. Finally, the paper is
concluded in Section 5.

2 METHODOLOGY

In this section, a detailed description of the methodology
to calculate the vulnerability of an infrastructure due to
intra- and inter-infrastructure failures is presented. As
mentioned before, the proposed framework is flexible
enough to incorporate modifications in terms of the
number and types of the infrastructure systems under
consideration, any type of spatiotemporal characteristics,
and even the lack of adequate data availability. First,
to capture the failure propagation within an infrastruc-
ture, a DFT is constructed, and then using a DBN, the
time-dependent vulnerability is modeled (Section 2.1).
To model the inter-infrastructure vulnerability where
the exact supply-flow characteristics are not known, a
heuristic network of networks is created considering the
physical, logical, and geographical dependencies between
the infrastructures (Section 2.2). Thereafter, leveraging a
simulation approach,multiple cases are constructed to cal-
culate the best, average, or worst-case inter-infrastructure
failures. Finally, the intra- and inter-infrastructure failures
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F IGURE 1 The overall research framework.

F IGURE 2 (a) The gates in the dynamic fault tree (DFT): (i)
AND gate, (ii) OR gate, (iii) PAND gate, (iv) VOTING gate, and (v)
WSP gate; (b) the depiction of the VOTING gate using a
combination of AND and OR gates.

are combined to estimate the comprehensive vulnerability
of an infrastructure (Section 2.3). The three parts of the
overall methodology are depicted in Figure 1. Details of
each part are described in the following subsections.

2.1 Intra-infrastructure failure
probability

In this section, the proposed method of leveraging a DFT
and a CTBN to estimate intra-infrastructure vulnerability
under incomplete information is described.ADFTconsists
of several gates as depicted in Figure 2a. A brief description
of the gates commonly used in a DFT is depicted below.

∙ In a DFT, if two inputs 𝐴 and 𝐵 are connected via AND
(Figure 2a(i)) gate to produce output 𝑋, then 𝑋 fails if
both 𝐴 and 𝐵 fail.

∙ On the other hand, if𝐴 and 𝐵 are connected via OR gate
(Figure 2a(ii)) to produce 𝑋, then 𝑋 fails if either 𝐴 or 𝐵
fails.

∙ In a PAND or priority AND gate (Figure 2a(iii)), the
output fails if all of its inputs fail in a particular order.
Often the order of failure of the inputs is considered
from left to right as depicted in the diagram of the PAND
gate (Boudali et al., 2010).

∙ In a 𝐾∕𝑀 VOTING gate (Figure 2a(iv) depicting a 2∕3

VOTING gate), the output fails, if at least 𝐾 of its 𝑀

inputs fail (Boudali et al., 2010). Being a derived gate,
the VOTING gate can be easily constructed using the
basic AND and OR gates as depicted in Figure 2b. If
𝑀 = 2 and 𝐾 = 1, then the VOTING gate is an OR gate,
and if 𝐾 = 2, then the VOTING gate is an AND gate.
Essentially, a VOTING gate is an OR combination of the(𝑀
𝐾

)
+
( 𝑀

𝐾+1

)
+⋯+

(𝑀
𝑀

)
number of AND combinations

of the inputs. From the available 𝑀 inputs, if any com-
bination of 𝐾 such inputs fails, or any combination of
𝐾 + 1 to 𝑀 of such combinations fails, then the output
fails.

∙ In a WSP or warm spare gate (Figure 2a(v)), there is one
primary input (𝐴) and multiple spare inputs (𝐵 and 𝐶).
Initially, the primary input is switched on and the spares
operate in a dormant or standby mode where the failure
rate of the spare is reduced by a factor 𝛼 ∈ [0, 1] called
the dormancy factor (𝛼). When the primary unit fails,
the first available spare becomes active. The output 𝑋
fails if all of the inputs fail (Boudali et al., 2010).

2.1.1 Constructing a DFT

When any critical component of a particular infrastructure
fails, then the failure propagates within the infrastructure
network. In any infrastructure network, commodities
or services flow from one component to another. Often,
some types of commodities are generated at the source
nodes and then the commodities flow through multiple
intermediate nodes before they are consumed or utilized
by the customers in the terminal node. This general archi-
tecture is the backbone of the operation mode for several
infrastructure systems like electricity distribution and
transmission systems, water distribution, or the supply
chain network. For example, in an electricity infrastruc-
ture, generators are connected to the loads via buses, and
buses are connected via power lines in between them. The
power generated at a generating station satisfies the loads
connected to that particular bus and may be transferred
to other buses via the transmission lines to satisfy the
demands of the other buses. When a generator goes off,
other generators connected to the bus try to make up for
the potential demand of the bus (Wood & Wollenberg,
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F IGURE 3 (a) A multipartite directed acyclic graph constructed according to the material/service flow in a general infrastructure
system, and (b) the dynamic fault tree (DFT) constructed from the network of the general infrastructure system under consideration.

2012). Thus, these generators can be considered as the
sources of electricity flowing through the network, the
buses can be considered as the intermediate nodes, and
finally, the loads connected to the buses can be considered
as the consumers. Similarly, for a water distribution
system, the water flows from the sources to the treatment
plants, then to the storage reservoirs, and finally to the dis-
tribution reservoirs from where the water is dispatched to
the consumers (Sincero & Sincero, 1995). A similar under-
lying network architecture also exists for a supply chain
network, where the rawmaterials flow from the supplier to
themanufacturer for processing the commodities and then
the commodities are supplied to the retailers who supply
the commodities to the customers (Tang et al., 2016).
Based on the flow of the commodities or services (e.g.,

electricity or water) from the source node to the termi-
nal node via multiple intermediate nodes and connecting
arcs, it is evident that different network infrastructure sys-
tems share a common representation. In this paper, we
present a generalized framework that canabstract a network
topology for any such infrastructure when exact information
on the nodes, arcs, and interdependencies is not available.
Our approach to model the intra-infrastructure vulnera-
bility of different infrastructure systems does not require
the exact knowledge of all the components and their con-
nections within the infrastructure networks considered in
the study. Alternatively, in the presence of scarce infor-
mation about the parent infrastructure, using a heuristic
approach, the child infrastructure manager can come up
with a logical representation of the parent infrastructure

network as shown in Figure 3a and calculate the intra-
infrastructure vulnerability by deriving a DFT as shown
in Figure 3b, and Algorithm 1. First, according to the flow
of the commodities or services within an infrastructure,
a topological ordering (Cormen et al., 2001) of the nodes
is created. From that topological ordering, a multipartite
graph is constructed where the nodes of the graph are par-
titioned into multiple disjoint sets or levels say, 𝐵1, … , 𝐵𝑙.
There exist directed edges from the nodes of level 𝐵𝑏 to
𝐵𝑏+1 for 𝑏 ∈ {1, … , 𝑙 − 1}. For example, for a water dis-
tribution network, the first level consists of the sources,
and the second level consists of the treatment plants. As
water flows from the sources to the treatment plants, there
exist directed edges from the nodes in the first level to the
nodes in the second level. Similarly, edges exist between
the nodes of the second level to the third level (e.g., reser-
voirs for water infrastructure) and finally to the layer of
the terminal nodes (e.g., consumers). This similar repre-
sentation technique can also be applied to several other
infrastructure systemswherever there exists a flow of com-
modities or services from one set of nodes to the others
like electricity infrastructure where electricity flows from
generators to buses and loads. Such a common logical rep-
resentation of a general infrastructure system has been
shown in Figure 3a.
Consider that the source nodes 𝑆1, 𝑆2, … , 𝑆𝑘 are

connected to the intermediate node 𝑇1 via the arcs
𝑎𝑆1 , 𝑎𝑆2 , … , 𝑎𝑆𝑘 , respectively. If either 𝑆1 or the arc coming
out of 𝑆1, that is, 𝑎𝑆1 fails, then the output of 𝑆1 cannot
reach 𝑇1. Similarly, the output of 𝑆2 cannot reach 𝑇1 if
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ALGORITHM 1 IntraModel(𝐼𝑖 , 𝜅)

Input: An infrastructure 𝐼𝑖 with the nodes and the edges
connecting the nodes. and the initial probabilities of failure
for each node and arc of 𝐼𝑖 denoted here as 𝜅.

Output: For each node of 𝐼𝑖 , the probabilities of failure arising
from intra-infrastructure cascade.

/* Construction of the dynamic fault tree (DFT) for a
general infrastructure */

1: According to the material/service flow within 𝐼𝑖 find a
topological ordering of the nodes of 𝐼𝑖

2: According to the topological ordering, partition the nodes
of 𝐼𝑖 into disjoint sets (levels): 𝐵1, … , 𝐵𝑙 , such that there
exist arcs from nodes in 𝐵𝑏 to 𝐵𝑏+1

3: for 𝑙𝑣 ∈ {2, … 𝑙} do
4: for every node 𝑇𝑣 ∈ 𝐵𝑙𝑣 do
5: Input to 𝑇𝑣 fails←𝑊𝑆𝑃(𝑂𝑅(𝜅(𝑆𝑘), 𝜅(𝑎𝑆𝑘 ))) , where

𝑆𝑘 are the parent nodes of 𝑇𝑣 in the level 𝐵𝑙𝑣−1 and 𝑎𝑆𝑘

are the arcs between 𝑆𝑘 and 𝑇𝑣

6: Output of 𝑇𝑣 fails←𝑂𝑅(Input to 𝑇𝑣 fails, 𝜅(𝑇𝑣))
7: 𝜅(𝑇𝑣) ← Output of 𝑇𝑣

8: end for
9: end for

/* Calculating probabilities of failure using continuous
time Bayesian network */

10: for every node in the DFT starting from the bottom level
do

11: Using the closed form solutions in Section 2.1.2,
calculate the probabilities of failure of intermediate and
top events

12: end for
13: for every node 𝑛𝑖𝑗 ∈ 𝐼𝑖 do
14: return probabilities of failure due to

intra-infrastructure cascade
15: end for

either 𝑆2 or the arc associated with it, 𝑎𝑆2 fails; and if
either 𝑆𝑘 or the arc associated with it, 𝑎𝑆𝑘 fails, then the
output of the source 𝑆𝑘 cannot reach the destination 𝑇1.
Considering the single-commodity network and all the
sources are of the same type, when one of the sources
in 𝑆1, 𝑆2, … , 𝑆𝑘 or the associated arcs 𝑎𝑆1 , 𝑎𝑆2 , … , 𝑎𝑆𝑘 fail,
then the other sources try to compensate for the loss
owing to the breakdown of such a source. Hence, the
other sources start working in a more stressful condition
than the dormant state to make up for the loss of supply.
Due to this, the failure rate of the current functional units,
which are in standby mode, increases by a factor (𝛼). This
situation can be modeled by leveraging a DFT, using the
warm spare (WSP) gate. Using a DFT, the infrastructure
network described in Figure 3a can be modeled using
Figure 3b. If any source of 𝑆1, 𝑆2, … , 𝑆𝑘 or the associated
arc with it 𝑎𝑆1 , 𝑎𝑆2 , … , 𝑎𝑆𝑘 fails, then the output of the

particular source cannot reach the intermediate node 𝑇1.
If all the sources connected with 𝑇1 fail, then the input to
𝑇1 fails. Furthermore, if one input fails, the failure rate of
the other inputs increases by a certain factor. Hence, the
input to 𝑇1 failing is a result of a WSP gate output. Then,
if the input to 𝑇1 fails or the node 𝑇1 itself fails, the output
of 𝑇1 fails. If either the output of 𝑇1 fails or the arc coming
out of 𝑇1, that is, 𝑎𝑇1 fails, then the output of 𝑇1 cannot
reach the destination 𝑈1. Similar to the previous layer,
there are multiple nodes 𝑇1, 𝑇2, … , 𝑇𝑙 connected to 𝑈1 via
the arcs 𝑎𝑇1 , 𝑎𝑇2 , … , 𝑎𝑇𝑙 . If any of the nodes of 𝑇1, 𝑇2, … , 𝑇𝑙

or the arcs associated fails, then the output of that node
may not reach 𝑈1. Using a similar logic to the previous
layer, the failure of the input to 𝑈1 is modeled as a WSP
gate output of its parent nodes or the incoming edges.
Therefore, in this architecture, the output of 𝑈1 fails if
either the input of𝑈1 fails or the node𝑈1 itself fails. Thus,
in this paper a recursive procedure is proposed to convert
the nodes and the arcs of an infrastructure network into
a DFT following the commodity or service flow patterns
within the infrastructure network.
Though such an algorithm can be used to construct

a DFT for any infrastructure network, such a DFT is
not accurate. A more complex and accurate DFT can be
constructed considering the accurate topology and the
service–demand flow of the infrastructure if they exist.
Such a situation may arise when the number of interme-
diate levels considered by the infrastructure manager as
depicted in Figure 3a is not adequate. For example, though
a basic supply chain network consists of suppliers, man-
ufacturers, and retailers, often other sets of nodes like
plants or distributors are also considered as components
of the supply chain network (Gong et al., 2014). Hence, the
accurate construction of DFT is dependent on the prior
knowledge of the infrastructure manager. However, the
accurateDFT can be easily substituted in the overall frame-
work of the paper as described in Figure 1, without loss of
generality when more accurate information is available.

2.1.2 Construction of a CTBN

In order to construct a CTBN from the DFT of the
infrastructure (Boudali & Dugan, 2006), we extended the
methodology proposed by Boudali et al. in this paper. In
the CTBN, the state space is continuous, which depicts
the failure time of a component of the DFT. In a CTBN,
the random variable 𝜉 is in state 𝑥 means that the system
component represented by 𝜉 failed in the time instant 𝑥,
where 𝑥 is a nonnegative real number (Boudali & Dugan,
2006). Here, the closed-form solutions of the probabilities
of failure of the output for each of the gates used in our
DFT are presented. A detailed derivation is provided in the
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TABLE 1 For each gate of our dynamic fault tree (DFT), the
probabilities of failure of the output in time [0, 𝑡].

Gate
Probability of failure of output
in [𝟎, 𝒕]

AND 1 − 𝑒−𝜆𝐴𝑡 − 𝑒−𝜆𝐵𝑡 + 𝑒−(𝜆𝐴+𝜆𝐵)𝑡

OR 1 − 𝑒−(𝜆𝐴+𝜆𝐵)𝑡

WSP (1 − 𝑒−𝜆𝐴𝑡)(
𝛼𝜆𝐵(𝑒

−𝑡(𝜆𝐴+𝛼𝜆𝐵 )−1)

−𝜆𝐴−𝛼𝜆𝐵
−

𝜆𝐴(−(𝑒
−𝜆𝐵 𝑡−1)(𝜆𝐴+𝛼𝜆𝐵)+𝜆𝐵𝑒

−𝑡(𝜆𝐴+𝛼𝜆𝐵)−𝜆𝐵)

(𝜆𝐴+𝛼𝜆𝐵)(𝜆𝐵−𝜆𝐴−𝛼𝜆𝐵)
)

Appendix. Considering a two-input AND, OR, and WSP
gate, Table 1 depicts the probabilities of failure of the out-
put in time [0, 𝑡]. It is considered that the inputs to the gates
are𝐴 and𝐵, where the time of failure of𝐴 follows an expo-
nential distribution with rate 𝜆𝐴, and the time of failure of
𝐵 follows an exponential distribution with rate 𝜆𝐵. Then,
for the WSP gate if 𝐵 is the spare unit with dormancy fac-
tor 𝛼, the probability of failure of the output𝑋 in time [0, 𝑡]
is depicted in Table 1. For theWSP gate, while deriving the
closed-form solution of the probability of failure, Boudali
et al. considered both the inputs 𝐴 and 𝐵 to have the same
failure rate 𝜆. This assumption is not practical in a real-life
scenario. In this study, the work is extended by consider-
ing the inputs 𝐴 and 𝐵 having different rates of failure:
𝜆𝐴 and 𝜆𝐵, respectively. The detailed derivation is provided
in the Appendix. It is noteworthy that, when 𝜆𝐴 = 𝜆𝐵 = 𝜆,
our closed-form solution reduces to the solution provided
by Boudali and Dugan (2006). The dormancy factor (𝛼) for
a two-input WSP gate is considered as 0.5, which is also
considered in the literature (Boudali & Dugan, 2006).
To summarize, the overall procedure to estimate

the probabilities of intra-infrastructure failure has been
depicted in Algorithm 1.

2.2 Constructing an interdependent
network of networks

In the second step of the overall research framework,
where we estimate the inter-infrastructure vulnerability,
first, a framework to construct a network-of-networks
that can capture the physical, logical, and geographical
interdependencies as depicted in the Algorithm 2 is pro-
posed. To start with, it is considered that there are 𝑠

interdependent infrastructure systems, 𝐼1, 𝐼2, … , 𝐼𝑠. Each
infrastructure system is a network of components. Let us
consider that there are𝑁1 number of nodes in 𝐼1,𝑁2 num-
ber of nodes in 𝐼2, . . . , 𝑁𝑠 number of nodes in 𝐼𝑠. The 𝑗th
node of infrastructure 𝐼𝑖 is denoted by 𝑛𝑖𝑗 . As mentioned
above, the physical interdependency between two infras-
tructure systems exists, if materials or services produced
by one infrastructure are consumed by another infras-

ALGORITHM 2 CreateNetwork (𝐼1, 𝐼2, … , 𝐼𝑠, Γ)

Input: The infrastructure networks 𝐼1, 𝐼2, … , 𝐼𝑠 , the threshold
Γ ∈ [0, 1] of the interdependency edge strength.

Output: A network of infrastructure networks (𝐺) with the
intra-infrastructure and inter-infrastructure links.
1: 𝐺 = 𝐼1 ∪ 𝐼2 ∪ … ∪ 𝐼𝑠

2: for every two infrastructure networks 𝐼𝑖 and 𝐼𝑘 (𝑖 ≠ 𝑘) do
3: for each node 𝑛𝑘𝑙 of 𝐼𝑘 do
4: for each node 𝑛𝑖𝑗 of 𝐼𝑖 do
5: if the node 𝑛𝑘𝑙 may require service from the node

𝑛𝑖𝑗 or the state of the node 𝑛𝑘𝑙 may be affected by the
state of the node 𝑛𝑖𝑗 then

6: 𝑑 = (The Euclidean cell distance between 𝑛𝑖𝑗 and
𝑛𝑘𝑙) + 1

7: Interdependency strength (𝛾𝑖𝑗
𝑘𝑙
) = 1

𝑑

8: if 𝛾𝑖𝑗
𝑘𝑙
≥ Γ then

9: Add the interdependency edge of strength 𝛾
𝑖𝑗

𝑘𝑙

from 𝑛𝑖𝑗 to 𝑛𝑘𝑙 in 𝐺

10: end if
11: end if
12: end for
13: if the node 𝑛𝑘𝑙 may require service from at least one

node in 𝐼𝑖 or the state of the node 𝑛𝑘𝑙 may be affected by
the state of the node 𝑛𝑖𝑗 then

14: if ∄ an edge from at least one node of 𝐼𝑖 to 𝑛𝑘𝑙 then
15: Add the interdependency edge of highest

strength =
1

𝑑
from 𝑛𝑖𝑗 to 𝑛𝑘𝑙 in 𝐺; where 𝑛𝑖𝑗 is the

nearest node of 𝐼𝑖 from 𝑛𝑘𝑙 , and
𝑑 = the Euclidean cell distance between 𝑛𝑖𝑗 and 𝑛𝑘𝑙 +1

16: end if
17: end if
18: end for
19: end for
20: return 𝐺

tructure. On the other hand, the logical interdependency
between two infrastructure systems exists if the state of one
infrastructure is affected by the change of state of another
infrastructure. First, the algorithm checks if infrastructure
𝐼𝑘 is physically or logically dependent on the infrastruc-
ture 𝐼𝑖 . In Algorithm 2, Line 5, if node 𝑛𝑘𝑙 may require
service from node 𝑛𝑖𝑗 , then according to the definition of
the physical interdependency, infrastructure 𝐼𝑘 is physi-
cally dependent on 𝐼𝑖 . Furthermore, if the state of node 𝑛𝑘𝑙
is affected by the change of state of node𝑛𝑖𝑗, then according
to the definition of logical interdependency, infrastructure
𝐼𝑘 is logically dependent on 𝐼𝑖 . The infrastructure man-
agers should be able to decide these criteria based on their
previous experience and expert knowledge. For example,
the water distribution infrastructure may be physically
and logically dependent on the electricity infrastructure
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F IGURE 4 (a) The network of infrastructure networks on a grid-based map with intra- and inter-infrastructure edges, (b) the
neighborhood size for Γ = 1, and (c) the neighborhood size for Γ = .5.

system in the sense that the pumps of the water distribu-
tion infrastructure require electricity services to operate. In
this context, it is assumed that the manager of the water
distribution infrastructure knows that there exists physi-
cal dependency of water infrastructure over the electricity
infrastructure. If infrastructure 𝐼𝑘 is dependent on infras-
tructure 𝐼𝑖 , then there exist interdependency edges from
components of 𝐼𝑖 to 𝐼𝑘. Furthermore, note that even if 𝐼𝑘
is dependent on 𝐼𝑖 , all the nodes of 𝐼𝑘 may not require ser-
vices from 𝐼𝑖; and all the nodes of 𝐼𝑖 may not provide service
to a node of 𝐼𝑘. As an example, for electricity infrastructure
to operate, water is required for cooling and also for the
generators; however, all the nodes of a water distribution
infrastructure cannot provide the required service to the
electricity infrastructure.Water can be dispatched from the
reservoirs but not directly from the treatment plants. These
physical and logical dependencies are specific to the infras-
tructure systems under consideration and expert opinion
may be helpful in this regard.
The infrastructure networks are placed on a grid-based

geo-map as shown in Figure 4 using the quantum geo-
graphic information system (QGIS) (QGIS, 2021). The grid
cells have a specific size, which is to be kept constant for
all the infrastructures. The grid cells with the smallest res-
olution essentially represent the geographical coordinate
of each node of the infrastructure. Using a larger reso-
lution, it is allowed to discretize the geographical space
into cells where each node of infrastructure belongs to a
specific cell of the grid. The cell-based distance between
every node (𝑛𝑖𝑗) of 𝐼𝑖 and every node (𝑛𝑘𝑙) of 𝐼𝑘 is calcu-
lated as the Euclidean distance. By add-one smoothing,
the effective distance is modified such that the distance
𝑑 ≥ 1. The interdependency edge strength between the

components 𝑛𝑖𝑗 and 𝑛𝑘𝑙 is calculated as 1∕𝑑, where the
add-one smoothed distance 𝑑 can be used. If the com-
ponents 𝑛𝑖𝑗 and 𝑛𝑘𝑙 are geographically distant, then the
cell-based distance (𝑑) will be more, which in turn results
in low interdependency edge strength. On the other hand,
if the nodes 𝑛𝑖𝑗 and 𝑛𝑘𝑙 are in geographical proximity, then
the cell-based distance (𝑑) will be less, which results in a
strong interdependent edge from 𝑛𝑖𝑗 to 𝑛𝑘𝑙. In this way, the
geographical interdependencies are taken into considera-
tion, which results from the geographical proximity of two
infrastructures. Finally, the strong interdependency edges
are considered and the weak interdependency edges are
removed from the system by using the threshold Γ, a user-
defined parameter. In this context, the underlying assump-
tion is that, for a child infrastructure dependent on a parent
infrastructure, the material/service flows from the par-
ent to the child infrastructure only if the components are
in a certain geographical proximity. The interdependency
edges from 𝑛𝑖𝑗 to 𝑛𝑘𝑙 are only added if the interdependency
edge strength (𝛾𝑖𝑗

𝑘𝑙
), calculated according to the geograph-

ical proximity, is greater than or equal to the threshold
Γ. However, it is noteworthy that for a large threshold Γ,
there can be a situationwhere no interdependent edges are
added as all the interdependency edge strengths are less
than Γ. Such a situation may not be practical for modeling
the interdependent infrastructure systems. For example,
consider the dependency of water distribution infrastruc-
ture on the electricity infrastructure system. All the water
pumps require electricity to operate; however, due to the
high value of Γ, if no interdependency edge can be added
from any bus of the electricity infrastructure to the water
pumping stations, then it will not be practical to model
the interdependency. Hence, in such a situation, (where
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the physical or logical interdependencies must exist, but
are not added due to larger geographical distance), the
interdependency edge of strength 𝛾

𝑖𝑗
𝑘𝑙

=
1

𝑑
from the near-

est node 𝑛𝑖𝑗 ∈ 𝐼𝑖 to the node 𝑛𝑘𝑙 is added. Here, 𝑑 is the
add-one smoothed Euclidean distance between the cell
of 𝑛𝑖𝑗 and 𝑛𝑘𝑙, even though 𝛾

𝑖𝑗
𝑘𝑙

< Γ. To summarize, if
there exist physical or logical interdependencies between
the infrastructures, then the interdependency edges are
added with the strength proportional to their geographic
proximity. However, note that the infrastructure systems
considered by the infrastructure managers do not have
the exact infrastructure layout as described previously in
Algorithm 1. Thus, the physical or logical interdependen-
cies considered by the infrastructure managers may not
be exact in the presence of incomplete/imperfect infor-
mation about the infrastructure topology and the exact
interdependency relationships. However, without the loss
of generality of the overall framework,more accurate inter-
dependencies can be incorporated upon the availability
of information.

2.3 Infrastructure systems vulnerability
assessment

After the network of infrastructure networks (𝐺) is
obtained using Algorithm 2, a framework to estimate
the vulnerability of each infrastructure due to both the
intra- and inter-infrastructure cascading failures is cre-
ated. In this process, three probabilities of failure are
considered, including (1) 𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗
—the probability of fail-

ure of node 𝑛𝑖𝑗 due to intra-infrastructure cascade effect
at time [0, 𝑡], where 𝑡 ∈ [0, 24]; (2) 𝑃𝑖𝑛𝑡𝑒𝑟

𝑖𝑗 —the probabil-
ity of failure of node 𝑛𝑖𝑗 due to inter-infrastructure failure
propagation from one infrastructure to another at time
[0, 𝑡], where 𝑡 ∈ [0, 24]; and (3) 𝑃𝑓𝑎𝑖𝑙

𝑖𝑗
—the comprehensive

probability of failure arising from both intra- and inter-
infrastructure cascade at time [0, 𝑡], where 𝑡 ∈ [0, 24].
It is assumed that for a particular node 𝑛𝑖𝑗 , the intra-
infrastructure failure probability is independent of the
inter-infrastructure failure probability of the same node
𝑛𝑖𝑗 . This is a reasonable assumption because the source
of the intra-infrastructure failure probability is any par-
ent node of 𝑛𝑖𝑗 within the same infrastructure 𝐼𝑖 , whereas
the inter-infrastructure failure probability is obtained from
a node of a different network. Using the independence
assumption, the probability of failure occurring from both
the intra- and inter-infrastructure cascades is calculated as
𝑃𝑖𝑛𝑡𝑟𝑎
𝑖𝑗 ∗ 𝑃𝑖𝑛𝑡𝑒𝑟

𝑖𝑗 .
Furthermore, when an infrastructure (𝐼𝑘) receives ser-

vice fromanother infrastructure (𝐼𝑖), there can be generally
three cases that may occur if multiple interdependency
links exist. Say𝑖 be the set of nodes of 𝐼𝑖 fromwhich there

exist interdependency links to node 𝑛𝑘𝑙 of 𝐼𝑘 (i.e., ∃𝑛𝑖𝑗 ∈𝑖 such that 𝑛𝑖𝑗 → 𝑛𝑘𝑙 exists). In this scenario, there may
be any of the following three cases that may arise:

1. Best case: The node 𝑛𝑘𝑙 fails if all the nodes of 𝑖 fail.
In this case, the node 𝑛𝑘𝑙 fails after the node in𝑖 , with
the minimum probability of failure, fails.

2. Worst case: The node 𝑛𝑘𝑙 fails if any one of the nodes in𝑖 fails. In this case, the node 𝑛𝑘𝑙 fails after the node in𝑖 , with the maximum probability of failure, fails.
3. Average case: The functionality of node 𝑛𝑘𝑙 is partially

dependent on every node of 𝑖 . For example, if the
nodes in𝑖 include certain types of supply facility loca-
tions; 𝑛𝑘𝑙 are demand nodes and the demand of these
nodes can be satisfied by multiple service nodes oper-
ating in conjunction. Without loss of generality, it can
be assumed 𝑛𝑘𝑙 is equally dependent on all the nodes of𝑖 .

The infrastructure manager considers either of these cases
according to their risk perception and prior experience.
For example, a risk-averse infrastructure manager who
is interested to design a robust system shall consider the
worst -case scenario of the supply–demand characteristics
from other infrastructures. On the other hand, a risk-
seeking and opportunistic manager may consider the best
-case scenario; whereas, the average -case scenario is well
suited for a risk-neutral design of interdependent infras-
tructure systems. After considering a particular scenario of
supply–demand characteristic, a simulation environment
is created where the probability of failure is calculated for
each node of the infrastructures, and how the failure prob-
abilities evolve over the days is analyzed. As mentioned
before, the failure probabilities depict the probability of a
component failure at time [0, 𝑡]where 𝑡 ∈ [0, 24], depicting
the hourly probabilities of failure for each component. The
intra-infrastructure failure probability for the first day (i.e.,
iteration 1) is computed considering the initial failure prob-
ability follows an exponential distribution, as indicated in
previous studies (Boudali & Dugan, 2006). Then, the inter-
infrastructure failure probability of node 𝑛𝑘𝑙 due to 𝑛𝑖𝑗 is
calculated as the product of the strength of the interdepen-
dency links between them (𝛾) and the probability of failure
of the parent node 𝑛𝑖𝑗 .

𝑉
𝑖𝑗
𝑘𝑙

= 𝛾
𝑖𝑗
𝑘𝑙

∗ 𝑃
𝑓𝑎𝑖𝑙
𝑖𝑗

According to the case of simulation (best, worst, or
average), the inter-infrastructure failure probability is cal-
culated. As mentioned before, if the best-case scenario
is considered, the failure of the node happens if all the
interconnected parent nodes fail. Hence, the probability of
failure is the minimum of the failure probabilities of the
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parent nodes. On the other hand, the worst-case situation
may happen when a node fails if any one of the parent
nodes fails. In this case, the failure probability of the node
is the same as the maximum probability of failure of the
parent nodes. Finally, there can be an average case, where
the failure of a node is dependent on all the parent nodes.
In this case, a uniform distribution over all the parent
nodes is assumed, and the failure probability is estimated
as the average of the probabilities of failure of all the parent
nodes. If there are two infrastructures 𝐼𝑖 and 𝐼𝑘, such that
there exist interdependency edges from the nodes of 𝐼𝑖 to
𝐼𝑘, we have described how to calculate the probabilities of
failure of the nodes of 𝐼𝑘 induced by the failure of the nodes
of 𝐼𝑖 (refer to Section 2.2). However, as described before,
the infrastructure 𝐼𝑘 may be dependent on multiple infras-
tructure systems, not a single infrastructure 𝐼𝑖 . Now, the
importance of one infrastructure on another infrastructure
may be different. For example, for three interdependent
infrastructure systems, 𝐼𝑖, 𝐼𝑘, and 𝐼𝑚, where 𝐼𝑚 is depen-
dent on both 𝐼𝑖 and 𝐼𝑘, the importance of dependency of
𝐼𝑚 on 𝐼𝑖 may be more than the dependency of 𝐼𝑚 on 𝐼𝑘 and
vice versa. To capture the combined effect of all the other
infrastructure systems on a particular infrastructure, we
introduce the relative importance matrix 𝑅 of dimension
𝑠 × 𝑠, where 𝑠 is the total number of infrastructures con-
sidered in the analysis. The importance of infrastructure
𝐼𝑖 on 𝐼𝑘 (or, the importance of dependency of 𝐼𝑘 on 𝐼𝑖) is
depicted by the entry in the 𝑖th row and 𝑘th column, that
is, 𝑅𝑖𝑘. Furthermore, it is considered that the construction
of 𝑅 follows the following properties.

(1) The diagonal entries of 𝑅 are 0, that is, 𝑅𝑖𝑖 = 0 ∀𝑖 ∈

{1, … , 𝑠}, indicating a particular infrastructure is not
dependent on itself for inter-infrastructure failure.

(2) The sum of every column in 𝑅 is 1, that is,
∑

𝑖 𝑅𝑖𝑘 =

1 ∀𝑘 ∈ {1, … , 𝑠}, indicating that the importance of
interdependencies of the infrastructure 𝐼𝑘 over the
other infrastructures must sum up to 1. Note, without
loss of generality, if the column sum is not 1, it can be
normalized to 1.

Now, the inter-infrastructure probability of failure of the
node 𝑛𝑘𝑙 of infrastructure 𝐼𝑘 due to all the parent infras-
tructures in time [0, 𝑡] for either the best-, worst-, or
average-case scenario (𝑃𝑖𝑛𝑡𝑒𝑟

𝑘𝑙
) can be estimated as

𝑃𝑖𝑛𝑡𝑒𝑟
𝑘𝑙

=

𝑠∑
𝑖=1

𝑅𝑖𝑘𝑃
𝑖
𝑘𝑙

where 𝑃𝑖
𝑘𝑙
is the inter-infrastructure failure probability of

the node 𝑛𝑘𝑙 induced by 𝐼𝑖 in either the best-, worst-, or
average-case scenario.

Finally, the probability of failure of a node may result
from either intra- or inter-infrastructure cascade or both.

𝑃
𝑓𝑎𝑖𝑙
𝑖𝑗 = 𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗 + 𝑃𝑖𝑛𝑡𝑒𝑟
𝑖𝑗 −

(
𝑃𝑖𝑛𝑡𝑟𝑎
𝑖𝑗 ∗ 𝑃𝑖𝑛𝑡𝑒𝑟

𝑖𝑗

)

After the probabilities of failure 𝑃
𝑓𝑎𝑖𝑙
𝑖𝑗

for the first day
(i.e., iteration 1) are realized, they are considered as the
initial failure probabilities of the components for the next
day (i.e., iteration 2) and again the intra-infrastructure,
inter-infrastructure, and combined/comprehensive proba-
bilities of failures are calculated. This process is iterated
over multiple iterations depicting the effects of multiple
days of service outage of interdependent infrastructure
systems. Finally, the sensitivity of the user-defined param-
eters considered in our model, including the threshold
of the interdependency edge strength Γ and the rela-
tive importance of one infrastructure on another 𝑅𝑖𝑘, is
considered. It is noteworthy that, as Γ is changed, the
inter-infrastructure probabilities of failure change corre-
sponding to the best-, worst-, or average-case scenarios
under consideration. The following Proposition 1 says that,
with increasing Γ (decrease in the neighborhood size), the
inter-infrastructure failure probabilities will increase for
the best-case scenario, and the inter-infrastructure failure
probabilities will decrease for the worst-case scenario. In
the best-case scenario where the child node fails if all the
parent nodes fail, the parent nodes act as redundancies.
Hence, in that case, the more the number of parent nodes,
the less vulnerable is the child node. In the worst-case sce-
nario where a child node fails, if any one of the parent
nodes fails, the parent nodes act as nonredundancies or
deficiencies. In such a scenario, the more the number of
parent nodes, there is a higher chance of finding a critical
nodewith a high probability of failure, which can cause the
failure of the child node.Hence, in theworst case, themore
the number of the parent nodes, higher is the vulnerability
of the child node.

Proposition 1. Consider two infrastructures 𝐼𝑖 and 𝐼𝑘 ,
where there exist interdependency edges from 𝐼𝑖 to 𝐼𝑘 . SayΓ𝑧1 is the neighborhood of a node 𝑛𝑘𝑙 ∈ 𝐼𝑘 such that the
interdependency edge strength from any node 𝑛𝑖𝑗 ∈ 𝐼𝑖 is ≥
Γ𝑧1 for a given Γ𝑧1; andΓ𝑧2 is the neighborhood of a node
𝑛𝑘𝑙 ∈ 𝐼𝑘 such that the interdependency edge strength from
any node 𝑛𝑖𝑗 ∈ 𝐼𝑖 is ≥ Γ𝑧2 for a given Γ𝑧2. Furthermore,
let us consider that 𝑃𝑏

Γ𝑧 and 𝑃𝑤
Γ𝑧 denote the average inter-

infrastructure failure probabilities of the nodes of 𝐼𝑘 for the
given Γ𝑧 in time [0, 𝑡], for the best- and worst-case scenarios,
respectively. Then,

𝑃𝑏
Γ𝑧1 ≤ 𝑃𝑏

Γ𝑧2, where Γ𝑧1 ≤ Γ𝑧2

𝑃𝑤
Γ𝑧1 ≥ 𝑃𝑤

Γ𝑧2, where Γ𝑧1 ≤ Γ𝑧2
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Proof. Below, the formal proof of the proposition is pre-
sented. It can be proved that any node that belongs to the
Γ𝑧2 neighborhood is always contained in the Γ𝑧1 neigh-
borhood. Hence, with increasing Γ, the probabilities of
failure are monotonically increasing for the best-case sce-
nario; and the probabilities of failure are monotonically
decreasing for the worst-case scenario. There can be four
cases that may arise for Γ𝑧1 ≤ Γ𝑧2 as follows. (1) IfΓ𝑧2 ≠
𝜙, Γ𝑧1 ≠ 𝜙, in this case, according to the construction
in Algorithm 2, if there exist some nodes 𝑛𝑖𝑗 ∈ 𝐼𝑖 in the
Γ𝑧2 neighborhood (Γ𝑧2) of 𝑛𝑘𝑙, then that node must
also exist in the Γ𝑧1 neighborhood (Γ𝑧1) of 𝑛𝑘𝑙. (2) IfΓ𝑧1 = 𝜙, then, according to the construction,Γ𝑧2 = 𝜙.
In this case, let𝐴

Γ𝑧1 and𝐴
Γ𝑧2 be the auxiliary neighbor-

hoods that are created by adding the then 𝑛𝑖ℎ ∈ 𝐼𝑖 , which
is the nearest node of 𝑛𝑘𝑙 to the neighborhoodsΓ𝑧1 andΓ𝑧2. Hence, both 𝐴

Γ𝑧1 and 𝐴
Γ𝑧2 consist of 𝑛𝑖ℎ. (3) IfΓ𝑧2 = 𝜙 and ifΓ𝑧1 ≠ 𝜙. In this case, say 𝑛𝑖ℎ ∈ 𝐼𝑖 is the

nearest node added to Γ𝑧2 = 𝜙 to ensure at least one
interdependency edge exists, forming the auxiliary neigh-
borhood 𝐴

Γ𝑧2. Now, as Γ𝑧1 ≠ 𝜙, then we conclude 𝑛𝑖ℎ
must belong to Γ𝑧1, that is, 𝑛𝑖ℎ ∈ Γ𝑧1. (4) If Γ𝑧2 = 𝜙

and ifΓ𝑧1 = 𝜙, then similar to a previous case, let 𝑛𝑖ℎ ∈ 𝐼𝑖
which is the nearest node of 𝑛𝑘𝑙, be added to the neighbor-
hoodsΓ𝑧1 andΓ𝑧2 to form the auxiliary𝐴

Γ𝑧1 and𝐴
Γ𝑧2.

Hence, both𝐴
Γ𝑧1 and𝐴

Γ𝑧2 consist of 𝑛𝑖ℎ.
From the above four cases, we conclude that, Γ𝑧2 ⊆Γ𝑧1 or𝐴

Γ𝑧2 ⊆ Γ𝑧1 or𝐴
Γ𝑧2 ⊆ 𝐴

Γ𝑧1. Now, according to
the definition, in the best case, node 𝑛𝑘𝑙 fails if all the
nodes in the neighborhood fail. That is, from Algorithm 3,
𝑃𝑏
Γ𝑧 = min𝑛𝑖𝑗∈Γ𝑧

𝑉𝑘𝑙
𝑖𝑗 . Aswe have aminimization problem

here, we conclude 𝑃𝑏
Γ𝑧1 ≤ 𝑃𝑏

Γ𝑧2, where Γ𝑧1 ≤ Γ𝑧2. Simi-
larly, according to the definition, in theworst case, node𝑛𝑘𝑙
fails if at least one of the nodes in the neighborhood fails.
That is, from Algorithm 3, 𝑃𝑏

Γ𝑧 = max𝑛𝑖𝑗∈Γ𝑧
𝑉𝑘𝑙
𝑖𝑗 . As we

have amaximization problem in this scenario,we conclude
𝑃𝑤
Γ𝑧1 ≥ 𝑃𝑤

Γ𝑧2, whereΓ𝑧1 ≤ Γ𝑧2. Hence, proved. □

3 DATA COLLECTION AND
PREPROCESSING

To implement our proposed framework, a case study with
three infrastructure systems, electricity, water, and a small-
scale supply chain network, is considered.

3.1 Electricity infrastructure

A typical electricity infrastructure system consists of gen-
erators, buses, lines, and loads (Wood&Wollenberg, 2012).
The buses are connected to each other via lines and
both the generators and the loads are connected to the

ALGORITHM 3 CalculateVulnerability (𝐺,𝑀, 𝜆, 𝑅)

Input: 𝐺, the maximum number of iterations (𝑀 ≥ 1), mean
time of failure for the root nodes to start with (𝜆), and the
relative importance matrix 𝑅.

Output: The probability of failure 𝑃𝑓𝑎𝑖𝑙
𝑖𝑗 for each node of each

infrastructure in 𝐺.
1: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 0

2: while iterations ≤ 𝑀 do
3: if iterations = 0 then
4: The initial probabilities of failure 𝜅 ∼ Exp(𝜆)
5: else
6: The initial probabilities of failure 𝜅 ← 𝑃𝑓𝑎𝑖𝑙 of last

iteration
7: end if
8: for each infrastructure network 𝐼𝑖 ∈ 𝐺 do
9: for each node 𝑛𝑖𝑗 ∈ 𝐼𝑖 do
10: 𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗 ← IntraModel(𝐼𝑖 , 𝜅)
11: 𝑃

𝑓𝑎𝑖𝑙
𝑖𝑗 ← 𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗

12: end for
13: end for
14: for every two network 𝐼𝑖 and 𝐼𝑘 do
15: if The edge 𝑛𝑖𝑗 → 𝑛𝑘𝑙 exists then
16: 𝑉

𝑖𝑗

𝑘𝑙
= 𝛾

𝑖𝑗

𝑘𝑙
∗ 𝑃

𝑓𝑎𝑖𝑙
𝑖𝑗

17: for each node 𝑛𝑘𝑙 do
/* Simulate either the best, average or worst case
scenario */

18: if Best case then
19: 𝑃𝑖

𝑘𝑙
= min(𝑗) 𝑉

𝑖𝑗

𝑘𝑙

20: else ifWorst case then
21: 𝑃𝑖

𝑘𝑙
= max(𝑗) 𝑉

𝑖𝑗

𝑘𝑙

22: else if Average case then
/* Considering uniform distribution*/

23: 𝑃𝑖
𝑘𝑙
=

1|𝑘 |
∑

𝑛𝑖,𝑗∈𝑘
𝑉

𝑖𝑗

𝑘𝑙

24: end if
25: end for
26: end if
27: end for

/* Weighted sum over the relative importance of the parent
infrastructures */

28: for every infrastructure 𝐼𝑘 do
29: for every infrastructure 𝐼𝑖 from where ∃

interdependency edge to 𝐼𝑘 do
30: for every node 𝑛𝑘𝑙 ∈ 𝐼𝑘 do
31: 𝑃𝑖𝑛𝑡𝑒𝑟

𝑘𝑙
=
∑𝑠

𝑖=1
𝑅𝑖𝑘𝑃

𝑖
𝑘𝑙

32: end for
33: end for
34: end for

/* Combining intra-infrastructure and
inter-infrastructure vulnerability */
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ALGORITHM 3 Continued

35: for every infrastructure 𝐼𝑘 do
36: for every node 𝑛𝑘𝑙 ∈ 𝐼𝑘 do
37: 𝑃

𝑓𝑎𝑖𝑙

𝑘𝑙
= 𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗 + 𝑃𝑖𝑛𝑡𝑒𝑟
𝑖𝑗 − (𝑃𝑖𝑛𝑡𝑟𝑎

𝑖𝑗 ∗ 𝑃𝑖𝑛𝑡𝑒𝑟
𝑖𝑗 )

38: end for
39: end for
40: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1

41: end while
42: for each node 𝑛𝑖𝑗 in each infrastructure network 𝐼𝑖 ∈ 𝐺 do
43: return 𝑃

𝑓𝑖𝑛𝑎𝑙
𝑖𝑗

44: end for

F IGURE 5 The layout of the electricity infrastructure system
placed over the maps of the states of Arizona, California, and
Nevada.

buses. Each line is originating from a source bus and ends
up at a destination bus. The hypothetical node–network
data representing a typical power grid is leveraged for
our analysis. These data are obtained from the Reliabil-
ity Test System Grid Modernization Lab Consortium (RTS
GMLC) (RTS-GMLC, 2021). The data are geocoded and
a failure probability is associated with each component
(generators, buses, and lines). Using QGIS, a grid with
0.25◦ horizontal and vertical spacing is constructed. This
power grid is placed over the maps of California, Arizona,
and Nevada as shown in Figure 5. The initial hourly fail-
ure rates of the components (generators, buses, and lines)
are obtained from the RTS-GMLC data set. A summary of
the initial failure rates of the components is provided in
Table 2.

3.2 Water distribution network

In the literature, for water distribution network (WDN),
hypothetical networks like Anytown, Colorado Springs

TABLE 2 Summary of the initial failure rates of the
components of the electricity infrastructure.

Component

Mean
failure
rate (𝝀𝒃𝒂𝒔𝒆)

Maximum
failure
rate

Minimum
failure
rate

Standard
deviation
(𝝈𝒃𝒂𝒔𝒆)

Generators .003 .012 .001 .001
Lines .007 .02 .001 .003
Buses .002 .01 .001 .001

F IGURE 6 The layout of the water distribution system.

Utilities, EXNET, or Richmond are extensively used with
different types of topologies like grid iron, ring system,
radial system, or dead-end system (Mazumder et al.,
2018). However, none of these hypothetical networks are
geocoded. In a general WDN, water is brought to the
treatment plants from the sources using a pumping or
gravity system. Then, from the treatment plants, water is
stored in storage reservoirs. Finally, the water is brought
and temporarily stored in distribution reservoirs to meet
the fluctuating demands (Sincero & Sincero, 1995). In this
study, a hypothetical WDN with a total of 30 nodes, out
of which three are sources, five are treatment plants, six
storage reservoirs, and 16 distribution reservoirs with a
topology similar to the radial system is considered. The
simulatedWDN is placed on the same geographical bound-
ary of the electricity infrastructure for the ease of analysis.
In Figure 6, the spatial distribution of the WDN is shown.
In Table 3, the mean and the standard deviation of the
hourly rates of failure for different components of the
WDN are depicted. Note that, these hypothetical values
are arbitrarily selected by the researchers of this study, and
may not depict the actual failure rates of the components
in a real-life scenario. However, not to mention that these
parameters can be updated easily in the presence of actual
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TABLE 3 Summary of the initial failure rates of the
components of the water distribution network.

Component

Mean
failure
rate (𝝀𝒃𝒂𝒔𝒆)

Standard
deviation
(𝝈𝒃𝒂𝒔𝒆)

Sources .005 .001
Treatment plants .008 .001
Storage reservoirs .009 .002
Distribution reservoirs .01 .002
Pipelines .01 .001

F IGURE 7 The layout of the supply chain network.

data or expert opinion without loss of generality of the
overall framework.

3.3 Supply chain network

A typical supply chain network (SCN) consists of sup-
pliers, manufacturers, and retailers, where material flows
between the suppliers and manufacturers, and between
manufacturers and retailers as represented by the arcs of
the network (Tang et al., 2016). In this study, a hypothet-
ical single-commodity SCN with a total of 15 nodes, out
of which there are three supplier nodes, five manufac-
turer nodes, and seven retailer nodes, is considered. The
SCN is placed over the same geo-grid of the electricity
and water distribution network as depicted in Figure 7.
In Table 4, the mean and standard deviation of the initial
hourly failure rates of the components of the hypothet-
ical supply chain network considered in this study are
summarized. Again, in the presence of an actual network
and data, the rates can be updated according to the user
inputs.

TABLE 4 Summary of the initial failure rates of the
components of the supply chain network.

Component

Mean
failure
rate (𝝀𝒃𝒂𝒔𝒆)

Standard
deviation
(𝝈𝒃𝒂𝒔𝒆)

Suppliers .005 .001
Manufacturers .008 .001
Retailers .009 .002
Material flow arcs .01 .001

4 RESULTS

Following data pre-processing, the intra- and inter-
infrastructure vulnerability and finally the comprehensive
vulnerability are estimated as described in Section 2. As
mentioned before, in this study, the vulnerability of infras-
tructure represents the dynamic probability of failure as a
function of time, which is the failure probability of each
of the infrastructure components in time [0, 𝑡], where 𝑡 ∈
[0, 24].

4.1 Intra-infrastructure failure
probability estimation

In this section, our key findings on the failure probabilities
of each infrastructure arising from the intra-infrastructure
connections and the cascade propagation within a net-
work are presented. For the electricity infrastructure (𝐼1),
the mean failure rates of the different buses, generators,
and transmission lines are obtained from sampling with
replacement from a normal distribution with mean 𝜆𝑏𝑎𝑠𝑒
and standard deviation 𝜎𝑏𝑎𝑠𝑒 as depicted in Table 2. The
chi-square goodness-of-fit test (Pearson, 1900) is per-
formed to identify that the mean rates of failure depicted
in the RTS-GMLC data can be approximated using a
normal distribution. For example, for the generators, the
rate is assumed to be normally distributed with mean
0.003 and standard deviation 0.001, and the actual failure
rates of each generator are obtained from a sampling of
this normal distribution. Similarly, for the WDN (𝐼2) and
the supply chain network (𝐼3), the initial failure rate of
each individual component is obtained from a sampling of
a normal distribution with mean and standard deviation
as depicted in Tables 3 and 4, respectively. The failure time
of each infrastructure component follows an exponential
distribution with the realized rate of the particular com-
ponent, which is well considered in literature (Boudali &
Dugan, 2006). That is, the initial probability of failure due
to intrainfrastructure cascade in time [0, 𝑡] is 𝑃𝑖𝑛𝑡𝑟𝑎(𝑡) =

1 − 𝑒−𝜆𝑡, where 𝜆 ∼ 𝐍(𝜆𝑏𝑎𝑠𝑒, 𝜎
2
𝑏𝑎𝑠𝑒

). The distribution of 𝜆
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F IGURE 8 The component (node) wise probabilities of failure in time [0,24] due to intrainfrastructure cascade for (a) the electricity
infrastructure considering the buses as the components; (b) the water distribution network where the node IDs 0 to 2 represent the source
nodes, 3 to 7 represent the treatment plants, 8 to 13 are the storage reservoirs, and 14 to 29 represent the distribution reservoirs; and (c) the
supply chain network, where the node IDs 0 to 2 represent the supplier nodes, 3 to 7 represent the manufacturer nodes, and 8 to 14 are the
retailer nodes.

can be identified using a goodness-of-fit test. Furthermore,
the sensitivity of the parameter 𝜆 can be identified using a
sensitivity analysis framework by alternating the mean of
the distribution of 𝜆 (e.g., in case of a disaster, it is reason-
able to assume that the mean failure rate increases, i.e.,
say, 𝜆 ∼ 𝐍(𝜆𝑏𝑎𝑠𝑒 + 𝜎𝑏𝑎𝑠𝑒, 𝜎

2
𝑏𝑎𝑠𝑒

)). Ganguly et al. described
such a sensitivity analysis framework in detail for sen-
sitivity analysis of model parameters applied to crime
analysis (Ganguly & Mukherjee, 2021) and mental health
prediction (Mukherjee et al., 2021). Such a framework has
also been used in the scientific domain of infrastructure
risk assessment using data-driven techniques (Masoud-
vaziri et al., 2020; Mukherjee & Nateghi, 2019). However,
in this paper, the failure rate 𝜆 is considered to follow a
normal distribution with mean 𝜆𝑏𝑎𝑠𝑒 and standard devi-
ation 𝜎𝑏𝑎𝑠𝑒 identified using the chi-square goodness-of-fit
test. Using Algorithm 1, a DFT is constructed for each of
the infrastructures and the failure probabilities for each
component of the networks due to the failure propagation
within the network are obtained. The failure probabilities
of each infrastructure component in time [0,24] or within
24 h due to the cascading failure within the network have
been depicted in Figure 8. Furthermore, a diagnostic test
is performed where it is found that the intra-infrastructure
vulnerability of a node is particularly sensitive to the
amount of redundancy associated with it, and the vul-
nerability decreases with increasing redundancy. This
observation holds true because of the properties of the
WSP gates used in the DFT, which also may hold true if
OR gates are used in that context. The redundancy depicts
the number of parent nodes associated with a particular
node. This supports the findings from previous studies
and thus validates our results under the assumptions
considered in the study mentioned above (O’Connor &
Kleyner, 2012; Rausand et al., 2020). Intuitively, as there

exist more parent nodes for a particular node, the failure
probability of the input decreases, resulting in a decrease
in the vulnerability of the child node as expected (see
Figure 9).

4.2 Inter-infrastructure vulnerability
modeling

For an electricity infrastructure to operate successfully, it
is assumed that water is required for power-generating
operations and cooling the system. Hence, every bus of
the electricity infrastructure requires a certain type of ser-
vice from the distribution reservoirs of theWDN. Similarly,
for a WDN to operate, pumps require electricity (Rinaldi
et al., 2002). It is considered that the pumps are associated
with all the nodes of the WDN, that is, the sources, treat-
ment plants, storage reservoirs, and distribution reservoirs.
Hence, all the nodes of the WDN require services from the
electricity infrastructure. As a first step of estimating the
inter-infrastructure vulnerability, the network of networks
is constructed as depicted in Algorithm 2. As the value of
Γ is changed, the number of interdependent edges from
one infrastructure to the other changes. It is identified that
for a high value of Γ, the neighborhood size of a cell is
small, and hence, the number of interdependent edges is
also small; on the other hand, as Γ decreases, the neigh-
borhood size increases and there can be many potential
nodes of a parent infrastructure, which may provide ser-
vice to a node of the child infrastructure. In Figure 10a and
b, respectively, how the number of interdependent edges
from the electricity infrastructure (𝐼1) to the W (𝐼2) and
the SCN (𝐼3), and from the WDN (𝐼2) to the electricity
infrastructure (𝐼1) and the SCN (𝐼3) vary according to Γ

have been depicted.
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F IGURE 9 Redundancy versus intrainfrastructure failure probabilities of the components for (a) electricity infrastructure, (b) water
distribution network, and (c) supply chain network.

F IGURE 10 Variation in the number of interdependent edges
versus Γ, for the parent infrastructure: (a) electricity distribution
infrastructure and (b) water distribution network (WDN),
considering 𝐼1 as the electricity infrastructure, 𝐼2 as the WDN, and
𝐼3 as the SCN.

TABLE 5 Average interinfrastructure probabilities of failure of
one infrastructure induced by another versus Γ for different
scenarios after one iteration.

𝚪 Scenario 𝑰𝟏 → 𝑰𝟐 𝑰𝟐 → 𝑰𝟏 𝑰𝟏 → 𝑰𝟑 𝑰𝟐 → 𝑰𝟑

.3 Best case 1.01 ∗ 10−6 .12 2.3 ∗ 10−6 .13
Average case .04 .38 .043 .33
Worst case .11 .40 .099 .35

.5 Best case 9.2 ∗ 10−4 .26 8.8 ∗ 10−4 .25
Average case .046 .37 .044 .32
Worst case .08 .39 .073 .33

.7 Best case 9 ∗ 10−3 .35 9 ∗ 10−4 .31
Average case .037 .36 .032 .32
Worst case .05 .36 .035 .32

After constructing the network of networks for Γ = 0.5

(starting point), the inter-infrastructure probabilities of
failure induced by one infrastructure to another are esti-
mated as described inAlgorithm2 andAlgorithm3. Table 5
depicts the inter-infrastructure failure probabilities aver-
aged over the nodes of the infrastructure induced by one
infrastructure on the other corresponding to the best-,
worst-, and average-case scenarios. The column 𝐼𝑖 → 𝐼𝑘

denotes the vulnerability (average probability of failure of
the nodes in time [0,24]) of the infrastructure 𝐼𝑘 induced by
the vulnerability of the interdependent infrastructure net-

work (𝐼𝑖), that is,
∑𝑁𝑘

𝑙=1
𝑃𝑖
𝑘𝑙

𝑁𝑘
, where𝑁𝑘 is the number of nodes

in infrastructure 𝐼𝑘, and 𝑃𝑖
𝑘𝑙
is the inter-infrastructure

probability of 𝑙 th node 𝑛𝑘𝑙 ∈ 𝐼𝑘 induced by 𝐼𝑖 . In this study,
𝐼1 is the electricity infrastructure, 𝐼2 is the WDN, and 𝐼3
is the SCN. For example, the column 𝐼1 → 𝐼2 denotes the
vulnerability (average probability of failure of the nodes
in time [0,24]) of the WDN (𝐼2) induced by the vulner-
ability of electricity infrastructure network (𝐼1). Various
important phenomena regarding the inter-infrastructure
failure probabilities for the best-, worst-, and average-
case scenarios for different values of Γ are observed.
According to Proposition 1, as Γ increases, the average
inter-infrastructure failure probabilities of an infrastruc-
ture in time [0, 𝑡] for the best-case scenario increases. On
the other hand, as Γ increases, the inter-infrastructure fail-
ure probabilities for the worst-case scenario in time [0, 𝑡]

decreases. Furthermore, it can be noted that, for a partic-
ular value of Γ, the best-case scenario inter-infrastructure
failure probability is the lowest, while the worst-case inter-
infrastructure probability of failure is the highest. Though
the inter-infrastructure failure probabilities are summa-
rized here, for 𝐼3, there exist two different columns 𝐼1 →
𝐼3 and 𝐼2 → 𝐼3. Using the relative importance matrix, the
inter-infrastructure failure probability is calculated for 𝐼3
as depicted in Algorithm 3. In this study, three relative
importance matrices are considered. As 𝐼1 is only depen-
dent on 𝐼2, and 𝐼2 is only dependent on 𝐼1, the entries
corresponding to 𝐼1 and 𝐼2 in all the three matrices are 1.
According to the construction, all the other entries for the
columns corresponding to 𝐼1 and 𝐼2 are 0. In 𝑅1, it is con-
sidered that 𝐼3 is equally dependent on 𝐼1 and 𝐼2. Hence,
the importance of 𝐼1 and 𝐼2 on 𝐼3 is 0.5 each. However, in
𝑅2, it is assumed that 𝐼1 is less important for 𝐼3 compared
to 𝐼2; and in 𝑅3, it is assumed that 𝐼1 is more important for
𝐼3 compared to 𝐼2. While constructing 𝑅2 and 𝑅3, it should
be noted that the column sum of the 𝐼3 has to be 1.
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F IGURE 11 The probabilities of failure for each infrastructure versus Γ for different relative importance matrices under consideration
for the scenarios: (a) best case, (b) average case, and (c) worst case considering 𝐼1 as the electricity infrastructure, 𝐼2 as the water distribution
infrastructure, and 𝐼3 as the supply chain network for different relative importance scenarios of 𝑅1, 𝑅2, and 𝑅3.

𝑅1 =

⎡⎢⎢⎢⎢⎣

𝐼1 𝐼2 𝐼3
𝐼1 0 1 .5

𝐼2 1 0 .5

𝐼3 0 0 0

⎤⎥⎥⎥⎥⎦
𝑅2 =

⎡⎢⎢⎢⎢⎣

𝐼1 𝐼2 𝐼3
𝐼1 0 1 .3

𝐼2 1 0 .7

𝐼3 0 0 0

⎤⎥⎥⎥⎥⎦

𝑅3 =

⎡⎢⎢⎢⎢⎣

𝐼1 𝐼2 𝐼3
𝐼1 0 1 .7

𝐼2 1 0 .3

𝐼3 0 0 0

⎤⎥⎥⎥⎥⎦
As depicted in Figure 11, the average failure probabilities

of the nodes of each infrastructure versus Γ, considering
different relative importance matrices 𝑅1, 𝑅2, and 𝑅3, are
plotted. As 𝐼1 is only dependent on 𝐼2, and 𝐼2 is only depen-
dent on 𝐼1, the entries in the relative importancematrix are
the same for 𝑅1, 𝑅2, and 𝑅3 for the columns corresponding
to 𝐼1 and 𝐼2. Hence, in Figure 11a–c, there exists one curve
each for 𝐼1 and 𝐼2. However, as 𝐼3 is dependent on both 𝐼1
and 𝐼2, the entries in the 𝑅1, 𝑅2, and 𝑅3 are different, and
in each of Figure 11a–c, we have three curves for 𝐼3 each
corresponding to the three relative importancematrix. The
two important observations from these plots are as follows:
(1) The failure probabilities increase as Γ increases for the
best-case scenario as depicted in Figure 11a and the fail-
ure probabilities decrease as Γ increases for the worst-case
scenario, as depicted in Figure 11c. This supports Proposi-
tion 1; and (2) for 𝐼3, as we have different curves for the
different relative importance matrices, it is observed that
the probability of failure is highest for 𝑅2. This is because,
in 𝑅2, the importance of 𝐼2 is more and the inherent fail-
ure probability of 𝐼2 is more compared to 𝐼1. Hence, the
induced vulnerability to 𝐼3 is higher for 𝑅2 compared to 𝑅1

and 𝑅3.

4.3 Comprehensive vulnerability
estimation

Before proceeding with the final step of estimating the
comprehensive vulnerability of the interdependent infras-
tructure systems, first, we hold some of the parameters
used in our study constant, depicting our base case, to
understand the failure propagation dynamics in the inter-
dependent infrastructure system over time. Considering
the mean initial failure probabilities to be the same as the
base case with (𝜆𝑏𝑎𝑠𝑒), Γ = 0.5, and the relative importance
matrix as 𝑅1, the failure probabilities of each node in time
[0,24] considering both the intra- and inter-infrastructure
vulnerabilities are estimated. First, the failure probabili-
ties for every node of the infrastructures under the three
different scenarios, namely, the worst case, the average
case, and the best case, corresponding to the different
number of iterations are estimated. Then, corresponding
to each scenario and the number of iterations, the aver-
age probabilities of failure over the nodes of a particular
infrastructure are obtained. That is, the average probabil-

ity of failure of infrastructure 𝐼𝑖 is
∑𝑁𝑖

𝑗=1
𝑃
𝑓𝑎𝑖𝑙
𝑖𝑗

𝑁𝑖
, where 𝑁𝑖 is

the number of nodes in infrastructure 𝐼𝑖 . In Figure 12a,
the probabilities of failure in time [0,24] for the infrastruc-
tures are depicted for the best-case scenario as a function
of the number of days (i.e., iterations). It is observed that
as the number of iterations (days) increases, the proba-
bilities of failure increase. However, the rate of increase
decreases with the increase in the number of iterations. In
Figure 12c and b, respectively, the failure probabilities of
the infrastructures for theworst-case and average-case sce-
narios are depicted. Though there exist similar patterns
for the different cases, the probabilities of failure for the
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F IGURE 1 2 Number of iterations versus the average probability of failure of the nodes for each infrastructure in time 𝑡 ∈ [0, 24], for (a)
best-case scenario, (b) average-case scenario, and (c) worst-case scenario where Γ = .5 and the relative importance matrix is 𝑅1, considering 𝐼1
as the electricity infrastructure, 𝐼2 as the water distribution infrastructure, and 𝐼3 as the supply chain network.

worst-case scenario are the highest, followed by the prob-
abilities of failure for the best case scenario. In fact,
the probabilities of failure for the best case scenario are
observed to be the lowest, as expected. Furthermore, it is
observed that with increasing number of iterations (time),
the vulnerability of 𝐼3 surpasses the vulnerability of 𝐼2 and
𝐼1. This is because of the fact that, as 𝐼3 is dependent
on both 𝐼1 and 𝐼2, the inter-infrastructure vulnerability
of 𝐼3 is induced by both the parent infrastructures, as an
alternative to 𝐼1 or 𝐼2, which is dependent on a single
parent infrastructure.
The key findings from the results obtained using our

framework are summarized as follows.

(1) The intra-infrastructure vulnerability is observed to be
inversely proportional to the number of redundancies
inbuilt into the infrastructure system.

(2) The infrastructuremanager can simulate different val-
ues of the initial failure rates (𝜆) of the components
and obtain the associated vulnerability of the infras-
tructure. It is observed that higher the failure rate
of the components, higher is the vulnerability of the
infrastructure due to intra-infrastructure cascading
failure.

(3) For the same value of Γ and the relative importance
matrix, it is observed that the failure probabilities
due to inter-infrastructure cascade under the worst-
case scenario are more than that of the average-case
scenario, which in turn is higher than the best-case
scenario. The worst-case scenario is realized when
there are more critical nodes (less redundant nodes),
failure of which induces failure of nodes of the child
infrastructure and is well suited for risk-averse con-
servative design. On the other hand, the best case is
realized when there are redundant parent infrastruc-
ture nodes and depict the opportunistic or risk-seeking
design of the system.

(4) The parameter Γ is inversely proportional to the
geographical proximity or neighborhood of the com-

ponents of two infrastructure systems under consider-
ation. As the threshold Γ increases, the neighborhood
size decreases. Hence, for a particular infrastruc-
ture and particular relative importance matrix, the
best-case scenario failure probability increases as Γ

increases (geographical neighborhood decreases) due
to a decrease in redundancy. On the other hand, for the
worst-case scenario, the failure probability decreases
as Γ increases (geographical neighborhood decreases),
due to a decrease in the number of critical components
of parent infrastructure, which may lead to failure of
the child component.

(5) The vulnerability of an infrastructure is dependent
on the importance of each parent infrastructure sys-
tem. If a particular infrastructure is critically depen-
dent on another highly vulnerable infrastructure, then
the vulnerability of the dependent infrastructure also
increases.

5 CONCLUSION

In this research, we present a novel simulation-based
approach coupled with time-dependent Bayesian network
(BN) analysis to model the vulnerabilities of multiple
infrastructure systems arising from the cascading failure
propagation within a single infrastructure network (intra-
infrastructure) and across other infrastructure systems
(inter-infrastructure) owing to the interdependencies.
Unlike existing research studies, which unrealistically
assume that all relevant information is available to the
infrastructure managers for vulnerability estimation,
our proposed approach does not assume that the infor-
mation about the exact service–demand flow between
different infrastructure networks is known before-
hand, but effectively simulates such interdependencies
for vulnerability assessment. Not only that, our pro-
posed approach accounts for the physical, spatial,
and informational uncertainties while estimating the
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multi-infrastructure vulnerability. Specifically, the
constructed heuristic-based dynamic fault tree (DFT)
accounts for the unavailability of exact information
about the parent infrastructure’s network topology to
the manager of a child infrastructure. To account for
the unavailability of exact supply–demand data, differ-
ent user-defined simulated parameters considering the
physical, logical, and geographical dependencies are used
to construct the interdependent infrastructure network.
Finally, the multi-infrastructure vulnerability is estimated
using parameters for geographical proximity, the relative
importance of one infrastructure on another, and the risk
perception of the infrastructure manager. Leveraging syn-
thetic data on electricity distribution, water distribution,
and a supply chain network, our numerical experiments
show how the time-based vulnerability of individual
infrastructure and interdependent infrastructure changes
with the amount of redundancies, the various risk scenar-
ios under consideration, and the relative importance of
infrastructure interdependencies.
One of the limitations of our study is that the param-

eters depicted in the case study are hypothetical. In the
presence of real data, these parameters may be updated
without any alteration of the overall framework. Another
limitation of our study is that, in the presence of exact data,
the deterministic supply–demand flow-based models may
performbetter compared to the proposed simulation-based
approach. In this study, we did not analyze the compu-
tational complexity of the algorithms as it was out of the
scope of the paper. In the future, a detailed computa-
tional complexity analysis of the algorithms can be carried
out to understand the efficacy of the algorithms. Fur-
thermore, in the presence of more accurate information,
this work can be extended to leverage machine learn-
ing techniques for better estimation of interdependent
infrastructure vulnerability.
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APPENDIX: DERIVATION OF CLOSED-FORM
SOLUTIONS
Using the unit step function defined by

𝑢(𝑡 − 𝜏) =

⎧⎪⎨⎪⎩
0, if 𝑡 < 𝜏
1

2
, if 𝑡 = 𝜏

1, if 𝑡 > 𝜏

and the impulse function or the Dirac delta function
defined by

𝛿(𝑡 − 𝜏) = 0, if 𝑡 ≠ 𝜏 and ∫
∞

−∞

𝛿(𝑡 − 𝜏)𝑑𝑡 = 1

we describe the probability density function (PDF) of the
𝐴𝑁𝐷, 𝑂𝑅, and the𝑊𝑆𝑃 gate of the DFT.

https://github.com/GridMod/RTS-GMLC
https://doi.org/10.1111/mice.12999
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AND gate: If the nodes 𝐴 and 𝐵 with the marginal
PDF 𝑓𝐴(𝑎) and 𝑓𝐵(𝑏), respectively, are connected by𝐴𝑁𝐷

gate to produce the output 𝑋, then the conditional PDF of
𝑓𝑋|𝐴,𝐵(𝑥|𝑎, 𝑏) is given by
𝑓𝑋|𝐴,𝐵(𝑥|𝑎, 𝑏) = 𝑢(𝑏 − 𝑎)𝛿(𝑥 − 𝑏) + 𝑢(𝑎 − 𝑏)𝛿(𝑥 − 𝑎)

where the first termdenoteswhen𝐴 fails before𝐵, the state
of𝑋 is same as the state of𝐵, which failed later; and the sec-
ond term denotes when 𝐵 fails before𝐴, then the state of𝑋
is the same as the state of𝐴. Themarginal probability den-
sity of𝑋 is obtained bymarginalizing the joint distribution
𝑓𝐴𝐵𝑋(𝑎, 𝑏, 𝑥) as

𝑓𝑋(𝑥) = ∫
∞

−∞
∫

∞

−∞

𝑓𝐴𝐵𝑋(𝑎, 𝑏, 𝑥)𝑑𝑏𝑑𝑎

= ∫
∞

−∞
∫

∞

−∞

𝑓𝑋|𝐴𝐵(𝑥|𝑎, 𝑏)𝑓𝐵(𝑏)𝑓𝐴(𝑎)𝑑𝑏𝑑𝑎

= [𝐹𝐵(𝑏)𝐹𝐴(𝑎)]
′

Let us consider that the PDF of failure time of 𝐴 fol-
lows an exponential distribution with rate 𝜆𝐴 and for 𝐵,
the PDF of failure time is exponentially distributed with
rate 𝜆𝐵. Hence, the probability of failure of 𝑋 in time [0, 𝑡]
is given by

𝐹𝑋(𝑡) = ∫
𝑡

0

𝑓𝑋(𝑥)𝑑𝑥 = 𝐹𝐵(𝑡)𝐹𝐴(𝑡) = 1 − 𝑒−𝜆𝐴𝑡 − 𝑒−𝜆𝐵𝑡

+ 𝑒−(𝜆𝐴+𝜆𝐵)𝑡

OR gate: If the nodes 𝐴 and 𝐵 with the marginal PDF
𝑓𝐴(𝑎) and 𝑓𝐵(𝑏), respectively, are connected by 𝑂𝑅 gate
to produce the output 𝑋, then the conditional PDF of
𝑓𝑋|𝐴,𝐵(𝑥|𝑎, 𝑏) is given by
𝑓𝑋|𝐴,𝐵(𝑥|𝑎, 𝑏) = 𝑢(𝑏 − 𝑎)𝛿(𝑥 − 𝑎) + 𝑢(𝑎 − 𝑏)𝛿(𝑥 − 𝑏)

where the first term denotes if 𝐴 fails before 𝐵, then the
state of 𝑋 is the same as the state of 𝐴, which fails first; on
the other hand, if 𝐵 fails before𝐴, then the state of𝑋 is the
same as the state of 𝐵. Using the similar procedure of the
𝐴𝑁𝐷 gate, we have

𝑓𝑋(𝑥) = ∫
∞

0
∫

∞

0

𝑓𝐴𝐵𝑋𝑑𝑏𝑑𝑎 = 𝑓𝐴(𝑥) + 𝑓𝐵(𝑥)

− [𝐹𝐵(𝑏)𝐹𝐴(𝑎)]
′

Finally, considering for 𝐴 and 𝐵, the time of failure fol-
lows an exponential distribution with rates 𝜆𝐴 and 𝜆𝐵,
respectively, the probability of failure of 𝑋 in time [0, 𝑡] is
given by

𝐹𝑋(𝑡) = ∫
𝑡

0

𝑓𝑋(𝑥)𝑑𝑥 = 𝐹𝐴(𝑡) + 𝐹𝐵(𝑡) − 𝐹𝐵(𝑡)𝐹𝐴(𝑡)

= 1 − 𝑒−(𝜆𝐴+𝜆𝐵)𝑡

WSP gate: In a two-input WSP gate, say, 𝐴 is the pri-
mary unit and 𝐵 is the spare unit. When the system starts,
the component 𝐴 starts working and the component 𝐵 is
in standby or dormantmode. In dormantmode, the failure
rate is reduced by a factor 𝛼. First, to model the failure of
the node 𝐵, we have

𝑓𝐵|𝐴(𝑏|𝑎)
= 𝑢(𝑎 − 𝑏)𝛼𝑓𝐵𝑖

(𝑏)[1 − 𝐹𝐵𝑖
(𝑏)]𝛼−1

+ 𝑢(𝑏 − 𝑎)𝑓𝐵𝑖
(𝑏 − 𝑎)[1 − 𝐹𝐵𝑖

(𝑎)]𝛼

where 𝑓𝐵𝑖
and 𝐹𝐵𝑖

are the in isolation density and cumu-
lative distributions. Considering the exponential time of
failure for 𝐴 and 𝐵𝑖 in isolation with rates 𝜆𝐴 and 𝜆𝐵,
respectively, the PDF of node 𝐵 is given as

𝑓𝐵(𝑏) = ∫
∞

0

𝑓𝐵|𝐴(𝑏|𝑎)𝑓𝐴(𝑎)𝑑𝑎,

= 𝛼𝑓𝐵𝑖
(𝑏)[1 − 𝐹𝐵𝑖

(𝑏)]𝛼−1[1 − 𝐹𝐴(𝑏)]

+ ∫
𝑏

0

𝑓𝐵𝑖
(𝑏 − 𝑎)[1 − 𝐹𝐵𝑖

(𝑎)]𝛼𝑓𝐴(𝑎)𝑑𝑎

= 𝛼𝜆𝐵𝑒
−𝑏(𝜆𝐴+𝜆𝐵𝛼) +

𝜆𝐴𝜆𝐵
𝜆𝐵 − 𝜆𝐵𝛼 − 𝜆𝐴

[𝑒−𝑏𝜆𝐴−𝑏𝛼𝜆𝐵

− 𝑒−𝜆𝐵𝑏]

Hence, the probability of failure of 𝐵 in [0, 𝑡] is given by

𝐹𝐵(𝑡)

= ∫
𝑡

0

𝑓𝐵(𝑏)𝑑𝑏, = ∫
𝑡

0

𝛼𝜆𝐵𝑒
−𝑏(𝜆𝐴+𝜆𝐵𝛼)𝑑𝑏

+ ∫
𝑡

0

𝜆𝐴𝜆𝐵
𝜆𝐵 − 𝜆𝐵𝛼 − 𝜆𝐴

[
𝑒−𝑏𝜆𝐴−𝑏𝛼𝜆𝐵 − 𝑒−𝜆𝐵𝑏

]
𝑑𝑏

=
𝛼𝜆𝐵

(
𝑒−𝑡(𝜆𝐴+𝛼𝜆𝐵) − 1

)
−𝜆𝐴 − 𝛼𝜆𝐵

−
𝜆𝐴(−(𝑒

−𝜆𝐵𝑡 − 1)(𝜆𝐴 + 𝛼𝜆𝐵) + 𝜆𝐵𝑒
−𝑡(𝜆𝐴+𝛼𝜆𝐵) − 𝜆𝐵)

(𝜆𝐴 + 𝛼𝜆𝐵)(𝜆𝐵 − 𝜆𝐴 − 𝛼𝜆𝐵)

The output 𝑋 of the WSP is an 𝐴𝑁𝐷 gate, that is, 𝑋 =

𝐴𝐴𝑁𝐷 𝐵.
Hence, the probability of failure of 𝑋 in time [0, 𝑡] is

given by

𝐹𝑋(𝑡) = (1 − 𝑒−𝜆𝐴𝑡)

(
𝛼𝜆𝐵(𝑒

−𝑡(𝜆𝐴+𝛼𝜆𝐵) − 1)

−𝜆𝐴 − 𝛼𝜆𝐵

−
𝜆𝐴(−(𝑒

−𝜆𝐵𝑡 − 1)(𝜆𝐴 + 𝛼𝜆𝐵) + 𝜆𝐵𝑒
−𝑡(𝜆𝐴+𝛼𝜆𝐵) − 𝜆𝐵)

(𝜆𝐴 + 𝛼𝜆𝐵)(𝜆𝐵 − 𝜆𝐴 − 𝛼𝜆𝐵)

)
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