
RESEARCH ARTICLE PHYSICS

Identifying microscopic factors that influence ductility in

disordered solids
Hongyi Xiaoa,b,c,1 ID , Ge Zhanga,d,1 ID , Entao Yange,1 , Robert Ivancicf,1 , Sean Ridouta,g ID , Robert Rigglemane ID , Douglas J. Duriana,h ID , and Andrea J. Liua,h,2 ID

Edited by Michael Cates, University of Cambridge, Cambridge, United Kingdom; received May 9, 2023; accepted August 16, 2023

There are empirical strategies for tuning the degree of strain localization in disordered
solids, but they are system-specific and no theoretical framework explains their
effectiveness or limitations. Here, we study three model disordered solids: a simulated
atomic glass, an experimental granular packing, and a simulated polymer glass.
We tune each system using a different strategy to exhibit two different degrees of
strain localization. In tandem, we construct structuro-elastoplastic (StEP) models,
which reduce descriptions of the systems to a few microscopic features that control
strain localization, using a machine learning-based descriptor, softness, to represent
the stability of the disordered local structure. The models are based on calculated
correlations of softness and rearrangements.Without additional parameters, themodels
exhibit semiquantitative agreement with observed stress–strain curves and softness
statistics for all systems studied.Moreover, the StEPmodels reveal that initial structure,
the near-field effect of rearrangements on local structure, and rearrangement size,
respectively, are responsible for the changes in ductility observed in the three systems.
Thus, StEP models provide microscopic understanding of how strain localization
depends on the interplay of structure, plasticity, and elasticity.

disordered solids | brittle-to-ductile transition | shear band | machine learning

All solids yield under sufficiently high mechanical loads. Below yield, the mechanical
responses of all disordered solids are nearly alike (1), but above yield, every different
disordered solid responds in its own way (2–5). Brittle systems can shatter without
warning, like ordinary window glass, or exhibit strain localization prior to fracture, like
metallic or polymeric glasses. Ductile systems, e.g., foams like shaving cream or emulsions
like mayonnaise, can deform indefinitely with no strain localization.

Several empirical strategies have been discovered for tuning strain localization.
Reducing the range of interparticle attractions (6–10), equilibrating better (11), annealing
at slower cooling rates (12), or cooling while loading (8, 13) all enhance strain
localization. Friction (14), composite constituents (15), particle shape (16), and degree
of crystallinity (7) also influence ductility. However, we do not understand why or how
these factors influence strain localization. For each new system, it is also not clear which
if any of these strategies will prove useful for improving ductility.

At the microscopic scale, plasticity in solids is produced by rearrangements in
which constituent particles change neighbors. While other approaches exist (17–20),
elastoplasticity (EP) models (21) update and record yield strain and strain at each
lattice site, corresponding to a coarse-grained region. Such models typically assume
an underlying distribution of local yield strains that controls the degree of strain
localization (22) and is put in by hand (5, 21).

Here, we follow a different path. A particle’s local yield strain—and hence its
probability to rearrange—depends on its local structural environment (23–26). We
extract a structural predictor of local yield strain, called softness, S (27, 28), using neural
networks or support-vector machines, demonstrating that our framework can use any
local structural measure that predicts rearrangements or local yield stress, e.g., refs. 29–36.
Following Zhang et al. (37, 38), we unravel the interplay between strain, rearrangements,
and softness, to incorporate softness into structuro-elastoplastic (StEP) models.

We develop StEP models for three vastly different systems, each of which is tuned in
a different way to exhibit a varying degree of strain localization. System I is a simulated
two-dimensional (2D) system of repulsive polydisperse circular disks, prepared at an
initial temperature Ta using Monte Carlo swap methods (11), quenched to T = 0 and
then sheared quasistatically. System IA is equilibrated at high Ta and is ductile, while IB
is equilibrated at very low Ta and is brittle (11). System II is an experimental granular
raft, a 2D monolayer of polydisperse spheres floating at an air-oil interface (9). The
gravitational capillary length `c controls the attractive interaction range between nearby
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particles. In the more ductile System IIA, `c exceeds the mean
diameter, d , while in the more brittle IIB, `c < d . Finally,
System III is a three-dimensional (3D) cylindrical polymer
nanopillar of chains of coarse-grained particles below the glass
transition temperature (8, 39). Monomers in the same chain
are bonded by a stiff harmonic potential, while the nonbonded
monomer interaction is a modified Lennard-Jones potential.
System IIIA is simulated at a higher temperature, T , and is
more ductile, while the lower-T System IIIB exhibits more
strain localization. For details of all three systems, Materials
and Methods. We demonstrate that StEP models can be used
to identify the microscopic factors that determine ductility
in each case, opening the door to quantitative, particle-level
approaches to engineer advanced structure-property relations in
disordered solids.

Structuro-elastoplastic Models

We extend the recently developed 2D athermal StEP frame-
work (37), implemented in a 2D model in ref. 38 to the 2D and
3D lattice models depicted in Fig. 1. Each lattice site stores the
local elastic strain, �̃i, and softness, Si. The initial softness field is
assigned from a Gaussian distribution (38),

P(S) =
1

�S
√
2�

e
− 1

2 (
S−〈S〉
�S

)2
, [1]

with the mean, 〈S〉, and the SD, �S , matching that of the
corresponding particle-based system. The StEP model then

predicts the evolution of the elastic strain field, rearrangement
events, and the softness field upon deformation.
The driving global strain, �G , is uniformly added to all blocks

at each time step as simple shear (System I) or tensile strain
(Systems II and III), resulting in the accumulation of �̃i. Block i
undergoes a plastic event if |�̃i| > �Y,i, which releases its elastic
strain and induces a long-range strain field through an elastic
kernel that connects the neighboring sites (40, 41). The kernel is
similar to the one commonly used (41) but includes more strain
components (37), as detailed in supporting information (42).
For the rearranging block i itself, the elastic strain is converted to
plastic strain �̃p. We neglect variation of local elastic constants so
stress is proportional to elastic strain.
Particles with higher softness tend to have lower yield strains

and are thereforemore susceptible to rearrangement (SI Appendix,
Fig. S1). The local yield strain of site i, �Y,i, is randomly drawn
from a distribution with parameters that depend on the site’s
softness Si, which is Gaussian for System I and Weibull for
Systems II and III (Materials and Methods):

System I : P(�Y , S) =
1

�YS
√
2�

e
− 1

2 (
�Y −〈�Y 〉

�YS
)2

Systems II & III : P(�Y , S) =
k

�

(�Y

�

)k−1
e(�Y /�)k , [2]

where 〈�Y 〉(S) and �YS characterize the Gaussian and k and
�(S) characterize the Weibull distribution at each softness S
(SI Appendix, Figs. S3–S5). The two Weibull parameters, k and

Fig. 1. Schematic and parameters of the StEP model. A strain release (plastic rearrangement event) at a given block changes the softness of nearby blocks,
and elastically propagates a long-ranged deviatoric strain field. Softness determines the yield strain for each block. A new rearrangement is triggered if
the deviatoric strain exceeds the yield strain. In thermal systems, rearrangements can also be triggered by thermal fluctuations; (SI Appendix, Fig. S14).
Structural/elastic/plastic/thermal components of themodel are in green/gray/orange/brown, respectively. Each arrow represents an independently determined
equation, and corresponding parameters are shown in the table with matching colors. Key parameters for triggering the ductile-to-brittle transition are
highlighted in white and are different for each system. The corresponding equations are referenced by the numbers next to the variables.
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�, are related to the mean and variance of the distribution and
depend on S. We record the percentile of the random number in
the distribution and only reassign it upon a plastic event at the
site. Note that in the absence of a plastic event, �Y,i still evolves
when Si and the corresponding �Y,i distribution change, even
though the percentile remains the same (38).

For System III at nonzero temperature T , we allow rearrange-
ments to be triggered also by thermal fluctuations with a softness-
dependent probability, Cth, given by

Cth(S, |�̃| , �Y , T ) = exp(−ΔF (S) · (1 − |�̃|2 /�2Y )/T ), [3]

where ΔF (S, T ) is a softness-dependent free energy barrier for
rearrangements in a quiescent system, |�̃| is the strain magnitude
at the lattice site, and �Y is the yield strain for the site. This
expression for the probability is derived in ref. 42.

As the StEP models include not only coupling between
plasticity and elasticity, but also with structure, a rearrangement
at site i affects other sites j via not only an elastic but also a softness
kernel consisting of two main pieces. The first contribution,
ΔSn, is a near-field effect from the change of local structure
near a rearrangement, which alters softness of nearby particles
directly. For all three systems, we find that this contribution
tends to restore S to a value close to the local angular-averaged
softness, as in ref. 37. The far-field term, ΔSf, arises from
treating a rearrangement as an Eshelby inclusion that exerts a
far-field strain (40, 43, 44). This “elastic facilitation” distorts local
structural environments via the volumetric strain, �̃vol (37, 38).
Fluctuations around this average behavior are approximated with
a Gaussian noise term, �(r). Altogether, the softness kernel at
distance r from a rearrangement is

ΔS(r, S) = �(r)(〈S〉 + c − S) + c′ + �(r)
︸ ︷︷ ︸

ΔSn

+ � �̃vol
︸︷︷︸

ΔSf

, [4]

where the parameters �, c, and � are measured from the
corresponding simulations or experiments for each of our
systems (42). Here, c′ is a lattice artifact defined as the average
of −c〈�(r)〉 over all sites. This term allows the average softness
to reach a constant value at steady state for a volume-conserving
shear deformation (38) and vanishes in the continuum limit.
These parameters are extracted from the particle simulations or
experiments [SI Appendix, Figs. S6–S8 (42)]. The noise term
has a Gaussian distribution (SI Appendix, Figs. S9–S11) with a
variance determined as �(r)[2 − �(r)]�2S , which can maintain a
constant softness distribution in steady state (38).

Furthermore, we account for the effect that the uniform
deviatoric strain also deforms local structural environments (1)
and therefore it changes Si by

ΔSload = �Δ|�̃|2, [5]

where Δ|�̃|2 is the increment of �̃�� �̃�� in each strain step (38).
As a consequence, the average softness of the system increases
upon loading, which lowers the barriers to rearrangement per
previous observations (27, 45).

In standard elasto-plastic (EP) models, the lattice size is the
rearrangement size, but the softness kernel in Eq. 4 uses r
in units of particle diameter. To avoid rescaling the kernel,
rearrangements in the StEP model span several blocks (38). The
rearrangement size is characterized by the decay length, �, of
the correlation function of particle nonaffine displacement (19),
Cd2min, measured for Systems I-III (42), and blocks at distance

r from the rearranging block release their elastic strain with a
probability,

C(r) ∝ exp(−r/�), [6]

which is shown in SI Appendix, Figs. S12–S13 (42) with
measurements from the particle systems.
In summary, the predicted response to strain emerges from the

interplay between elasticity, plasticity, and structure. The param-
eters that characterize the interplay are measured directly from
simulations and experiments and listed in Fig. 1. We stress that
there are no additional fitting parameters in the StEPmodel.Note
that the parameters of the A and B configurations may be directly
compared, as we do below under Elucidating mechanisms, since
the parameter extraction procedures are exactly the same.

Results

StEP Models Predict the Ductile-to-Brittle Transition.Our
model successfully produces at least qualitative agreement with
both cases of all three particle systems. We demonstrate the
qualitative deformation behavior in Fig. 2 and quantitative
measurements in Fig. 3. In Fig. 2, the spatial distribution of
accumulated plasticity is shown for examples of the A and B
configurations of the threemodel systems. In the particle systems,
plasticity is quantified by the nonaffine displacement D2

min (19),

in units of d2, during a small applied strain interval Δ�G . In
the StEP models, it is the magnitude of the plastic strain |�̃p|
accumulated during the same strain interval. For each system,
the spatial distribution of plasticity is shown at three different
applied global strains �G for the particle realization (Top row)
and the corresponding StEP predictions (Bottom row). Note
that the StEP model is not designed to reproduce the actual
spatial distribution of plasticity but only its statistical features.
Nevertheless, the difference in strain localization between cases
A and B is captured well by the StEP models: For the more
ductile cases (A) displayed on the Left part of Fig. 2, the plasticity
is distributed throughout the spatial domain, while for the less
ductile cases (B) on the Right, a clear and long-lasting shear band
develops at large �G .
For soft repulsive disks quenched from Ta = 0.2 to T = 0,

(System IA), there is no strain localization and the stress–strain
curve shows a smooth yielding process with no stress drops in
both StEP-model and particle simulations (Fig. 3A). Spatially
correlated rearrangements appear at larger �G , but there is no
system-spanning shear band. For the well-annealed (11, 18, 22)
case quenched from Ta = 0.025 to T = 0 (IB), the StEP model
captures the sharp shear band that emerges at higher strain, along
with the accompanying stress drop (Fig. 3A). Features in the
stress–strain curves and the softness statistics (Fig. 3 A andD) are
captured reasonably well by the StEP models, although the StEP
models yield at a lower strain than the particle simulations in the
brittle case and the stress drop is smaller.
For the experimental granular raft pillars (System II) in the

elastic regime (�G = 0.1%), small plastic events are distributed
throughout in both the StEP model and the experiment for
Systems IIA and IIB. As �G increases to 0.8%, transient shear
bands at 45◦ to the principal extension direction are apparent in
both the StEP model and experiment. At �G = 2.5% , system-
spanning shear bands appear in both pillars but with a different
morphology. For System IIA, where the particle interaction range
exceeds the particle size, the shear bands contain rather sparse
rearrangements and are transient in the StEP model; in the
experiment, the shear bands are locked in the same location due to

PNAS 2023 Vol. 120 No. 42 e2307552120 https://doi.org/10.1073/pnas.2307552120 3 of 8
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Fig. 2. Comparison of spatial plasticity field for particle results and StEP models. Each column shows the plasticity fields at a different global shear strain �G .
For each system, the first row shows the particle simulation/experiment result, and the second row shows the StEP results. System I consists of N polydisperse

disks at density � = 1 with 1/r12
d

pairwise repulsion, where rd is the separation (11). System IA has N = 64,000 disks initially equilibrated at Ta = 0.2, while

System IB has N = 10,000 disks initially equilibrated at Ta = 0.025, before rapid quenching to T = 0. The corresponding StEP models are computed on a L × L
grid, with L = 253 ≈

√
N for System IA and L = 100 =

√
N for System IB. System II consists of 120d × 60d granular rafts of polydisperse Styrofoam spheres of

mean diameter d = 1.0±0.1mm (System IIA) and d = 3.3±0.3mm (System IIB), respectively. The spheres float on an air-oil interface and the rafts are subjected
to quasistatic extension as indicated. The corresponding StEP models are computed on a 120 × 120 grid. System III consists of polymer nanopillars made of
≈ 4× 104 bead-spring polymers, with 5monomers per chain at temperature T = 0.30 for System IIIA and T = 0.05 for System IIIB. Each pillar is a cylinder with
a length of 100 bead diameters with periodic boundary conditions and radius of 25 bead diameters. The corresponding StEP models are computed on a 21 ×
21 × 21 grid in units of bead diameter.

necking of the pillar. For System IIB, where the interaction range
is smaller than the particle size, the shear band is sharper with
much more concentrated rearrangements than IIA, indicating
greater strain localization. The shear band location is fixed in
both StEP model and experiment. The stress–strain curves, and
the evolution of the mean and SD of S with �G are captured
well by the StEP models (Fig. 3 B and E). The one exception
is the SD of softness after the long-lasting shear band forms in
System IIB, as expected since S is not trained for large fractures
in the particle packing.
For the thermal 3D polymer nanopillar systems (last 2 rows

of Fig. 2), the StEP model also captures qualitative behavior.
At large �G , isolated rearrangements are seen for System IIIA
at T = 0.3, while strain localization and shear banding occur

for System IIIB at T = 0.05 for both the StEP model and
simulations. Quantitative comparisons (Fig. 3 C and F ) show
that stress reaches a higher value in the StEP model.

Systems I-III differ in the size of the constituent particles (and
hence importance of temperature), interparticle interactions,
system dimension, importance of friction, and preparation
history. Yet in all 6 cases, StEP models describe them semiquan-
titatively, indicating that they capture the salient microscopic
differences in the interplay between elasticity, plasticity, and the
disordered structure.

Elucidating Microscopic Mechanisms Controlling Ductility. Al-
though preparation history, interaction range and temperature
are known to affect strain localization, it is not understood why

4 of 8 https://doi.org/10.1073/pnas.2307552120 pnas.org

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 "

U
N

IV
E

R
S

IT
Y

 O
F

 P
E

N
N

S
Y

L
V

A
N

IA
 U

P
E

N
N

, 
S

E
R

IA
L

S
 D

E
P

T
" 

o
n
 M

ar
ch

 1
9
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

6
5
.1

2
3
.2

2
6
.7

.



Fig. 3. Quantitative comparison between particle simulation/experiment results and StEP models. Cases (I-III)A are denoted by red curves and cases (I-III)B
by blue curves. Darker shades correspond to the simulations/experiments while lighter shades correspond to the StEP model. First row (A–C): Stress–strain
curves; stress is calculated as the product of elastic strain modulus summed over all sites and global modulus measured in the corresponding system. Second
row (D–F ): Average softness vs. strain; insets show SD of the softness distribution vs. strain. In G–I, the stress–strain curve for the StEP models for Case B is
shown as a thick solid black line. For each microscopic factor characterizing the StEP models, the corresponding parameters in Fig. 1 were varied from their
values for Case B to those for Case A.

they are important. StEP models allow us to gain insight by
transmuting these factors in the particle systems into factors
in the StEP framework such as the softness distribution and
softness kernel. By exploring how these factors vary between the
A and B variations of each system, we can gain insight into
the underlying microscopic mechanisms controlling ductility—
we can determine how controllable properties such as inter-
action range affect the interplay of structure, elasticity, and
plasticity.

For System I, the table in Fig. 1 shows that Eq. 4 is identical
for IA and IB. The only striking difference is in the initial
mean softness, 〈S〉. The initial SD of the softness distribution,
the relation between Si and the yield strain �Y,i, and the size
of rearrangements are also slightly different. To determine the
significance of each of these factors, we start with System IB
(bold black curve in Fig. 3G) and systematically vary each of
these parameters (colored curves) one at a time from its value in
IB (brittle) to its value in IA (ductile) and assess the effect on
the stress–strain curve to see which parameter has the strongest
influence. Fig. 3G shows that the only factor that qualitatively
affects the stress–strain curve is the initial distribution of S.
Switching the initial S distribution to its value in the ductile case
of System IA removes the large stress drop in the stress–strain
curve. Thus, the only significant difference between Systems IA
and IB is the initial Si distribution. This makes sense; Systems
IA and IB are prepared differently, which affects the initial S

distribution. Brittle systems obtained by annealing at lower Ta

are more stable (11, 46, 47), leading to lower S and higher values
of local yield strain. Thus, extracting StEP models from particle-
level data leads to the correct identification of the microscopic
factors controlling strain localization.
For the granular pillars, System II, the values of nearly all of the

parameters differ from System IIA to IIB. However, by changing
them individually (Fig. 3H ) from their values for System IIB
(bold black curve) to those for System IIA, we can see that
only two sets of parameters make a significant difference to
the stress–strain curve. One can flatten the curve by reducing
the dependence of the yield strain on softness, characterized by the
Weibull exponent k and mode �(S). The near-field ΔS caused
by rearrangement, i.e., the first term in Eq. 4, is also important.
This near-field effect is characterized by the range �(r) and offset
c. System IIA has a larger decay length of �(r) and a smaller
c. In other words, rearrangements in System IIB, which has a
shorter particle interaction range, alter local yield strain more
strongly over a shorter distance. The range of the near-field ΔS
is comparable to the interaction range.
The values ofmost of the parameters for the polymer nanopillar

StEP models differ from System IIIA to IIIB (table in Fig. 1), but
we change them one-by-one from their values for System IIIB
to their values for System IIIA in Fig. 3I. The only parameter to
affect the stress–strain curve appreciably is the rearrangement size,
�. Rearrangements in the low-temperature system, System IIIB,
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are larger, allowing for more facilitation and thus leading to
stronger strain localization.

Discussion

For three systems, we have shown that StEP models provide
physical insight into the microscopic mechanisms governing
ductility. The systems were chosen to be very different, and
the microscopic mechanisms underlying the degree of strain
localization turn out to be different. For simulated glasses with
different preparation histories, we find that it is the initial
distribution of softness, and hence of local yield stress, that
controls ductility. For experimental granular pillars with different
interaction ranges, it is the sensitivity of local yield strain to
local structure and the near-field change of softness due to
rearrangements that change, with a larger change of local yield
stress over a shorter distance in systems with higher strain
localization. Finally, for the simulated polymer glass nanopillars,
we find that the rearrangement size is larger in cooler systems,
allowing for more facilitation and leading to greater strain
localization. This work focuses on identifying the aspects of the
interplay among structure, elasticity, and plasticity that control
strain localization, opening the door to studies of the detailed
microscopic mechanisms that link experimentally controllable
factors (e.g., the particle interaction range) to the interplay (e.g.,
the sensitivity of local yield strain to softness). This line of
research raises the possibility that StEP models could be used
to help design materials with desired ductility by optimizing
over multiple controllable factors. This would be a substantial
improvement over empirical approaches. This hope does not
seem unrealistic; softness has been proven to be highly predictive
of rearrangements in a wide range of disordered solids (1, 48).
Moreover, the StEP model framework is highly adaptable,
accommodating any structural predictor of rearrangements, as
we have shown by introducing a structural predictor of local
yield stress obtained using image classification methods instead
of the more standard predictor of rearrangements (28).

For possible future directions, it is straightforward to extend
StEPmodels to finite strain rate by using time-dependent softness
and elastic kernels (24) to capture rheology. Like EPmodels, StEP
models can also readily be extended to include local elasticmoduli
and other effects (21).

Materials and Methods

System I: Soft Repulsive Disks. This computer-simulated 2D soft-disk system

is polydisperse (49). Disks interact via 1/r12
d

pairwise repulsions, where rd is the

separation, and samples are prepared using swap Monte-Carlo methods (49).
System IA is equilibrated at Ta = 0.2, while for IB Ta = 0.025. Initial states for
IB may not be completely equilibrated, but this does not affect interpretation
of the results. After energy minimization to T = 0, these configurations are
sheared athermally and quasistatically by repeatedly applying a small simple

shear strain of �� = 10−5 and minimizing the potential energy, up to total
strain �end = 0.1. Energy minimization is carried out using the steepest
descent algorithm with a very conservative step size to simulate overdamped
dynamics (SI Appendix in ref. 37). During minimization, we study intermediate
configurations using the same protocol as ref. 37 to investigate the course of an
avalanche.

System II: Granular Rafts. Each raft is a disorderedmonolayer of polydisperse
granular particles of rectangular shape, floating at anair-oil interface (9).Mineral

oil was used with density �oil = 870± 10 kg/m3; the Styrofoam particles have

density 15 kg/m3. Systems IIA and IIB have different particle size distributions,
with average particle sizes of 1.0± 0.1mm for IIA and 3.3± 0.3mm for IIB.

Capillaryattractionsexistbetweennearbyparticles,withcharacteristic interaction
range set by the capillary length, lc =

√


oil/�oilg = 1.8mm, where 
oil =

27.4 dyn cm−1, and g =9.8 m/s2 (9). Quasistatic tensile tests with strain rate

on the order of 10−5 s−1 were conducted, and all particle positions and global
tensile forcewere tracked throughout for 50experiments (9) on80d×40d-sized
pillars for each system to construct the StEP models. For comparing with StEP
models, results from 12 experiments of larger pillars (120d × 60d) were used
for better statistics.

System III: Polymer Nanopillars. Using LAMMPS, we simulate bead-spring
polymer nanopillars withN = 5monomers per chain (39).Webondmonomers

using a stiff harmonic potential Ubi,j = k
2

(

ri,j − d
)2
, where ri,j is the distance

between monomers i and j and k = 2, 000�LJ/d with �LJ being the dispersion

energy. Nonbonded interactions are amodified Lennard-Jones potentialUnbi,j =

4�LJ

(
(

d′
ri,j−Δ

)12
−

(
d′

ri,j−Δ

)6
)

where d′ = (1− 3/213/6)d,Δ = 3d/4.

This modification increases the curvature while maintaining the minimum at

rmin = 21/6d, causing more strain localization (8). For all simulations, we use

a timestep of 6.64× 10−4. We thermalize our simulations within a cylindrical,
harmonic confining wall at T = 0.5, that we fix to ensure the density of the
monomers within the wall is � = 0.3. We then cool our simulation at a rate
of 5 × 10−4 past the glass transition temperature of Tg ≈ 0.38 to T = 0.30
(Systems IIIA) and T = 0.05 (Systems IIIB) causing the density to increase to
� ≈ 1.0 at the lower temperature. We then deform the nanopillars at a true

strain rate of �̇G = 10−4. We repeat this procedure for 50 replicas. We output
monomer positions every 10,000 timesteps.

Softness Training using Support Vector Machine. We train the softness
field for Systems II and III as in refs. 27 and 28. For System III, we analyze the
time-averaged monomer positions during these trajectories, averaging every
5 timesteps in the 500 timesteps before each frame. We first extract a set of
rearrangingandnonrearrangingparticles fromtheearlystageof thedeformation
(preshear band formation). Todifferentiate between thesegroups,we calculate a

D2min field (19) in which we take the strain between frames to be commensurate
with the amount of strain for a particle to complete a rearrangement (�G ≈
2.0 × 10−3 for System II and �G ≈ 6.6 × 10−4 for System III) and take the
cutoff radius (Rc = 1.75 d) to include the first shell of neighbors. We consider
this field’s local maxima andminima to be the rearranging and nonrearranging
particles (29, 50). We next encode the local structure around these training

examples as a high-dimensional vector, EG, of functions similar to the Behler–
Perrinello (51) functions,whichwedescribe indetail elsewhere (28,52).Because
largelongitudinalstrainscausesignificantchangesinlocaldensityat laterstrains,
wealsoconsider thesestructural featuresscaledbydeviationsof the localpacking
density from the average density (� − 〈�〉) /〈�〉. We append this scaled vector
to theoriginal vector to fully describe the local structureof our trainingexamples,
EG_

(

(� − 〈�〉) /〈�〉EG
)

.Weuse these appended structural descriptors inR
2N

as the input for a linear support vector machine (SVM) classification to calculate
the hyperplane that best separates rearranging particles from nonrearranging
particles. We compute softness as the signed distance from the hyperplane to
the data points in the appended high-dimensional structural descriptor space.
We exclude particles on the exterior of the pillars from training and testing for
simplicity. We use the same softness field for both particle sizes in the granular
raft experiment (System II) by rescalingby the averageparticle radius. To validate

this model, we consider the probability of a particle being soft at a given D2min
P(S > 0|D2min) for a set of pillars independent from the pillars that were used
for training (see SI Appendix, Fig. S1 for test performance). This function has

a strong monotonically increasing dependence on D2min that plateaus near 1,
suggesting a strong correlation between softness and the size of plastic events.

Softness Training using a Neural Network. We train a 17-layer residual
convolutional neural network to predict the local yield stress of each particle of
System I. The architecture is similar to the “wide residual network” (53), except
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for the following. First, the input is128×128grayscale (single channel) images,
cropped from an image of the entire configuration, which has a resolution of
2048-by-2048 for configurations with N = 10,000 particles and 4096-by-4096
for configurations with N = 64,000 particles. One example of such an image is
presented in SI Appendix, Fig. S2. Second, we used four groups of convolutions
instead of three, since our input image is larger. Each group contains two
ResNet blocks, as in ref. 53. Third, we used the “basic” version of ResNet blocks
in figure 1 of ref. 53. While ref. 53 found that wider versions are better for
image classification tasks, we find that they provide little improvement for our
tasks. Fourth, we removed the last global-average pooling layer and softmax
layer of the original neural network because they are only suitable for image
classification tasks. These layers are replaced with a fully connected layer with a
single neuron outputting a predicted local yield stress. Our loss function is the
squared difference between the predicted and the actual local yield stress. We
calculate the actual local yield stress using the procedure detailed in ref. 38. Last,
we imposeanL2 regularizerwith regularizationparameter0.2onallweightsand
biases of the neural network. We also augment the training data by randomly
flipping it in both the horizontal and the vertical directions.

The neural network was trained on the configurations after equilibration
at three different temperatures but before performing quasistatic shear. Both
the training dataset and the test dataset are derived from five independent
configurations with N = 10,000 particles equilibrated at Ta = 0.025, one
configuration with N = 64,000 and Ta = 0.1, and one configuration with
N = 64,000 and Ta = 0.2. For each configuration, we calculate the local yield
stress of every particle using the protocol detailed in ref. 38 and asked the neural
network to predict it. The neural network was trained in 40 epochs with batch
size 16. We used Adam minimizer for training with a learning rate that decays

exponentially from 3 × 10−4 to 3 × 10−6. After training, the coefficient of

determination on the test set isR2 = 0.5809, i.e., 58.09%of the variance in the

test data is captured by the prediction. Let the predicted local yield stress for a
particle be Yp; we then define softness as S = 〈Yp〉− Yp, where 〈Yp〉 = 12.09
is the average of Yp at Ta = 0.2. Dividing Y by the shearmodulusG = 89 gives
the local yield strain. The initial value of the mean, 〈S〉, and the SD, �S , of the
softness distribution for each system is shown in Fig. 1.

Data, Materials, and Software Availability. Simulation program data have
been deposited in Github (54).
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