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From localized to well mixed: How commuter interactions shape disease spread
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Interactions between commuting individuals can lead to large-scale spreading of rumors, ideas, or disease,

even though the commuters have no net displacement. The emergent dynamics depend crucially on the

commuting distribution of a population, that is how the probability to travel to a destination decays with

distance from home. Applying this idea to epidemics, we will demonstrate the qualitatively different infection

dynamics emerging from populations with different commuting distributions. If the commuting distribution is

exponentially localized, then we recover a reaction-diffusion system and observe Fisher waves traveling at a

speed proportional to the characteristic commuting distance. If the commuting distribution has a long tail, then

no finite-velocity waves can form, but we show that, in some regimes, there is nontrivial spatial dependence that

the well-mixed approximation neglects. We discuss how, in all cases, an initial dispersal-dominated regime can

allow the disease to go undetected for a finite amount of time before exponential growth takes over. This “offset

time” is a quantity of huge importance for epidemic surveillance and yet largely ignored in the literature.

DOI: 10.1103/PhysRevE.108.044305

I. INTRODUCTION

The spread of an infectious disease occurs on several dif-

ferent length scales [1–3]. Long-distance disease transmission

has been modeled on global air transport networks by uti-

lizing known air travel rates between major cities [4–6]. At

smaller scales, disease can spread within a country along daily

commuting networks, and spatial correlations in infection

patterns can be observed [7–11]. In either case, the funda-

mental challenge is to determine when a disease will reach

a particular location, as quantified by the infection arrival

time [12]. The spatial distribution of arrival times depends

on the human mobility patterns. On large scales, the arrival

time can be estimated by introducing an effective distance

related to the frequency of flights between major cities [13].

On smaller scales, the arrival time is largely determined by

the geographic separation between locations. Long-distance

travel can quickly turn a local outbreak into a global epidemic.

However, once an infectious disease has established itself in

a city, the small-scale commuter dynamics become the dom-

inant source of new cases [14]. The goal of this paper is to

demonstrate how different commuting patterns give rise to

different patterns of disease spread.

Early work studying the spatial spread of infectious dis-

ease consisted of continuous models in a uniform population

treating the contact rate between individuals as nonlocal

[15,16]. When the contact distribution is sufficiently local-

ized, a reaction-diffusion system is recovered, and far from

the infection’s origin, waves are observed [17]. An overview

of the early work on spatial epidemic models can be found

in Ref. [18]. These early papers thoroughly studied travel-

ing waves and critical behavior of reaction-diffusion systems
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[19,20] but neglected important aspects of a realistic epi-

demic including the spatially discrete nature of case count

data, the asymmetry in the contact distribution, the effects

of a nonuniform population, and the precise meaning of the

contact distribution as it relates to human mobility.

More recent metapopulation modeling has addressed these

theoretical issues. In metapopulation modeling, populations

are grouped together into patches where compartmental mod-

els can be defined. These patches are isolated, except for some

coupling between them [21]. One study by Dirk Brockmann

[22] connected human mobility patterns in a metapopulation

model to the continuous reaction-diffusion systems studied

decades ago. There conservation of population in each patch

was enforced by imposing detailed balance on the flux of trav-

elers. Our study revisits some of the calculations performed

by Brockmann in a model more appropriate for commuter

dynamics where local population conservation is inherent and

focuses on a surprisingly ignored aspect of infectious spread:

the behavior close to the infection origin. The fact that these

reaction-diffusion systems fail to account for long-distance

air travel suggests that these models are most applicable over

length scales where commuter travel dominates. Not only is

the behavior close to the origin theoretically interesting in

that it deviates from the well-studied waves displayed at long

distances, but it is also the most important regime to study

if we care to apply the model to real geographic regions.

For many cases, we will see that competition between human

dispersal and exponential growth in the number of infections

gives rise to a characteristic time at which the disease at any

particular location is detected.

The paper is structured as follows. First, we revisit the

simple assumptions and consequences of the spatially inde-

pendent SIR model. Next, we introduce a general metapop-

ulation model based on interactions between two traveling

individuals. From this, we focus on localized travel and derive
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our system of reaction-diffusion equations. Features of these

equations are studied numerically and analytically. Finally,

we test whether these features survive when used with more

complicated and realistic metapopulation models on maps.

II. CONSTRUCTING THE MODEL

A. SIR model

Before attempting to write down a space-dependent epi-

demic model, it is worth reviewing the assumptions that go

into the widely used SIR model, originally formulated by

Kermack and McKendrick [23]. The results in this section can

be found in any review of compartmental models in epidemi-

ology, e.g., Ref. [24]. Individuals capable of contracting a

disease are labeled susceptible. Individuals currently sick and

capable of infecting others are labeled infected. Individuals

no longer sick are granted lifelong immunity and are labeled

recovered. The susceptible Stot(t ), infected Itot(t ), and recov-

ered Rtot(t ) populations are tracked with time. Here we use

the subscript “tot” to refer to the populations in the entire

spatial domain, a distinction which will be necessary once

we begin dividing our spatial domain into patches. There are

only two parameters in the model: the recovery rate γ and

the contact rate β. The recovery rate is simply the inverse

of the mean infectious period. The contact rate is a product

of two quantities: the expected number of close contacts an

individual makes per day (“close” in the sense that there is

an opportunity for the disease to spread) and the probability

that a close contact with an infected individual will infect a

susceptible individual. All individuals in the population are

treated equally in that the same rate constants are used for

each individual. Furthermore, the population of size Ntot is

assumed to be well mixed such that contact between any two

individuals is equiprobable.

In order to write down the model, one only needs to

consider the change in infections in a time �t . The product

(β�t ) Itot

Ntot
gives the probability that a susceptible individual

will be infected in a time �t . The total number of new

infections must then be weighted by the current susceptible

population. Additionally, (γ�t )Itot individuals recover. One

can then obtain the rate equations for the extensive quantities

Stot, Itot, and Rtot, but it is often more convenient to work

with the intensive quantities stot ≡ Stot/Ntot, itot ≡ Itot/Ntot, and

rtot ≡ Rtot/Ntot,

dstot

dt
= −βstotitot, (1a)

ditot

dt
= +βstotitot − γ itot, (1b)

drtot

dt
= +γ itot. (1c)

We can rescale time to eliminate one of the β, γ rates, leaving

only a single dimensionless parameter R0 ≡ β/γ governing

the infection dynamics. This is the basic reproduction number

which can be interpreted as the expected number of people an

infected person infects in a completely susceptible population.

If R0 < 1, then the disease-free equilibrium is stable, leading

to exponential decay of infections. If R0 > 1, then the disease-

free equilibrium is unstable, leading to exponential growth in

infections until herd immunity is reached, at which point itot(t )

reaches a peak value imax and begins to fall to zero. Assuming

stot(0) ≈ 1 and itot(0) � 1, the peak in the infection fraction

satisfies

imax = 1 − 1 + ln(R0)

R0

. (2)

The fraction of individuals who are at any point infected is

given by solving the following transcendental equation for

rtot(∞):

rtot(∞) + ln[1 − rtot(∞)]

R0

= 0. (3)

The signatures imax and rtot(∞) will even be present in the

space-dependent models we will derive later.

One final quantity which will have an important analogy in

the space-dependent model is the arrival time tarrival, defined

as the time at which itot exceeds some small threshold value

ic. At early times when stot ≈ 1, the linearization of (1b) gives

itot(t ) ≈ itot(0)e(β−γ )t . (4)

Equating this expression to ic and solving for t gives

tarrival = 1

(β − γ )
ln

[

ic

itot(0)

]

. (5)

B. Metapopulation epidemic models

Spatial epidemic models were originally formulated for a

uniform-density continuous population by Kendall [15]. He

argued that the condition for criticality and the final epidemic

size are identical to that of the spatially independent model.

Later, he showed that by approximating the interactions be-

tween susceptible and infected individuals by a term of the

form s∇2i, one finds that the disease spreads as a wave with

a minimum speed [16], analogous to the result by Fisher

[25]. Mollison proved the existence of waves with a minimum

speed without having to resort to the diffusion approximation

by carefully choosing an exponential form for the contact rates

[26]. He also showed that if the contact distribution is at least

exponentially localized, then wave solutions can be expected,

but otherwise, the infection propagates at an infinite speed

[17].

More recent works define epidemic models in metapopula-

tions. Metapopulation epidemic models can further be divided

into two categories depending on how human mobility is

incorporated [21,27]. In Lagrangian movement models, indi-

viduals have a well-defined home patch but may make contact

with individuals outside their home patch, spreading disease.

The number of infected individuals who reside in a particular

location is tracked with time. In Eulerian models, individuals

migrate between patches. The number of infected individuals

currently occupying a given patch is tracked with time. The

terms “Eulerian” and “Lagrangian” parallel their use in fluid

dynamics. For Lagrangian models, the dynamics track the

people while for Eulerian models, the dynamics track the

patch. The predictions made by these two classes of mobility

models are not the same [27]. Each of these models possesses

advantages and disadvantages. Lagrangian models automati-

cally satisfy the intuitive constraint that the total population

of each patch is constant in time, reflecting the cyclic nature
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of commuting patterns. Lagrangian models only keep track

of human mobility in as much as it is necessary to define

nonlocal contact rates. This may seem like a simpler way to

capture the propagation of disease without focusing too much

on the motion of individuals, but relating the nonlocal contact

rates to human mobility is more subtle in the Lagrangian

formulation. This has led to some variation in the formulation

of Lagrangian models [7,8,10,28].

The Eulerian models do not inherently satisfy population

conservation unless detailed balance is assumed [22]. At small

geographic scales, this seems like an unnatural assumption

since it allows for the possibility of two individuals to swap

positions permanently, but it has been found to be a good

approximation on the worldwide air-transportation network

[29]. The master equation describing human mobility can be

easily written down in a Eulerian model. Rvachev and Longini

first presented a Eulerian model [4], and later work focused

on calculating critical behavior [30] and effective network

distances governing the arrival time [12,13]. Some models

have combined aspects of these models by taking into account

explicit Eulerian movement of individuals while also enforc-

ing that the individuals travel back to a well-defined home, as

is typically only done in Lagrangian models [30–33].

C. Lagrangian movement model

Before introducing our commuter model, we present a

mathematical introduction to epidemic models incorporat-

ing Lagrangian movement of individuals. In (Lagrangian)

metapopulation models, we replace each of our differential

equations (1a)–(1c) with nC differential equations, one for

each of the nC patches, which will also be referred to as coun-

ties in the rest of this work. The contact rate β is replaced by a

contact matrix β with elements βnk describing the interaction

between susceptible individuals who live at n and infected

ones who live at k. In continuous models, β is also referred to

as the contact distribution. A precise physical interpretation

of β will be made clear in the next section.

The space-dependent rate equations now read:

dsn

dt
= −sn

∑

k

βnk ik, (6a)

din

dt
= +sn

∑

k

βnk ik − γ in, (6b)

drn

dt
= +γ in. (6c)

The symbol in denotes the proportion of infected people at n,

in = In/Nn, where In is the number of people living at n who

are infected and Nn is the total number of people living at n.

Similar equations can be found in Ref. [21], for instance.

We will assume that the number of contacts each person

makes in a day and the infectiousness of the disease are the

same regardless of where the person lives; that is, we can

define the space-independent contact rate,

β ≡
∑

k

βnk . (7)

Relaxing this assumption would leave us with a space-

dependent contact rate βn that describes how individuals in

different locations either make contact with more or fewer

people per day or how the infectiousness of a disease changes

at different locations, but for this paper, we will neglect these

considerations and instead focus on different contact matrices

which satisfy (7).

The system (6) also possesses a disease-free equilibrium

when sn = 1, in = 0, rn = 0 for all n. The stability of the

disease-free equilibrium will be determined by the eigenval-

ues of the Jacobian,

Jnk ≡ ∂in

∂ik

∣

∣

∣

∣

∣

sn=1

= βnk − γ δnk (8)

of the infected compartment. The vector (1, . . . , 1)T is al-

ways an eigenvector of this linearized system with eigenvalue

β − γ , so if β − γ > 0, then the disease-free equilibrium is

unstable. The converse is also true: If β − γ < 0, then the

disease-free equilibrium is stable. To show this, we need to

demonstrate that in this case all eigenvalues of J have negative

real parts. The following argument is adapted from Ref. [34].

Since −J is a Z matrix (nonpositive off-diagonal entries), −J

has eigenvalues with positive real parts if and only if there

exists a �v > 0 such that −J�v > 0 (in which case −J is an M

matrix). Using �v = (1, . . . , 1)T , we have −J�v = −(β − γ )�v,

so if β − γ < 0, then the eigenvalues of J have negative real

parts. Thus, we can define R0 ≡ β/γ , and the condition for

stability is identical to that of the spatially independent model.

We can estimate the final size of the epidemic at each

location rn(∞) by defining r̄n ≡ ∑

k
βnk

β
rk and noting that

(6c) implies dr̄n

dt
= 1

R0

∑

k βnkik . Dividing this expression by

Eq. (6a) allows us to solve for r̄n(∞):

dr̄n

dsn

= − 1

R0sn

⇒ r̄n(∞) + ln[1 − r̄n(∞)]

R0

= 0. (9)

Notice that r̄n(∞) satisfies the same equation as rtot(∞) and

is therefore spatially independent. The solution to the lin-

ear equation relating r̄n(∞) to rk (∞) is to have rk (∞) =
r̄n(∞) = rtot(∞). The contact matrix encodes important spa-

tial information, but the final size of the epidemic is still fixed

by R0.

D. Commuter model

The previous subsection establishes the general framework

for Lagrangian metapopulation models in terms of the contact

matrix β. Next we will derive a particular form of β used

to describe commuter dynamics. The method of derivation

will be similar to that in Sec. II A, only now we must find

�In, the increase in infections at county n in a time �t . We

imagine that an individual travels to work, makes contact with

people from other counties, and then returns home. Recent

work by Le Treut et al. has demonstrated how a data-driven

Lagrangian formalism can predict the spread of COVID-19

[8]. Some theoretical work has focused on identifying emer-

gent length scales characterizing the spread of disease on a

network [5,13]. One work by Dirk Brockmann was particu-

larly influential to our study in attempting to connect the travel

rates in a Eulerian framework to the diffusion of infection

in real space [22]. Our Lagrangian approach follows directly

from a Bayesian derivation and considers the most general
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FIG. 1. Commuter dynamics. A susceptible individual from county n and an infected individual from k make contact at m and return home.

A green (light gray) circle with a red (dark gray) boundary indicates an infectious contact event.

interactions where both susceptible and infected individuals

travel. Many of the results will parallel those derived by

Brockmann, but it is important to reassert that the quantities

we consider in the Lagrangian formalism are not identical to

the related quantities in the Eulerian formalism.

Let Pnm denote the fraction of contacts made by the pop-

ulation living at location n that occur at location m, with
∑

m Pnm = 1. The quantity Pnn denotes the fraction of contacts

made in the county of residence. Roughly speaking, Pnm can

be thought of as the probability of an individual who lives at n

traveling to m, so we will simply refer to Pnm as the commuting

probability. This probability could depend on the separation

of the counties as well as on the populations of any county,

but we assume that Pnm is independent of disease status. When

a person travels from n to m, they will encounter not only

individuals who live at m but also individuals who live at

other locations k that have traveled to county m. An example

interaction between a susceptible and an infected individual is

shown in Fig. 1. The probability to make infectious contact at

m is equal to the fraction of people currently at m (in the Eule-

rian sense) who are infected, regardless of where our traveler

lives. With this in mind, we can calculate the probability that

a worker from n makes infectious contact,

Pr(inf. contact|live at n) =
∑

m

Pr(travel to m|live at n)

× Pr(inf. contact|travel to m)

=
∑

m

Pnm

∑

k PkmIk
∑

k PkmNk

. (10)

This quantity plays the role of I/N in the SIR model. It

gives the probability for a particular close contact made by

someone living at n to be infectious. We can now easily write

down the full commuter model:

dSn

dt
= −βSn

∑

m

Pnm

∑

k PkmIk
∑

k PkmNk

, (11a)

dIn

dt
= +βSn

∑

m

Pnm

∑

k PkmIk
∑

k PkmNk

− γ In, (11b)

dRn

dt
= +γ In. (11c)

In terms of the intensive quantities, the model reads as

follows:

dsn

dt
= −βsn

∑

m

Pnm

∑

k PkmNk ik
∑

k PkmNk

, (12a)

din

dt
= +βsn

∑

m

Pnm

∑

k PkmNk ik
∑

k PkmNk

− γ in, (12b)

drn

dt
= +γ in. (12c)

All sums are taken over the nc counties. Similar equa-

tions have been derived by other authors [7,10].

We can now identify the contact matrix,

βnk = β
∑

m

Pnm

PkmNk
∑

l PlmNl

. (13)

Calvetti et al. arrived at the same form of the contact ma-

trix by recognizing the ratio in Eq. (13) as the conditional

probability of an individual living at county k given that

they have traveled to county m [10]. Notice that the contact

matrix βnk is not symmetric in a heterogeneous population.

However, the matrix Nnβnk is precisely the number of close

contacts made per time where one individual is from n and one

individual is from k; this is necessarily a symmetric matrix. In

the special case of a homogeneous population, Plm = Pml , so

βnk = (PPT )nk = βkn. Here it is particularly clear that we have

one factor of P for the commutes of susceptible individuals

and one for the commutes of the infected. We need both of

these matrices in order to fully capture the pair interactions

between susceptible and infected individuals.

Although we assume β is constant throughout the paper, it

is briefly worth mentioning how one could modify the model

to account for spatially varying contact rates. Because the

contacts occur at the destination m, one would have to make

the replacement β
∑

m → ∑

m βm. This causes the infection

growth rate, in,max, rn(∞), and properties related to the spread-

ing to all have a strong space dependence. Since we are mainly

interested in the spatial aspects of commuting patterns, we

will avoid the complexity introduced by nonuniform contact

rates.

In order to better understand the form of these equa-

tions and the relation to Eulerian models, let us see what

happens when travel outside of the home county is small.

Letting Pnm = δnm + εnm and keeping only terms linear in ε

leads to the following simplification:

βSn

∑

m

Pnm

∑

k PkmIk
∑

k PkmNk

≈ βSn

In

Nn

+ β
Sn

Nn

∑

m 
=n

(NnPnm + NmPmn)

(

Im

Nm

− In

Nn

)

.

(14)

This resembles a Eulerian SIR model with symmetric travel

flux β(NnPnm + NmPmn) [13]. The first term describes local

growth, and the terms in the sum describe movement of the

disease. There are two dominant ways the disease can move:

A susceptible travels from n and meets an infected at m or

an infected travels from m and meets a susceptible at n. The

more general form (10) also allows for both the susceptible

and the infected to travel, as in Fig. 1, which we will refer to as

second-order processes (in P). Interestingly, the second-order
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processes can be unimportant in predicting the spread of the

infection wave for several choices of P but are crucial for

understanding the spread in some cases. This simplified form

is identical to that used by Le Treut et al. [8] who neglect

second-order processes.

For numerical simulations, the more general commuter

dynamics (10) will always be used. Equation (12) will be

solved numerically in Python using the solve_ivp function in

the SciPy library with method “RK45.”

E. Human mobility theory

While some metapopulation models incorporate known,

specific travel rates for particular locations [5,7–10], we are

interested to understand the basic principles underlying in-

fection spread so we will take advantage of the research on

general human mobility patterns. Traditionally, human mobil-

ity was described using gravity models, that is, models which

assume that the flux of individuals traveling between two

locations is proportional to the populations of the two counties

multiplied by some decreasing function of the separation dis-

tance (such as a power law, truncated power law, exponential,

or Gaussian). In such models, there exists at least one length

scale describing how far people travel. See Ref. [35] for a

review on models for human mobility. Recently, people have

become interested in the radiation model of human mobility

that describes an individual’s tendency to search for work at

the closest location a job is available [36]. This model does

not have any inherent travel length scale, only emergent length

scales derived from the population distribution. Although the

radiation model could be incorporated into (10), the existence

of an inherent length scale is going to make it easier to study

the general features of our theory, so we will only focus

on gravity models in this paper. Thus, we assume the travel

probabilities can be cast in the form

Pnm = Nζ
mG(|�xn − �xm|)

∑

m N
ζ
mG(|�xn − �xm|)

, (15)

where
∫

G(|�x|)dd x = 1. The function G will be referred to

as the (homogeneous) commuting distribution, since G(|�xm −
�xn|) describes how far people are willing to commute in a

homogeneous population. Physically, the sum in the normal-

ization is always taken over a domain containing a finite

number of counties, so there is no need to worry about con-

vergence. Still, it will be helpful to think about length scales

in the problem that may, in some cases, allow us to take the

continuum limit, and in special cases, allow us to derive local

transport operators.

Many works find that a truncated power law,

G(|�x|) = e−|�x|/l

(|�x| + r0)p

/

∫

	

e−|�x|/l

(|�x| + r0)p
dd x, (16)

with appropriate choices of p, l , and r0 � l describes human

mobility, as summarized in [37]. Note that the special case of

a power law can be obtained by setting l = ∞, and the special

case of an exponential distribution corresponds to setting p =
0. When both p = 0 and l = ∞, the commuting distribution

is uniform, so the population is well mixed.

To demonstrate how to perform these calculations, first

consider a uniform population on a square grid with lattice

constant �x in d dimensions. The domain will be denoted

	. Suppose the population changes slowly over a length scale

greater than that of �x. Then, we can take the continuum limit

�x → 0 and work in terms of a continuous population density

Nm → N (�xm)dd xm as well as the probability density function,

Pnm → P(�xn, �xm)dd xm = N (�xm)ζ G(|�xm − �xn|)dd xm
∫

	
N (�xm)ζ G(|�xm − �xn|)dd xm

.

(17)

In many cases, G(|�xm − �xn|) is presumably localized near

�xm = �xn, so one could try to Taylor expand the factor of

N (�xm)ζ around �xn. However, if G(|�xm − �xn|) is a power law,

then some of the moments of �x will diverge. Mollison proved

that wave solutions exist if and only if the contact distribution

falls off faster than exponential at long distances [17]. For our

problem, this suggests that we can try to replace our integral

expressions with local differential operators (acting on N and

i) only if G(|�x|) falls off faster than exponential. In this case,

we can approximate

P(�xn, �xm) ≈
[

1 + ζ∂μ ln N (�xn)
(

xμ
m − xμ

n

)]

G(|�xm − �xn|).
(18)

This is a simpler form to work with, which makes it clear

that there is a tendency that increases with ζ to travel to-

ward higher populations. There were multiple approximations

which went into putting the population in this simple form.

We can summarize these approximations by comparing length

scales. Let l denote the characteristic length scale contained in

G describing how far people are willing to travel for work, and

let L denote the size of the domain,

�x � l (continuum limit), (19)

x � L (neglect boundary effects), (20)

∃k > 0 s.t.

∫

	

ek|�x|G(|�x|)dd x < ∞ (localized). (21)

Having �x smaller than other relevant length scales allows

us to take the continuum limit. When our model is applied

to data, �x can be interpreted as the county size, and it

may not be the smallest length scale, but for studying our

theory, there is nothing preventing us from refining the domain

until this inequality is satisfied. When L is much larger than

other relevant length scales, we can ignore boundary effects

allowing us to drop odd moments of x and assert that the

even moments are independent of n. Rewriting our integral

equations in terms of local operators and moments is valid

whenever (21) is satisfied. This technique is only helpful if

we can truncate the Taylor series after a few terms, so one

might think that l needs to be less than the length scale over

which the population changes in order to derive (18), but we

will see that the short-wavelength population fluctuations will

not change the large-scale infection dynamics.

Localized commuting does not necessarily imply that the

infection is confined to a small region of space, especially in

small systems where the infection quickly reaches the bound-

ary. To avoid confusion, the term localized will be reserved
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for commuting distributions satisfying (21), and commuting

distributions such as power laws which do not satisfy (21) will

be called delocalized. Infectious spread which is confined to

certain regions of space at a given time will be called het-

erogeneous, and infection growth which is nearly uniform in

space will be called homogeneous. The term well mixed may

be applied either to a population with spatially independent

contact distribution G(|�x|) = 1/Ld such that (1) is recovered,

or more generally to any contact processes which give rise

to nearly homogeneous spreading, even if G is nonconstant.

Finally, the term uniform population refers to a population

with Nn = constant such that P and β are symmetric.

III. CONTINUUM RESULTS

In the next two sections, we study the results of the

commuter model. In this section, we will work under approx-

imation (19) and assume the commuting probabilities take the

form (17). We will work in terms of the continuous infection

density I (�x, t ) and population density N (�x) by making the

replacements

In(t ) → I (�xn, t )dd xn, (22)

Nn → N (�xn)dd xn, (23)

i(�x, t ) ≡ I (�x, t )

N (�x)
. (24)

Note that, unlike I (�x, t ) and N (�x), i(�x, t ) is unitless. Sim-

ulations will always necessarily be performed using the

discretized quantities, but when discretized on a square lat-

tice with side length �x, one can convert to the continuous

infection density at the lattice site by dividing by (�x)d ; for

example, I (�xn, t ) = In(t )/(�x)d . Because the step size falls

out of our continuous results, even when the underlying map

over which In is calculated is not a lattice, the continuum

model will give us an estimate for In, provided that (19) is

satisfied.

Analogously to the contact matrix (13), we can define the

contact distribution as follows:

β(�x, �z) = β

∫

	

dd y P(�x, �y)
P(�z, �y)N (�z)

∫

	
dd

w P( �w, �y)N ( �w)
, (25)

describing interactions between susceptible individuals at �x
and infected individuals at �z. This continuous contact distribu-

tion was also obtained in Ref. [10]. Equation (12b) becomes

∂i(�x, t )

∂t
= s(�x, t )

∫

	

dd z β(�x, �z)i(�z, t ) − γ i(�x, t ) (26)

along with obvious continuum versions for Eqs. (12a) and

(12c).

We will encounter moments of the form

〈xμ〉 ≡
∫

	

(yμ − xμ)G(|�y − �x|)dd y, (27)

〈xμxν〉 ≡
∫

	

(yμ − xμ)(yν − xν )G(|�y − �x|)dd y, (28)

and so on. When 	 is bounded, all moments will be finite

regardless of G, but in an infinite space, all moments will

be finite if and only if (21) is satisfied. It is tempting to set

all odd moments to zero and claim that all even moments

are independent of home location �x, but this symmetry is

only exact in an infinite space or at the origin �x = 0 and will

fail considerably near the boundaries. Because no individu-

als can travel outside of 	, we must have that the infection

flux through the boundary is zero. This amounts to imposing

Neumann boundary conditions,

∇i(�x, t ) · n̂ = 0, �x ∈ ∂	. (29)

A. The diffusion approximation for localized commutes

To begin our analysis of the continuous commuter model,

we assume that (21) is satisfied such that we can perform

Taylor expansions like those performed to arrive at Eq. (18).

Furthermore, we will assume that (20) is satisfied. We will

still, in general, consider the problem on a finite domain with

(29) satisfied, but (20) will allow us to simplify the moments

as follows:

〈xμ〉 ≈ 0, (30)

〈xμxν〉 ≈ 1

d

∫

|�y − �x|2G(|�y − �x|)dd y δμν ≡ 1

d
〈x2〉δμν .

(31)

That is, even though our space is finite, we will be using the

moments derived from an infinite space where all of the odd

moments vanish and the even moments are independent of the

home county. Although our commuter model is similar to that

of Ref. [10], the analysis in this section most resembles that of

earlier papers [16,38]. However, these papers do not account

for the effects of a nonuniform population.

To simplify (26), we will take advantage of the localized

nature of G(|�x − �y|) and perform a series of Taylor expansions

up to second order in derivatives of N and i. The details are

shown in Appendix A, but the resulting equation is

∂i

∂t
= (βs − γ )i + β〈x2〉

d
s[∇2i + ∇ ln N · ∇i]. (32)

The only mention of our original commuting probability

shows up in 〈x2〉, and the parameter ζ falls out completely.

Similarly, the second-order contact processes (where both the

susceptible and infected travel) only show up in higher-order

terms in the Taylor expansion, so we could have derived the

same PDE using the simplified form of the contact distribution

(14).

The equations resemble a reaction-diffusion system with

drift. This is made most explicit by re-expressing the differen-

tial equation in terms of I ,

∂I

∂t
= βsI + s∇ · (D∇I − �vI ) − γ I. (33)

Here the diffusion coefficient and drift velocity are given by

D = β〈x2〉
d

(34)

and

�v = β〈x2〉
d

∇ ln N, (35)
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respectively. The infection wave drifts toward higher pop-

ulations, not because there are more people commuting to

work in these places (that would be captured with ζ ), but

simply because there are more people there capable of spread-

ing infection. Although early modeling papers recognized

the relevance of reaction-diffusion equations for the spread

of infectious disease [16,18], it is rarely pointed out that a

nonuniform population can lead to a drift term. In fact, the

only paper to highlight this fact was that of Brockmann [22],

who was working in the Eulerian formalism. The fact that the

growth rate and the diffusion coefficient both scale with the

same rate constant β is an interesting feature which is absent

from the Eulerian models and, to our knowledge, seemingly

ignored in the mathematical literature.

The diffusion coefficient for the susceptible and infected

populations is the same since both arise from the same contact

processes, so no Turing patterns can be observed, unlike some

models which assume two different diffusion coefficients for

the susceptible and infected populations [21,39].

Although the nonlinear PDE (33) cannot be solved analyt-

ically, we can study the behavior when almost everybody is

susceptible by setting s = 1:

∂I

∂t
= (β − γ )I + ∇ · (D∇I − �vI ). (36)

We will focus on cases where there is initially some small

number of people I0 infected at the origin:

I (�x, 0) = I0δ
d (�x). (37)

Note that if we integrate (36) over 	 and apply the Neu-

mann boundary conditions, then we will recover the solution

Itot = I0e(β−γ )t , the same exponential growth predicted by

the spatially independent model. The infection density will

immediately spread out and grow. There are two quantities

which we will use to characterize this spreading process:

the arrival time and the offset time. Although our analysis

will be done in the continuum limit in terms of the infection

density, these definitions can easily be modified for use with

the discrete quantity In, so they can be calculated using real

county-level data. The arrival time tarrival at location �x is the

time it takes for I (�x, t ) to exceed a critical value for the first

time: I (�x, tarrival) � Ic. The offset time tO is the smallest time

which satisfies I (0, t ) � Ic and İ (0, t ) > 0. It is useful to think

of Ic as the infection density needed to detect the presence

of the disease. Then the arrival time tarrival(�x) indicates how

the disease is spreading at early times. The first location for

the disease to be detected will typically be near the origin. The

offset time is often equivalent to the arrival time at the origin

except we also have to check that the infection density is

increasing, since we could have I (0, 0) > Ic, but İ (0, 0) < 0.

Note that the condition R0 > 1 enforces that the total number

of infected individuals in the population Itot increases at early

times, but it does not enforce that the infection density I (0, t )

at the origin must increase. It may be that the recovery rate

exceeds the local contact rate initially because people are

allowed to make contact with others outside their county, and

the disease spreads there. In fact, we will see that for our

choice of initial condition, the infection density at the origin

I (0, t ) will initially decrease for a time d
2

(β − γ )−1 before

increasing. At early times, the infection spreads out in space

before any one location experiences an outbreak. The offset

time is a novel metric for determining how long it will take

for the first outbreak to occur. Understanding tO will reveal

an interesting competition between the growth and diffusion

processes in our model.

1. Solutions in an infinite domain

We begin our analysis by solving (36) on 	 = R
d with

boundary condition (29) and initial condition (37). The so-

lution for this case is just the well-known solution to the

problem of diffusion with growth

I (�x, t ) = I0

exp − (�x−�vt )2

4Dt

(4πDt )d/2
e(β−γ )t . (38)

This exactly solves (36) when �v(�x) is constant, but for a

slowly varying population, �v(�x) is also slowly varying, so we

can approximate the solution by simply replacing �v → �v(�x).

Figure 2(a) shows that the numerical solution to (12b) agrees

with (38) at early times while Fig. 2(b) shows that the foot

of the wave nearly matches the diffusion solution at all times.

At long distances, there is some deviation from the diffusion

solution due to the higher-order derivative terms we dropped.

For all simulations in this section, an exponential commuting

distribution was used. At early times, the infection diffuses

from the source. At later times, Fisher waves with height in ≈
imax [as given by (2)] can be observed traveling at constant

speed; equality holds when N is constant.

To understand why the linearized equations predict the

wave front of the nonlinear system, it is worth reviewing some

results for pulled waves [40–42]. A pulled wave is a traveling

front which is driven by activation at the leading edge, where

the dynamics are that of the system linearized around the

unstable equilibrium. This is in contrast to a pushed wave

which requires activation in the interior part of the front where

the full nonlinear dynamics are important. Only for pulled

waves it is true that the wave speed of the nonlinear system can

be determined by studying the linear system. The infection

waves considered in our paper are an example of pulled waves

because the infection growth rate (βsn − γ ) is maximized for

sn = 1, so the dynamics are indeed dominated by the behavior

at the leading edge where in is small. As with all pulled waves,

whenever the initial conditions decay in space faster than an

exponential, the infection front will converge to a wavelike

solution traveling at the Fisher wave velocity with corrections

which decay in time [40,43]. For the simple initial condition

(37), we can demonstrate this convergence explicitly by cal-

culating the arrival time at different locations.

To calculate the arrival time, we equate (38) to Ic. There is

no analytic form for tarrival(�x), but it is easy enough to solve

for �x(tarrival):

�x(tarrival) = �vtarrival

± �ctarrival

√

1 −
ln

(

(4πDtarrival)
d/2 Ic

I0

)

(β − γ )tarrival

, (39)

where �c = cr̂ and

c =
√

4D(β − γ ) = γ

√

4R0(R0 − 1)〈x2〉
d

(40)
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FIG. 2. Infection waves traveling in d = 1 from an initial infec-

tion at x = 0 in a uniform population Nn = constant. In (a) and (b),

the fraction of people infected at each location in is shown for differ-

ent times represented by different colors. The points are numerical

solutions to Eq. (12b) with G(|x|) ∼ e−|x|/l , and the solid lines are

analytical solutions to (38) multiplied by dx. Parameters used were

dx = 0.005,
√

〈x2〉 =
√

2l2 = 0.01, i0 = 10−4, and R0 = 2. (a) At

early times, s ≈ 1, so our analytical result (38) agrees with the

numerical result. (b) For later times, the two solutions disagree, but

(38) still captures the propagation of the wave front. (c) The smallest

time that solves in(tarrival) � ic is displayed for each location.

is the Fisher wave speed [25]. The factor Ic/I0 will appear

throughout our analysis, so it is worth highlighting the fact

that this quantity has units of density since Ic is a critical den-

sity, whereas I0 is the initial total infected population. At small

times, the expression in the square root may be imaginary,

indicating that the disease has yet to be detected anywhere. At

late times, the expression in the square root approaches 1, so

in a uniform population, the infection front travels at a speed

�v + �c far from the source. Figure 2(c) shows the arrival time

predicted by the commuter model and by the diffusion ap-

proximation. The diffusion approximation correctly predicts

the offset time, and nearly predicts the speed. Corrections to

the speed can be obtained by keeping higher-order derivatives.

The fact that the arrival time is linear in x, and the slope is

independent of our choice of ic is a robust property of pulled

waves.

When the population distribution is an exponential, the

drift velocity is constant. This special case is shown in Fig. 3.

When plotted in terms of In, the infection drifts toward higher

populations, reflecting the fact that there are more people

capable of getting infected in more populated regions. When

plotted in terms of in, the infection drifts toward lower popula-

tions, suggesting that a susceptible in a small town is initially

at a higher risk of being infected than an individual in a

city. However, even in this example with a highly nonuniform

population, these drift effects are small, and the shape of the

arrival time curves are similar regardless of whether we con-

sider a critical infection count Ic or a critical infection fraction

ic. For this simulation, several values of ζ were chosen with no

noticeable differences in the results, consistent with the fact

that the ζ corrections show up at fourth order in our Taylor

expansion.

In addition to the drift velocity, there is an additional place

at which N can enter the calculations even in a constant popu-

lation. Note that the arrival time in (39) satisfies I (x, tarrival) =
Ic, and we used the initial condition I (x, 0) = I0δ(x). How-

ever, it may make sense for one or both of these conditions

to be written in terms of i. If both the arrival condition and

the initial condition are given in terms of i, then the factors

of N are eliminated. However, suppose one person is initially

infected, but the infection is detected at a location when the

fraction of cases exceeds a critical value i(x, t ) = ic. Then the

time offset will have an additional ln N dependence, reflecting

the fact that it takes longer for a disease to be detected in a

larger population.

So far, we have only considered long-wavelength popu-

lation fluctuations. However, there is an opposite limit that

is even simpler. When the population changes on the length

scale of �x, we empirically find that we can replace N (�x) with

its average value and use the analytic results for the constant

population case. See Fig. 4 for an example. This tells us that

we can ignore the fact that the population of each county is

different if we work in terms of i(�x, t ) and focus only on

large-scale population gradients.

Notice in these figures that the numerically calculated

arrival time near the origin is greater than zero, indicating

that there is some finite time before the infection is detected

anywhere. At distances smaller than ∼
√

〈x2〉, the analytical

arrival time predicted by diffusion appears to be zero, a con-

sequence of the highly localized initial conditions, but this is

not a good indicator an outbreak is actually occurring close to

the origin. It is clear from looking at these plots that there is

a characteristic gap in the arrival time at the origin. We will

quantify this gap by finding the offset time. For simplicity,

we will focus on the constant population case where �v = 0,

so the first outbreak will occur at the origin. As a reminder,

by outbreak, we mean two things: First, the infection density

must exceed the critical value for detection I (0, t ) � Ic, and

second, the case counts must be increasing İ (0, t ) > 0. The

offset time tO is the smallest time which satisfies both of

these conditions. If R0 � 1, then we can never satisfy the

second condition because the infection density at the origin

decreases monotonically, so tO does not exist. If R0 > 1, then

the infection initially spreads out causing the infection density

to decrease at the origin from its initially infinite value, but at

later times exponential growth in the total number of cases
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FIG. 3. Infection waves traveling in d = 1 from an initial infection at x = 0 in a nonuniform population Nn = N0exn/λN such that the drift

velocity (35) is constant. In (a) and (b), the number of people infected at each location In is shown while in (d) and (e), the fraction of people

infected at each location in is shown. The points are numerical solutions to Eq. (12b) with G(|x|) ∼ e−|x|/l , and the solid lines are analytical

solutions to (38) multiplied by dx. Parameters used are dx = 0.005,
√

〈x2〉 =
√

2l2 = 0.01, i0 = 10−4, R0 = 2, N0 = 104, and λN = 0.08.

(c) The smallest time that solves In(tarrival) � Ic is displayed for each location. Positive x values have a smaller arrival time, indicating that In

drifts toward higher populations. (f) The smallest time that solves in(tarrival) � ic is displayed for each location. Negative x values have a smaller

arrival time, indicating that in drifts toward lower populations.

causes the infection density at the origin to increase, so there

exists a finite time t∗ at which the infection begins to increase.

This places a lower bound on the offset time tO � t∗. Solving

İ (0, t ) = 0 reveals a particularly simple form for this time:

t∗ = d

2

1

β − γ
. (41)

Assuming R0 > 1, I (0, t ) increases for times greater than t∗,

but I (0, t ) may still be less than the critical density. In these

cases, I (0, t ) falls from infinity to below Ic at a time less

than t∗ and grows above Ic at a time greater than t∗. The

time it takes to approach the critical density grows with the

diffusion coefficient since this will lead to a broader spatial

distribution of case counts at fixed total number of cases. It

may be counterintuitive that high mobility increases the arrival

time, but recall that we are assuming the total number of

contacts a person makes is fixed, and D describes the spatial

distribution of contacts. If contacts are only made between

individuals in the same neighborhood (small D), then a lo-

cal outbreak will quickly occur, but if the same number of

contacts are distributed across a state (large D), then it will

take much longer for any particular location to detect a severe

outbreak. In this way, the offset time should be thought of as

the characteristic time it takes for the growth of the disease to

dominate over the spread of the disease.

Before continuing our analysis, it will be useful to

introduce a dimensionless quantity l̄ characterizing this com-

petition between growth and spread

l̄ ≡
√

d

2e

√

4πD

β − γ

(

Ic

I0

)1/d

=
√

2π

e

√

R0〈x2〉
R0 − 1

(

Ic

I0

)1/d

. (42)

Rewriting Eq. (38) in terms of l̄ ,

[

I (0, t )

Ic

]2/d

= exp t/t∗

el̄2t/t∗ . (43)

When we have tO > t∗, the two solutions to I (0, t ) = Ic are

given by solving the following transcendental equation:

− t

t∗ e−t/t∗ = − 1

el̄2
. (44)

When 0 < l̄ < 1, there is no real solution to the above equa-

tion, and we are in the regime where diffusion is small enough

that I (0, t ) never falls below Ic. When l̄ > 1, there are two
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FIG. 4. Infection waves traveling in d = 2 from an initial infection at �x = 0 in a nonuniform population with Nn chosen from a uniform

distribution between 0 and 2000. In (a), the number of people infected at each location In is shown for three different times while in (c),

the fraction of people infected at each location in is shown for three different times. The points are numerical solutions to Eq. (12b) with

G(|�x|) ∼ e−|�x|/l . The lattice is a 61 by 61 grid of side length L = 2, so dx = 2/61. Other parameters are R0 = 2, l = dx/2, and I0 = 1. (c) The

smallest time that solves In(tarrival) � Ic is displayed for each location as a function of the distance from the origin |�x|. (d) The smallest time

that solves in(tarrival) � ic is displayed for each location. In either case, the numerical solution is compared to the analytic solution assuming

Nn = 1000. Notice that the noise observed when considering In in (a) and (b) is eliminated when considering in in (c) and (d).

solutions (which converge to one solution for the special case

l̄ = 1):

t =
{

−t∗W0

(

− 1

el̄2

)

,−t∗W−1

(

− 1

el̄2

)}

. (45)

Here Wk denotes the Lambert W function and k labels the

branch cut. The first solution is the time at which I (0, t ) falls

below Ic. The second solution is the offset time. Now we can

explicitly write down the offset time for all values of l̄:

tO =
{

t∗, l̄ ∈ (0, 1)

−t∗W−1

(

− 1

el̄2

)

, l̄ ∈ [1,∞).
(46)

Looking at the form of l̄ , one can conclude that a reasonable

choice of l̄ will be greater than one. To see this, note that

l̄d >
√

〈x2〉d
Ic/I0 which for I0 = 1 can be interpreted as there

being Ic sick individuals within the characteristic interaction

volume. If this number were less than one, then the disease

would not be detected, and this would be an inappropriately

small choice of Ic. Therefore, for any reasonable definition of

Ic, we will be in the regime l̄ > 1. When l̄ > 1, the offset time

is inversely proportional to (R0 − 1) and grows monotonically

with l̄ as seen in Fig. 5.

Now that we know there is a finite time offset greater than

t∗ for reasonable choices of l̄ , we can expand the arrival time

about the offset time and study the observed spatial spreading

patterns close to the origin. Plugging tarrival = tO + δt into (39)

and expanding to linear order in δt gives

δt = 1

tO − t∗

( |�x|
c

)2

. (47)

We also know that at large distances, the arrival time is |�x|/c.

Using these two limiting behaviors, we can estimate the arrival

time at all distances from the origin:

tarrival(�x) = tO − tO − t∗

2
+

√

(

tO − t∗

2

)2

+
( |�x|

c

)2

. (48)

Close to the origin, the infection is observed to spread diffu-

sively, but far from the origin, waves form. The characteristic

distance over which the spread transitions from diffusive to

ballistic is c(tO − t∗)/2. Interestingly, the arrival time close

to the origin (as characterized by tO) increases with
√

〈x2〉,
but the arrival time far from the origin (as characterized by

|�x|/c) decreases with
√

〈x2〉. Thus, long-distance commutes

delay an outbreak in any one location because the interaction

radius is increased, keeping the infection density everywhere

low. However, once the exponential growth takes over, these

low infection-density regions each spawn a local outbreak,

and the disease is quickly detected throughout the whole do-

main. In the opposite limit, when commutes are short range,

social mixing leads to a high infection density causing a quick
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FIG. 5. (a) Solutions to (43) for different choices of l̄ (colored lines). The dashed gray line is the line I (0, t ) = Ic, and the black dots

indicate the offset time. (b) The solid red (dark gray) and light blue (light gray) curves are the two solutions to Eq. (45), while the black dashed

line is the normalized offset time (46). For l̄ < 1, tO = t∗ which is the smallest time at which İ (0, t ) > 0. For l̄ > 1, tO = −t∗W−1(−1/el̄2).

outbreak at the origin, but the propagation speed of the infec-

tion is slow, so it takes a while for the disease to be detected

far from the origin.

2. Solutions in a finite domain

When our domain is bounded 	 = [− L
2
, L

2
]d , we will nei-

ther be able to assert that 〈xμ〉 = 0 nor that 〈x2〉 is independent

of position, but we can attempt to understand the boundary

effects by using Eq. (36) along with Neumann boundary con-

ditions (29). Physically, these boundaries could correspond to

bodies of water or national borders.

If L is large enough and (21) is satisfied, then we expect

to see infection waves, and the methods of the previous sec-

tion can be used, but if L is small, then the infection quickly

reaches the boundary before a wave can form, and the homo-

geneous dynamics (1) are recovered. We will only consider

a uniform population in this section. Solving the linearization

of (33) with boundary condition (29) and initial condition (37)

gives

I (�x, t ) = I0

Ld

d
∏

μ=1

∞
∑

nμ=−∞
cos

(

2πnμxμ

L

)

× exp

[

−D

(

2πnμ

L

)2

t

]

e(β−γ )t . (49)

In particular, for �x = 0 we get

I (0, t ) = I0

Ld

[ ∞
∑

n=−∞
e−D( 2πn

L
)2t

]d

e(β−γ )t . (50)

The spatial dependence decays away over a time L2/4π2D,

so if the arrival time is everywhere larger than or comparable

to this value, the spread will appear to be homogeneous. It

is worth mentioning that for L2/4π2D large, the terms in the

sum change slowly, so one can turn the sum into an integral

and recover Eq. (38).

In the previous section, we introduced the dimensionless

commuting length l̄ which parameterized the offset time in

an infinite domain. Here we would like to introduce a second

dimensionless length scale L̄ to characterize the system size:

L̄ ≡ L

(

Ic

I0

)1/d

. (51)

As mentioned in the previous section, reasonable choices of

Ic will lead to the İ (0, t ) > 0 condition automatically being

satisfied (and a finite domain only reduces the time it takes to

satisfy this condition), so let us assume we are at times after

which İ (0, t ) > 0. Then the offset time is given by solving

I (0, tO) = Ic:

L̄2 =
[ ∞

∑

n=−∞
e−πen2 (l̄2/L̄2 )tO/t∗

]2

etO/t∗
. (52)

Equation (44) is recovered in the small l̄/L̄ limit where the

sum can be converted to an integral. In the opposite limit of a

well-mixed population (where we only keep the n = 0 term),

the offset time is simply

tWM
O ≡ tO(l̄ � L̄) = 1

β − γ
ln

(

IcLd

I0

)

. (53)

That is, a larger system (at fixed critical infection density)

will have a larger offset time since there is more space for

the infection to spread out. This limit gives the same result

as the well-mixed population (5). In a well-mixed population,

the entire population reaches Ic simultaneously, at which point

IcLd people are infected, which is necessarily greater than the

initial number of people infected I0, so we must have that

L̄ > 1, and tWM
O > 0.

One can check numerically that tO/t∗ is an increasing

function of both l̄ and L̄. For moderate values of L̄, the offset

time resembles (46) for small values of l̄ and resembles (53)

for larger values of l̄ . Figure 6(a) demonstrates that the offset

time can typically be estimated by one of these two simplified

expressions, giving us a simple way of characterizing the
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FIG. 6. Demonstration of finite-size effects on arrival time dynamics. (a) The theoretical time offset (52) is shown as a function of L̄ and

l̄ . In the top-left region, the contours are nearly vertical, indicating that the offset time only depends on system size, and (53) can be used;

in the bottom-right region, the contours are nearly horizontal, indicating the offset time is independent of system size, and (46) can be used.

The dashed line corresponds to Eq. (54), where the well mixed and L̄ → ∞ solutions agree. In (b), the arrival time was found numerically

by solving (12b) with G(|�x|) ∼ e−|�x|/l in a uniform one-dimensional population of size L = 2, for different choices of L̄ and l̄ corresponding

to the black dots in (a). L̄ was varied by changing the step size while keeping Ic/I0 fixed to 1/dx. l̄ was varied by changing the commuting

length l . The green solid lines correspond to the analytical result in an infinitely large population satisfying (48) while the gray dashed lines

give the well-mixed result (53). (c) Infection curves at different locations for an epidemic in the well-mixed regime (left) and an epidemic in

the heterogeneous regime (right) are shown with dash-dotted lines of different shades. The green solid line shows the diffusion result (38), and

the gray dashed line shows the solution to the linearization of (1b).

spreading dynamics as either heterogeneous or homogeneous

(well mixed). By equating these two asymptotic expressions,

we find that the transition occurs when

ln(L̄2) = −W−1

(

− 1

el̄2

)

⇒ l̄∗ =
√

1

e

L̄2

ln(L̄2)
. (54)

That is, for l̄ < l̄∗, the disease dynamics close to the origin

can be approximated by those of the infinite system, and

for l̄ > l̄∗, the arrival time everywhere is approximated by

the well-mixed result. Some sample arrival times calculated

by solving (12) are shown in Fig. 6(b) and compared to the

diffusion (48) and well-mixed results (53). Note that we could

have important boundary effects at positions away from the

origin even when l̄ < l̄∗. Some sample infection curves are

shown in Fig. 6(c). In the well-mixed regime, the infection

curves at different locations follow (4) with itot(0) = I0/Ntot.

In the heterogeneous regime, the infection curves separate

in space, and the infection curve at the origin follows the

diffusion model (38). One proposed way to capture the het-

erogeneity in disease spread is via an entropy function which

measures the similarity of these infection curves at different

locations [6]. However, this quantity requires knowledge of

in(t ) for all n and t . What we have demonstrated is that simply

looking at one location in space (the origin) at early times also

characterizes the spreading behavior.
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Even though we have given much attention to the offset

time in cases where the diffusion approximation holds, we

now understand the two most important limits. The small-

est offset time corresponds to the case of a population with

vanishingly small commuting range such that the infection

density can quickly reach the threshold value. The largest

offset time corresponds to a well-mixed population. Although

L̄ is defined for all commuting distributions, l̄ is only defined

for localized commuting distributions. What, then, do we ex-

pect for delocalized commuting distributions? The infection

quickly reaches the boundary due to the divergent moments,

so the more spread out the commuting distribution is, the

closer the offset time will be to the well-mixed prediction.

In general, the well-mixed result gives an upper bound to the

offset time: tO � tWM
O .

B. Localized commuting beyond the diffusion approximation

1. Exact calculation of the wave speed

When truncating our Taylor series to quadratic order, we

found a reaction-diffusion system. This should work well at

small values of x, but at larger values of x, the higher-order

derivatives will, in general, matter. Therefore, we might ex-

pect that the calculation of the time offset (which is defined

at the origin) should work well under the diffusion approx-

imation provided 〈x2〉 is finite. However, the wave speed

should be calculated far from the origin, where the diffusion

approximation is no longer expected to work. Although the

diffusion approximation correctly predicts the existence of

waves, we need a new tool to quantitatively predict the wave

speed for a given contact distribution. Mollison showed that

for the special case of an exponential contact distribution, the

exact wave speed can be calculated [26] and has a noticeable

deviation from the result obtained from the diffusion approx-

imation. Later, Daniels generalized the result to show how to

calculate the wave speed for any localized contact distribution

by using moment-generating functions [38]. Here we will

apply the technique of moment-generating functions to the

commuter model. We have a few probability distributions to

choose from, but the most relevant for the dynamics will be

the commuter distribution G(|�x|) and the contact distribution

β(�x, �y). Consider two related quantities:

φ(�k) =
∫

e
�k·�xG(|�x|)dd x, (55)

ψ (�k, �x) = β−1

∫

e
�k·(�y−�x)β(�x, �y)dd y. (56)

When the population is uniform, ψ (�k, �x) = ψ (�k), and we

have the simple relationship ψ (�k) = φ(�k)2. Plugging the

ansatz i(�x, t ) ∼ e
�k·(�x−�ct ) into (26) with s(�x, t ) = 1 and assum-

ing a uniform population gives a constraint on c(�k):

c(�k) = βφ(�k)2 − γ

|�k · r̂|
. (57)

For a localized initial condition like we have been considering,

the correct choice of �k is that which minimizes c(�k). Note that

the diffusion approximation considered previously amounts to

keeping only quadratic terms in our moment-generating func-

tion. If we make the approximation φ(k) ≈ 1 + 1
2d

k2〈x2〉 ⇒
φ(k)2 ≈ 1 + 1

d
k2〈x2〉, then one can easily check that the min-

imum wave speed is that given in Eq. (40). In order to find

the nonperturbative wave speed, one must first find the exact

moment-generating function φ(�k) and then find the minimum

of (57) numerically.

As an example, let us find φ(�k) and c(�k) in one dimension

(1D) when G takes the form of Eq. (16). For |kl| < 1,

φ(kl ) = (1 + kl )p−1e+klr0/l �(−(p − 1), (1 + kl )r0/l )

2�(−(p − 1), r0/l )

+ (1 − kl )p−1e−klr0/l �(−(p − 1), (1 − kl )r0/l )

2�(−(p − 1), r0/l )
,

(58)

where �(s, x) denotes the incomplete Gamma function

�(s, x) =
∫ ∞

x

w
s−1e−wdw. (59)

Taking the limit r0/l → 0 is difficult, especially when p is a

positive integer, but intuitively, as r0/l → 0, G(|�x|) becomes

sharply peaked at �x = 0, so φ(kl ) ≈ 1. Although the kl depen-

dence is important if we want to find any nonzero moments,

taking φ(kl ) = 1 actually gives us a good estimate for c. In

that case, the minimum value of c occurs when |kl| = 1 (a

strong indication that our diffusion approximation will fail),

and the minimum speed is equal to (R0 − 1)l , unlike that

predicted by Eq. (40). Unsurprisingly, the speed becomes

infinite for a power law (l = ∞) since we no longer satisfy

Eq. (21). Setting φ(kl ) = 1 fails when p � 1 where the dis-

tribution becomes exponential and φ(kl ) ≈ 1
2
[(1 + kl )p−1 +

(1 − kl )p−1]. Notably, when p = 0 (exponential distribution),

we have φ(kl ) = 1
2
[1 − (kl )2]−1, and c is slightly greater than

that predicted by the diffusion approximation, consistent with

the small discrepancy in the arrival times shown in Fig. 2. The

moment-generating functions and wave speeds for various

choices of p and r0/l are shown in Fig. 7. When a truncated

power law with a small length scale is used, there is an

even larger disagreement with the diffusion approximation.

The key takeaway is that even though the Taylor series is

valid for any localized commuting distribution, keeping only

the quadratic terms fails to predict the correct wave speed,

and higher moments should be considered. Even more effects

absent from the reaction-diffusion system can be found when

N (�x) is nonuniform, as will be explored in the next section.

2. Fourth-order corrections to the reaction-diffusion system

Returning to the calculation performed to obtain the

reaction-diffusion system, here we will instead Taylor expand

i(�z, t ) and N (�z) to fourth order. The calculation is tedious,

so we only give the result for 1D, where primes denote spa-

tial derivatives, and all quantities on the right-hand side are
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FIG. 7. Demonstration of how to calculate the infection wave speed of a general localized contact distribution. (a) Truncated power-law

commuting distributions and (b) their corresponding moment-generating functions as given by Eq. (58) for various powers p and length scale

ratios r0/l . (c) Wave speed for each kl at a fixed R0, as predicted by Eq. (57). The physical wave speed is the minimum speed on this curve.

(d) Curves are generated by minimizing (57) over all kl for different choices of R0. The circles and crosses denote values obtained numerically

by finding the slope of the arrival time far from the origin. The numerical results are compared to the diffusion result (40) shown with a black

line.

evaluated at x,

∫

dy

∫

dz P(z, y)N (z)i(z, t )
∫

dz P(z, y)N (z)
≈ i +

(

i′′ + N ′

N
i′
)

〈x2〉 +
{

1

12
i′′′′ + 1

6

N ′

N
i′′′ +

[

1

2
ζ (ζ − 1)

N ′2

N2
+ 1

4

N ′′

N

]

i′′

+
[

−1

2
ζ (ζ − 1)

N ′3

N3
+ ζ (ζ − 1)

N ′N ′′

N2
+ 1

6

N ′′′

N

]

i′
}

〈x4〉

+
{

1

4
i′′′′ + 1

2

N ′

N
i′′′ +

[(

− 5

4
ζ 2 + 9

4
ζ − 1

)

N ′2

N2
+ (1 − ζ )

N ′′

N

]

i′′

+
[

(1 − ζ )(1 − 2ζ )
N ′3

N3
+

(

−4ζ 2 + 13

2
ζ − 2

)

N ′N ′′

N2
+

(

− ζ + 1

2

)

N ′′′

N

]

i′
}

〈x2〉2. (60)

The first line is the diffusion result, but the numerous other

terms are new. The higher-order N-independent terms cor-

rect the wave speed as shown in the last section. The 〈x2〉2

terms involve second-order processes which we would not

have obtained by considering only dynamics where either the

susceptible or the infected travel. We now see terms which

depend on ζ . While this equation is too complicated to say

exactly how ζ changes quantities like the arrival time, we can

see a few things. Because the ζ terms all involve at least two

derivatives of N and factors of the characteristic commuting

distance to the fourth power, in order for these terms to be

non-negligible, we need N to change on length scales compa-

rable to the characteristic commuting length. If the population

changes on much greater length scales, then the dominant

effect will be the N ′/N term (which may also be negligible).

If the population changes on much smaller length scales, then
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FIG. 8. Demonstration of the ζ dependence in the continuous commuter model. (a) A Gaussian population profile was chosen whose center

lies at the origin: N (x) = 105 + 9 × 105e−x2/2λ2
N . (b) Commuting probabilities of the form P(0, x) ∼ N (x)ζ e−|x|/l/(|x| + r0)2. The probability

for an individual living at the origin to travel to the city is larger for higher ζ , reducing the arrival time near the city. (c) Arrival times obtained

by numerically solving (12b). The presence of the city leads to more homogeneous dynamics when ζ is increased. Parameters used were

l = 0.1, r0 = 0.1, λN = 0.05, R0 = 2, I0 = 1, dx = 0.01, L = 2. In (d)–(f), the simulation is repeated except the city is shifted to the right:

N (x) = 105 + 9 × 105e−(x−.25)2/2λ2
N . In either case, the infection was initialized at the origin.

the population fluctuations can be averaged over as already

shown. See Fig. 8 for an example population where the ζ -

dependence is important. First, notice that larger values of ζ

lead to more homogeneous dynamics, a phenomenon which

will be explained by Eq. (61). Next, notice in the bottom row

that although the drift term would cause the infection to travel

left toward lower populations (when plotted in terms of in),

the higher-order terms drive the infection toward the city for

larger values of ζ . Finally, notice that the arrival times for

ζ = 0 and ζ = 1 are nearly indistinguishable. Looking at the

above equation, we see that all of the terms proportional to

〈x4〉 are identical for ζ = 0 and ζ = 1. It is not clear why we

have this symmetry, but this manifests itself in our simula-

tions where it is often hard to distinguish between commuting

populations with ζ = 0 and ζ = 1.

C. Continuous commuter model results: Most general case

The previous two sections have focused on two extreme

limits: If the system is small or commuters travel long dis-

tances, then the well-mixed dynamics (1) are recovered, but

if the travel probabilities fall off exponentially and the system

size is large enough, a reaction-diffusion system approximates

the dynamics. In either of these two limits, the precise form of

the commuting probabilities is unimportant (only 〈x2〉 matters

to leading order). Our first indication that the precise com-

muting patterns matter shows up at fourth order in our Taylor

series, as shown in the previous section. This hints at the

fact that the most interesting dynamics happen for commuting

distributions which are delocalized so the reaction-diffusion

system fails but also not too long ranged as to lead to homo-

geneous dynamics. So far, we have only studied cases where

(21) is satisfied such that our Taylor series is valid (even if

it may require us to go to higher orders). In this section, we

relax that assumption and study the role of ζ and G for general

commuting probabilities P(�x, �y) ∼ N (�y)ζ G(|�x − �y|).
Let us first study the role of G in a uniform population.

See Fig. 9. Three choices of G were chosen, all with the same

〈x2〉 and thus the same diffusion coefficient. The Gaussian,

exponential, and power-law commuter distribution all show an

arrival time quadratic in position close to the origin with the

same time offset. At later times, the Gaussian and exponential

commuter distributions give rise to waves approximated by

(40), but the power law does not, consistent with (21). The

diffusion approximation seems to hold at small distances even

for the power law with p = 4 (in this case 〈x2〉 is finite),

but because the higher-order moments diverge for the power

law, the diffusion solution fails at larger distances. This rapid

spread of infection for delocalized distributions is character-

ized by a sublinear arrival time. The fact that the offset time

is the same for these three commuting distributions despite

the power law behaving differently suggests that not all of

the spreading dynamics can be captured by the offset time

alone. One can compare the results from the power law to

a completely delocalized contact distribution G = 1/L where

the arrival time is constant and given by the time offset (53).

Despite the variety of solutions predicted by different

choices of G, we expect infectious spread to be no faster

than the well-mixed results and no slower than the diffusion

results at a comparable 〈x2〉, when it is defined. This idea is

explored further in Fig. 10(a) where several different power-

law commuting distributions with the same
√

〈x2〉 give the

same offset time and early time dynamics, but far from the

origin, the larger values of p have larger arrival times. For
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FIG. 9. Numerical results for the 1D homogeneous commuter model for four different choices of G: completely delocalized G0(x) = 1

L
,

Gaussian G1(x) = e−x2/2〈x2〉√
2π〈x2〉

, exponential G2(x) = e
−|x|/

√
〈x2〉/2

2
√

〈x2〉/2
, and power law G3(x) = 3

2
√

〈x2〉
(1 + |x|√

〈x2〉
)−4. (a) Commuter distributions plotted

on a log scale. Note that the value of
√

〈x2〉 was fixed to be the same for G1, G2, and G3. (b) The arrival times for each commuter distribution

were found. The Gaussian and exponential distributions give rise to a linear arrival time far from the origin, consistent with the diffusion result

shown in black. The power law initially resembles the diffusion result, but becomes sublinear far from the origin. Despite having the largest time

offset, the completely delocalized distribution has the smallest arrival time far from the origin. (c) Four time snapshots of the infection dynamics

for each commuter distribution. The power law displays an accelerating infection front. Parameters used were dx = 0.001,
√

〈x2〉 = 0.01 (for

G1, G2, G3), L = 2, i0 = 10−4, and R0 = 2.

p � 3 in 1D,
√

〈x2〉 is undefined, but we can instead fix the

length scale r0 in Eq. (16) (with l → ∞). See Fig. 10(b).

For p � 1, the commuting distribution is not normalizable

in 1D, so the dynamics are homogeneous. For 1 < p � 3,

all moments diverge, and the offset time is noticeably larger

while the arrival times at long distances are small. Larger

values of p have a smaller time offset but arrive later at

large x.

To investigate the role of ζ for delocalized distributions,

we will look at a two-dimensional nonuniform population and

try different power laws and values of ζ . Numerical results are

shown in Fig. 11. For p � 4, 〈x2〉 diverges in two dimensions,
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FIG. 10. Arrival times for different power-law commuter distributions G(x) ∼ (|x| + r0)−p. In (a), r0 was chosen for each p to fix
√

〈x2〉 =
0.02 using r0(p) =

√

(p − 2)(p − 3)〈x2〉/2. In (b), r0 = 0.05 was fixed. Additional parameters used were dx = 0.01, i0 = 0.0001, and R0 = 2.

so the arrival time grows slower than x. For p = 3, some

spatial dependence can be seen for small values of ζ , but the

dynamics are still nearly homogeneous. A symmetry appears

to exist between the ζ = 0 and ζ = 1 cases for all values of p

studied, as we saw for the localized case. The case ζ = 2 and

p = 4 is the most interesting. The infection fraction increases

along the line connecting the origin to the city but grows

slowest on the side of the city opposite the origin, producing

FIG. 11. Simulations using a commuting probability Pnm ∼ N ζ
m(|�xn − �xm| + r0)−p for different choices of ζ and p with Nm = 100 +

9900 exp −|�xm − (0.5, 0.5)|2/λ2
N such that there is a city located in the northeast (blue square) with population 100 times larger than elsewhere

in the domain. A single infected person is introduced at the origin (red star) at t = 0. For each choice of ζ and p, three time snapshots of the

infection fraction are shown. Panel (g) demonstrates a new phenomenon where the infection fraction first increases in the city and then spreads

away from the city. This behavior is not predicted in the diffusion approximation or the well-mixed approximation. The lattice is a 61 by 61

grid with side length L = 2, so dx = 2/61. Other parameters are R0 = 2, r0 = dx/4, λN = 0.05.
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a visible eclipse in the infection fraction. This can roughly be

understood as a competition between two effects. I (x, t ) drifts

toward the city from the origin as more people travel to the city

to go to work than elsewhere, but there is the additional factor

of 1/N (x) which reduces i(x, t ) close to the city. Once the

infection reaches the city, there is a rapid spread from the city

to the boundary. This observation that cities can act as disease

amplifiers was also seen in Ref. [10], where the commuting

probability was taken to be the sum of a localized term and a

delocalized term.

For large-enough values of ζ for any p, the spreading

appears homogeneous. To understand this, note that if Nm has

a unique maximum at m = M and G(|�xm − �xn|) is everywhere

nonzero, then

lim
ζ→∞

Pnm = δmM ⇒ lim
ζ→∞

∑

k

βnkik = β
Itot

Ntot

, (61)

which means, for large ζ , the entire population meets at the

high-population hub where it is equally likely for someone

to meet anyone else in the population, so the well-mixed

equations (1) are recovered. Typically we think of a well-

mixed population as one where individuals travel everywhere,

yet here, we see the emergent dynamics are the same if all

commuters travel to one central location. In this limit, most

interactions are second order, so we will not see this effect

using the simplified commuter interactions (14) nor would

this limit make sense in a Eulerian model. Although taking

the limit ζ → ∞ seems unphysical, Fig. 11 suggests that we

do not need to make ζ too large to observe this effect.

Little is known about epidemic models with delocalized

contact distributions. Brockmann suggests that these cases can

be modeled with fractional diffusion equations [22]. Some

effort has been made to characterize the front dynamics in

models with growth and fractional diffusion [44,45], but little

effort has been made to characterize the subtle arrival time

properties we have seen here. Hallatschek and Fisher studied

the arrival times in a stochastic model where individuals jump

to a particular location according to some delocalized jump

distribution [46]. The model predicted accelerating fronts with

distinct arrival time scalings depending on the power law of

the jump distribution. Our model is distinct from these models

in that our model incorporates Lagrangian movement patterns.

A detailed analysis of delocalized commuting in an epidemic

model (to the level that we were able to do for the localized

commuter distributions) is still an open problem.

IV. DISCRETE RESULTS

Now that we understand the commuter model in the con-

tinuum, we would like to apply the model on a map using

real geographic and census data. First, we will demonstrate

new subtleties that arise when relaxing the assumptions of

infinitesimal county size and uniform county shape. Then

the theory will be applied to a couple realistic commuting

distributions. Previous papers have integrated human mobil-

ity models and epidemic models on maps using a primarily

data-driven approach [1,5,7,10]. Here we demonstrate that the

theoretical features we have studied so far can persist when

applied to real geographic regions, without the intention to

directly compare with data for a specific epidemic.

A. Commuters on a nonuniform grid

Let us work in the limit where the discreteness of the lattice

is apparent. When the step size is larger than the characteristic

commuting length, the diagonal entries of P dominate, so the

infection spreads slower than the results obtained by diffusion.

See Fig. 12(a). The offset time is reduced because a larger

step size means the growth term dominates the diffusion term

early. Note that the value of 〈x2〉 used for the analytical result

is that obtained from the continuous function G(|�x|). Infection

waves are still observed at late times but with a speed less than

(40).

An additional complication which arises on maps is that

counties may all be different sizes. Because the distance to

the center of a neighboring county with smaller area will be

less than the distance to the center of a neighboring county

with larger area, the probability to travel to a smaller county

will be greater. This effect is demonstrated in Fig. 12(b)

where a nonuniform county spacing causes the disease to drift

rightward.

These complications highlight the care that one must take

when applying the model to maps. Unlike some biological

systems where discreteness is a relevant feature that leads to

interesting spreading phenomena [41], the spread of disease

should not depend on county borders, so these effects must

be artificial. The problem arises because the commuting dis-

tribution is defined in continuous space G(|�y − �x|), but the

populations (Nn, In, etc.) are defined for discrete systems. In

order to construct the commuting probabilities between coun-

ties, we assumed the form (15) where �xn, �xm are the county

centers. This is a good estimate when �x is small, but in cases

where �x is large, our expressions should involve integrals

over the county area. There are two solutions. Of course, if

the commuting probabilities or commuting fluxes between

counties are known, then guessing a form such as (15) is un-

necessary, and solving the discrete model (11) is appropriate.

For the purposes of our theory where we are investigating

the role of different gravity models, one can coarse grain the

populations so that the continuum approximation holds, find

the density fields using (26), then integrate the fields over the

county area to obtain Sn, In, Rn. In the next section, when we

apply the model to the United States, we find the qualitative

results of our continuum theory to hold when naively applying

(15), so at the cost of not getting quantitative agreement with

our analytic results, we will use the simpler approach of eval-

uating the commuting probability at the center of population

of each county.

B. Commuters on a map

We simulate the commuter model on a map of the United

States with realistic populations and county geometries. Pop-

ulation data was obtained from the U.S. Census Bureau [47].

Geometric data were retrieved from Plotly [48] and visualized

using the GeoPandas package of Python. The coordinate �xn of

a given county is taken to be the center of population. Given

the latitudes {θn} and longitudes {φn} of each county center in
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FIG. 12. (a) Arrival times in d = 1 using the same parameters as in Fig. 2, except �x = .03 > l such that the continuum theory (black

line) fails. (b) The county spacing �xn is taken to be nonuniform: �xn = (�x)e−4xn/3L such that the continuum theory fails and the infection

reaches smaller counties earlier.

radians, the separation between two counties is approximated

as

|�xm − �xn| ≈ RE

√

(θm − θn)2 + cos2

(

θm + θn

2

)

(φm − φn)2.

(62)

The first set of parameters we will try is that obtained by

Balcan et al. [1], who performed a Voronoi tessellation based

on distance from major airports to divide the United States

into units more suitable for studying mobility processes. They

found that the commuting distribution takes the form of an

exponential with a decay length of l = 51 miles (for distances

not too large). We will try applying this commuting distribu-

tion at the county level, though it is worth noting that because

the spatial units considered in their paper were larger than a

typical U.S. county, this may be an unrealistically large l for

our purposes. The commuting distribution and resulting con-

tact matrix elements are visualized in Figs. 13(a) and 13(b).

Broad infection waves are shown in Fig. 13(c). Even though l

is large, Fig. 13(d) shows that the arrival time still resembles

that predicted by the reaction-diffusion system: a finite offset

followed by a quadratic regime and finally a linear regime.

Also, notice that even though the commuting probability is

asymmetric due to the nonuniform population distribution in

the U.S., the arrival time changes smoothly, as observed by

the smooth gradient in the colors of Fig. 13(e).

Now we will consider the parameters obtained from county

workflow data by Viboud et al. [49]. They found a power-law

fit for the commuting distribution with p = 3.05, and the

tendency to travel to cities is given by the exponent ζ = 0.64

(which is, interestingly, identical to the value that Balcan

found [1]). Results are shown in Fig. 14. The arrival time

is sublinear and has a larger variance. As expected with de-

localized commuting distributions, the disease travels faster

than any wave, and complex population-dependent behavior

emerges.

These two examples demonstrate that although some hu-

man mobility processes can seemingly be described by either

an exponential distribution or a power law, the emergent infec-

tion dynamics will differ greatly. This claim is even stronger

when comparing commuter distributions with smaller length

scales, as shown in Fig. 15. At γ t = 15, the epidemic ap-

pears more severe close to Dallas for the localized distribution

[Fig. 15(a)] due to the smaller time offset, but by γ t = 20, the

infection has spread across the entire country for the delocal-

ized distribution [Fig. 15(b)], while the infection spreads as

a wave for the localized distribution. In either case, the final

fraction of individuals who were at some point infected was

found to be rtot = 0.797, identical to that predicted by (3), as

expected.

V. DISCUSSION

Even in our globalized world, commuting patterns play

an important role in shaping disease spread. During the

beginning of the COVID-19 pandemic in early 2020, com-

muting flows helped to explain the spread of disease from

its source in Wuhan, China [9]. Spatiotemporal data in Italy

suggest that the infection traveled along highways [11]. Re-

cent work showed that metapopulation models can be used

to quantitatively describe the spread of SARS-CoV-2 [8,50].

These metapopulation models are closely related to the classic

papers on disease propagation [16,17,26] but possess new

challenges. Little work has been done to bridge the gap be-

tween the more data-driven metapopulation models and the

theoretical results derived in mathematical epidemiology. One

work made this connection in the Eulerian formalism [22],

less appropriate for incorporating commuter dynamics. These

Eulerian movement models have been more useful for deriv-

ing effective metrics used to characterize the arrival times of

a disease on a network [5,13], but infection dispersal due to

commutes gives rise to behaviors that are best studied in real

space using a Lagrangian movement model where individu-

als have a well-defined home. While Lagrangian movement

for commuters has been incorporated into epidemic models

[7,8,10], these works focus on contact matrices derived from

known commuting patterns of specific regions. Here we stud-

ied a broad class of models that incorporate more general

principles from human mobility theory [35,37].

Two commonly studied limits were obtained from our

model. When the commuting distribution has an exponential

tail and the domain is large enough, the infection is initially

localized near the source and the spread is diffusive, but at

later times, traveling infection waves can be observed. If the
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FIG. 13. [(a) and (b)] Commuting distribution and derived contact matrix elements measured with respect to Dallas, Texas (star), using the

the commuting parameters obtained from Ref. [1]: Pnm ∼ N ζ
me−|�xn−�xm |/l , l = 51 mi, ζ = 0.64. (c) Infectious spread from Dallas, Texas, with

R0 = 2 and I0 = 1. Three time snapshots of the infection fraction are shown. (d) Arrival time as a function of distance from Dallas and (e)

displayed on the map.

infection quickly reaches the boundary (which could be the

result of a long-tailed commuting distribution or an infection

wave front whose size is comparable to the size of the do-

main), then the disease will be undetected for a characteristic

offset time, but once it is detected at one location, it will

soon be detected everywhere. The former case can be modeled

using a system of reaction-diffusion equations and the latter

using the spatially independent SIR model. In these two limits,

the exact form of the commuting probabilities is unimportant.

However, there is an intermediate regime where both the exact

commuting distribution and the asymmetry in the commuting

probability matter. In order to correctly capture this interme-

diate regime, we had to consider the commuting dynamics of

both the susceptible and the infected individuals, leading to a

contact matrix that is nonlinear in the commuting probability.

Although we have not focused on the spreading due to

long-distance air travel, such dynamics could be incorpo-

rated into the commuting probabilities. However, on scales

where the dynamics are dominated by commuters, the spa-

tially embedded infectious spread considered in this paper will

dominate. While the mathematical literature tends to focus

on the limiting behavior far from the infection source, real-

istically, the infection may never achieve this limit on scales

where the commuter dynamics dominate. For that reason,

our paper has focused on both the short-term and long-term

arrival time behavior. In particular, the offset time is defined

for even a single county, so the techniques developed here

can elucidate the infectious spread at scales as small as the

step size at which data are taken. The behavior close to

the infection origin can be understood as a transition from

an initial dispersal-dominated regime where the disease is

spreading thin throughout counties near the origin to a growth-

dominated regime where the infection at each location grows

exponentially until it is detected. There is an interesting trade-

off in the short-term and long-term behavior of an epidemic.

In cases where people travel far, the disease can go undetected

for a longer period of time and case counts will be everywhere

low early on, but once the disease is detected at one location,

it will be detected everywhere and the entire population will

be experiencing the epidemic simultaneously. If, however,

people remain close to home, then the disease will be detected

sooner near the origin, but the infection will travel slower to

neighboring counties, so the arrival time far from the origin

is higher. In this way, the commuting patterns will dictate the

times at which an infectious disease is detected at different

locations when long-distance flights are neglected, but the

total number of cases can only be lowered by reducing the

number of contacts.

In characterizing the role of commuter distributions in dis-

ease spread, we made several simplifying assumptions that

limit the predictive power of the commuter model. We as-

sumed that the total number of contacts a person makes is

independent of their home location and time, but one could

easily relax this assumption. Our model is deterministic, so it

neglects the possibility of finite-time extinction. We assumed

zero latency period, lifetime immunity, and neglected births
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FIG. 14. [(a) and (b)] Commuting distribution and derived contact matrix elements measured with respect to Dallas, Texas (star), using the

the commuting parameters obtained from Ref. [49]: Pnm ∼ N ζ
m(|�xn − �xm| + r0)−p, p = 3.05, ζ = 0.64. The small-scale cutoff (not considered

in their paper) was chosen to be r0 = 10 mi. (c) Infectious spread from Dallas, Texas, with R0 = 2 and I0 = 1. Three time snapshots of the

infection fraction are shown. (d) Arrival time as a function of distance from Dallas and (e) displayed on the map.

FIG. 15. (a) Infectious spread from Dallas, Texas (star), for a localized commuting distribution with l = 15 miles. (b) Infectious spread

from Dallas, Texas, for a delocalized (p = 2) commuting distribution with r0 = 1 mile. Additional parameters used for these simulations

were ζ = 0, R0 = 2, and I0 = 1. Three time snapshots of the infection fraction are shown for each case. The localized commuting distribution

produces traveling waves from the infection source while the delocalized commuting distribution leads to nearly homogeneous infection growth

across the country.

044305-21



WINN, KONKOL, AND KATIFORI PHYSICAL REVIEW E 108, 044305 (2023)

and deaths. The analysis presented here could be adapted

to more complicated epidemic models or other social phe-

nonomena such as rumor spreading [51]. While the precise

dynamics will depend on any new rate constants introduced,

the lessons persist: Only localized commuting distributions

give rise to local theories of dispersal, higher-order contact

processes matter, and the early-time dynamics should not be

ignored.

To summarize, we have demonstrated that commuter in-

teractions give rise to complex disease-spreading phenomena.

Our work relates the modern literature concerning metapop-

ulations with the classical theories concerning continuous

propagation of infection fronts. Traveling waves resulting

from the interaction between mobile individuals capable

of spreading disease have been previously studied, but

the precise correspondence between a discrete Lagrangian

metapopulation model and its reaction-diffusion counterpart

has never been made. In particular, we highlighted the fact that

the rate in the diffusion coefficient is precisely the infection

growth rate since both arise from the same contact distribu-

tion. We also noted the possibility of a drift term; the infected

population drifts toward higher population regions, but the

infection fraction drifts toward lower population regions, so

an individual in a small town is initially at a higher risk of

getting sick than an individual in a big city. The arrival time

has previously been used to characterize the spread of disease,

but our work defines and analyzes the offset time as a way to

characterize the onset of an outbreak. Finally, this is the first

time the role of key parameters that describe human mobility

(l , r0, p, and ζ ) has been systematically studied, including

the complex behavior that occurs for delocalized (but not

well-mixed) commuting distributions.
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APPENDIX A: DERIVATION OF THE

REACTION-DIFFUSION EQUATION

Beginning with (26), we can derive the reaction-diffusion

system (32) by performing a series of Taylor expansions.

Crucially, this is only valid when (21) is satisfied, such that

all of the moments of our commuting distribution converge.

We first estimate the fraction of people currently located at �y
who are infected. Since G(|�z − �y|) is exponentially localized

near �z = �y, only the values of i near �z = �y will matter, so we

can Taylor expand i(�z) around i(�y), and do the same for N (�z),

∫

dd z P(�z, �y)N (�z)i(�z, t )
∫

dd z P(�z, �y)N (�z)
≈ i(�y, t ) +

∫

dd z P(�z, �y)N (�z)(zμ − yμ)
∫

dd z P(�z, �y)N (�z)
∂μi(�y, t )

+ 1

2

∫

dd z P(�z, �y)N (�z)(zμ − yμ)(zν − yν )
∫

dd z P(�z, �y)N (�z)
∂μ∂ν i(�y, t )

≈ i(�y, t ) +
∫

dd z G(�z, �y)[1 + (1 − ζ )∂ν ln N (�y)(zν − yν )](zμ − yμ)∂μi(�y, t )

+ 1

2

∫

dd z G(�z, �y)(zμ − yμ)(zν − yν )∂μ∂ν i(�y, t )

= i(�y, t ) + 〈y2〉
d

(1 − ζ )∇ ln N (�y) · ∇i(�y, t ) + 1

2

〈y2〉
d

∇2i(�y, t ). (A1)

Using the same procedure, we can calculate the probability that a contact made by someone living at �x is with an infected,

∫

dd y P(�x, �y)

∫

dd z P(�z, �y)N (�z)i(�z, t )
∫

dd z P(�z, �y)N (z)
≈

∫

dd y P(�x, �y)

[

i(�y, t ) + 〈y2〉
d

(1 − ζ )∇ ln N (�y) · ∇i(�y, t ) + 1

2

〈y2〉
d

∇2i(�y, t )

]

=
∫

dd y G(�x, �y)[1 + ζ∂ν ln N (�x)(yν − xν )]

×
[

i(�x, t ) + ∂μi(�x, t )(yμ − xμ) + 1

2
∂μ∂ν i(�x, t )(yμ − xμ)(yν − xν )

]

+ 〈x2〉
d

(1 − ζ )∇ ln N (�x) · ∇i(�x, t ) + 1

2

〈x2〉
d

∇2i(�x, t )

= i(�x, t ) + 〈x2〉
d

∇ ln N (�x) · ∇i(�x, t ) + 〈x2〉
d

∇2i(�x, t ). (A2)

The same method was used to derive Eq. (60) where terms up to fourth order in derivatives were kept.
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