
ANALYTICITY OF QUASINORMAL MODES IN THE KERR

AND KERR-DE SITTER SPACETIMES

OLIVER PETERSEN AND ANDRÁS VASY

Abstract. We prove that quasinormal modes (or resonant states) for linear
wave equations in the subextremal Kerr and Kerr-de Sitter spacetimes are
real analytic. The main novelty of this paper is the observation that the
bicharacteristic flow associated to the linear wave equations for quasinormal
modes with respect to a suitable Killing vector field has a stable radial point
source/sink structure rather than merely a generalized normal source/sink
structure. The analyticity then follows by a recent result in the microlocal
analysis of radial points by Galkowski and Zworski. The results can then be

recast with respect to the standard Killing vector field.
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1. Introduction

When studying linear and nonlinear wave equations on black hole spacetimes,
such as the Kerr spacetime and Kerr-de Sitter spacetime, quasinormal modes play a
prominent role. Indeed, for linear equations, within certain limitations correspond-
ing to trapped null-geodesics, solutions have an asymptotic expansion at timelike
infinity in quasinormal modes. Such expansions, or the corresponding decay or
lack thereof statements, have a long history which in the mathematics literature
goes back to Sá Barreto and Zworski [SBZ97], Bony and Häfner [BH08], Dyat-
lov [Dya11, Dya12], Vasy [Vas13], Shlapentokh-Rothman [SR15], Hintz and Vasy
[HV15] and Gajic and Warnick [GW20]. In the physics literature the importance
of these has been clear even longer, going back to Regge and Wheeler [RW57],
Vishveshwara [Vis70], Zerilli [Zer70], Whiting [Whi89], Kodama, Ishibashi and Seto
[KIS00] and others. For nonlinear equations the non-decaying quasinormal modes
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become an obstacle to solvability; for equations with gauge freedom, such as Ein-
stein’s equation, it is non-decaying modes that are not ‘pure gauge’ that play an
analogous role [HV18].

Quasinormal modes are solutions of the homogeneous wave equation which are
eigenfunctions of the covariant derivative along appropriate Killing vector fields. A
key consideration for applications is that for similar covariant eigenfunctions as the
forcing (right hand side of the wave equation), there should be a satisfactory Fred-
holm theory. In this case the covariant eigenvalues (resonances) form a discrete set,
and the corresponding eigenspaces are finite dimensional. Since Fredholm theory is
global, this necessitates working relative to Killing vector fields with suitable global
behavior.

Recently Galkowski and Zworski [GZ21] showed that quasinormal modes for
non-rotating black holes are real analytic at the horizon; indeed they obtained a
substantially stronger microlocal result. In this paper we generalize their result to
the case of rotating black holes whose importance is underlined by their ubiquity.
Our proof relies crucially on the ability to locally transform the rotating black
hole quasimode problem to the non-rotating one, and thus being able to apply the
result of [GZ21]. This transformation is facilitated by locally considering analogues
of quasinormal modes with respect to a different Killing vector field that is lightlike
on the horizon; this change is very simple in the Kerr and Kerr-de Sitter case as
we discuss below, but in fact works in general for non-degenerate Killing horizons
under an additional condition, as is also described below. While these modes are
with respect to a different Killing vector field, we can in fact relate these to the
quasinormal modes with respect to the original globally well-behaved vector field
to obtain the real analyticity result. Indeed, a key feature of the Kerr-de Sitter
setting is the presence of two horizons, and the well-behaved Killing vector fields
with respect to each of these horizons, while globally well-defined, are ill-behaved
at the other horizon. Thus, it is of central importance for our approach to be able
to work locally near a horizon to obtain the analyticity conclusions.

It is conceivable that the results of [GZ21] could be proven in the more general
setting of [Vas13], which would imply analyticity in the case of rotating black
holes. However, such a proof would be significantly more technically involved than
the proof we give here. The proof of analytic hypoellipticity in [GZ21] relies on
a microlocal normal form of Haber [Hab14], which in turn relies on the relevant
Lagrangian (in our case the conormal bundle of the horizon) being radial with
respect to the Hamilton vector field. For rotating black holes, there is more intricate
internal dynamics and one could therefore not directly apply the results of Haber.
Indeed, our reduction to [GZ21] can be considered as a way of ‘straightening’ the
dynamics and thus bringing it to a model form.

Furthermore, it could perhaps be possible to prove analytic hypoellipticity of
Keldysh-type operators more explicitly using ODE theory and separation of vari-
ables and thereby avoid referring to [GZ21]. This was the approach by Lebeau and
Zworski in [LZ19] (see also the work by Zuily in [Zui17]), where an explicit class
of Keldysh type operators where studied, and certain values for the subprincipal
symbol had to be excluded. However, the main purpose of this paper is to reduce
the hypoanalyticity of quasinormal modes in Kerr(-de Sitter) spacetimes to the
irrotational, i.e. Keldysh-type, case. Applying the ODE approach directly in the
rotational case seems cumbersome and it is not clear to us whether it would work.

In the rest of the introduction we describe the precise results in the rotating black
hole setting, as well as the generalization to non-degenerate Killing horizons. Then
in Section 2 we discuss geometric aspects of these Killing horizons. In Section 3 we
then prove our general local result. In Section 4 we use these local results to obtain
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a global result for joint modes of two Killing vector fields on Kerr and Kerr-de
Sitter spacetimes. Finally, in Section 5 we show how these results imply the real
analyticity of the quasinormal modes on Kerr and Kerr-de Sitter spacetimes, with
modes taken with respect to the standard Killing vector field.

1.1. Kerr and Kerr-de Sitter spacetime. Fix three parameters a ∈ R and
m,Λ ≥ 0, such that the polynomial

µ(r) :=
(

r2 + a2
)

(

1−
Λr2

3

)

− 2mr (1)

has four distinct real roots r− < rC < re < rc if Λ > 0 and two distinct real roots
rC < re if Λ = 0. The latter condition is equivalent to |a| < m.

Assuming Λ > 0, the domain of outer communication in the sub-extermal Kerr-
de Sitter spacetime is given in Boyer-Lindquist coordinates by the real analytic
spacetime

Rt × (re, rc)r × S1
ϕ × (0, π)θ,

with real analytic metric

g = (r2 + a2 cos2(θ))

(

dr2

µ(r)
+

dθ2

c(θ)

)

+
c(θ) sin2(θ)

b2 (r2 + a2 cos2(θ))

(

adt−
(

r2 + a2
)

dϕ
)2

−
µ(r)

b2 (r2 + a2 cos2(θ))

(

dt− a sin2(θ)dϕ
)2
,

(2)

where

b := 1 +
Λa2

3
, c(θ) := 1 +

Λa2

3
cos2(θ).

The domain of outer communication in the subextremal Kerr spacetime is defined
analogously, by passing to the limit Λ = 0. We set rc = ∞ if Λ = 0. The Boyer-
Lindquist coordinates could be thought of as spherical coordinates around the black
hole, where the black hole is centered at r = 0. Even though they are not defined
at the north and south poles θ = 0 and π, it is straightforward to check that the
metric (2) extends real analytically to

M := Rt × (re, rc)r × S2
ϕ,θ.

Since the metric extends real analytically, so does linear wave equations with a
principal symbol given by the metric in these coordinates. We refer to [HV18,
Sec. 3], for a more thorough discussion of the geometry of Kerr-de Sitter spacetimes.

These coordinates are singular at the roots of µ(r). In order to define quasinormal
modes, we need to extend this metric real analytically over the future event horizon
and the future cosmological horizon, corresponding to the roots r = re and r = rc,
respectively. This can be done, for instance, by the following coordinate change:

t∗ := t− Φ(r),

ϕ∗ := ϕ−Ψ(r),

where Φ and Ψ satisfy

Φ′(r) = b
r2 + a2

µ(r)
f(r),

Ψ′(r) = b
a

µ(r)
f(r).

In the case Λ > 0, we let f : (re − δ, rc + δ) → R, for a small δ > 0, be a real
analytic function such that

f(re) = −1
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and
f(rc) = 1.

In the case Λ = 0, there is no cosmological horizon, so we instead assume that

lim
r→∞

f(r) = 1.

The metric (2) extends real analytically to the manifold

M∗ := Rt∗ × (re − δ, rc + δ)r × S2
ϕ∗,θ,

and is given by

g∗ = (r2 + a2 cos2(θ))
1− f(r)2

µ(r)
dr2

−
2

b
f(r)(dt∗ − a sin2(θ)dϕ∗)dr

−
µ(r)

b2 (r2 + a2 cos2(θ))

(

dt∗ − a sin2(θ)dϕ∗
)2

+
c(θ) sin2(θ)

b2 (r2 + a2 cos2(θ))

(

adt∗ −
(

r2 + a2
)

dϕ∗
)2

+ (r2 + a2 cos2(θ))
dθ2

c(θ)
.

(3)

We will throughout the paper assume that f is chosen as in [PV, Rmk. 1.1], so that
the hypersurfaces

{t∗ = c} × (re − δ, rc + δ)r × S2
ϕ∗,θ

are spacelike, for all c ∈ R, and that δ > 0 is small enough so that the hypersurfaces

Rt∗ × {r = re − δ} × S2
ϕ∗,θ,

Rt∗ × {r = rc + δ} × S2
ϕ∗,θ

are spacelike. The two real analytic lightlike hypersurfaces

H+
e := Rt∗ × {re} × S2

ϕ∗,θ,

H+
c := Rt∗ × {rc} × S2

ϕ∗,θ

are called the future event horizon and future cosmological horizon, respectively.
Note that the real analytic Killing vector fields ∂t and ∂ϕ, in Boyer-Lindquist co-
ordinates, extend to real analytic Killing vector fields ∂t∗ and ∂ϕ∗

on (M∗, g∗).
We will consider wave equations on complex tensors. Fixing r, s ∈ N0, let T

s
r U

denote the complex (r, s)-tensors on an open subset U ⊂ M∗ and let ∇ denote
the Levi-Civita connection acting on T s

r U . We let C∞(T s
r U) and C

ω(T s
r U) denote

the smooth and real analytic complex tensor fields, respectively. Let P be a wave
operator, i.e. is a linear differential operator with principal symbol given by the
dual metric, i.e.

P = −gαβ∇α∇β + lower order terms.

More precisely, there are complex tensor fields

A : T ∗U ⊗ T s
r U → T s

r U ,

B : T s
r U → T s

r U ,

such that
P = ∇∗∇+A ◦ ∇+B.

We consider solutions to wave equations Pu = f , where the coefficients A and B are
invariant under the Killing vector fields ∂t∗ and ∂ϕ∗

. This is a natural assumption
for geometric wave equations, where A and B are typically given by curvature
expressions. Our first main result is the following:
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Theorem 1.1. Let (M∗, g∗) be the subextremal Kerr(-de Sitter) spacetime, extended
real analytically over the future event horizon (and future cosmological horizon if
Λ > 0). Assume that

• A and B are real analytic in M∗,
• L∂t∗A = L∂φ∗

A = 0 and L∂t∗B = L∂φ∗
B = 0 in M∗.

If u ∈ C∞(T s
r M∗) satisfies

(i) Pu ∈ Cω(T s
r M∗),

(ii) L∂t∗u = −iσu for some σ ∈ C,
(iii) L∂φ∗

u = −iku for some k ∈ Z,

then u ∈ Cω(T s
r M∗).

Smooth tensor fields satisfying (ii) and (iii) in Theorem 1.1 and Pu = 0 are called
quasinormal modes. For functions, these conditions are equivalent to assuming that

u(t∗, r, ϕ∗, θ) = e−i(σt∗+kϕ∗)v(r, θ), (4)

which is perhaps the more common way to express quasinormal modes.
Combining Theorem 1.1 with the Fredholm theory developed by the second

author in [Vas13] and [Vas] (see also [VZ00,Vas21]) and by both authors in [PV],
we deduce our second main result, where we consider quasinormal modes only with
respect to the Killing vector symmetry

∂t∗ +
a

r20 + a2
∂ϕ∗

, (5)

where r0 ∈ (re, rc) is the unique point such that µ′(r0) = 0, as opposed to modes
with respect to both ∂t∗ and ∂ϕ∗

separately (as in Theorem 1.1). Concretely, this
means that quasinormal modes are supposed to satisfy

L∂t∗+ a

r2
0
+a2

∂φ∗
u = −iσu.

For solutions to linear scalar wave equations on any subextremal Kerr-de Sitter
spacetime, there is an asymptotic expansion in these quasinormal modes up to an
exponentially decaying term [PV, Thm. 1.5]. This extends the result of [Vas13], by
removing restrictions on the angular momentum.

For the Fredholm theory to go through in the case Λ = 0, we will need the
induced operator on the modes to be a scattering operator with self-adjoint (i.e.
real) scattering principal symbol near spatial infinity in the sense of Melrose [Mel94].
Let us use the convention that if Λ = 0, then r0 = ∞, giving the standard notion
of quasinormal modes on the Kerr spacetime. This amounts to making appropriate
decay assumptions on A and B:

Theorem 1.2. Let (M∗, g∗) be the subextremal Kerr(-de Sitter) spacetime, extended
real analytically over the future event horizon (and future cosmological horizon if
Λ > 0). Assume that

• A and B are real analytic in M∗,
• L∂t∗A = L∂φ∗

A = 0 and L∂t∗B = L∂φ∗
B = 0 in M∗.

If u ∈ C∞(T s
r M∗) satisfies

(i) Pu = 0,
(ii) L∂t∗+ a

r2
0
+a2

∂φ∗
u = −iσu for some σ ∈ C,

(iii) in case Λ = 0 we also assume that Imσ ≥ 0 and
• if Imσ > 0, then assume that A,B ∈ O∞ (r−ϵ) and u|t∗=0 ∈ S ′,
• if σ ∈ R\{0}, then assume that P − P ∗ ∈ O∞

(

r−1−ϵ
)

and

A,B ∈ O∞(r−ϵ) and that u|t∗=0 ∈ r
1
2
−ϵL2,

• if σ = 0, then assume that A ∈ O∞

(

r−1−ϵ
)

and B = O∞

(

r−2−ϵ
)

and
u|t∗=0 ∈ S ′,
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for some ϵ > 0,

then u ∈ Cω(T s
r M∗).

Here we used the notation S ′ for tempered distributions and the notation
F ∈ O∞(rα) for a complex tensor field F if and only if for all k ∈ N0, there is
a constant Ck > 0, such that

∣

∣∇kF
∣

∣ ≤ Ckr
α−k,

where |·| is the positive definite norm on complex tensors induced from the Eu-
clidean metric dt2 + dr2 + r2gS2 . The notation Q ∈ O∞(rα) for a differential
operator Q means that the coefficients of Q are in O∞(rα).

Remark 1.3. In the case when Λ = 0, one could weaken the assumptions on
u, A and B at spatial infinity in various ways and still get a Fredholm problem
following the arguments of [Vas]. Indeed, the natural condition on u|t∗=0 in the case
σ ∈ R\{0} is formulated microlocally in terms of variable order Sobolev spaces, c.f.

[Vas, Prop. 5.28]. Moreover, the threshold growth r
1
2 could be adjusted depending

on A and B, to allow for more general coefficients, see [Vas, Sec. 5.4.8]. We restrict
for simplicity to this setting.

The restriction Imσ ≥ 0 for Kerr spacetimes is due to the lack of a directly ap-
plicable Fredholm theory for the Fourier conjugated (in −t∗) operators in this case,
though alternatives are still available for studying these resonances. For functions,
the condition (ii) in Theorem 1.2 is equivalent to assuming that

u(t∗, r, ϕ∗, θ) = e−iσt∗w(r, ϕ∗, θ),

which should be compared with equation (4) above.
In the special case when a = 0, the Kerr(-de Sitter) spacetime simplifies to

the Schwarzschild(-de Sitter) spacetime. In this case, Theorem 1.1 and Theo-
rem 1.2 can be immediately deduced from the framework developed by Galkowski-
Zworski in [GZ21] as follows: Wave equations for modes with respect to (5) reduce
in the coordinate system (t∗, r, ϕ∗, θ) to a Keldysh type operator, exactly of the
type studied in [GZ21]. Galkowski-Zworski prove in [GZ21, Thm. 1] (generalizing
[Zui17, Thm. 1.3]) the analytic hypoellipticity of such operators, thus proving the
real analyticity of quasinormal modes when a = 0. In fact, if a = 0, the argument
goes through without assuming that the coefficients A and B are invariant under
∂ϕ∗

. Due to the rotation in the Kerr(-de Sitter) spacetime when a ̸= 0, this argu-
ment does not go through immediately. The key to be able to apply the analytic
hypoellipticity theory by Galkowski-Zworski to the case a ̸= 0 is the main new idea
of this paper and is described in the next subsection.

1.2. Non-degenerate Killing horizons. By checking the formula (3) for the
extended metric g∗, one observes that the Killing vector field

∂t∗ +
a

r20 + a2
∂ϕ∗

, (6)

where r0 ∈ (re, rc) is the unique point such that µ′(r0) = 0, is lightlike at the
horizons if and only if a = 0. This turns out to be exactly why the modes with
respect to (6) satisfy the useful Keldysh type equation if and only if a = 0. In the
Kerr(-de Sitter) spacetime, the Killing vector fields

∂t∗ +
a

r2e + a2
∂ϕ∗

, (7)

and ∂t∗ +
a

r2c + a2
∂ϕ∗

(if Λ > 0), (8)



ANALYTICITY OF QUASINORMAL MODES 7

are lightlike at the horizons H+
e and H+

c (if Λ > 0), respectively. We show that the
mode solutions with respect to these Killing vector fields satisfy equations which are
almost of Keldysh type. More precisely, the bicharacteristics associated to the mode
equation will have the radial point structure assumed by Galkowski-Zworski in their
analytic hypoellipticity result [GZ21, Thm. 2]. Now, if u satisfies the assumption
of Theorem 1.1, then

L∂t∗+ a
r2e+a2 ∂φ∗

u = −i

(

σ +
a

r2e + a2
k

)

u, (9)

and similarly with re replaced by rc. This shows that u is a mode solution with
respect to both Killing vector fields (7) and (8). The analytic hypoellipticity result
by Galkowski-Zworski thus shows that u is real analytic near the horizons H+

e

and H+
c (if Λ > 0). This is the main step in the proof of Theorem 1.1, the rest

follows by standard propagation of real analyticity for wave equations and analytic
hypoellipticity of elliptic equations (c.f. [Mar02, Chapter 4]).

In fact, this method is not specific to the Kerr(-de Sitter) spacetime, but turns
out to work for any Killing horizon in any real analytic spacetime, assuming the
surface gravity of the Killing horizon is nowhere vanishing. Assume therefore that
(M, g) is a real analytic spacetime, i.e. a time-oriented Lorentzian manifold, of
dimension n + 1 ≥ 2, with sign convention (−,+, . . . ,+) and with a real analytic
lightlike hypersurface H ⊂ M . We assume in particular that the metric g is real
analytic.

Definition 1.4. A real analytic Killing vector field W on M , such that W |H is
lightlike and tangent to H, is called a horizon Killing vector field with respect to
H.

For each Killing horizon H and horizon Killing vector field W , it is straightforward
to check that

∇WW |H = κW |H, (10)

for a real analytic function κ : H → R such that W |Hκ = 0.

Definition 1.5. Given a Killing horizon H and a horizon Killing vector field W ,
the surface gravity is the real analytic function κ defined in (10).

The key assumption to prove real analyticity of quasinormal modes is that the
surface gravity κ is nowhere vanishing. All horizons in Kerr(-de Sitter) spacetimes
have surface gravity proportional to µ′ at the horizons, where µ was defined in (1)
(c.f. Step 1 in the proof of Theorem 1.1). This is the reason our result only applies
to subextremal Kerr(-de Sitter) spacetimes, since subextremality makes sure that
µ′ does not vanish at the roots of µ, i.e. at the horizons.

Remark 1.6. We note in Lemma A.1 that if

Ric(X,W )|H = 0 (11)

for all X ∈ TH and H is connected, then the surface gravity κ is constant. In
practice, the condition (11) is often satisfied. Indeed, it is for example satisfied if the
spacetime satisfies the Einstein equation with a cosmological constant of any sign or
if the spacetime satisfies the dominant energy condition (c.f. [Pet21a, Rmk. 1.16]).
In case κ is constant, we get a dichotomy of non-degenerate Killing horizons, where
κ ̸= 0, and degenerate Killing horizons, where κ = 0.

As in the previous subsection, we fix r, s ∈ N0 and consider linear wave operators
on complex (r, s)-tensors T s

r M and write

P = ∇∗∇+A ◦ ∇+B
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with complex tensor fields

A : T ∗M ⊗ T s
r M → T s

r M,

B : T s
r M → T s

r M.

Our third main result in this paper is the following theorem:

Theorem 1.7. Assume that

• (M, g) is a real analytic spacetime,
• H ⊂M is a real analytic lightlike hypersurface,
• W is a real analytic horizon Killing vector field,
• the surface gravity κ is nowhere vanishing,
• A and B are real analytic and LWA = 0 and LWB = 0 on M .

If u ∈ C∞(T srM) satisfies

(i) Pu ∈ Cω(T s
r M),

(ii) LWu = −iσu for some σ ∈ C,

then there is an open subset U ⊃ H, such that u ∈ Cω(T sr U).

Note that all assumptions in Theorem 1.7 are local. As explained above, we will
apply Theorem 1.7 with

W = ∂t∗ +
a

r2e + a2
∂ϕ∗

,

and with

W = ∂t∗ +
a

r2c + a2
∂ϕ∗

,

if Λ > 0, which will prove the main step in Theorem 1.1 and Theorem 1.2, namely
the real analyticity near the horizons.

Our methods require the existence of a horizon Killing vector field. This al-
lows to reduce the wave equation for the modes to the useful (almost) Keldysh
form. Surprisingly, a horizon Killing vector field is quite often guaranteed to exist
in vacuum spacetimes with horizons. Proving the existence of a horizon Killing
vector field has been the central tool in various black hole uniqueness results for
the subextremal Kerr spacetime. This line of argument was pioneered by Hawking,
who showed that stationary real analytic vacuum black holes with a non-degenerate
event horizon necessarily admit a horizon Killing vector field [Haw72,HE73]. This
result was later generalized to higher dimensional analytic vacuum black holes by
Hollands-Ishibashi-Wald [HIW07] and Moncrief-Isenberg [MI08].

There is an analogous problem for compact (also called cosmological) Cauchy
horizons in vacuum spacetimes. A conjecture by Moncrief and Isenberg [MI83]
states that any compact Cauchy horizon in a vacuum spacetime admits a hori-
zon Killing vector field. The existence of a horizon Killing vector field in that
setting would prove that vacuum spacetimes with compact Cauchy horizons are
non-generic, which would support the Strong Cosmic Censorship Conjecture in
cosmology. During the last decades, Moncrief and Isenberg have made important
progress on their conjecture, assuming that the spacetime metric is real analytic
[MI83, IM85,MI20].

Remarkably, the existence of a horizon Killing vector field does often not even rely
on the real analyticity of the spacetime metric. Alexakis, Ionescu and Klainerman
proved in [AIK10a] (see also [IK13]) an analogue of Hawking’s theorem, showing
the existence of a horizon Killing vector field in a neighbourhood of any bifurcate
horizon in smooth vacuum spacetimes, as opposed to real analytic. This result has
been central in their approach to prove uniqueness of subextremal Kerr black holes
[AIK10b,AIK14] in the smooth setting. For compact Cauchy horizons in smooth
vacuum spacetimes, as opposed to real analytic, a horizon Killing vector field has
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been shown to exist by Petersen in [Pet21b], assuming that the surface gravity is a
non-zero constant (extending [FRW99,Pet21a,PR23]). The assumption on constant
surface gravity has recently been shown to be equivalent to a weak non-degeneracy
assumption for compact Cauchy horizons in vacuum spacetimes, see [BR21] and
[GM22].

Though the above mentioned results mainly concern vacuum spacetimes without
cosmological constant, one expects them to extend to the case of positive cosmolog-
ical constant and electro-vacuum spacetimes as well (c.f. [Rác00]). In conclusion,
studying wave equations close to non-degenerate horizons (bifurcate or constant
non-zero surface gravity), one might in quite wide generality be able to pass to
modes with respect to the horizon Killing vector field and analyze the (almost)
Keldysh type equation they are known to satisfy by the arguments in this paper.

2. Suitable coordinates near non-degenerate Killing horizons

The first step towards proving Theorem 1.7 is to define appropriate coordinates
near the lightlike hypersurface H:

Proposition 2.1. Assume the same as in Theorem 1.7. Then, for any p ∈ H, there
is a real analytic coordinate system (x0, . . . , xn), defined on an open neighborhood
U ∋ p, such that

• ∂x0
=W |U ,

• x1 is a defining function for U ∩H (i.e. U ∩H = x−1
1 (0) and dx1|U∩H ̸= 0),

• the metric g expressed in these coordinates satisfies

g|x1=0 =















0 1 0 . . . 0
1 0 0 . . . 0
0 0 g22|x1=0 . . . g2n|x1=0

...
...

...
. . .

...
0 0 gn2|x1=0 . . . gnn|x1=0















, (12)

where






g22|x1=0 . . . g2n|x1=0

...
. . .

...
gn2|x1=0 . . . gnn|x1=0






, (13)

is positive definite and

∂1g00|x1=0 = −2κ,

where κ is the (nowhere vanishing) surface gravity.

Remark 2.2. These coordinates are essentially the Gaussian null coordinates in-
troduced by Moncrief-Isenberg in [MI83], with the extra condition that ∂0 is the
horizon Killing vector field restricted to an open neighborhood. (This is precisely
what is obtained a posteriori after the construction of the horizon Killing vector
field in [MI83].)

Example 2.3. The simplest example of a spacetime satisfying all our assumptions
is M = R

n+1, equipped with the real analytic Misner metric

g = 2dx1dx0 + x1dx
2
0 +

n
∑

j=2

(dxj)2,

where H = {x1 = 0}, W = ∂0 and surface gravity κ = − 1
2 .
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Example 2.4. In fact, even in the subextremal Kerr(-de Sitter) spacetime, one
can easily choose coordinates which almost satisfy the conditions in Proposition
2.1, with one (insignificant) difference. To define these, it will be convenient to
introduce an intermediate coordinate system, which will only be defined near one
of the horizons. Let us start with the event horizon. In terms of Boyer-Lindquist
coordinates, define

t̃∗ := t− Φ̃(r),

ϕ̃∗ := ϕ− Ψ̃(r),

where Φ̃ and Ψ̃ satisfy

Φ̃′(r) = −b
r2 + a2

µ(r)
,

Ψ̃′(r) = −b
a

µ(r)
,

near r = re. This commonly used analytic coordinate system (t̃∗, r, ϕ̃∗, θ) is defined
near the future event horizon. Choose now the coordinates

x0 = t̃∗,

x1 = r − re,

x2 = ϕ̃∗ −
a

r2e + a2
t̃∗,

x3 = θ,

from which we get

∂x0
= ∂t̃∗ +

a

r2e + a2
∂ϕ̃∗

.

Defining

ψ(x3) := b
r2e + a2

r2e + a2 cos2(x3)
,

one easily computes that the metric g∗ at the future event horizon is given by

ψg∗|x1=0 =









0 1 0 0
1 0 0 0
0 0 g∗22|x1=0 0
0 0 0 g∗33|x1=0









, (14)

in these coordinates, where g∗22|x1=0, g∗33|x1=0 > 0. Moreover, we have

∂1(ψg∗00)|x1=0 = −2κe,

where the surface gravity κe is given by

κe =
µ′(re)

2b (r2e + a2)
> 0,

c.f. the computation in Step 1 in the proof of Theorem 1.1. These coordinates coin-
cide with the coordinates in Proposition 2.1, up to the multiplication by the positive
conformal factor ψ. Since conformal changes of the geometry only reparametrize
the lightlike geodesics, ψ is irrelevant for the analysis. However, it is of course
natural to construct the coordinates in Proposition 2.1 without a conformal factor.
This would here correspond to changing x1 to x̃1 by solving the geodesic equation

∇∂x̃1
∂x̃1

= 0, ∂x̃1
|x1=0 = ψ∂x1

|x1=0,

and changing the remaining coordinates xj to x̃j by demanding that

[∂x̃1
, ∂x̃j ] = 0, ∂x̃j

|x1=0 = ∂xj
|x1=0.
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In this new coordinate system, we get precisely the conditions in Proposition 2.1.
One analogously constructs similar coordinates near the future cosmological hori-
zon.

Proof of Proposition 2.1. Let first (x0, x2, . . . , xn) be real analytic coordinates in
an open neighborhood V ⊆ H of p, such that

∂0 =W |V .

Now let L be the unique lightlike real analytic vector field (transversal to H) along
V such that

g(L,L)|V = g(L, ∂j)|V = 0, g(L, ∂0)|V = 1 (15)

for j = 2, . . . , n. Define now the real analytic coordinate x1 in an open neighborhood
U ⊂M of p, such that V = U ∩H, by solving the geodesic equation in direction of
L, i.e. we solve

∇∂1∂1 = 0,

∂1|V = L

and set x1 = 0 at H. It follows that x1 is a defining function for U ∩ H. We also
extend the other coordinates to U by demanding that

[∂1, ∂0] = [∂1, ∂j ] = 0

in U , for j = 2, . . . , n. The inverse function theorem for real analytic functions
implies that this forms a coordinate system.

We now show that ∂0 =W |U . Recall first that ∂0|x1=0 =W |x1=0. By uniqueness
of ODE and since [∂0, ∂1] = 0, it suffices to show that [∂1,W |U ] = 0. This is
equivalent to W leaving the integral curves of ∂1 invariant. Since W is a Killing
vector field and the integral curves of ∂1 are geodesics, it thus suffices to prove that
the initial velocity ∂1|x1=0 of the geodesics are invariant under W , i.e. that

[W,∂1]|x1=0 = (∇W∂1 −∇∂1W ) |x1=0 = 0.

Since W |x1=0 = ∂0|x1=0, it follows that ∇W∂1|x1=0 = ∇∂0∂1|x1=0 and therefore,
since [∂0, ∂1]|x1=0 = 0, it suffices to prove that ∇∂1W |x1=0 = ∇∂1∂0|x1=0. Using
that W is a Killing vector field, we observe that

g(∇∂1W,∂1) =
1

2
LW g(∂1, ∂1)

= 0.

We also have

g(∇∂1∂0, ∂1)|x1=0 = g([∂1, ∂0], ∂1)|x1=0 − g(∇∂0∂1, ∂1)|x1=0

= −
1

2
∂0g(∂1, ∂1)|x1=0

= 0,

hence

g(∇∂1W,∂1)|x1=0 = 0 = g(∇∂1∂0, ∂1)|x1=0.

Moreover, for all j = 0, 2, . . . , n, we have

g(∇∂1W,∂j)|x1=0 = LW g(∂1, ∂j)|x1=0 − g(∇∂jW,∂1)|x1=0

= −g(∇∂j∂0, ∂1)|x1=0

= −g(∇∂0∂j , ∂1)|x1=0

= −∂0g(∂j , ∂1)|x1=0 + g(∂j ,∇∂0∂1)|x1=0

= g(∇∂1∂0, ∂j)|x1=0,
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where we have used that g(∂j , ∂1)|x1=0 is constant by (15). This shows that

∇∂1W |x1=0 = ∇∂1∂0|x1=0.

Taken together, this shows our claim that ∂0 =W |U .
It is now clear that the metric has the form (12) at x1 = 0 and that the part

(13) is positive definite. Using (10), we compute

∂1g00|x1=0 = 2g(∇∂1∂0, ∂0)|x1=0

= 2∂0g(∂1, ∂0)|x1=0 − 2g(∂1,∇∂0∂0)|x1=0

= −2g(∂1,∇WW )|x1=0

= −2κg(∂1,W )|x1=0

= −2κ.

This finishes the proof. □

3. Real analyticity near general horizons

The goal of this section is to prove Theorem 1.7. In order to explain the idea,
let us start by discussing the following example:

Example 3.1. The d’Alembert operator in Example 2.3 is given by

□ = ∂1 (x1∂1 − 2∂0)−

n
∑

j=2

∂2j .

The condition (ii) in Theorem 1.7 is that

u(x0, . . . , xn) = e−iσx0v(x1, . . . , xn).

Such a mode solution to □u = 0 must satisfy the reduced equation

∂1(x1∂1v)−
n
∑

j=2

∂2j v + 2iσ∂1v = 0.

This is a Keldysh type equation on the quotient space

R
n+1/∼ = R

n,

and [GZ21, Thm. 1] implies that v and hence u is real analytic.

The proof of Theorem 1.7 is a generalization of the argument in Example 3.1:

Proof of Theorem 1.7. Shrinking U if necessary, we can write the coordinates from
Proposition 2.1 as

(x0, . . . , xn) : U → (−ϵ, ϵ)x0
× (−δ, δ)x1

×Kx2,...,xn
⊂ R

n+1,

where K ⊂ R
n−1 is an open relatively compact subset and ϵ, δ > 0 are sufficiently

small. Since
∂0 =W |U

is a Killing vector field, we would like to eventually reduce P in the x0-direction.
For this, we first set

V := U/∼,

where p ∼ q if and only if

(x1(p), . . . , xn(p)) = (x1(q), . . . , xn(q)),

i.e. only x0(p) and x0(q) may differ. The induced coordinates on the quotient space
are

(x1, . . . , xn) : V → (−δ, δ)x1
×Kx2,...,xn

,

i.e. we have “dropped” the x0-coordinate.
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The complex (r, s)-tensors on U are complex linear combinations of basis ele-
ments of the form

eI := ∂i0 ⊗ . . .⊗ ∂ir ⊗ dxj0 ⊗ . . .⊗ dxjs ,

where I := (i1, . . . , ir, j1, . . . , js), and we of course have

L∂0eI = 0.

Let us define f := Pu and write

u =
∑

I

uIeI, f =
∑

I

fIeI.

Since ∂0 =W |U is a Killing vector field, we note that

[L∂0 ,∇] = 0,

and by the assumption in Theorem 1.7, we know that

L∂0A = LWA = 0, L∂0B = LWB = 0.

It thus follows that the wave equation Pu = f , restricted to the subset U , can be
written as a linear system of scalar wave equations

n
∑

α,β=0

−gαβ∂α∂βuI +

n
∑

γ=0

∑

J

AJ
I,γ∂γuJ +

∑

J

BJ
I uJ = fI, (16)

for each I := (i1, . . . , ir, j1, . . . , js), where the coefficients

gαβ , AJ
I,γ , BJ

I

are independent of x0. By the mode condition (ii), we note that

∂0uI = −iσuI, ∂0fI = −iσfI,

which implies that

uI = e−iσx0uI|x0=0, fI = e−iσx0fI|x0=0.

Inserting this into (16) gives a new system of equations
n
∑

i,j=1

−gij∂i∂juI|x0=0 +

n
∑

k=1

∑

J

CJ
I,k∂kuJ|x0=0 +

∑

J

DJ
I uJ|x0=0 = fI|x0=0,

where the new coefficients CJ
I,k and DJ

I are independent of x0. Note also that the
sums now exclude derivatives in x0. We have thus shown that the equation Pu = f
is equivalent to a system of equations

P̂ u|x0=0 = f |x0=0

on the quotient space

V = U/∼,

where the principal symbol of P̂ is

p(x1, . . . , xn, ξ1, . . . , ξn)Id, (17)

where Id is the identity matrix and

p(x1, . . . , xn, ξ1, . . . , ξn) :=
n
∑

i,j=1

g(x1, . . . , xn)
ijξiξj

for any (x1, . . . , xn, ξ1, . . . , ξn) ∈ T ∗V.
This is where the information about the metric g in Proposition 2.1 becomes

useful. We claim that first that

{p = 0} ∩ {x1 = 0} = N∗{x1 = 0}, (18)
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where N∗{x1 = 0} denotes the conormal bundle of the horizon {x1 = 0}. In order
to compute the components gij , for i, j = 1, . . . , n, we first need to invert the full
matrix of metric components. By Proposition 2.1, we conclude that

gαβ |U∩{x1=0} =















0 1 0 . . . 0
1 0 0 . . . 0
0 0 g22|x1=0 . . . g2n|x1=0

...
...

...
. . .

...
0 0 gn2|x1=0 . . . gnn|x1=0















(19)

for α, β = 0, . . . , n. The components appearing in (17) are given, at x1 = 0, by

gij |x1=0 =











0 0 . . . 0
0 g22|x1=0 . . . g2n|x1=0

...
...

. . .
...

0 gn2|x1=0 . . . gnn|x1=0











.

Since the matrix






g22|x1=0 . . . g2n|x1=0

...
. . .

...
gn2|x1=0 . . . gnn|x1=0







is positive definite by Proposition 2.1, we have proven (18).
By standard microlocal analytic hypoellipticity at elliptic points in T ∗V, see for

example [Mar02, Thm. 4.2.2 & Exe. 4.6.4], we hence conclude that uI is microlo-
cally real analytic everywhere at x1 = 0 except potentially at the conormal bundle
N∗{x1 = 0}, i.e. the analytic wave front set at x1 = 0 is contained in the conor-
mal bundle. We will show the real analyticity at the conormal bundle by applying
[GZ21, Thm. 2], which requires a computation of the Hamiltonian vector field Hp

at N∗{x1 = 0}. For this, we first compute ∂1p|N∗{x1=0}. At an arbitrary point

q := (0, x2, . . . , xn, ξ1, 0, . . . , 0) ∈ N∗{x1 = 0},

using (19) and Proposition 2.1, we compute

∂1p|q = ∂1g
11|q(ξ1)

2

= −
n
∑

α,β=0

gα1(∂1gαβ)g
β1|q(ξ1)

2

= −∂1g00|q(ξ1)
2

= 2κ(ξ1)
2.

We may now compute the Hamiltonian vector field as

Hp|q =

n
∑

j=1

(∂ξjp)∂j |q − (∂jp)∂ξj |q

= −(∂1p)∂ξ1 |q

= −2κ(ξ1)
2∂ξ1 |q,

where we recall that κ is nowhere vanishing. In particular

dp|N∗{x1=0}\{0} ̸= 0

and
Hp|N∗{x1=0}\{0} ∥ ξ · ∂ξ,

which means that the assumptions in [GZ21, Thm. 2] are satisfied. Note here that
[GZ21, Thm. 2] is only proven for scalar valued wave equations, but the argument
goes through line by line for systems of equations with a scalar principal symbol,
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as in our case. Indeed, [GZ21, Thm. 2] relies on Haber’s normal form in [Hab14]
only for the principal symbol. Thus, having scalar principal symbol suffices. Hence
[GZ21, Thm. 2] implies that uI|t∗=0 is microlocally real analytic also at the conormal
bundle. It follows that uI|t∗=0 is real analytic in an open subset containing {x1 = 0}.
Consequently, uI and therefore u is real analytic in an open neighborhood containing
p, which completes the proof. □

4. Joint quasinormal modes

We continue by proving the next main result of this paper:

Proof of Theorem 1.1. Let us for simplicity restrict in this proof to the case of
complex functions, as opposed to complex tensor fields of higher rank. This will
make the proof more transparent and avoid the technical details involved with
working with system of equations. All such technicalities are already present in the
proof of Theorem 1.7 above. We thus consider functions of the form

u(t∗, r, ϕ∗, θ) = e−i(σt∗+kϕ∗)v(r, θ),

which are smooth on

U = Rt∗ × (re − δ, rc + δ)r × S2
ϕ∗,θ ⊂M∗.

We aim to prove that u is real analytic on U .
Step 1: Real analyticity near the horizons. We would like to apply Theo-

rem 1.7 withH = H+
e/c and therefore need to check that all assumptions of Theorem

1.7 are satisfied. Firstly, the Kerr(-de Sitter) spacetime is a vacuum spacetime with
a non-negative cosmological constant, so the dominant energy condition is clearly
satisfied. Moreover, the horizons H+

e/c are real analytic lightlike hypersurfaces.

Secondly, the Killing vector fields

We/c := ∂t∗ +
a

r2e/c + a2
∂ϕ∗

are clearly lightlike at H+
e/c, respectively. Since A and B are invariant under ∂t∗

and ∂ϕ∗
, they are also invariant under We/c. Further, the surface gravity κe/c of

the horizons is computed using the extended metric in (3) as follows:

∂rg∗
(

We/c,We/c

)

|re/c = 2g∗
(

∇∂rWe/c,We/c

)

|re/c

= 2g∗
(

∇We/c
∂r,We/c

)

|re/c

= −2g∗
(

∂r,∇We/c
We/c

)

|re/c

= −2κe/c g∗
(

∂r,We/c

)

|re/c

= ∓
2κe/c

b

r2e/c + a2 cos2(θ)

r2e/c + a2
.

On the other hand, we have

∂rg∗
(

We/c,We/c

)

|re/c = −∂r





µ(r)

b2 (r2 + a2 cos2(θ))

(

r2 + a2 cos2(θ)

r2e/c + a2

)2


 |re/c

+ ∂r





c(θ) sin2(θ)

b2 (r2 + a2 cos2(θ))

(

a− a
r2 + a2

r2e/c + a2

)2


 |re/c

= −
µ′(re/c)

b2

r2e/c + a2 cos2(θ)
(

r2e/c + a2
)2 .
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The surface gravity of the horizons H+
e/c is thus given by

κe/c = ±
µ′(re/c)

2b(r2e/c + a2)
.

Since this is non-zero, we conclude that H+
e/c are non-degenerate Killing horizons

with respect to We/c. Finally, we compute that

LWe/c
u = L∂t∗u+

a

r2e/c + a2
L∂φ∗

u

= −iσu− i
a

r2e/c + a2
ku

= −i

(

σ +
a

r2e/c + a2
k

)

u,

which shows that u is a mode with respect to We/c. We may therefore apply
Theorem 1.7 and conclude that u is real analytic in open neighborhoods of the
horizons, which are invariant under We and Wc, respectively.

Step 2: Real analyticity in the domain of outer communication. We
now prove real analyticity of u in the open subset

W := Rt∗ × (re, rc)r × S2
ϕ∗,θ.

(Recall that rc = ∞ in the Kerr spacetime). The Boyer-Lindquist coordinates
(t, r, ϕ, θ) are defined on this set and are convenient to work with. Since

∂t = ∂t∗ |W , ∂ϕ = ∂ϕ∗
|W ,

the conditions (ii) and (iii) in Theorem 1.1 imply that

u(t, r, ϕ, θ) = e−i(σt+kϕ)w(r, θ),

so we can equally well consider the modes with respect to the Boyer-Lindquist
coordinates. The dual metric G of g in Boyer-Lindquist coordinates is

(r2 + a2 cos2(θ))G = µ(r)∂2r + c(θ)∂2θ +
b2

c(θ) sin2(θ)

(

a sin2(θ)∂t + ∂ϕ
)2

−
b2

µ(r)

(

(r2 + a2)∂t + a∂ϕ
)2
.

(20)

We begin by proving real analyticity of w in the open subset

(re, rc)r × (0, π)θ

i.e. we leave out the north and the south pole of S2
ϕ,θ for the moment. Since we

have assumed that the coefficients of P are independent of t and ϕ, the function w
satisfies an induced equation on (re, rc)r × (0, π)θ, with principal part given by

1

r2 + a2 cos2(θ)

(

µ(r)∂2r + c(θ)∂2θ
)

. (21)

Since µ(r), c(θ) > 0 in this set, the induced equation for w is elliptic with real
analytic coefficients. Standard analytic hypoellipticity, see for example [Mar02,
Thm. 4.2.2 & Exe. 4.6.4], therefore implies that w is real analytic in (re, rc)r×(0, π)θ
and hence u is real analytic in

Rt × (re, rc)r × S1
ϕ × (0, π)θ.

We now turn to show that u is also real analytic at the north and south poles
of S2

ϕ,θ, i.e. at the limits θ = 0 and θ = π, still with r ∈ (re, rc). Note that the

expression (21) does not extend smoothly to those points. We now write

u(t, r, ϕ, θ) = e−iσtz(r, ϕ, θ),
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i.e. the idea is to show real analyticity of

z(r, ϕ, θ) := e−ikϕw(r, θ),

which is smooth in

(re, rc)r × S2
ϕ,θ.

Since the coefficients of P are independent of t, we get an induced equation for z,
with real analytic coefficients and principal part

µ(r)∂2r + c(θ)∂2θ +
b2

c(θ) sin2(θ)
∂2ϕ −

b2

µ(r)
a2∂2ϕ. (22)

We claim that this operator is elliptic at θ = 0 and θ = π. For this, we note that

c(θ)∂2θ +
b2

c(θ) sin2(θ)
∂2ϕ =

(

c(θ)−
b2

c(θ)

)

∂2θ +
b2

c(θ)

(

1

sin2(θ)
∂2ϕ + ∂2θ

)

=
1

c(θ)

(

c(θ)2 − b2
)

∂2θ +
b2

c(θ)
GS2

=
1

c(θ)

(

(

b−
Λa2

3
sin2(θ)

)2

− b2

)

∂2θ +
b2

c(θ)
GS2

= h(θ) sin2(θ)∂2θ +
b2

c(θ)
GS2 ,

for some function h, which extends real analytically to S2 and where GS2 is the
dual metric to the standard metric on S2. Since both sin2(θ)∂2θ and GS2 extend real
analytically to S2, we can evaluate this expression at θ = 0 or θ = π and conclude
that (22) is simply

µ(r)∂2r + bGS2

at the north and the south pole of S2. Since µ(r) > 0 for r ∈ (re, rc) and b > 0,
we conclude that (22) is indeed elliptic there as well. Again, standard real analytic
hypoellipticity, as in for example [Mar02, Thm. 4.2.2 & Exe. 4.6.4], implies that
z, and therefore u, is real analytic also at the north and the south pole if r ∈
(re, rc). To sum up, we now know that u is real analytic in the domain of outer
communication and slightly beyond the horizons, i.e. in a region of the form

Rt∗ × (re − ϵ, rc + ϵ)r × S2
ϕ∗,θ.

Step 3: The region beyond the horizons. It remains to prove real analytic-
ity in the regions beyond the horizons (only the event horizon if Λ = 0). Consider
first the region

Rt∗ × (re − δ, re)r × S2
ϕ∗,θ,

beyond the event horizon. We may use Boyer-Lindquist coordinates also here,
since this region does not intersect any horizon, where the coordinates would not
be defined. Let us again consider

z(r, ϕ, θ) := e−ikϕw(r, θ),

which by assumption is smooth in

(re − δ, re)r × S2
ϕ,θ.

In this set, we have µ(r) < 0. Again, the coefficients of P are independent of t and
the principal part of the induced equation for z can be read off from (22) to be

− |µ(r)| ∂2r + c(θ)∂2θ +

(

b2

c(θ) sin2(θ)
+

b2

|µ(r)|
a2
)

∂2ϕ.
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Since the operator

c(θ)∂2θ +

(

b2

c(θ) sin2(θ)
+

b2

|µ(r)|
a2
)

∂2ϕ.

is elliptic on

{r} × S2
ϕ,θ,

for all r ∈ (re − δ, re), we conclude that all inextendible bicharacteristics of the
induced operator pass through all hypersurfaces

{r} × S2
ϕ,θ

precisely once. Moreover, the induced equation for z is a linear wave operator with
real analytic coefficients on the

(re − δ, re)r × S2
ϕ∗,θ.

and we know by Step 1 that z is real analytic in an open subset

(re − ϵ, re)× S2
ϕ∗,θ

for some ϵ > 0. Propagation of analytic singularities, see for example [Mar02, Thm.
4.3.7 & Exe. 4.6.4], therefore implies that z is real analytic in

(re − δ, re)r × S2
ϕ,θ,

and hence u is real analytic in

Rt × (re − δ, re)r × S2
ϕ,θ.

One similarly treats the subset

Rt × (rc, rc + δ)r × S2
ϕ,θ,

in case Λ > 0. This finishes the proof. □

5. Standard quasinormal modes

We finish by proving our last main result:

Proof of Theorem 1.2. As in the proof of Theorem 1.1, let us for simplicity restrict
to the case of complex functions, as opposed to complex tensors of higher rank.
This will again make the proof more transparent and avoid technical details that
are completely analogous to the corresponding part of the proof of Theorem 1.7.
It is convenient to change coordinate system to one that is better suited for the
quasinormal mode condition (ii) in Theorem 1.2. We introduce the new coordinate
system (τ∗, r, ψ∗, θ), where

(

τ∗
ψ∗

)

:=

(

t∗
ϕ∗ −

a
r2
0
+a2

t∗

)

, (23)

with again r0 ∈ (re, rc) is uniquely defined by

µ′(r0) = 0,

and r0 = ∞ if Λ = 0. Note that

∂τ∗ = ∂t∗ +
a

r20 + a2
∂ϕ∗

, ∂ψ∗
= ∂ϕ∗

are both Killing vector fields, since a and r0 are constant. It follows that u is a
quasinormal mode if and only if

u(τ∗, r, ψ∗, θ) = e−iστ∗z(r, ψ∗, θ).

where z is smooth in

(re − δ, rc + δ)r × S2
ψ∗,θ,
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where rc = ∞ if Λ = 0. Since the coefficients of P are independent of t∗ and ϕ∗,
and therefore of τ∗, it follows that z satisfies a τ∗-reduced equation

Pσz = 0, (24)

in

(re − δ, rc + δ)r × S2
ψ∗,θ,

where

Pσu := eiστ∗P
(

e−iστ∗u
)

.

We now further decompose into angular modes

z(r, ψ∗, θ) =
∑

k∈Z

e−ikψ∗vk(r, θ), (25)

where we claim that each summand

e−ikψ∗vk(r, θ) =
1

2π
e−ikψ∗

∫ 2π

0

eiksz(r, s, θ)ds

is smooth on (re−δ, rc+δ)r×S
2
ψ∗,θ

. Indeed, let u be the unique solution at a point

(s, r, p) ∈ Rs × (re − δ, rc + δ)r × S2
ψ∗,θ

to

(∂s + ik)u(s, r, p) =
1

2π
z
(

r, expp (s∂ψ∗
)
)

,

u(0, r, p) = 0.

where exp(s∂ψ∗
) denotes the flow along ∂ψ∗

at time s, starting at p. Then u is
smooth and since

e−ikψ∗vk(r, θ) = u(2π, r, p),

where p = (ψ∗, θ), it is smooth as claimed. Since the coefficients of P are indepen-
dent of t∗ and ϕ∗, and therefore of ψ∗, and Pσ acts diagonally on the ψ∗-Fourier
modes, it follows that

Pσ
(

e−ikψ∗vk
)

= 0,

in

(re − δ, rc + δ)r × S2
ψ∗,θ,

for each k ∈ Z.
Now, if Λ > 0, then [PV, Thm. 2.1] implies that the operator Pσ is a Fredholm

operator between appropriate function spaces containing e−ikψ∗vk. Since the kernel
is finite dimensional, it follows that only finitely many such terms can be non-zero.
We conclude that

z(r, ψ∗, θ) =

N
∑

j=1

e−ikjψ∗vkj (r, θ) (26)

and therefore

u(τ∗, r, ψ∗, θ) =
N
∑

j=1

e−i(στ∗+kjψ∗)vkj (r, θ)

=

N
∑

j=1

e
−i

((

σ− a

r2
0
+a2

kj

)

t∗+kjϕ∗

)

vkj (r, θ).

Each term satisfies the assumption of Theorem 1.1 and are therefore analytic. Hence
the finite sum is also real analytic, concluding the proof when Λ > 0.
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In order to similarly proceed in the case Λ = 0, we need to instead use the
Fredholm theory developed in [Vas] (remember that the above coordinate change
is trivial when Λ = 0) to deduce that in fact

z(r, ϕ∗, θ) =
N
∑

j=1

e−ikjϕ∗vkj (r, θ) (27)

is a finite sum. In this case we have rc = ∞ and the cosmological horizon is
replaced by an asymptotically Euclidean end. For the analysis near the event
horizon, the methods based on [Vas13] described above can be applied without
changes. However, the analysis near the asymptotically Euclidean end cannot be
based on [Vas13], we instead need to use a slight generalization of [Vas, Prop. 5.28].
Let us therefore briefly recall how the Fredholm problem was set up in [Vas, Prop.
5.28]. We begin by bordifying the space

(re − δ,∞)r × S2
ϕ∗,θ,

at r = ∞ by introducing x := 1
r , i.e. we radially compactify spacelike infinity. We

thus write

V :=

[

0,
1

re − δ

)

x

× S2
ϕ∗,θ ⊂ R3,

where R3 is the radially compactified R
3. On these spaces, we define

Ys,lsc :=
{

u|V | u ∈ Hs,l(R3)
}

,

where s, l are variable order differential and decay orders (as x → 0), which we
will choose below. We refer to [Vas, Sec. 5.3.9] for the definition of variable order

weighted Sobolev spaces Hs,l(R3). Note that near the spacelike hypersurface
{

x =
1

re − δ

}

,

Ys,lsc is similar to Ys introduced above. Analogous to above, define

X s,l
sc :=

{

u ∈ Ys,lsc | P̂ u ∈ Ys−1,l+1
sc

}

and consider

P̂ : X s,l
sc → Ys−1,l+1

sc . (28)

The characteristic set of P̂ has two components, one close to the event horizon and
a scattering characteristic set at x = 0, in particular, the characteristic set at fiber
infinity near x = 0 is empty. By the decay assumptions on A and B, the scattering
principal symbol of P̂ at x = 0 is given by

p|x=0(ξ) = |ξ|
2
Id− σ2,

for the fixed σ with Imσ ≥ 0, and any

ξ ∈ scT ∗
{x=0}V.

If Imσ > 0 it follows that σ2 /∈ [0,∞), which implies that P̂ is elliptic as set
up in (28) and consequently a Fredholm operator for any order s, l. However, in
case σ ∈ R\{0}, there is a scattering characteristic set at x = 0, given by all
ξ ∈ scT ∗

{x=0}V with |ξ| = |σ|. As shown in [Vas, p. 311–314], the sets

L± =
{

(y, ξ) ∈ scT ∗
{x=0}V | y = cξ, |ξ|

2
= σ2,±c > 0

}

,
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act as a source and a sink, respectively, for the Hamiltonian flow. It is also shown
that (28) is a Fredholm operator (c.f. [Vas, Prop. 5.28]), if l is chosen such that
either

l|L+
< −

1

2
and l|L−

> −
1

2

or the other way around (with L+ and L− swapped). The decay assumption on
u|t∗=0 in Theorem 1.2 ensures that z|t∗=0 ∈ X s,l

sc , and therefore each summand in

(25), is in ker(P̂ ) as set up in (28). We have thus proven (26), for the case when
Λ = 0 and σ ̸= 0 (and Imσ ≥ 0).

The case which remains is when Λ = σ = 0. The structure of the operator P̂
now changes drastically near x = 0 and is more naturally thought of as a b-operator
in the sense of Melrose [Mel93], see also [GH08,GH09]. We follow [Vas, Sec. 5.6]
for the Fredholm theory. Concretely, we note that the fast decay assumptions on
A and B ensure that

x−
n−2

2 x−2P̂ x
n−2

2

is a b-operator with normal operator

−(x∂x)
2 +∆h +

(n− 2)2

4

at x = 0. Choose a smooth function f : [0,∞) → [0,∞), such that f(x) = x for
x ≤ ϵ and f(x) = 1 for x ≥ 2ϵ and define

L := f(x)−
n−2

2 f(x)−2P̂ f(x)
n−2

2 ,

where ϵ > 0 small enough so that the component of the characteristic set of P̂ away
from x = 0 is unaffected by this conjugation. We now define the spaces

Ys,lb := {u|V | u ∈ Hs,l
b (R3)},

where Hs,l
b (R3) is defined in [Vas, p. 353] and

X s,l
b :=

{

u ∈ Ys,lb | Lu ∈ Ys−1,l
b

}

.

By combining the discussion on [Vas, p. 361] (c.f. also [Vas, Thm. 5.11]) with the
theory near the event horizon described above, we know that

L : X s,l
b → Ys−1,l

b

is a Fredholm for all s, l ∈ R, such that

l2 −
(n− 2)2

4

is not an L2 eigenvalue of ∆ on the 2-sphere. Since the set of L2-eigenvalues is
discrete, we can choose l arbitrarily large and still have a Fredholm operator. It
follows that the kernel of L is finite dimensional. Now, the kernel of P̂ and the

kernel of L are related just by a multiplication with f(x)
n−2

2 and we have thus

proven the ker(P̂ ) is finite dimensional and consequently (26). This finishes the
proof. □

Appendix A. Surface gravity of a Killing horizon

Let us verify the claim in Remark 1.6 about the surface gravity of a Killing
horizon:

Lemma A.1. Consider a smooth spacetime (M, g), with a smooth connected light-
like hypersurface H ⊂M and a smooth Killing vector field W on M , such that W |H
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is nowhere vanishing, lightlike and tangent to H. If (11) is satisfied, then there is
a constant κ ∈ R, such that

∇WW |H = κW |H.

Proof. Using thatW |H is lightlike and tangent to H, we compute that for all vector
fields X,Y , tangent to H, we have

g(∇XW,Y )|H =
1

2
LW g(X,Y )|H +

1

2
(g(∇XW,Y )|H − g(∇YW,X)|H)

=
1

2
(Xg(W,Y )|H − Y g(W,X)|H − g(W, [X,Y ])|H)

= 0,

since also [X,Y ] is tangent to H. Hence ∇XW is tangent to H and normal to H,
meaning that there is a unique one-form ω on H, such that

∇XW |H = ω(X)W |H.

The assertion in the lemma is thus that ω(W |H) is constant. Since W is a Killing
vector field, with W |H tangent to H, it is immediate that

LWω|H = 0.

For any X ∈ TH, we have

X(ω(W |H)) = dω(X,W |H) +W |H (ω(X)) + ω([X,W |H])

= dω(X,W |H) + LW |Hω(X)

= dω(X,W |H).

It thus remains to show that dω(X,W |H) = 0, for all X ∈ TH. For this, we first
note that for all X,Y ∈ TH, we have

R(X,Y )W |H = ∇X∇YW |H −∇Y∇XW |H −∇[X,Y ]W |H

= ∇X(ω(Y )W |H)−∇Y (ω(X)W |H)− ω([X,Y ])W |H

= X(ω(Y ))W |H + ω(Y )ω(X)W |H − Y (ω(X))W |H

− ω(X)ω(Y )W |H − ω([X,Y ])W |H

= dω(X,Y )W |H.

Let e0 :=W |H, e2, . . . , en locally span TH and let e1 be the unique locally defined
vector field along H, transversal to H, such that

g(e1, e0)|H = 1, g(e1, ej)|H = 0,

for j = 1, . . . , n. We now trace the curvature expression using this local frame, with
any X ∈ TH, and compute

Ric(X,W )|H =

n
∑

α,β=0

gαβR (eα, X,W, eβ) |H

= R (W,X,W, e1) |H +R (e1, X,W,W ) |H

+

n
∑

i,j=2

gijR (ei, X,W, ej) |H

= dω(W |H, X)g(W, e1) +
n
∑

i,j=2

gijdω(ei, X)g(W, ej)|H

= dω(W |H, X).

We therefore conclude that

Xκ = X(ω(W |H))
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= dω(W |H, X)

= Ric(X,W )|H

= 0,

for all X ∈ TH, which proves that κ is constant. □
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3921–3943.

[PV] Oliver Petersen and András Vasy, Wave equations in the Kerr-de Sitter spacetime: the

full subextremal range, J. Eur. Math. Soc. (to appear) arXiv: 2112.01355.
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[Vas13] András Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces
(with an appendix by Semyon Dyatlov), Invent. Math. 194 (2013), no. 2, 381–513.

[Vas] , A Minicourse on Microlocal Analysis for Wave Propagation, Asymptotic Anal-
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