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This paper proposes an unsupervised machine learning-based approach for cyberattack detection in AC
microgrids with distributed secondary control architecture. The proposed approach is fully unsupervised and
only utilizes the system’s normal datasets for the training of the algorithm. The attack under study is a false data
injection (FDI) attack tampering with the operating frequency of inverter-based distributed generators (DGs).
The paper utilizes a 1D Convolutional Autoencoder (CAE) for cyberattack detection on a microgrid’s distributed
secondary frequency control. An autoencoder is a neural network architecture, where the model is trained to
reconstruct its input in an unsupervised manner. CAE can be applied to a time-series dataset to extract features
and exploit the known correlation between neighboring temporal features. Due to the correlation between the
operating frequency of DGs and their active power ratios, the paper uses the time series of these two variables
as inputs to CAE. The effectiveness of the proposed approach has been verified using a simulated microgrid
test system in Matlab/Simulink.

1. Introduction cascading failures and long-term power outages for customers. Cyber-

attacks are identified as threatening risks for all countries in the next

Due to the vast utilization of advanced communication, control,
and monitoring technologies modern electric power grids are prone to
cyberattacks at different levels [1]. These technologies have added a
new layer to the conventional physical layer of power grids, namely the
cyber layer. Cyber threats can not only target the communication sys-
tem of the cyber layer but also the intelligent electronic devices (IED)
used for control, protection, and monitoring applications. According
to [2], there are around sixty-three different types of cyberattacks that
can potentially target electric grids at different levels. Among those,
False data injection (FDI) attacks are common types of attacks that
launch control and monitoring units, tamper with the data transferred
through the communication links, and affect its integrity [3-5]. On the
other hand, a Denial-of-Service (DoS) attack is another common type
of attack that can limit the availability of communication networks for
data transfer among IEDs. Cyberattacks can have detrimental impacts
on power grids such as cascading failures and power outages for cus-
tomers as well as blackouts by (i) making the system unstable from the
voltage and frequency perspective, (ii) deteriorating the performance of
power system controllers, and (iii) exposing lines and transformers to
overloading conditions by violating their thermal limits. Cyberattacks
can also be initiated by attackers to mask a physical attack may lead to
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ten years according to the World Economic Forum [6]. In [2], some
of the real cyberattacks are surveyed which are the Slammer worm of
the David-Besse nuclear plant in Ohio in 2003, the Ukraine cyberattack
in 2015 with 225,000 customers affected, Malware Triton in the Saudi
Arabian oil refinery in 2017, a cyberattack in electric power utilities
of US in 2019, and India’s Kudankulam Nuclear Power Plant attack in
20109.

The focus of this paper is on the cyber security of microgrids.
Microgrids facilitate the integration of renewable energy resources and
can provide a reliable source and delivery of power to their customers
since they can operate in both grid-connected and islanded modes. To
accommodate a reliable operation in both operating modes, microgrids
are equipped with a hierarchical control structure consisting of pri-
mary, secondary, and tertiary control levels [7,8]. Among these control
levels, secondary and tertiary control levels highly rely on a commu-
nication network to operate. The secondary control level can adopt
both traditional centralized and advanced distributed communication
architectures to perform frequency restoration and voltage regulation
[7,9-12]. In this paper, we focus on the distributed secondary control
of microgrids since an FDI attack on one of the distributed generators
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(DGs) can be easily propagated to other DGs through the distributed
communication network.

Cyberattack detection in microgrids has been addressed in the liter-
ature extensively. FDI attacks have been introduced as common types
of attacks in microgrids and most of the existing techniques utilize
data-driven approaches for this purpose. For centralized communica-
tion architectures, Kalman filters [13], adaptive cumulative sum using
Markov-chain analysis [14], matrix separation technique, graphical
method [15], sparse optimization [16], and cosine similarity matching
and Chi-square detector [17]. In [18], an anomaly detection technique,
centered around prediction intervals, is presented to differentiate be-
tween malicious attacks of varying severity levels during a secure
operation. In [19], deep learning along with the Wavelet Singular
Values approach are utilized for FDI attack detection in DC microgrids.
The cyberattack detection for the distributed secondary control of
microgrids has been addressed in [4,5,20]. Signal temporal logic is used
for cyberattack detection of a distributed control of a microgrid in [20].
Cyberattack detection using the Kullback-Leibler (KL) divergence for
both AC and DC microgrids is addressed in [4,5]. An observer-based
approach for attack detection in distributed control of microgrids is pro-
vided in [21]. Supervised artificial neural networks and deep learning
algorithms are used in [22,23] for cyberattack detection in power grids.
An artificial neural network is also used in [24] for attack detection
in microgrids. In [25], reinforcement learning is utilized to generate
data required for training artificial neural networks for attack detec-
tion in DC microgrids. The literature review shows that the existing
cyberattack detection techniques (like supervised machine learning
algorithms) need a large amount of data under attack to train. This is
hard to gather since cyberattacks have low probability and occurrence
in power grids. Unsupervised cyberattack detection has been addressed
in [26,27]. In [26], feature extraction with symbolic dynamic filtering
(SDF) is utilized for feature extraction for anomaly detection in a smart
grid. This approach is based on the statistical correlation between mea-
surements received from sensors in a conventional power grid. Ref. [27]
utilizes Long Short-Term Memory (LSTM) Stacked Autoencoder (SAE)
for attack detection in DC microgrids. While LSTM SAE can provide
high accuracy in attack detection, its implementation requires extensive
memory and is not computationally efficient compared to convolutional
neural networks (CNN).

This paper proposes an approach for cyberattack detection of AC
microgrids in the presence of a distributed secondary control. The
proposed approach is based on unsupervised CNN for detecting FDI
attacks. The considered FDI attack changes the operating frequency
of inverter-based DGs in an islanded microgrid. Due to the extensive
variety of cyberattacks and the difficulty of gathering sufficient training
data for supervised machine learning algorithms, it is of particular
importance to adopt unsupervised machine learning algorithms that
can detect previously unseen cyberattacks. Moreover, the unsupervised
algorithms should require a low number of nontrainable parameters
that can be chosen by inference from the available data or by rea-
sonable heuristics. This paper utilizes a 1D Convolutional Autoencoder
(CAE) for cyberattack detection on microgrids distributed secondary
frequency control. An autoencoder is a neural network architecture,
where the model is trained to reconstruct its input in an unsupervised
manner. CAE can be applied to a time-series dataset to extract fea-
tures and exploit the known correlation between neighboring temporal
features. The advantage of 1D CNN to its peers like Recurrent Neural
Networks (RNN) and Temporal Convolutional Networks (TCN) are:
(i) 1D CNNs can process input sequences in parallel, making them
more computationally efficient. (ii) 1D CNNs are effective in capturing
global dependencies in data, as they consider entire input windows
simultaneously. (iii) 1D CNNs have inherent regularization benefits
through weight sharing and pooling layers, which can help prevent
overfitting. (iv) 1D CNNs are very effective and efficient tools for
feature extraction. (v) 1D CNNs are easier to implement than TCN.
(vi) 1D CNNs are more computationally efficient and memory-efficient
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compared to TCNs which makes them a good candidate for hard-
ware implementation. Without loss of generality, it is assumed that
FDI attack tampers with the operating frequency of DGs. Due to the
correlation between the operating frequency of DGs and their active
power ratios, we use the time series of these two variables as inputs to
CAE. CAE only needs to be trained with system normal data (i.e., no
data under attack is required). The paper has verified the effectiveness
of the proposed approach using a simulated microgrid test system in
Matlab/Simulink.

This paper is an extension of the previous work of authors in [28].
In the previous work of authors in [28], a linear (dot product) kernel
Gaussian Process Regression (GPR) was used to estimate the frequency
of DGs using instant values of the active power ratios as the inputs. GPR
was trained using the normal data only, i.e., data that did not contain
anomalies. The strategy adopted in the GPR is to learn the relationship
between the active power ratio (input or predictor) and the frequency
(used as desired output or regressor). The GPR measures the likelihood
of the predicted frequency error and a one-class SVM applied to the
output of the GP raises a flag if this likelihood is low enough to be
classified as an anomaly. This setup makes the approach unsupervised,
as the training does not require labeled data. In the current paper,
we have replaced the GP with a convolutional neural network (CNN).
The advantages of using CNN compared to the Gaussian Process are as
follows:

1. Instead of using instantaneous values of power ratios as inputs,
the 1D CNN has more flexibility to use an input corresponding
to a sliding window of the observed time series of both the
frequency and active power ratios as the inputs. The 1D Convo-
lutional Autoencoder (CAE) learns the features of the time series
of frequency and active power ratio. The 1D CAE can technically
identify anomalies on any of its inputs.

2. CNN has a more efficient performance on large datasets which
makes it more suitable for large-scale microgrids. While the GPR
needs a block training (training with all the available training
data at the same time) with a computational burden of O(N?3),
N being the number of training samples, the CNN is trained in
mini-batches, which eases the computational burden and allows
to incrementally train the structure as new data is available.
This, when the structure of the CNN has a moderate number of
parameters compared to the number of data (as in the case of
our approach), allows the CNN to extract non-stationary patterns
in the data and changes of relationships over time (in other
words, it adapts to the nonstationary environment) which is
more suitable for dynamic environments like microgrids.

3. CNN can automatically learn hierarchical features from the data
which helps with capturing complex patterns and representa-
tions in the input data. However, the effectiveness of the GP
heavily depends on the proper selection of a kernel function to
learn explicit features.

The contributions of this paper are as follows:

» An unsupervised cyberattack detection scheme for the dis-
tributed secondary control of microgrids is proposed.

» The proposed approach only requires system normal simulation
data to be trained.

» The proposed approach utilizes CAE as an unsupervised CNN
algorithm with a limited number of parameters to be tuned.

The rest of the paper is organized as follows. Section 2 discusses
the microgrid’s primary and secondary control levels. In Section 3,
first, the FDI attack under study is introduced. Then, the details of
the cyberattack detection algorithm using CAE are proposed. Section 4
uses simulated data from a microgrid test system to verify the effective-
ness and accuracy of the proposed attack detection scheme. Section 5
concludes the paper.
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2. Microgrid hierarchical control

This paper addresses the cyberattack detection of an islanded AC
microgrid comprised of inverter-based DGs. A microgrid is controlled
by its hierarchical control system which consists of three control levels,
i.e., primary, secondary, and tertiary controls [7,8]. The primary con-
trol is implemented through the so-called droop techniques to provide
frequency and voltage stability in the microgrid after islanding. On
the other hand, the secondary control level’s goal is to restore the
microgrid’s frequency or regulate its voltage. Herein, the impact of
cyberattacks on the microgrid’s primary and secondary frequency con-
trol is of concern. The relationships between the distributed secondary
control, primary control, and DG’s internal control loops are illustrated
in Fig. 1.

In the microgrid’s hierarchical control, the primary control’s fre-
quency droop technique is implemented at each DG locally. The fre-
quency droop in ith DG is formulated as

; = W, —mp; P, @

where w; is the operating angular frequency in ith DG; w,; is the
frequency droop reference value; mp; is the droop coefficient; P, is ith
DG’s active power. The droop control coefficients should be selected
based on the maximum available active power at each DG, i.e.,

Mmpy Praxi = ijPmax,j’V[’j ()]

Not only controlling the microgrid’s frequency, but the primary
control also ensures that each DG contributes active power based on its
maximum available active power. This means that the primary control
level satisfies
P, P

= Vi, j 3
- j ®)

max,j

P

max,i

where P, ; is the maximum available active power at ith DG. Equiv-

alently, (2) can be written as

mp Py =mp;P;, Vi, j 4

As seen in (1), because of the negative slope of —mp;, the ith DG op-
erating frequency, w;, will be slightly smaller than »,; which is initially
set based on the nominal frequency of microgrid. This deviation in the
microgrid’s frequency can be compensated by adjusting w,;, which is
the role of the microgrid’s secondary frequency control level.

This paper assumes a distributed secondary frequency control. In
the distributed secondary control, distributed control units are locally
available on each DG and they can communicate with each other by
a communication network in a distributed fashion. The distributed
control protocols at each DG are created to adjust w,,; of the frequency
droop control. These protocols can be obtained by differentiating the
droop characteristic in (1), i.e.,

@, (1) = @;(1) + mp, By(1). ®

The auxiliary frequency and active power control variables u,,; and up;
are defined as

@;(1) = uy, (1) 6)
mp; P (1) = up;(0). )
The droop reference w,,; is calculated from the auxiliary control inputs

using

w,; = /(uw,- +up;)dt. ®

The objectives of the secondary frequency control are twofold. The
first objective is to restore the microgrid frequency to the reference
frequency w,; which means that all the operating frequencies of DGs
should satisfy

0 == 0N = Oy 9
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The second objective is to ensure that the active powers of DGs satisfy
(3). To reach these objectives, the auxiliary frequency and active power
control inputs, i.e., (6) and (7), in a distributed manner, are defined as

i O=Cn( Y, 1y(@,(D-,(0) 48, (@ —,(1)) (10)
JEN;

up () = cp; D @ (mp; Py(1) = mp, (1)) a1
JEN;

where c,,; and cp; are two control parameters. g;; denotes the existence
of a communication link between ith and jth DGs. If ith DG can receive
information from jth DG, then g;; = 1, otherwise a;; = 0. NV, denotes the
neighbors of ith DG and includes all the DGs that send their information
to ith DG. The pinning gain g; is an indication of whether the node i

has access to the reference frequency w,; or not.
3. Attack detection methodology

This section first describes the FDI attacks in a microgrid control
system and then elaborates on the proposed attack detection scheme.

3.1. Description of FDI attack

We assume that the FDI attack targets the frequency control of a
microgrid. The primary and secondary distributed control protocols of
an inverter-based DG, discussed in Section 2, are implemented on a
microprocessor that has communication ports to either be utilized by
the microgrid operator for adjusting DG’s control parameters or by
the distributed secondary control to communicate with neighboring
DGs as required in (10) and (11). A cyber attacker can gain access
to these communication ports and tamper with control protocols and
parameters as discussed in [3]. We assumed that the cyber attacker
targets the primary frequency droop in (1) and corrupts its output
o; with of which is the injected false data by the cyber attacker.
As illustrated in Fig. 2, in the control system that is operating in a
distributed manner, an attack on one DG not only impacts that DG but
also the other neighboring DGs receiving information from the attacked
DG.

3.2. Attack detection algorithm

In the proposed attack detection approach, each DG is equipped
with a CNN-based attack detection block which uses the locally mea-
sured variables at the DG location to detect an attack scenario. The
attack detection block along with the internal control loops of an
inverter-based DG are shown in Fig. 1. As seen, this block uses mp; P,
and w; of DG as two inputs and makes a decision about the status of
the attack on that DG. If an attack is detected, the corresponding DG is
shut down and attack status is sent to neighboring DGs to keep them

informed for taking mitigative actions as described in Section 3.A.

3.2.1. Introduction to autoencoders

The attack detection block (shown in Fig. 1) requires two inputs
(i.e., mp; P, and w;) to make a decision about the status of the attack.
To address anomaly detection in multivariate time series, autoencoder-
based methodologies were developed and have shown promising re-
sults [29-31]. An autoencoder is a neural network architecture, where
the model is trained to reconstruct its input. Assuming that the input
data is a multidimensional array X, the network architecture is com-
prised of two parts: an encoder function that compresses the input
sample into a compact, hidden representation H = f(X) and a decoder
function that reconstructs the input data from the hidden representa-
tion R = g(H) where the output R has the same dimensionality as
X [32]. Therefore, the learning process can be simply described by min-
imizing a loss function £(X, R) where the dissimilarity of reconstructed
output R from the input data X is penalized by the loss function. Mean
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Fig. 2. FDI attack on one DG not only affects the DG under attack but also other DGs
that are connected to that DG through the communication network.

absolute error (MAE) and mean squared error (MSE) are two typical
choices for loss function. Both of these loss functions are later used in
the Ensemble framework discussed in Section 3.B.3. In the case of MAE,
the loss function is defined as

SNIX - Ryl
N

where N is the number of samples we are testing against. In the case
of MSE, the loss function is defined as
T, X - Ri|I?
N

Since the hidden representation H is very compact, only the most
representative features of the training data are learned. In this
reconstruction-based anomaly detection, the model is trained on nor-
mal data with no or very few abnormal samples, so the model learns
a reconstruction function that generates a low reconstruction error for
normal data and a high reconstruction error for outliers or under attack
data. By exploring the range of reconstruction errors/losses for the
normal data during training, a threshold can be set and the anomalies
can be detected by calculating whether the reconstruction loss is greater
than the threshold or not.

LyeX,R) = (12)

LyseX,R) = (13)

3.2.2. CNN-based autoencoder

A 1D convolutional autoencoder (CAE) can be implemented for
anomaly detection on a time-series dataset to extract features and
for exploiting the known correlation between neighboring temporal
features. In this paper, the autoencoder architecture shown in Fig. 3
is utilized as this architecture renders higher accuracy for attack de-
tection. In this architecture, input X = {x;,...,xy}, where x; € RP
are column vectors, is compressed by the encoder to output a vector
H of lower dimensionality. The decoder part performs a symmetric
reconstruction R where the output (reconstructed) layer has the same
dimension as the input X.

In our data set with two features (i.e., mp; P, and ;) and a window
size of N samples, the input data structure at instant » is

X[n] = ( mp; P;[n] mp; P[n— N + 1] )

on] - wiln=N+1] a4

The process is started by the convolution of each one of the time
series in Eq. (14) by two convolutional filters, each one consisting of
a vector of D coefficients. A zero padding is applied to the signals
so the output has the same dimension as the input. The output of
the convolution is passed through a max pooling, which selects the
maximum value of every two consecutive elements of the output of
the convolution, resulting in an output of dimension 2 x N /2. Each
element of the output is applied to a rectified linear unit (ReLU). For
an arbitrary input u, the ReLU function is defined as o = max(0.u). After
this, a dropout is usually performed in this class of structures, though
since the dimension of our present instance is small, this procedure does
not improve the performance here. Dropout is a process where a given
percentage of connections with the next layer is dropped randomly.

The process is repeated again with convolution kernels of dimension
D and another max pooling and ReLu operation, which results in an
array of dimension 2 x N /4. The output is then processed for the
reconstruction of the input. The process starts with a convolution (Con-
vTranspose in the figure) with a kernel of dimension 5, an upsampling,
consisting of repeating each sample, to double the dimension from
D/4 to D/2, and then the process is repeated, to obtain an output of
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Fig. 3. Architecture of our fully convolutional autoencoder.

dimension 2x N. The output is applied to a sigmoid o = (1 + exp(—u))~!
instead of a ReLU function, to obtain an output normalized between 0
and 1.

3.2.3. Ensemble framework

Ensembling is another powerful technique that we employed to
further improve the accuracy of a single autoencoder which may often
overfit to the original data. The key characteristic of an ensemble
framework is diversity. Two sources of diversity are introduced into
our autoencoder ensemble framework. First, the ensemble models are
fit on two different loss functions, i.e., MAE and MSE in (12) and (13),
respectively. Second, a bagging procedure [33] is performed by training
models with different random initializations. Our ensemble framework
consists of 50 models in total. Once an ensemble framework is trained,
the reconstruction loss for input data can be calculated by comparing
the reconstructed time series to its original input for each model using
an MAE loss function. In this work, the median is used as an ensemble
aggregation function.

3.2.4. Evaluation metrics

Precision (PR), recall (RE), and Fl-score are used over the testing
set and its ground truth values to evaluate the performance of our
ensemble autoencoder model. F1-score can be formulated as [34]

2 xPRXRE
Fl = ———— 1
PR+RE as
where
R—_1P 16)
TP + FP
RE= 1P __ an
TP + FN

TP, TN, FP, and FN are the values of true positives, true negatives, false
positives, and false negatives, respectively. Since these metrics are more
resistant to class imbalance than other metrics such as Accuracy [34],
they are well-suited for anomaly detection tasks. For each model within
the ensemble framework, the threshold is defined as the maximum
reconstruction loss. The median is used as an ensemble aggregation
function to define the threshold for the whole ensemble.

3.2.5. Attack mitigation strategy

The attack mitigation strategy can be adopted from the previous
work of authors in [28]. If an attack is detected by the attack detector
of DG i, the associated DG will be disconnected from the microgrid
to maintain the microgrid’s stability. Simultaneously, the information
related to the attacked DG will be segregated from the communication
network. This is achieved by setting a = 0 in the following equation,
where the default value is a] = 1 before detecting any attacks. This al-
tered information is then communicated to the neighboring controllers,
ensuring that incoming compromised data is also isolated in those
neighboring controllers.

Ui (D=C,y Y 0,07 (@)=, (1)+8,(@,ep =, (1)
JEN;

up;(H)=cp; 2 a; a;*a;f(mijj(I)—mPiP,-(t))
JEN;

18)

4. Verification of proposed approach
4.1. Description of test system

This paper utilizes the 4 DG microgrid test system shown in Fig. 4
to verify the effectiveness of the proposed attack detection algorithm.
The specifications of this microgrid test system are provided in Table 1.
This microgrid and its specifications are adopted from [3,10]. For the
DG parameters, mp is the frequency droop coefficient, n, is the voltage
droop coefficient, R, is DG’s output connector resistance, L. is DG’s
output connector inductance, R; is DG’s output filter resistanceL; is the
DG’s output filter inductance, C; is the DG’s output filter capacitance,
Kpy and Kjy are the internal voltage control proportional and integral
gains, and Kpc and Kj¢ are the internal current control proportional
and integral gains. The training and testing datasets are collected for
each DG by simulating different normal and cyberattack scenarios in
Matlab/Simulink, and the attack detector is trained for each DG. Due
to the unsupervised nature of the proposed CNN-based attack detection
algorithm, the training is performed using system normal data (in
the absence of cyberattacks). The system’s normal scenarios include
the simulation of microgrids under islanding, load change, and DG
connection/disconnection. The simulations account for a load change
in the range of 0 to 20 kW.

Each set of data is sampled at every 100 ps. Four datasets cor-
responding to the system’s normal conditions (without attack) are
collected that correspond to the transient scenarios of islanding, load
changes, and DG connection/disconnection. A portion of these datasets
is used to train the CNN-based algorithm. Six sets of data under random
attack applied are also collected. These datasets are used for testing the
algorithm along with the remaining portion of datasets collected under
system normal conditions. Each system normal dataset contains 180 to
250 x 10> samples.

4.2. Description of attack and its impact on the microgrid frequency control

To simulate an FDI attack on the frequency control of the microgrid
test system, the frequency of DG 3 in (1) is manipulated with the
corrupted frequencies of 58, 59, 60.5, 61, 61.5, and 62 Hz (seven attack
scenarios that were simulated separately). The impact of this attack
on the microgrid frequency control is studied in the previous work of
authors in [28]. When the FDI attack is applied on a DG (i.e., a DG
frequency is manipulated with a corrupted frequency), the corrupted
frequency is propagated through the microgrid in two ways. First,
the corrupted frequency will impact the microgrid’s electric system
frequency which results in the microgrid frequency stability. Moreover,
the corrupted frequency propagates through the communication net-
work of the distributed secondary control. This will directly impact the
performance of secondary control as DGs’ distributed secondary control
protocols will use the corrupted frequency of attacked DG and fail
to restore the microgrid’s frequency and properly share active power
among them.
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Fig. 4. 4 DG MG test system: (a) circuit diagram; (b) communication graph.

Table 1
Specifications of 4 DG MG test system.
DGs DG 1, 4 DG 2, 3
mp 1x107* 2x 107
ny 2x 107 4x 107
R, 0.05 Q 0.05 Q
L. 4.8 mH 4.8 mH
R 0.1Q 0.1Q
L¢ 1.35 mH 1.35 mH
C; 50 pF 50 pF
Kpy 0.1 0.05
Ky 420 390
Kpc 15 10.5
Kic 20000 16000
Lines Line 1 Line 2 Line 3
R 02Q 0.1Q 02Q
L 3.6 mH 1.8 mH 3.6 mH
Loads Load 1 Load 2
P, 12 kW 12 kW
0, 5 kVAr 5 kVAr

4.3. Data preparation

For all datasets, some preprocessing is performed to prepare them
as inputs to the CNN-based attack detection algorithm. Testing datasets
contain both system-normal and under-attack data, whereas training
datasets contain only system-normal data. Before feeding the data
into the model a few preprocessing steps were taken. First, input
features/variables are normalized by transforming them into the range
of 0 to 1 so that all the features contribute equally to the model
and the learned model is not biased towards one specific feature. The
normalization is performed by subtracting the minimum value from the
data and then dividing by the difference between the maximum and the
minimum. Also, all four normal datasets are concatenated together to
form one training set. Similarly, all datasets under random attacks are
concatenated to form one testing set.

Our models are exclusively trained on data without attack. After
performing the preprocessing, the training dataset is split into 90%
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Fig. 5. Distribution of reconstruction loss over the normal and under attack data for
DG3 with a window size of 16.

training and 10% validating sets. The validation data is used for hy-
perparameter optimization to minimize the reconstruction loss during
the training. The hyperparameters considered in this work are the
batch size, the early stopping instant, and the parameters of the Adam
optimizer.

4.4. Implementation and hyperparameters

The framework was implemented with Python and TensorFlow. All
presented calculations were executed leveraging Nvidia Tesla T4 GPU
on Google Colab.

The neural network training is run with an early stopping criterion
by monitoring the loss convergence on the validation set [32]. The
batch size is optimized on the validation set as well and has been set
to a fixed size of 1024. Stochastic gradient descent enhanced with the
Adam optimizer [32] with default settings and an initial learning rate of
0.001 is used. The patience parameter and the reduction factor for the
learning rate are set to 10 and 5, respectively. The GPU-based training
of one ensemble framework for the entire training set, including all
four DGs, takes between 1.5 and 4 h depending on the neural network
settings and the window size.

4.5. Verification results

To examine the reconstruction loss in more detail, a histogram of
reconstruction error generated by the ensemble model on the normal
data from the training set and under-attack data from the test set is
visualized in Fig. 5. The attack scenarios include manipulating the
frequency of DG 3 with the corrupted frequencies of 58, 59, 60.5, 61,
61.5, and 62 Hz (six attack scenarios that were simulated separately).
Each attack scenario has 10* normal instances (i.e., before the attack
is applied) and 8 x 10* under-attack instances. The input data has a
window size of 16. We can see the reconstruction loss is significantly
smaller for normal samples leading to a distinct distribution for normal
compared to under-attack data. In this figure, for the 58 Hz and 62 Hz
attack scenarios, the reconstruction loss distribution is between 0.75
to 1, for the 61 Hz attack scenario, the reconstruction loss distribution
is around 0.45, for the 59 Hz attack scenario, the reconstruction loss
distribution is around 0.5, for the 60.5 Hz attack scenario, the recon-
struction loss distribution is around 0.15, and for the 61.5 Hz attack
scenario, the reconstruction loss distribution is between 0.45 to 0.55.

The attack detection accuracy in terms of precision, recall, and F1-
score for different window sizes are shown in Table 2. The results are
based on aggregate performance metrics of our autoencoder ensemble
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Table 2
Attack detection accuracy in terms of Fl-score (%), precision (%), and recall
(%) for different window sizes on the testing set.

Window size F1-Score Precision Recall
8 99.87 100.0 99.73
16 99.87 100.0 99.73
32 99.86 100.0 99.73

Table 3

Comparing attack detection accuracy in terms of Fl-score (%), precision (%), and
recall (%) between the CNN autoencoder ensemble approach and the Gaussian Process
Regression approach.

Cyberattack detection approach F1-Score Precision Recall
CNN Autoencoder Ensemble 99.97 100.0 99.93
Gaussian Process Regression 99.80 99.9 99.80

framework over the testing set. These results are gathered for the
window sizes of 8, 16, and 32. The verification results show that the
proposed 1D CAE approach renders very high accuracy even in the
presence of an FDI attack where the DG 3 frequency is corrupted with
60.5 Hz which is very close to the nominal frequency of the microgrid.

As shown in Table 2, by increasing the window size in time-series
data, the scoring metrics start to deteriorate gradually. Due to the
nature of the time series, it is difficult to clearly distinguish between the
normal and under-attack sections of the data. Therefore, as the length of
window size increases, the probability of a mixed period of normal and
under-attack data feeding as input x into the trained model increases,
which results in low reconstruction error for the mixed period.

A comparative analysis of cyberattack detection accuracy is shown
in Table 3 between the CNN autoencoder ensemble proposed in this
study and a previous approach by the authors employing Gaussian
Process Regression (GPR) [28]. The attack scenarios in the GPR based
cyberattack detection paper include manipulating the frequency of DG
3 with the corrupted frequencies of 58, 59, 61, and 62 Hz. To ensure
a direct comparison, identical attack scenarios are utilized as the test
dataset for the trained CNN autoencoder model with a window size
of 16. CNN based approach shows slightly better detection accuracy
compared to GPR based approach. Also, GPR imposes a considerable
computational burden compared to CNN autoencoder approach. GPR
requires two stages of training involving approximately 0.5 million
samples, which incurs a substantial computational load. This is due
to the necessity of matrix inversion for GPR and solving a quadratic
problem for the Support Vector Machine (SVM) component. Both pro-
cesses exhibit a computational complexity of O(N?). Additionally, GPR
necessitates block training, requiring periodic retraining based on a
secondary criterion. In contrast, CNN can undergo continuous training
from the initial batch, enabling its usability and potentially offering
adaptive properties.

5. Conclusions and future work

In this paper, we investigated the potential of an autoencoder en-
semble framework based on 1D convolutional neural networks for un-
supervised FDI attack detection in the distributed secondary frequency
control of AC microgrids. The ensemble framework trains multiple
autoencoders independently on multivariate time series with different
window sizes. Experimental studies show that the proposed autoen-
coder ensemble can detect attacks with an F1 score of close to one.
The reported results are very encouraging, but further research should
focus on analyzing more complex neural network architectures in order
to detect more sophisticated attacks.
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