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Abstract—We present the outcomes of a recent large-scale
subjective study of Mobile Cloud Gaming Video Quality Assess-
ment (MCG-VQA) on a diverse set of gaming videos. Rapid ad-
vancements in cloud services, faster video encoding technologies,
and increased access to high-speed, low-latency wireless internet
have all contributed to exponential growth of the Mobile Cloud
Gaming industry. Consequently, the development of methods
to assess the quality of the real-time video feed to the end-
user on the cloud gaming platform has become increasingly
important. However, due to the lack of a large-scale public
Mobile Cloud Gaming Video dataset containing a diverse set of
distorted videos with corresponding subjective scores, there has
been limited work on the development of MCG-VQA models.
To advance the development of the MCG-VQA methods, we
created a new dataset, named the LIVE-Meta Mobile Cloud
Gaming (LIVE-Meta-MCG) video quality database, composed of
600 landscape and portrait gaming videos, on which we collected
14,400 subjective quality ratings from an in-lab subjective study.
Additionally, to demonstrate the usefulness of the new resource
we benchmarked multiple state-of-the-art VQA algorithms on
the database. The new database will be made publicly available
on our website: https://live.ece.utexas.edu/research/LIVE-Meta-
Mobile-Cloud-Gaming/index.html

Index Terms—Mobile Cloud Gaming, No-Reference Video
Quality Assessment, Cloud Gaming Video Quality Database,
video-quality.

I. INTRODUCTION

THE last decade has witnessed the growth of cloud
gaming services as an emergent technology in the digital

gaming industry, and many major technology companies
such as Meta, Google, Apple, NVIDIA and Microsoft have
aggressively invested in building cloud gaming infrastructure.
According to a survey by Allied Market Research [1], the
cloud gaming industry is projected to grow at a compounded
annual growth rate of 57.2% from 2021 to 2030. This
astronomical growth maybe attributed to multiple factors.
Cloud gaming services are a cost-effective alternative to
traditional physical gaming consoles and PC-based digital
video games, a critical factor contributing to the rapid growth
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of Cloud Gaming services. Cloud gaming subscribers are
able to access large and diverse libraries of games playable
on any device anywhere without downloading or installing
them. Cloud gaming aims to provide high-quality gaming
experiences to users by executing complex game software on
powerful cloud gaming servers, and streaming the computed
game scenes over the internet in real-time, as depicted in
Fig 1. Gamers use lightweight software that can be executed
on any device to view real-time video game streams while
interacting with the games. Cloud gaming services also
facilitate the rapid video game development processes by
eliminating support requirements on multiple user systems,
leading to lower overall production costs. This alleviates
the need to upgrade consoles and PCs to maintain the
gaming experiences of the end-users, as newer and more
complex games are made available. Other notable factors
contributing to the growth of cloud gaming services include
the development of hardware-accelerated video compression
methods, access to inexpensive high-speed, lower latency
wireless internet services facilitated by the introduction of
global 5G services, and the availability of more efficient and
affordable cloud platform infrastructures like AWS, Google
Cloud, and Microsoft Azure. Another significant contributor
to the acceleration of the cloud gaming market since 2019 has
been COVID-19 induced restrictions and lockdowns. Indeed,
the amount of time spent playing video games increased by
more than 71% during the COVID-19 lockdown.

Recent trends suggest that smartphones have begun
to dominate the global cloud gaming industry, and this
uptrend is expected to continue. Mobile Cloud Gaming differs
from generic Cloud Gaming in various important ways :

• The Mobile Cloud Gaming services generally render
video game scenes at 720p resolution and 30 frames per
second (fps) to accommodate the current gamut of mobile
devices, while helping to stabilize delivery and ensuring
smoother connections. By comparison, non-mobile Cloud
Gaming applications, which are typically played PCs and
televisions are usually rendered at 1080p/4K resolution
and 30-120 fps.

• Mobile Gaming experiences support gameplay in both
portrait and landscape orientations on the mobile device,
unlike PCs and television games, which are only playable
in landscape mode.

• Mobile Cloud Gaming services allow users to play over
the wireless internet, and must content with variable in-
ternet connections and transmission speeds, unlike cloud
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Fig. 1: Exemplar Mobile Cloud Gaming system. Video games scenes
are rendered in the Cloud servers of service providers, then the
gaming video frames are sent over the Internet to end-users’ Mobile
devices. The game players’ interactions are sent back to the Cloud
server over the same network.

gaming services played on PCs and televisions having
stable, high-bandwidth wired internet access. This raises
significant technical challenges that must be met to de-
liver acceptable levels of perceived game video quality.

In a cloud gaming setup, video artifacts can severely
impair the perceptual quality of delivered gaming videos.
Unless game video quality is monitored and controlled, holis-
tic gaming viewing experiences maybe severely impaired.
Because of this, there is heightened interest in perceptual
Video Quality Assessment (VQA) research focused on gaming
videos. However, there have been limited advancements in
this direction for two reasons. First, VQA algorithms that
have been trained on generic VQA databases generally do
not perform well on content-specific gaming videos, which
exhibit different appearances and statistical properties than
naturalistic camera-captured videos. Gaming videos generally
include a significant percentage of high-motion action scenes
which, when processed by video compression, resizing, and
other operations in the cloud gaming application pipeline, can
exhibit severe visual impairments. It is desirable to be able to
conceptualize gaming VQA models that can be translated into
algorithms that accurately predict how Cloud Gaming users
perceive impairments of the gaming content they view.

Second, building those models inevitably requires the con-
struction of psychometric VQA databases containing large

number of representative gaming videos that have been la-
beled with human-annotated scores. These datasets enable
VQA engineers to better understand perceptual distortions
and masking phenomena and are the basic scientific tools for
building VQA algorithms. Unfortunately, there are very few
VQA databases dedicated to Cloud Gaming VQA research,
and none of them are public databases focused on MCG-VQA.
Towards advancing progress in this domain, we created a new
resource that we call the LIVE-Meta Mobile Cloud Gaming
(LIVE-Meta MCG) database, composed of 600 landscape
and portrait gaming videos, and targeted explicitly towards
mobile cloud gaming. The new database contains 600 videos
drawn from 30 source sequences obtained from 16 different
games, impaired by varying degrees of video compression
and resizing distortions. We then conducted a sizeable human
subjective study on these videos, in a controlled laboratory
environment whereby we displayed the videos on a Google
Pixel 5 mobile device to a pool of 72 volunteer subjects who
rated the perceptual qualities of the videos. This allowed us
to obtain subjective labels on all the videos in the form of
Mean Opinion Scores (MOS). To demonstrate the usefulness
of the new database, we also performed a rigorous evaluation
of current state-of-the-art VQA models on it, and compared
their performance.

The remaining parts of the paper are organized as fol-
lows. Section II presents prior work relevant to our mobile
cloud gaming video quality. We review existing cloud gaming
databases, and a few gaming-focused VQA algorithms. In
Section III, we discuss the relevance of the new mobile gaming
VQA dataset and highlight the novelty and significance of
our work. Section IV explains the data acquisition process
we used when constructing the new video data resource and
the details the design of the human study protocol. Section
V compares various state-of-the-art (SOTA) VQA models
on LIVE-Meta Mobile Cloud Gaming (LIVE-Meta MCG)
database. We conclude in Section VI by summarizing the paper
and discussing the possible directions for future work.

II. RELATED WORK

Video Quality Assessment research over the last decade
has been elevated by the availability of large, comprehensive
databases containing videos labeled by subjective quality
scores obtained by conducting either laboratory or online
studies. Given the explosive growth of the digital gaming
industry over the last few years, there is an urgent need to
develop gaming-specific VQA algorithms that can be used
to monitor and control the quality of video gaming streams
transmitted throughout the global internet, towards ensuring
that millions of users will experience holistic, high-quality
gameplay. Consequently, VQA researchers have begun to
develop subjective VQA databases that are focused on
gaming videos, as tools for the development of Gaming VQA
algorithms. Early work has produced the GamingVideoSET
[2] and the Kingston University Gaming Video Dataset
(KUGVD) [3]. However, these databases are quite limited
in the number of videos having associated subjective quality
ratings and in the variety of source content. Both databases



DRAFT FOR SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 3

TABLE I
A SUMMARY OF EXISTING GAMING VQA DATABASES AND THE NEW LIVE-META MOBILE CLOUD GAMING DATABASE

Database # Videos # Source
Sequences

Pristine Source
Sequences

# Ratings
per Video Public Resolution Distortion Type Duration Display Device Display Orientation Study Type

GamingVideoSET 90 6 Yes 25 Yes 480p, 720p,
1080p H.264 30 sec 24” Monitor Landscape Laboratory

KUGVD 90 6 Yes 17 Yes 480p, 720p,
1080p H.264 30 sec 55” Monitor Landscape Laboratory

CGVDS 360 +
anchor stimuli 15 Yes Unavailable Yes 480p, 720p,

1080p H.264 NVENC 30 sec 24” Monitor Landscape Laboratory

TGV 1293 150 No Unavailable No 480p, 720p,
1080p

H.264, H.265,
Tencent codec 5 sec Unknown

Mobile Device Landscape Laboratory

LIVE-YT
-Gaming 600 600 No 30 Yes 360p, 480p,

720p, 1080p UGC distortions 8-9 sec Multiple Devices Landscape Online

LIVE-Meta
Mobile Cloud Gaming 600 30 Yes 24 Yes 360p, 480p,

540p, 720p H.264 NVENC 20 sec Google Pixel 5 Landscape,
Portrait Laboratory

[2],[3] are built on only six source sequences, each used
to create 15 resolution-bitrate distortion pairs yielding 90
videos rated by human subjects. These data limitations are a
bottleneck to the development of reliable and flexible VQA
models. Towards bridging this gap, a more extensive Cloud
Gaming Video Dataset (CGVDS) dataset was introduced in
[4]. This dataset includes subjective quality ratings on more
than 360 gaming videos obtained from 15 source sequences,
collected in laboratory human study. However, all of the
videos in the CGVDS dataset were rendered in landscape
mode; hence training a VQA model on them may result in
unreliable VQA algorithmic performance on portrait gaming
videos. The other two datasets in the Gaming VQA domain
are the Tencent Gaming Video (TGV) dataset[5] and the
LIVE-YT-Gaming dataset [6]. The TGV dataset contains 1293
landscape gaming videos drawn from 150 source sequences.
However, this dataset is not available in the public domain.
The LIVE-YT-Gaming video dataset contains 600 original
user-generated content (UGC) gaming videos harvested from
the internet. Since, these UGC videos were obtained by
downloading largely unique after-the-fact gameplay videos
from a variety of websites, they are not good candidates
for training Cloud Gaming VQA algorithms. Instead, it is
desirable to be able to train MCG-VQA models on multiple
distorted versions of each source video, enabling them to
learn to choose optimal streaming settings given network
conditions to deliver the best possible viewing experiences to
the gaming end-users.

Other than the LIVE-YT-Gaming dataset, the source
videos in gaming databases are of very high pristine
quality. Since, they were played using powerful hardware
devices, under high-quality game settings and recorded with
professional-grade software. The source sequences are then
typically processed with resizing and video compression
operations to generate the corpus of the distorted videos.
We summarize existing gaming VQA databases along with
the new LIVE-Meta Mobile Cloud Gaming video quality
database in Table I.

III. RELEVANCE AND NOVELTY OF LIVE-META MOBILE
CLOUD GAMING DATABASE

The exponential rise of the Cloud Gaming industry, and
the dearth of perceptual design resources has motivated us to
build Video Quality Assessment databases focused on Gaming
videos. The new psychometric data resource that we describe

TABLE II
DETAILS OF GAMES PRESENT IN OUR PROPOSED

LIVE-META MOBILE CLOUD GAMING (LIVE-META MCG)
DATABASE

Cloud Games Original Resolution Display Orientation
Asphalt 1664 x 720 Landscape

Bejwelled 720 x 1280 Portrait
Bowling Club 720 x 1440 Portrait
Design Island 1664 x 720 Landscape

Dirt Bike 720 x 1440 Portrait
Dragon Mania Legends 1440 x 720 Landscape

Hungry Dragon 1512 x 720 Landscape
Mobile Legends Adventure 1440 x 720 Landscape

Monument Valley 2 720 x 1280 Portrait
Mystery Manor 1728 x 720 Landscape
PGA Golf Tour 720 x 1280 Portrait

Plants vs Zombies 1280 x 720 Landscape
Solitaire 1664 x 720 Landscape

Sonic 720 x 1280 Portrait
State of Survival 1664 x 720 Landscape

WWE 720 x 1440 Portrait

here has multiple unique attributes that address most of the
shortcomings of existing gaming databases. First, it includes
the largest number of unique source sequences of any non-
UGC public gaming VQA database. While the LIVE-YT-
Gaming dataset does contain more unique contents, it is
directed towards a different problem - VQA of generally
low-quality, user-generated, user-recorded gaming videos. The
TGV dataset [5] also has more source sequences, but none
of the data is publicly available, making it impossible to
independently verify the integrity and modeling value of the
videos. Moreover, the video durations are only 5 seconds,
heightening the possibility that the subjective quality ratings on
the gaming videos which often contain much longer gameplay
scenes, might be less reliable, as explained in [7]. The videos
that comprise the LIVE-Meta MCG dataset include a wide
range of gameplay and game-lobby video shots. The level of
activity in the videos include low, medium, and high motion
scenes, a diversity that is not present in other public gaming
databases. Second, towards achieving our goal of building a
data resource that can be used to design reliable and robust
VQA algorithms suitable for analyzing high-quality gaming
videos that have been subjected to a wide range of combina-
tions of resizing and compression distortions characteristic of
modern streaming workflow. The compression distortions were
applied using the gaming industry-wide prevalent hardware-
accelerated NVIDIA H.264 NVENC codec [8]. Since we
are targeting the mobile (handheld) video gaming scenario,
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(a) Asphalt (b) Design Island (c) Dragon Mania Legends (d) Hungrydragon

(e) Mobile Legends Adventure (f) Mystery Manor (g) Plants vs Zombies (h) State of Survival

Fig. 2: Sample frames of landscape gaming videos in the LIVE-Meta Mobile Cloud Gaming Database.

(a) Bejewelled (b) Bowling Club (c) Dirtbike (d) PGA Golf Tour (e) Sonic (f) WWE

Fig. 3: Sample frames of portrait gaming videos in the LIVE-Meta Mobile Cloud Gaming Database.

the compressed videos range from 360p-720p, with bitrates
ranging from 250 kbps to 50 mbps. A salient feature of our
dataset is that we include videos for all the possible resolution-
bitrate pairs that are currently relevant to mobile cloud gaming.
We believe that VQA tools designed on this data will enable
better decision making when selecting streaming settings to
deliver perceptually optimized viewing experiences. Third, not
only does the corpus of videos that we assembled target the
mobile device scenario, we also conduced the human study
using a modern mobile device, unlike any other gaming VQA
resource. Lastly, another unique and differentiating aspect of
the new LIVE-Meta MCG is that it includes gaming videos
presented in both portrait and landscape orientations. A sum-
mary of unique attributes of the new dataset with comparisons
against existing gaming VQA datasets is given in Table I.

IV. DETAILS OF SUBJECTIVE STUDY

The LIVE-Meta MCG Database contains 600 video se-
quences generated from 30 high-quality (pristine) reference
source videos by distorting each video by compressing each
of them using 20 different resolution-bitrate protocols. These
videos served as the stimuli that were quality-rated by the
humans who participated in our laboratory subjective experi-
ments. Sample frames of landscape and portrait mode gaming
video contents in the database are shown in in Figs. 2 and 3,
respectively.

A. Source Sequences

We collected 16 uncompressed, high-quality source game-
play videos from the Facebook Cloud Gaming servers. We
recorded the raw YUV 4 : 2 : 0 video game streams, which
were rendered at the cloud servers without any impairments,
i.e., before the cloud gaming application pipeline distorted the
video stream during gameplay session. All of the obtained
videos were of original 720p resolution and framerate 30
frames per second, in raw YUV 4 : 2 : 0 format, with their
audio components removed. Since, we included both portrait
and landscape games in our dataset, by 720p resolution we
mean that either the width or the height is 720 pixels, with
the other dimension being at least 1280 pixels and often larger.
The video contents include 16 different games encompassing
diverse contents. Table II lists the games present in the dataset
along their original resolutions as rendered by the Cloud Game
engine.

The original 16 reference videos we collected ranged from
58 seconds to 3 minutes which were clipped to lengths that
were practical for the human study. Deciding the clip durations
presents decisions that depend on several factors. For example,
using videos of varying lengths could lead to biases in the
subjective ratings provided by the human volunteers. Using
longer videos would limit the data diversity in human studies
of necessarily limited participant duration. Moreover, long
videos often exhibit distortion changes over time. While it
would be worthwhile to investigate time varying distortions of
gaming videos, that topic falls outside the scope of he current
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(a) Contrast vs Brightness (b) Sharpness vs Colourfulness (c) Temporal Information vs Spatial Information

Fig. 4: Source content (blue ‘x’) distribution in paired feature space with corresponding convex hulls (red boundaries). Left column: Contrast
x Brightness, middle column: Sharpness x Colourfulness, right column: Temporal Information vs Spatial Information.

study, being more appropriate for “Quality of Experience”
(QoE) studies similar to the those presented in [9],[10],[11].
We note in passing that in the study [7], no significant
differences were observed in video quality ratings obtained
on the viewing of interactive and passive games that were of
90 seconds durations. However, passive tests of durations 10
seconds yielded significantly higher quality ratings on videos
than longer passive tests, indicating that time-varying QoE
factors play little role in short-duration tests.

The ITU-T P.809 [12] standard recommends using 30-
second videos when conducting passive human evaluation of
gaming video quality. However, we conduced a trial study in
which human participants felt that gaming videos of durations
no more than 15-20 long seconds were required for them
to provide reliable subjective ratings. Given that this would
further reduce the time varying (QoE type) effects, while also
having the benefit of allowing us to collect more data in
form of video quality ratings, we selected between one and
three clips from each reference video, each of 20 seconds
duration, yielding a total of 30 video clips drawn from the
16 reference videos, all of 720p resolution. We took care that
each clip did not include annoying disruptions of otherwise
interesting gameplay, and also that clips from a same game
presented different scenarios. By distorting the 30 video clips
as described in Section IV-B, we obtained the 600 videos.

To illustrate the diversity of the video contents in the
database, we calculated the following objective features:
Brightness, Contrast, Colorfulness [13], Sharpness, Spatial
Information and Temporal Information as recommended in
[14],[15] for all the 600 videos in our database. We calculate
the first four objective features for each frame in the video,
and then we average them across all frames to obtain the
final feature value. For each frame, brightness and contrast
are determined by the mean and standard deviation of the
pixel luminance values. We calculated the sharpness of each
frame using the mean sobel gradient magnitudes for each pixel
location in the frame. We superimposed the convex hulls of
the scatter plots of pairs of these features, illustrating the broad
feature coverage of the videos in Fig. 4.

TABLE III
RESOLUTIONS AND BITRATES VALUES OF THE VIDEOS IN

THE LIVE-META MOBILE CLOUD GAMING DATABASE

Encoding Parameter Value
Resolution 360p, 480p, 540p, 720p

Bitrate 250kbps, 500kbps, 800kbps, 2mbps, 50mbps

B. Mobile Cloud Gaming Pipeline

From each of the 30 reference sequences, 20 distorted video
sequences were generated using a combination of resizing and
compression distortion processes. Fig. 5 shows a simplified
model of the mobile cloud gaming pipeline. The encoding
settings we used are similar to those employed in the CGVDS
database [4]. We used the Constant Bit Rate (CBR) encoding
mode in the hardware accelerated NVIDIA NVENC H.264
encoder [8], with preset set to low latency and high quality.
The videos were resized spatially using FFMPEG’s default
bicubic interpolation.

We processed each of the 30 reference videos using all 20
possible combinations of resolutions and bitrates listed out
in Table III. The bitrates range from 250 kbps to 2 mbps,
and resolutions ranging from 360p to 720p. The combinations
broadly emulate generic mobile cloud gaming services and
available wireless network bandwidths. Most mobile cloud
gaming service providers render games at 720p resolution
and then, depending on network conditions, either downscale
the games to resolutions 360p, 480p, or 540p, or maintain
the original resolution before encoding the videos at constant
bitrates. Based on our experiments, we generally observed that
250 kbps was the lowest threshold of bandwidth for which
acceptable levels of video quality were observed for most of
the games in the dataset. We also encoded the videos at higher
bitrates typical of common encoding scenarios : 500 kbps, 800
kbps, and 2 mbps, in addition to 250 kbps.

As an experimental control, we also spatially resized the
video frames without further compression. Finally, while it
was desirable to include the reference videos in the human
study, the inability of the Android mobile device to play QP=0
encoded videos meant that we could not. However, we encoded
them at a very high bitrate of 50 mbps to prevent any visible
compression related artifacts from occurring, before including
them as proxy reference videos in the database.
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Fig. 5: High-level flow diagram of the mobile cloud gaming pipeline used in the creation of LIVE-Meta Mobile Cloud Gaming database

C. Subjective Testing Environment and Display

We conducted the large-scale human study in the Subjective
Study room in the Laboratory of Image and Video Engineering
at The University of Texas at Austin. A Google Pixel 5, run-
ning on the Android 11 operating system, was used to display
all of the videos using a custom-built android application.
The mobile device was interfaced with a wireless mouse and
keyboard to enable the subjects to easily record video quality
ratings. The Google Pixel 5 has a 6-inch OLED panel with a
19.5 : 9 aspect ratio Full HD+ resolution and up to a 90Hz
refresh rate. The adaptive brightness feature of the mobile
device was disabled, and the brightness was set to 75% of the
maximum to prevent fluctuations during the study sessions.
We utilized the mobile device’s ability to automatically resize
incoming video streams using its hardware scaler during cloud
gaming, by up-scaling the videos displayed on the mobile
device to fit the mobile screen during playback to the subjects.
The Android application was memory and compute optimized
to ensure smooth playback during the human study.

We arranged the lighting and environment of the Subjective
Study room to simulate a living room. The room’s glass
windows were covered with black paper to prevent volunteers
from being distracted by any outside activities. To achieve a
similar level of illumination as one found in a typical living
room, we used two stand-up incandescent lamps, and also
placed two white LED studio lights behind where the viewer
was seated. We positioned all the lights so that there were no
reflections of the light sources from the display screen visible
to the subjects. The incident luminance on the display screen
was measured by a lux meter and found to be approximately
200 Lux.

A sturdy smartphone mount similar to those found on car
dashboards was deployed to secure the mobile device onto
the subjects’ desktop. The mount is telescopic, with adjustable
viewing angles and heights of the mobile device. The study
participants sat comfortably in height-adjustable chairs and
were asked to adjust the viewing angle and the height of the
mount so they could observe the videos played on the mobile
device at approximately arm’s length, similar to the experience
of typical gameplay sessions.

We created a video playlist for each participant. After

each video was played a continuous rating bar appeared
with a cursor initialized to the extreme left. With the mouse
connected wirelessly to the device, the volunteers could freely
move the cursor to finalize the quality ratings they gave.
There were five labels on the quality bar indicating Bad, Poor,
Fair, Good and Excellent to help guide the participants when
making their decisions. The subjects’ scores were sampled as
integers on [0, 100] based on the final position of the cursor,
where 0 indicated the worst quality and 100 the best. However,
numerical values were not shown to the volunteers. To confirm
the final score of each video, the volunteer pressed the NEXT
button below the rating bar, and the score was then stored in
a text file. The application then played the following video
on the playlist. Fig. 6 demonstrates the steps involved in the
video quality rating process in the Android application.

D. Subjective Testing Protocol

We followed a single-stimulus (SS) testing protocol in the
human study, as described in ITU-R BT 500.13 recommenda-
tion [16]. As explained in Section IV-B, we could not include
the actual reference videos due to limitations of the Mobile
device, but we did include 50 mbps, and 720p resolution
encoded versions of each source video as reasonable proxy
reference videos.

As explained in Section IV-B, we generated the 600 pro-
cessed videos by combinations of resizing and compression
of the 30 reference videos. The reference (and hence the dis-
torted) videos include equal numbers of portrait and landscape
videos. We divided the 30 reference videos into six groups in
such a way that groups I, II, III were comprised only of portrait
videos while groups IV, V, VI comprised only of landscape
videos. In addition, we ensured that no two reference videos in
a video group came from the same game. Since we generated
20 distorted versions of each reference video, each video group
contained 5 ∗ 20 = 100 videos. We evenly split the 72 human
participants into six groups. Using a round-robin method, we
assigned two video groups to each subject group across two
sessions, A and B. The exact allocation of video groups for
each subject group can be found in Table IV. As shown in the
Table IV, since two subject groups rated each video group,
we obtained 2 ∗ 12 = 24 ratings per video. We designed the



DRAFT FOR SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 7

(a) Game Video Playback (b) Initial State of Rating bar (c) Final State of the Rating bar

Fig. 6: Video Quality Rating process in our custom-developed Android Application. Left column: A game video playback of duration 20
seconds, Middle Column: Initial state of the rating bar initialized to extreme left of the rating bar, Right Column: Exemplar final state of
the rating bar when the user records their final score.

TABLE IV
ILLUSTRATION OF THE ROUND-ROBIN APPROACH USED TO ALLOCATE VIDEO GROUPS TO SUBJECT GROUPS. SESSIONS

A, B REFER TO THE TWO SESSIONS OF THE HUMAN STUDY FOR EVERY SUBJECT. GRID LOCATIONS MARKED AS X
INDICATE THE VIDEO GROUP IN THE COLUMN WAS NOT RATED BY THE SUBJECT GROUP IN THE ROW. EACH VIDEO

GROUP CONTAINED 100 VIDEOS AND EACH SUBJECT GROUP HAS 12 SUBJECTS.

GROUP Video Group : I Video Group : II Video Group : III Video Group : IV Video Group : V Video Group : VI
Subject Group : 1 Session A Session B X X X X
Subject Group : 2 X Session A Session B X X X
Subject Group : 3 Session B X Session A X X X
Subject Group : 4 X X X Session A Session B X
Subject Group : 5 X X X X Session A Session B
Subject Group : 6 X X X Session B X Session A

study protocol as shown in Table IV in a manner such that all
the subjects watched either portrait or landscape orientation in
both sessions, and never viewed both portrait and landscape
videos. We used this approach to eliminate biases caused by
any difference in subject preferences for one or the other
orientation by any subject.

For the human study, we developed a unique playlist for
each session. The order of the videos in the playlist was
randomized, with the constraint that videos generated from a
reference video were separated by at least one video generated
from another reference video. The randomized ordering of the
videos reduced the possibility of visual memory effects or any
bias caused by playing the videos in a particular order. Each
human study session involved rating 100 videos, and required
approximately 38− 40 minutes of each participant’s time.

E. Subject Screening and Training

Seventy-two human student volunteers were recruited from
various majors at The University of Texas at Austin to take
part in the study. The pool of subject matter experts had
little/no experience in image and video quality assessment.
Each subject participated in two sessions separated by at least
24 hours to avoid fatigue.

At the beginning of a volunteer’s first session, we adminis-
tered the Snellen and Ishihara tests to validate each subject’s
vision. Two subjects were found to have a color deficiency,
while three volunteers had 20/30 visual acuity. These tests
were performed to ensure there was no abnormally high
percentage of deficient subjects. All subjects, regardless of
their vision deficiencies, were allowed to participate in our
study, following our standard practices towards the goal of
designing more realistic psychometric video quality databases
[17].

TABLE V
OPINIONS OF STUDY PARTICIPANTS REGARDING THE

PERCENTAGE OF GAMING VIDEOS THAT INDUCED
DIZZINESS/UNEASINESS

% of Gaming
videos inducing

dizziness/
uneasiness

None <10% 10-20% 20-40% >40%

# of sessions 128
(88.89%)

6
(4.16%)

7
(4.86%)

3
(2.08%)

0
(0%)

TABLE VI
DEMOGRAPHICS OF THE HUMAN STUDY PARTICIPANTS

BASED ON GENDER

Gender Male Female Others Prefer Not to Say
Count(%) 58(80.55%) 11(15.27%) 2(2.72%) 1(1.36%)

We explained the study objectives to each volunteer before
they engaged in the experiment. Volunteers were instructed
to rate the gaming videos only on quality, and not on the
appeal of the content, such as how boring or exciting the game
content was or how well or poorly the player had performed
on the recorded gaming video they were rating. Additionally,
we demonstrated how the setup could be used to view and
rate gaming videos. At the beginning of each test session,
volunteers were shown three versions of the same video,
which were of perceptually separated qualities to familiarize
themselves with the system and to experience the range of
video quality they would be rating. We did not include the
scores on the training videos in the psychometric database.

F. Post Study Questionnaire & Demographics

The subjects were asked to fill out a questionnaire at the end
of each video quality rating session. The data were collected to
ensure the reliability of the subjective ratings collected during
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TABLE VII
SUBJECT CONSISTENCY

Inter-Subject Consistency Intra-Subject Consistency
Subject Group SROCC PLCC SROCC PLCC

1 0.901 0.915 0.850 0.870
2 0.900 0.917 0.840 0.854
3 0.905 0.920 0.849 0.870
4 0.913 0.941 0.827 0.844
5 0.916 0.933 0.866 0.859
6 0.936 0.949 0.854 0.865

the human study sessions. Within this sub-section, we present
a summary of answers to those questions and demographic
information about the subjects.

In Section IV-A, we deliberated on how to determine the
optimal duration of each video in our database. To reinforce
the result from our pre-study trial, that 20 seconds was
adequately long to be able to accurately rate the perceptual
quality of the videos, we asked every volunteer, as part of the
post-study questionnaire, whether the durations of the videos
was long enough. Out of the 144 sessions (72 subjects, with
2 sessions per subject) we conducted, in 97.9% (141/144)
of the sessions, the human subjects felt that the 20-second
duration was adequate to subjectively judge the video quality.
As a part of the post-study questionnaire, we also asked the
human subjects about the distribution of videos, the difficulty
of rating the videos, and whether they experienced any sort of
dizziness or uneasiness while viewing rating the videos. In the
end, in 74.3% (107/144) sessions, the subjects felt that the
distribution of quality was uniform with an equal number of
good, intermediate and bad quality videos. At the end of the
other sessions, the subjects felt that the majority of the videos
were either of very good or very bad quality, and with few,
if any videos of intermediate quality. On a scale from 0 to
100, we asked the subjects to rate the difficulty of judging the
perceptual quality of the video after each session, with 0 being
very difficult and 100 being reasonably easy to judge. All of
the subjects were able to provide subjective quality ratings
without much difficulty, as reflected by the mean and median
scores of difficulty, which were 72.1 and 77.5, respectively.
The human subjects reported that they felt slight dizziness
or uneasiness in approximately 11% of the sessions, however
the percentage of dizziness or uneasiness inducing videos was
much lower. More detailed results from the survey regarding
dizziness and uneasiness can be found in Table V.

The demographic data of age and gender were collected
only at the end of the first session. The mean, median, and
standard deviation of the ages of the participants were found to
be 23.57, 23.0, and 3.04. We summarize the gender distribution
among the participants in Table VI.

G. Processing of Subjective Scores

To ensure the reliability of the subjective data acquisition
process, we first examined the inter-subject and intra-subject
consistency of the data using the raw video quality ratings
obtained from the human subjects. As explained earlier, we
divided the 72 subjects into six groups as shown in Table
IV. We report the inter-subject consistency scores for each

group. In order to determine inter-subject consistency, we
randomly grouped the scores received for the videos rated by
each subject group into two equal but disjoint subgroups, and
computed the correlations of the mean opinion scores between
the two sub-groups. The random groupings were performed
over 100 trials and the medians of both the Spearman rank
order correlation coefficient (SROCC) and the Pearson linear
correlation coefficient (PLCC) between the two sub-groups
were computed for each of the subject groups and are listed
in Table VII. Overall, the average SROCC and PLCC for
inter-subject consistency across all subject groups was 0.912
and 0.929, respectively. Furthermore, we calculated intra-
subject consistency measurements which provide insight into
the behavior of individual subjects [18] on the videos they
rated. To do this, we measured the SROCC and PLCC between
the individual opinion scores and MOS calculated using all the
subjects within each subject group. This process was repeated
for every human subject within all the subject groups. The
medians for each of the subject groups for both SROCC and
PLCC are listed in Table VII. The average SROCC and PLCC
over all subject groups was respectively 0.848 and 0.860.
These high correlation scores from the above analysis indicate
that we can assign a high degree of confidence to the obtained
opinion scores.

We employed the method described in [19] to compute the
final subjective quality scores on the videos using the raw
subjective scores acquired from the human participants. The
authors of [19] demonstrate that a maximum likelihood esti-
mate (MLE) method of computing MOS offers advantages to
traditional methods, by combining Z-score transformations and
subject rejections [16]. The MLE method is less susceptible to
subject corruption, provides tighter confidence intervals, better
handles missing data, and can provide information on test
subjects and video contents.

In [19], the raw opinion scores of the videos are modeled as
random variables {Xe,s}. Decompose every rating of a video
in the following way :

Xe,s = xe +Be,s +Ae,s, (1)

Be,s ∼ N (bs, v
2
s),

Ae,s ∼ N (0, a2c:c(e)=c),

where e = 1, 2, 3, ..., 600 refer to the indices of the videos in
the database and s = 1, 2, 3, ..., 72 refers to the unique human
participants. In the above model, xe represents the quality
of the video e as perceived by a hypothetical unbiased and
consistent viewer. Be,s are i.i.d gaussian variables representing
the human subject s parameterized by a bias (i.e., mean)
bs and inconsistency (i.e., variance) v2s . The human subject
bias and inconsistency are assumed to remain constant across
all the videos rated by the subject s. Ae,s are i.i.d gaussian
variables representing a particular video content parameterized
by the ambiguity (i.e., variance) a2c of the content c, and c =
1, 2, ...30 indexes the unique source sequences in the database.
All of the distorted versions of a reference video are presumed
to contain the same level of ambiguity, and the video content
ambiguity is assumed to be consistent across all users. In
this formulation, the parameters θ = ({xe}, {bs}, {vs}, {ac})
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Fig. 7: The result of the MLE formulation to estimate final opinion scores and associated information about subjects and contents. Both the
estimated parameters and their 95% confidence intervals are shown.

denote the variables of the model. To estimate the parameters
θ using MLE, the log likelihood function L is defined as :

L = logP ({xe,s}|θ). (2)

Then, solve for θ̂ = argmaxθ L. From (1), Xe,s is gaussian
with Xe,s ∼ N (xe + bs, v

2
s + a2c(e)) and the log likelihood

function L is :

L(θ) = logP ({xe,s} | θ)
= logP ({xe,s} | {xe} , {bs} , {vs} , {ac})

= log
∏
e,s

P
(
xe,s | xe, bs, vs, ac(e)

)
(3)

=
∑
e,s

logP
(
xe,s | xe, bs, vs, ac(e)

)
≡

∑
e,s

−1

2
log

(
v2s + a2c(e)

)
− 1

2
· (xe,s − xe − bs)

2

v2s + a2c(e)
,

(4)

where (3) follows from the independence assumption of the
opinion scores and (4) follows from using the gaussian formula
with the constant terms removed. By utilizing the expression
in (3), the first and second order partial derivatives of L(θ)
with respect to the parameters {xe}, {bs}, {vs}, {ac} can be
obtained, following which apply the Newton-Raphson rule
[20] u← u− ∂L/∂u

∂2L/∂u2 for each of the variables. For a detailed

derivation of the update equations, we refer the reader to
Algorithm 2 and Appendix C in [19]. Using the data obtained
from the psychometric study, we derive a solution for the
described MLE formulation using the Belief Propagation al-
gorithm, as shown in [19]. Fig. 7 shows a visual representation
of the estimated parameters describing the recovered scores,
the subject bias, and the inconsistency and content ambiguity.
Fig.7a shows the recovered quality scores for the 600 videos
in our database. The video files are indexed by increasing
bitrate values, and further sorted by resolution within each
bitrate group. The order of the presented video content is
consistent across all resolutions and bitrates. According to
our expectations, the average predicted quality scores of
videos generally increased as bitrate was increased. Fig. 7a
roughly identifies five clusters of videos based on predicted
quality scores corresponding to the five bitrate values. Based
on the parameter estimates obtained, the lowest bias value
bs = −20.21 was found for subject #19, whereas the highest
bias value bs = 15.43 was found for subject #59, indicating
subject #19’s quality scores were, on average, on the low side,
while those of subject #59 were, on average, on the high
side, as compared to the other human subjects. Subject #65
exhibited the greatest variability vs = 23.33 when assigning
quality judgements as indicated by the inconsistency estimates
vs, while subject #19 exhibited the lowest level of variability
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vs = 2.06e−51. Fig. 7c shows the ambiguity on the 30 source
videos. A source video from the State of Survival game had
the lowest ambiguity ac = 4.73, while a source video from the
Sonic game had the highest ambiguity ac = 9.99 among the
30 source videos. We denote the final opinion scores recovered
using the above parameters as MLE-MOS.

MLE-MOS or MOS in general, is a reliable representation
of subjective video quality and is required for the develop-
ment and evaluation of No-Reference (NR) VQA algorithms,
because reference undistorted videos are not available. The
Difference MOS (DMOS) is more commonly used in the
development and evaluation of Full Reference (FR) VQA al-
gorithms because it allows the reduction of content-dependent
quality labels. As discussed earlier, we use the 50mbps en-
coded versions of the source videos at 720p resolution as the
proxy reference videos when calculating the DMOS scores.
The DMOS score of the ith video in the dataset is :

DMOS(i) = MOS(ref(i))−MOS(i), (5)

where MOS(i) refers to the MLE-MOS of the ith distorted
video obtained using the MLE formulation, and ref(i) refers
to the proxy reference video generated from the same source
video sequence as the distorted video.
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Fig. 8: Histogram of MLE-MOS of the human subjects using 20
equally spaced bins.

H. Analysis and Visualization of the Opinion Scores

Fig. 8 plots a histogram of the mean opinion scores re-
covered using the maximum likelihood estimator. The MLE-
MOS of the videos in the database ranged from [8.558, 88.29].
The standard deviations for estimated MLE-MOS fell in
the range [2.023, 2.917]. The MLE-MOS distribution shown
in Fig 8 is slightly a right-skewed, typical of other VQA
databases. Since our new dataset contains videos in both of
the common display orientations (portrait and landscape), we
also examined the statistics of the MLE-MOS on each of
these two video categories. While the average MLE-MOS
rating on all videos was 55.45, it dropped to 54.578 on the
portrait videos, and rose to 56.322 on the landscape video.
Before reaching any conclusions, we conducted a two-sample
one-sided t-test considering a 95% confidence interval, to
determine whether the differences in the population means
of the two video categories were statistically significant. The
outcome of the test led us to conclude that the ratings

on the two categories of oriented videos were statistically
equivalent. We also plotted the average MLE-MOS scores as
function of bitrate and resolution after partitioning the videos
by orientation category in Fig. 9. Fig. 9a plots the average
MLE-MOS for portrait and landscape videos against bitrate.
Although the curve for landscape videos is slightly elevated
above the one for portrait videos across all bitrates, applying
a two sample one-sided t-tests at each bitrate concluded that
the differences between were never statistically significant. We
observed that the average MLE-MOS increased monotonically
against bitrate, as expected. A similar analysis was done on
the average MLE-MOS of the portrait and landscape videos
against resolution, as shown in Fig. 9b. Again, the plot of
average MLE-MOS for landscape videos was higher than that
of portrait videos across all resolutions, with the separation
decreasing with increased resolution. Again the differences
were statistically insignificant across all resolutions.

250kbps 500kbps 800kbps 2mbps 50mbps
Bitrate (Not Scaled)

20

30

40

50

60

70

80

Av
er

ag
e 

M
LE

-M
OS

Average MLE-MOS vs Bitrate
Portrait
Landscape

(a) Average MLE-MOS vs Bitrate for Portrait and Landscape Videos.
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Videos.

Fig. 9: Comparison of MLE-MOS scores on Portrait and Landscape
Gaming Videos. Shaded regions in both plots represent 95% confi-
dence intervals.

Fig. 10 plots rate-distortion curves for all four resolutions
of videos in the dataset. A plot of this type can supply clues
regarding the selection of optimal streaming video resolutions
as a function of bandwidth. We observed considerable overlap
among the rate-distortion curves around the middle of the
bitrate range (500 kbps to 2 mbps). Towards both lower and
higher bitrates, the amount of overlap reduced, with 360p
being the most preferred resolution at bandwidths of 500 kbps
or less, and 720p the preferred resolution at 2 mbps or higher.
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Fig. 10: Rate distortion curves at fixed resolutions.

In Fig. 11, examines the interplay of source video content
and bitrate and how these together affect MLE-MOS. To obtain
the plot, we separately calculated the average MLE-MOS
ratings of each of the 30 source sequences on a per-bitrate
basis across all available resolutions. Fig. 11 shows a clear
separations between the MLE-MOS curves of all the contents,
except at very high bitrates. Across contents, however, the
curves are commingled, which is a good illustration of the
difficulty of the VQA problem (it is not just about bitrate).
The variation of MLE-MOS for all contents was greatly
reduced at bitrates of 2 mbps or higher as compared to lower
bitrates. Clearly, as shown in prior studies the effect of video
compression induced distortions on perceptual video quality is
highly content-dependent because of perceptual masking and
similar processes.

Fig. 12 shows the effects of video source content on MLE-
MOS, across all bitrates for each of the fixed four resolutions.
Specifically, we plotted the average MLE-MOS scores of the
encoded videos over the five different bitrates associated with
each resolution in the database. As may be observed, there
were no strong separations between the MLE-MOS curves,
although the content did cause notable differences in the
reported video qualities. A salient takeaway from these two
analyses is that video compression has a heavier impact on
the visual perception of the video quality than does resizing,
at least on gaming videos. This further suggests the efficacy
of resizing to achieve data efficiencies with little perceptual
loss in the context of mobile gaming video streaming.
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Fig. 11: Variation of average MLE-MOS against content for five fixed
bitrates.
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Fig. 12: Variation of average MLE-MOS against content for four
fixed resolutions.

V. BENCHMARKING OBJECTIVE NR-VQA MODEL
ALGORITHMS

To demonstrate the usefulness of the new data resource, we
evaluated a number of publicly available No-Reference (NR-
VQA) algorithms on LIVE-Meta MCG database. We selected
six well-known general-purpose NR-VQA models to test :
NIQE [21], BRISQUE [22], TLVQM [23], VIDEVAL [24],
RAPIQUE [25], and VSFA [26], as well as three NR-VQA
models that were specifically developed for gaming video
quality assessment tasks : NDNet-Gaming [27], GAME-VQP
[28] and GAMIVAL. NIQE and BRISQUE are frame-based,
operating by extracting quality-aware features on each frame,
then average pooling to obtain quality feature representations
of the video. For the unsupervised, training-free model NIQE,
the predicted frame quality scores were directly pooled,
yielding the final video quality scores. For the supervised
methods (BRISQUE, TLVQM, VIDEVAL, RAPIQUE,
GAME-VQP and GAMIVAL), we used a support vector
regressor (SVR) with the kernel as radial basis function to
learn mappings from the pooled quality-aware features to
the ground truth MLE-MOS. VSFA uses a Resnet-50 [29]
deep learning backbone to obtain quality-aware features,
followed by a single layer Artificial Neural Network (ANN)
and Gated Rectified Unit (GRU) [30] to map features to
MLE-MOS. The ND-Net Gaming model however, regressed
the video quality scores directly using a Densenet-121 [31]
deep learning backbone. GAMIVAL modifies RAPIQUE’s
natural scene statistics model and replaces its imagenet
[32] pretrained Resnet-50 CNN feature extractor with the
Densenet-121 backbone used in ND-Net Gaming

We evaluated the performance of the objective NR-VQA al-
gorithms using the following metrics: Spearman’s Rank Order
Correlation Coefficient (SROCC), Kendall Rank Correlation
Coefficient (KRCC), Pearson’s Linear Correlation Coefficient
(PLCC), and Root Mean Square Error (RMSE). The metrics
SROCC and KRCC measure the monotonicity of the objective
model prediction with respect to human scores, while metrics
PLCC and RMSE measure prediction accuracy. As stated
earlier for the PLCC and RMSE measures, the predicted
quality scores were passed through a logistic non-linearity
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TABLE VIII
MEDIAN SROCC, KRCC, PLCC, AND RMSE ON THE LIVE-META MOBILE CLOUD GAMING DATABASE OVER 1000

TRAIN-TEST SPLITS (SUBJECTIVE MLE-MOS VS PREDICTED MLE-MOS). STANDARD DEVIATIONS ARE SHOWN IN
PARENTHESES. THE BEST PERFORMING ALGORITHM IS BOLD-FACED.

Metrics SROCC(↑) KRCC(↑) PLCC(↑) RMSE(↓)
NIQE -0.3900 (0.1816) -0.2795 (0.1366) 0.4581 (0.2165) 16.5475 (1.9996)

BRISQUE 0.7319 (0.1358) 0.5395 (0.1154) 0.7394 (0.1285) 12.5618 (2.5135)
TLVQM 0.6553 (0.1428) 0.4777 (0.1166) 0.6889 (0.1464) 13.5413 (2.6724)

VIDEVAL 0.7621 (0.1061) 0.5756 (0.0982) 0.7763 (0.1105) 11.7520 (2.2783)
RAPIQUE 0.8740 (0.0673) 0.6964 (0.0759) 0.9039 (0.0565) 8.0242 (1.6755)

GAME-VQP 0.8709 (0.0616) 0.6885 (0.0714) 0.8882 (0.0560) 8.5960 (1.7621)
NDNet-Gaming 0.8382 (0.1227) 0.6485 (0.1009) 0.8200 (0.1227) 10.5757 (3.0354)

VSFA 0.9143 (0.0435) 0.7484 (0.0572) 0.9264 (0.0380) 7.1316 (1.6082)
GAMIVAL 0.9326 (0.0270) 0.7736 (0.0431) 0.9399 (0.0259) 6.4277 (1.4220)

TABLE IX
RESULTS OF ONE-SIDED T-TEST PERFORMED USING 1000 SROCC, PLCC VALUES OF THE COMPARED VQA ALGORITHMS

ON THE LIVE-META MOBILE CLOUD GAMING DATABASE. EACH CELL CONTAINS 2 SYMBOLS: THE FIRST SYMBOL
CORRESPONDS TO THE T-TEST DONE USING THE SROCC VALUES, AND THE SECOND SYMBOL CORRESPONDS TO THE
T-TEST DONE USING THE PLCC VALUES. WHEN A SYMBOL ‘1’ APPEARS, IT DENOTES THAT THE ALGORITHM ON THE

ROW WAS STATISTICALLY SUPERIOR TO THAT ON THE COLUMN, WHEREAS A SYMBOL ‘0’ INDICATES THAT THE
ALGORITHM ON THE COLUMN WAS STATISTICALLY SUPERIOR. A SYMBOL OF ‘-’ INDICATES THAT THE COLUMN AND

ROW ALGORITHMS PERFORMED EQUALLY WELL.

ALGORITHM NIQE BRISQUE TLVQM VIDEVAL RAPIQUE GAME-VQP NDNet-Gaming VSFA GAMIVAL
NIQE – 00 00 00 00 00 00 00 00

BRISQUE 11 – 11 00 00 00 00 00 00
TLVQM 11 00 – 00 00 00 00 00 00

VIDEVAL 11 11 11 – 00 00 00 00 00
RAPIQUE 11 11 11 11 – -1 11 00 00

GAME-VQP 11 11 11 11 -0 – 11 00 00
NDNet-Gaming 11 111 11 11 00 00 – 00 00

VSFA 11 11 11 11 11 11 – – 00
GAMIVAL 11 11 11 11 11 11 11 11 –

function [33] to further linearize the objective predictions and
to place them on the same scale as MLE-MOS :

f(x) = β2 +
β1 − β2

1 + exp (−x+ β3/ |β4|)

We tested the algorithms mentioned above on 1000 random
train-test splits using the four metrics. For each split, the train-
ing and validation set consisted of videos randomly selected
from 80% of the contents, while videos from the remaining
20% constituted the test set. We also ensured that the contents
of the training and validation sets were always mutually
disjoint. We separated the contents in the training, validation,
and test sets to ensure that the content of the videos would not
influence the performance of the NR-VQA algorithms. Other
than NIQE and NDNet-Gaming, all of the algorithms were
trained on one part of the dataset, then tested using the other,
using the aforementioned train-test dataset split. Since, NIQE
is an unsupervised model, we evaluated its performance on
all 1000 test sets, without the need of any training. We also
evaluated the performance of the NDNet-Gaming using the
available pre-trained model on all of the 1000 tests sets, since
training code was not available from the authors. We applied
five-fold cross-validation to the training and validation sets
of BRISQUE, TLVQM, VIDEVAL, RAPIQUE, GAME-VQP
and GAMIVAL to find the optimal parameters of the SVRs
that were built on. When testing VSFA, for each of the 1000
splits, the train and validation videos were used to select the
best performing ANN-GRU model weights on the validation
set.

A. Performance of NR-VQA Models

Tab VIII lists the performances of the aforementioned NR-
VQA algorithms on the LIVE-Meta Mobile Cloud Gaming
database. In addition, we used the 1000 SROCC and PLCC
scores produced by the NR VQA models to run one-sided t-
tests, using the 95% confidence level, to determine whether
one VQA algorithm was statistically superior to another. Each
entry in Table IX consists of two symbols, where the first
symbol corresponds to the t-test done using the SROCC values,
and the second symbol corresponds to the t-test done using the
PLCC values. When a symbol ‘1’ appears, it denotes that the
algorithm in the row was statistically superior to that on the
column, whereas a symbol ‘0’ indicates that the algorithm on
the column was statistically superior. A symbol of ‘-’ indicates
that the column and row algorithms performed equivalently.
We found that NIQE model performed poorly, which is un-
surprising since it was developed using natural images, while
gaming videos are rendered synthetically and have different
statistical structures. However, the performance of the same
NIQE features improved when we extracted them and used
an SVR to regress from the features to the MLE-MOS in the
BRISQUE algorithm. The gap in performance between the
NIQE and BRISQUE points to the differences in the statistics
of camera-captured videos of the real world as compared to
graphical rendered synthetic gaming video scenes. However,
BRISQUE was able to adapt to these synthetic scene statistics.
The performance of TLVQM was average, probably because
that model uses many hand-tuned hyper-parameters that were
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TABLE X
MEDIAN SROCC, KRCC, PLCC, AND RMSE OF THE COMPARED NR VQA MODELS ON THE LIVE-META MOBILE CLOUD

GAMING DATABASE, DIVIDED BY DISPLAY ORIENTATIONS, OVER 400 TRAIN-TEST SPLITS. STANDARD DEVIATIONS ARE
SHOWN IN PARENTHESES. THE BEST PERFORMING ALGORITHM IS BOLD-FACED.

Landscape Videos Portrait Videos
Metrics RAPIQUE GAME-VQP VSFA GAMIVAL RAPIQUE GAME-VQP VSFA GAMIVAL

SROCC(↑) 0.876 (0.120) 0.885 (0.087) 0.927 (0.084) 0.956 (0.028) 0.851 (0.122) 0.850 (0.111) 0.903 (0.076) 0.882 (0.060)
KRCC(↑) 0.701 (0.117) 0.715 (0.093) 0.774 (0.090) 0.829 (0.045) 0.680 (0.124) 0.673 (0.109) 0.732 (0.087) 0.709 (0.074)
PLCC(↑) 0.919 (0.103) 0.912 (0.069) 0.946 (0.071) 0.965 (0.020) 0.882 (0.122) 0.876 (0.103) 0.916 (0.075) 0.897 (0.059)
RMSE(↓) 7.294 (2.811) 7.470 (2.630) 5.873 (2.226) 4.689 (1.513) 8.723 (2.632) 8.706 (2.504) 7.371 (2.822) 7.953 (2.513)

TABLE XI
COMPUTATION COMPLEXITY EXPRESSED IN TERMS OF

TIME AND FLOATING POINT OPERATIONS (FLOPS) ON 600
FRAMES OF A 360x720 VIDEO UPSCALED TO 1080x2160

FRAMES FROM THE LIVE-META MCG DATABASE

ALGORITHM Platform Time
(seconds)

FLOPS
(×109)

NIQE MATLAB 728 1965
BRISQUE MATLAB 205 241
TLVQM MATLAB 588 283

VIDEVAL MATLAB 959 2334
RAPIQUE MATLAB 103 322

GAME-VQP MATLAB 2053 11627
NDNet-Gaming Python, Tensorflow 779 126704

VSFA Python, Pytorch 2385 229079

GAMIVAL Pytorch, Tensorflow,
MATLAB 201 8683

selected to optimize the prediction of of video quality on
general purpose content and do not generalize well to gaming
videos. A similar scenario occurs with VIDEVAL. Although
VIDEVAL slightly boosts performance over BRISQUE, its
performance may be limited since it uses 60 features selected
from more than 700 to maximize performance on in-the-
wild UGC videos. The models that use deep learning like
VSFA, ND-Net Gaming and the ones that use hybrids of deep-
learning-based features and handcrafted perceptual features,
like RAPIQUE, GAME-VQP, GAMIVAL exhibit considerably
improved performance, showing that they are able to cap-
ture the statistical structure of synthetically generated gaming
videos, suggesting their potential as VQA algorithms target-
ting Cloud Gaming applications. The NR-VQA algorithms
GAME-VQP and RAPIQUE use a combination of traditional
NSS and deep-learning features to considerably improve the
performance over BRISQUE, VIDEVAL and TLVQM on the
LIVE-Meta MCG database. The superior performance of the
VSFA model over GAME-VQP and RAPIQUE that uses only
the deep-learning features might indicate the non-relevance
of the NSS features in the context of NR-VQA for cloud
gaming. However, the GAMIVAL model that uses certain
adaptations to the traditional NSS features, similar to the use of
neural noise models in [34], along with deep-learning features,
produced superior performance on synthetic gaming video
content, highlighting the relevance of modified NSS features
even for synthetic rendered content. Fig. 13 shows boxplots of
the SROCC values computed on the predictions produced by
each NR-VQA models, visually illustrating the results reported
in Table VIII. The two top-performing algorithms VSFA and
GAMIVAL have the very low variance in the SROCC values,
highlighting the reliability of the algorithms across multiple

train-test splits.
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Fig. 13: Boxplots of SROCC distributions of the compared NR-VQA
algorithms.

B. Effect of Display Orientation on VQA Prediction Perfor-
mance

The new LIVE-Meta MCG database contains both portrait
and landscape videos, allowing us to test the performance
of NR-VQA algorithms on different display orientations.
We tested the performance of the top-performing algorithms
RAPIQUE, GAME-VQP, VSFA, and GAMIVAL on videos
of both orientations over 400 train-test splits each. We may
conclude from the results shown in Table X that the NR-
VQA algorithms performed slightly better when trained on
landscape videos, than on portrait videos. Further, we per-
formed one-sided t-tests using the 400 SROCC and PLCC
scores used to report the results in Table X. We were able to
conclude from the results of the tests that the performances
of the NR-VQA algorithms were statistically superior when
trained using landscape videos as compared to portrait videos.
However, we could not explain why the algorithms performed
slightly differently on the display orientations. We hypothesize
that this maybe due to a bias learned by traditional NR-VQA
algorithms developed on landscape video databases and/or
that landscape videos generally provide more immersive ex-
periences due to the horizontal alignment of the two eyes.
From Tables VIII, X, we make an interesting observation that
although overall GAMIVAL is the best performing algorithm
on the LIVE-Meta MCG database, VSFA has a superior
performance on the portrait gaming videos as compared to
GAMIVAL.
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Fig. 14: Comparison of Performance vs Computational Requirement
of NR-VQA Algorithms. FLOPs are shown in GigaFlops and shown
in log scale.

C. Comparison of Computational Requirements and Runtime

This section analyzes the performance vs. complexity trade-
off of the NR-VQA algorithms studied in Section V-A. All of
the algorithms were run on a standalone computer equipped
with an Intel Xeon E5-2620 v4 CPU running at a maximum
frequency of 3 GHz. We used one of the videos from the
LIVE-Meta MCG database of 360x720 resolution, upscaled
it to the display resolution (1080x2160), and applied the
algorithms on it. We report the execution time and the floating-
point operations used by each algorithm in Table XI. The
algorithms VSFA and NDNet-Gaming were implemented in
Python, GAMIVAL was implemented partly in MATLAB
and partly in Python, while all other algorithms were im-
plemented in MATLAB. During the evaluation of deep NR-
VQA algorithms, we ensured that the GPU was not used
for fair comparison against other algorithms implemented on
the CPU. From the results reported in Table XI, none of
the tested algorithms implemented in high level prototyping
languages like MATLAB/Python run in real-time in their
current implementations, however, they may be optimized for
specific hardware using low-level languages like C/C++ by ef-
fectively exploiting their parallel processing capabilities in an
application-specific setup. Based on the arguments presented
above, we plotted the performance versus complexity trade-
off (SROCC versus FLOPS) for each of the algorithms in
Fig. 14. Different orders of magnitude of FLOPs of the NR-
VQA algorithms are indicated by distinct colors. The figure
shows that the top four algorithms, RAPIQUE, GAME-VQP,
VSFA and GAMIVAL, are computationally complex in vary-
ing degrees, with RAPIQUE having the lowest computational
complexity and VSFA the highest. In addition to being the
top-performing algorithm, GAMVAL is also computationally
efficient in comparison to VSFA and NDNet Gaming, making
it a viable option when evaluating the video quality of Mobile
Cloud Gaming.

VI. CONCLUSION AND FUTURE WORK

In this work, we have introduced a new psychometric
database that we call LIVE-Meta Mobile Cloud Gaming
(LIVE-Meta MCG) video quality database. It is our hope that
this resource helps advance the development of No Reference

VQA algorithms directed towards Mobile Cloud Gaming. The
new database will be made publicly available to the research
community at https://live.ece.utexas.edu/research/LIVE-Meta-
Mobile-Cloud-Gaming/index.html. We have also demonstrated
the usability of the database for comparing, benchmarking and
designing NR VQA algorithms. As a next step, algorithms
based on traditional natural scene statistics (NSS) models
and/or deep-learning methods could be developed to further
improve the accuracy of NR-VQA algorithms. In addition,
since cloud gaming applications require real-time video quality
prediction capability, it is also of utmost interest to develop al-
gorithms capable of running at least in real-time. Furthermore,
we demonstrated that the performance gaps between landscape
and portrait videos of NR-VQA algorithms were statistically
significant, as confirmed by t-tests. We believe it is a possible
research direction to explain the gap of NR-VQA algorithms
between the display orientations.

Future works could also focus on development of “Qual-
ity of Experience” (QoE) databases comprised of subjective
QoE responses to various designs dimensions like changing
bitrates, content-adaptive encoding, network conditions and
video content which would further help in the development
of perceptually-optimized cloud video streaming strategies,
leading to improved holistic mobile cloud gaming experience.
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