¢? CellPress

Trends in

Biochemical Sciences

Viembrane protein synthesis: no cells required

Zachary A. Manzer, '? Ekaterina Selivanovitch, '? Alexis R. Ostwalt, ' and Susan Daniel

Despite advances in membrane protein (MP) structural biology and a growing in-
terest in their applications, these proteins remain challenging to study. Progress
has been hindered by the complex nature of MPs and innovative methods will
be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS)
is a burgeoning technique for synthesizing MPs directly into a membrane environ-
ment using reconstituted components of the cellular transcription and translation
machinery in vitro. We provide an overview of CFPS and how this technique can
be applied to the synthesis and study of MPs. We highlight numerous strategies
including synthesis methods and folding environments, each with advantages
and limitations, to provide a survey of how CFPS techniques can advance the
study of MPs.

Traditional approaches to, and limitations of, transmembrane protein isolation
Biological membranes are complex and dynamic environments with embedded macromolecules
that carry out various functions. Two classifications of such macromolecules include monotopic
membrane proteins (MMPs) (see Glossary) and transmembrane proteins (TMPs), both of
which associate with the lipid leaflets of the membrane (Figure 1). The last several decades
have been devoted to identifying the structure and function of these complex molecules [1].
MMPs bind to the interior or exterior leaflet and perform various tasks, such as anchoring the cy-
toskeleton to the membrane, mediating cell-cell interactions, and facilitating signaling pathways
[2]. TMPs span the entire lipid bilayer, bridging the extracellular and cytosolic environments.
These proteins can function to transport molecules along a concentration gradient (e.g., Ca®*
channels [3], glucose transporters [4]), actively transport molecules to move species across the
membrane (e.g., Na*/K* pump [5], proton pumps [6]), or participate in signal transduction
(e.g., integrins, G-protein coupled receptors) [7]. Although computational studies have provided
some insight into these proteins [8—10], understanding MP structure, function, and energetics
lags behind that of soluble proteins due to limitations associated with the purification and isolation
of MPs in their native conformations [11,12].

The structure and functions of MPs are highly dependent on their interactions with the bilayer
constituents and removing them often has detrimental effects on MP activity [13]. Removing
the protein domains that are embedded within the hydrophobic core of the membrane exposes
the hydrophobic amino acid chains to water; a thermodynamically unfavorable process that often
results in protein unfolding [14]. In eukaryotic cells, MPs are synthesized by ribosomes located on
the surface of the endoplasmic reticulum (ER) and are typically inserted into an ER lipid membrane
during synthesis (co-translationally) where they can continue to fold correctly in an amphiphilic en-
vironment [15]. To isolate full-length MPs synthesized within a cell, the lipid bilayer must first be
disrupted without deleterious effects to the protein, then the MP is reconstituted into a membrane
environment using amphiphiles, such as detergents. This process is typically not straightforward,
as no universal detergents can reconstitute every MP. Detergent reconstitution involves finding a
delicate balance between the solubilization efficiency of the detergent and protein stability; both of
which are dictated by the physicochemical properties of the surfactant and protein [e.g., critical
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Figure 1. Most membrane proteins (MPs) are synthesized co-translationally and interface with membranes in
various ways. MPs are typically synthesized directly into the lipid membrane to enable their proper folding. Various
chaperones (not shown) and a signal peptide sequence in the protein itself (purple) direct this process. Monotopic
membrane proteins (MMPs) and transmembrane proteins (TMPs) display different structural motifs and physical
characteristics. Monotopic proteins associate to a single leaflet on either side of the lipid membrane. These can be
transiently associated (peripheral) or permanently attached (integral). TMPs pass through the membrane and include
various types of channels, receptors, and enzymes.

micelle concentration (CMC) of the detergent, pH stability, and water solubility] [16]. Finding
this balance is time consuming and, even if solubilization is achieved, the micellar environment
still differs from that of a biomembrane, which can lead to protein instability. Other methods
developed to study MPs include exchanging detergents for styrene—-maleic acid (SMA) lipid
particles or fusing the MPs to an amphipathic protein [17,18]. Despite these advancements,
each method presents different challenges, and expressing and scaling up MP production
using cell-based expression systems remains laborious. In this Review, we highlight the poten-
tial of using cell-free expression systems to provide insights into MPs. We provide a brief over-
view of the development of cell-free synthesis and highlight several approaches that can be
used to support the cell-free synthesis of MPs in a variety of formats and applications. These
include both soluble and surface-based methods for structural, functional, and biotechnology
applications that showcase this technique and what still needs to happen to push the bound-
aries of cell-free production of MPs.

Cell-free protein synthesis: an emerging addition to traditional membrane protein
synthesis methods

Given the challenges associated with cell culture-based MP synthesis, purification and isolation,
alternative methods are needed to advance the field, particularly for large, multi-pass TMPs. Cell-
free protein synthesis (CFPS) techniques use the transcription and translation machinery
found in cells to express proteins of interest without the need for living cells to execute the synthe-
sis itself. CFPS offers shorter protein synthesis timelines and circumvents the complications that
arise using traditional methods, such as the need for intensive sterile environments, cytotoxic pro-
tein expression, cellular growth constraints, or successful genetic engineering [19,20]. These
in vitro synthesis reactions, at minimum, require the translation and transcription machinery, an
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Glossary

Atomic force microscopy (AFM):
topographic technique used to
measure surface roughness by
monitoring the interaction between a
cantilever probe tip and the surface of a
substrate.

Cell-free protein synthesis (CFPS):
technique where cellular transcription
and translation machinery is taken out of
cells and recombined with necessary
cofactors in vitro to synthesize proteins
from added genetic material.

Critical micelle concentration
(CMC): the concentration above which
amphiphilic molecules (.., lipids and
surfactants) will begin to aggregate and
form micelle structures.

Cryogenic electron microscopy
(Cryo-EM): advanced microscopy
technique using cryogenic temperatures
to flash-freeze protein samples prior to
imaging.

Fluorescence microscopy: form of
optical microscopy that uses a high-
intensity light source to excite a molecule
and then monitors the emission of a
specific wavelength of light.

G-protein coupled receptor (GPCR):
large, diverse class of transmembrane
receptors that detect external stimuli by
binding to a G protein and triggering
downstream signaling cascades.

Lipid vesicles/liposomes: spherical
assembly of lipid molecules that forms
an enclosed structure separating the
interior solution from the exterior.
Membrane protein (MP): a protein
consisting of large hydrophobic regions
that is associated with or attached to a
lipid bilayer.

Monotopic membrane proteins
(MMPs): membrane proteins that
associate with one leaflet of the lipid
membrane.

Nanodisc: an assembly of lipids
surrounded by small molecules,
proteins, or other materials that forms a
bounded bilayer structure.

Nuclear magnetic resonance
(NMR): spectroscopic technique that
measures local magnetic fields to
determine structural information of
proteins.

Supported lipid bilayer (SLB): 2D lipid
bilayer supported by a solid interface
providing greater stability than other
model membrane systems.

Surface plasmon resonance (SPR):
spectroscopic technique that monitors
molecular interactions.
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energy source, and the genetic material encoding the protein of interest (Figure 2) [21]. Because
of the modular and customizable nature of these systems, the reactions can be modified to op-
timize yield and protein activity. Supplementing the reactions can improve energy regeneration
[22], disulfide bond formation [23], or provide a hydrophobic environment to support MP folding
[24]. Arecent example of this continued development is the addition of glycosylation machinery to
Escherichia coli cell lysate synthesis reaction mixture [25-27]. In this area, both N- and O-linked
glycans are built in either one-pot reactions or in microfluidics to achieve glycosylation in a cell-
free environment.

Cell-lysate-based protein synthesis has been used since the mid 1950s to study biological pro-
cesses [28]. E. coli has been the most common lysate source although reaction lysates can be
produced from eukaryotic sources including mammalian cells [29], plants [30], and yeast [31]. Ini-
tially, technical constraints limited the use of CFPS; however, in the early 2000s the development
of recombinant, or purified, cell-free protein systems (such as the PURE system) [32] and opti-
mized cell extracts made them more accessible to researchers and demonstrated the true poten-
tial of this approach. Lysate-based systems reached impressive total protein yields well above a
gram per liter. One recent commercial system for CFPS, TXTL, exemplifies the progress made
since then for soluble proteins [33]. Factors that contributed to the continual increase in protein
yield include ATP and amino acid regeneration [22,34,35], new energy sources [36], improved
lysate preparation [37,38], extensions to the reaction lifetime [39,40], and initial reaction rates
[41]. Here, we only provide a cursory summary of the robust history of CFPS and direct interested
readers to more extensive reviews on the development of cell-free systems [42,43]. When
synthesizing a specific protein, the choice of recombinant versus lysate-derived systems and
each step in the development of a cell-free system requires careful consideration with regards
to protein size, structural motifs, and post-translational modifications.
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Figure 2. Cell-free synthesis provides modular control of protein expression. There are four main components of
the in vitro reaction: (i) a source of translation and transcription machinery, which can be obtained from a cell lysate directly
or generated by recombinantly expressing and purifying the components (as depicted on the left); (i) an energy source
and energy regeneration system to prolong the reaction; (i) a gene of interest, typically in the form of a plasmid, but linear
DNA fragments can also be used; and (iv) additional synthetic components, such as membranes vesicles, that are
optional but can enhance the production and stability of a protein of interest.
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Transmembrane proteins (TMPs):
membrane proteins that span across
both leaflets of the lipid membrane.
X-ray crystallography: technique
where proteins are prepared into solid
crystals and then exposed to x-rays to
determine diffraction patterns and
calculate the underlying structure.
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Assisted CFPS methods for MPs

The integration of cell-free systems with MP synthesis has the potential to recapitulate native bi-
ological functions and serve as a platform to study a broad range of proteins (Figure 3, Key figure).
Regardless of the CFPS system selected, a stabilizing and solubilizing environment is needed
when expressing MPs to gain insights into their native mechanistic, biophysical, and structural
properties. Such an environment can be provided via the addition of different detergents or mi-
celles, nanodiscs, lipid vesicles (liposomes), or supported lipid bilayers during CFPS
(Figure 4) [44,45]. Consideration for each strategy should be given, as they have specific advan-
tages and limitations.

Adding detergents to CFPS reactions during or after protein synthesis is a common approach
used to solubilize MPs [46]. In early studies, when CFPS methods resulted in precipitate forma-
tion or partially unfolding of MPs, detergents were supplemented to solubilize aggregated or
misfolded proteins [47,48]. The alternative is to directly supplement CFPS mixtures with mild de-
tergents that can render a MP more soluble during the reaction (e.g. digitonin and Brij35)
[47,49-52]. With a small amount of detergent present during synthesis, the hydrophobic protein

Key figure
Cell-free membrane protein (MP) synthesis advanced biotechnology
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Figure 3. There are several important properties of MPs that make them compelling candidates to study. This includes their
exquisite selectivity in transport across the membrane, reliance on membrane composition for proper folding and function,
and the ability to transmit information in a complex environment (communication). Each of these properties needs to be
maintained to accurately understand the fundamental mechanisms of a protein’s function. Cell-free protein synthesis
provides the ability to recapitulate this function in vitro in a single test tube reaction. As shown in the center, genetic
material is provided and then used to directly synthesize proteins using the isolated cellular machinery. By providing a
membrane environment during cell-free synthesis, this opens the door for widespread use of membrane proteins in
biotechnology applications, elucidating complex structure, and understanding how to modulate their function.
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domains are stabilized by the acyl chain domains, forming proteomicelles. Not all detergents will
be suitable for a particular protein and stronger detergents can disrupt the transcriptional and
translational machinery [47,51]. The detergent of choice should be carefully considered prior to
supplementing the CF reaction. A second consideration is that proteomicelles, which are struc-
turally considered closed monolayers, do not replicate the bilayer structure of a lipid membrane,
therefore MPs associated with them may not retain their native shapes and activity.

Another method for the CF synthesis of MPs involves supplementing the reaction with a variety of
lipid-based nanostructures, such as nanodiscs (Figure 4). In these approaches the lipids of choice
are assembled into bilayers that mimic the cell memibrane, followed by MPs insertion during trans-
lation. Nanodiscs have discoid morphologies and are organized with the support of membrane
scaffold proteins or apolipoproteins [53]. These disks have been added directly to the CF synthesis
reaction and facilitated the production of functional MPs [54,55], provided they have the proper lipid
composition [56,57]. It has also been shown that an apolipoprotein, required for nanodisc forma-
tion, along with a desired MP can be coexpressed, resulting in the simultaneous formation of
nanodiscs and co-translational insertion MPs into the lipid bilayer [58—-60]. In addition to the compat-
ibility of nanodiscs with CFPS reagents, they can be used as protein carriers, on which, following
CFPS into the disk, MPs can be delivered elsewhere without reconstitution [59,61]. Such an
example is found in Patriarchi et al., where nanodiscs delivered a CF-synthesized functional
G-protein-coupled receptor to a plasma membrane of a living cell [59]. The discoid structure
of these nanoparticles allows for interrogation of the cytosolic and extracellular domains of TMPs,
introducing both a benefit and a limitation of using nanodiscs for orientation-dependent studies.
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For instance, such is the case when studying transporters, where the direction-dependent pas-
sage of ions or other molecules cannot be easily probed. Tools are currently being developed to
address these issues [62,63], and it is likely that they will soon be integrated with CFPS.

An alternative approach to improving the synthesis and stability of MPs in CF reactions is to add
synthetic or cell-derived membrane liposomes [64]. Like nanodiscs, liposomes contain a lipid bi-
layer but have a spherical morphology with an interior cavity separated from the exterior environ-
ment. Libraries of proteins have been co-translationally inserted into synthetic lipid vesicles and
their structures and functions have been evaluated in accordance with various parameters
such as lipid environment [65], membrane curvature [66], and temperature [24,64,67,68]. Certain
proteins require specific lipids or accessory proteins that are present in the native membrane en-
vironment that would be difficult to mimic synthetically [69], although there are emerging reports
of heterologous chaperone-assisted cell-free synthesis [70]. Additionally, given the customizable
nature, synthetic components like diblock copolymers can also be added to study the effect of
mechanical properties on protein folding [71]. While specific essential lipids and proteins can be
added during CF synthesis, it would be cumbersome to identify the lipids (without an available
crystal structure) and proteins (without fully understanding their roles). To circumvent this, lipo-
somes directly from biological membranes can be acquired [72]. For instance, vesicles harvested
from the ER, termed microsomes, can successfully incorporate functional MPs [73,74]. Even
though a wide variety of different vesicles are suitable for CFPS, because the hydrophobic bilayer
domain needs to match the membrane spanning region of the MP, this approach often requires
some level of optimization. Overall, there are a variety of choices and membrane-like additives
available for the CF expression of functional MPs that offer different advantages and trade-offs.
In recent years, scientists and engineers have used cell-free approaches to produce proteins
for structure—function studies, including viral and bacterial MPs [75-79], and to design new tech-
nologies for sensing, catalysis, and drug discovery applications [68,80,81].

Membrane-assisted cell-free synthesis can overcome hurdles in structural
studies of MPs

Even though solving the structures of MPs is critical for learning about fundamental biological pro-
cesses and are advantageous for identifying drug targets, their complexity has long been a barrier
for studying their structural properties. These difficulties with MP structural studies are often pre-
sented by the large hydrophobic domains that require the supporting structure of a membrane
bilayer. Additionally, milligram amounts of purified protein are required for certain techniques,
which means the protein must be overexpressed, isolated, and purified from its native lipid
environment [82]. Currently, the main techniques used in protein structure determination are
cryogenic electron microscopy (cryo-EM), NMR, and X-ray crystallography.

Common NMR techniques can be used for small (<30 kDa) proteins, due to the spectral
crowding of signals from larger proteins; they also need to be isotope-labeled, which is not trivial
for most eukaryotic proteins in cell-based systems [83]. Most MPs are too large for NMR struc-
tural determination studies and are also frequently too small (£100 kDa) for cryo-EM studies,
which affects the ability to acquire a high resolution structure [84,85]. For crystallographic
methods to be successful, milligram amounts of pure, stable, and functional protein are required.
The customizable and open-system nature of CFPS makes this method particularly advanta-
geous for structural biology [86-90]. Along with the ability to overexpress proteins without the
concern for cytotoxicity, purification is simpler, optimization of protein production is independent
of cell viability, pH, redox potential, or temperature, and additives that can help co-translational
folding can be readily included [91,92]. It should be mentioned that yields for MP CFPS can still
be suboptimal, though have seen much improvement in recent years.
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When coupling CFPS with structural biology studies, an E.coli-based cell-free system is the most
popular route for soluble proteins and may emerge as the standard for MPs. There have been
great efforts in the improvement and development of CFPS methods for the preparation and
study of MP structures, especially by crystallographic methods [86,93]. There have already been
some reports of MP crystallization utilizing CFPS [88,94], such as a 3.7A resolution crystal structure
of the E. coli membrane transporter EmrE [94], but overall few resolved MP structures at high
atomic resolutions [62,95]. This is partly due to the challenges mentioned previously, but also the
obstacle of post-translational modifications (PTMs), which are often critical for MP structure, func-
tion, and stability. PTMs are notoriously difficult to address with most recombinant systems, espe-
cially CFPS [21,96]. A lack of PTMs can lead to reduced stability and functionality, but a more
conformationally homogenous sample can be beneficial when carrying out structure determination
techniques that require uniform protein samples. Although coupling CFPS with structural determi-
nation techniques remains challenging, this method can serve as a complementary approach to
traditional cell-based techniques for comparison purposes. For example, the crystal structure of
the bacterial membrane kinase DgkA, produced by CFPS methods, was solved to a similar reso-
lution and structure compared with the same protein generated using a cell-based approach, with
the CFPS optimization approach being much less extensive [95].

Another benefit of using CFPS for protein structure studies is that additives such as cofactors,
ligands, and substrates can be included into the system to help improve protein stability during crys-
tallization. For instance, small molecule binding agents were chosen to enhance stability and improve
crystal quality, which resulted in high quality crystals of the human claudin-4 (T4L-claudin-4) protein
when bound to an enterotoxin (Clostridium perfringens-CPE) (Figure 5A,B) [86,97].

Different types of micelles, nanodiscs, liposomes, detergents, and chaperones can mimic the
native lipid environment found in the cell and promote MP solubility and functionality [62]. Cell
free expression of the chemokine GPCRs, CX3CR1 and CCR?5, in the presence of nanodiscs, mi-
celles, or giant unilamellar vesicles (GUVs) resulted in enhanced conformational stability, particularly
with the nanodisc-incorporated method (Figure 5C,D) [98]. In the case of both proteins, the solu-
bility and yield were substantially higher in the presence of nanodiscs (ND+) than in their absence
(ND) (Figure 5C), with Figure 5D showing that CX3CR1-GFP (C-terminal tag) successfully localized
to the GUV membrane. Similarly, the MP bacteriorhodopsin displayed increased stability for NMR
methods when it was cell-free expressed with detergent micelles, amphipols, and nanodiscs [99)].
Improving membrane mimetics for CFPS applications will enable the use of techniques such as
cryo-EM or NMR for the determination of MP structures. Overall, continued investigation and
optimization of these methods is needed for CFPS to become a go-to technique for MP structure
studies. As CFPS systems and structural determination techniques continue to merge and evolve,
MP studies will undoubtedly advance.

Solid supported membranes for the study of MPs

Using supported membranes in CFPS reactions provides alterative methods to study MPs not
possible with model membranes suspended in solution. These membrane platforms create 2D
bilayers whose geometry is compatible with surface-based techniques such as atomic-force
microscopy (AFM), fluorescence microscopy, and surface plasmon resonance (SPR),
among many others [100]. These surfaces have compatibility with surface-based measurements
and have the ability to coat large surface areas to functionalize a surface to present molecules for
applications ranging from biosensors to cell culture platforms. Throughout the development of
supported lipid bilayers (SLBs), the integration of properly folded, functional TMPs into these bio-
mimetic platforms has long been a goal of the field (Figure 4). By performing the synthesis reaction
in the presence of an SLB, TMPs can be directly integrated into planar membranes as highlighted
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Figure 5. Cell-free synthesis can be used to interrogate the structure of MPs. (A) Human-claudin-4 was fused with
T4 phage lysozyme to promote crystal formation and synthesized using cell-free protein synthesis (CFPS) [86]. This protein
was eluted in a single step and then used to form crystals and achieve a 4 A resolution structure. (B) Using this technique, a
3.5 A resolution structure of the claudin-4-C-CPE complex was resolved [97]. (C) In another study, a nanodisc-based system
was used to support the expression of chemokine receptors. An SDS-PAGE image of the cell-free expression and study of
CX3CR1 and CCR5 with (ND*) and without (ND") nanodiscs, showing total protein synthesized (T) versus soluble protein
recovered (S) and their respective yields [98]. This shows the improvement when using a membrane environment in
conjunction with CFPS. (D) Giant unilamellar liposomes were also used to show the localization of GFP-tagged CX3CR1 to
the giant unilamellar vesicle membrane taken from different fields of vision, proving that the protein is correctly associating
with membranes. The above figures have been reproduced from their original source under the Creative Commons 4.0
License. Credit is given to the authors listed under the respective citations.
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by a few examples shown in Figure 6. In one study, CFPS was used to study the interaction of
bacterial proteins FtsZ and FtsA with SLBs [101]. Using fluorescence microscopy, the authors
characterized various membrane structural phenotypes on both supported membranes and ves-
icles by using cell-free coexpression to mimic the process involved in E. coli cell division
(Figure 6A). By using the combination of cell-free synthesis and model membranes, the authors
were able to dissect the effect of each component. Additional analytical techniques such as
quartz crystal microbalance, can also be used with SLBs to monitor SLB formation and insertion
of the MP of interest, as has been done with a-hemolysin in real time during its cell-free expression
[102].

An early demonstration of the direct synthesis of a TMP into an SLB was done with a GPCR using
fluorescence imaging [103]. GPCRs are seven-pass TM receptors that control many physiologi-
cal functions such as olfaction, vision, and taste, and represent important therapeutic targets.
Synthesis of functional GPCRs into biosensors would be a major advancement in GPCR biotech-
nology. In one GPCR study, an SLB was first tethered to a gold interface with peptide spacers
[104]. Using this platform, a variety of lipids were used to characterize the binding of an antagonist
to the model GPCR protein CXCR4. This platform was then adapted to a microarray support,
showing the potential of this cell-free method to be scaled-up for use in high throughput screen-
ing applications [105]. The direct cell-free synthesis of TMPs into SLBs has been coupled with
more sophisticated measurement techniques, like neutron reflectivity to determine protein struc-
tures. This approach has been used to probe MP structure of the hepatitis C virus protein p7
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Figure 6. Model membranes can be coupled with cell-free protein synthesis for the study of membrane
proteins. (A) FtsZ was added to the surface of a supported bilayer along with the cell-free expression of ZapA and FtsA,
components of the bacterial division process [101]. Fluorescence images with tagged FtsZ show the formation of protein
bundles on the membrane surface. A liposome model was also used to study the effect of this process, and the
subsequent re-creation of membrane-tethered bundles is seen in purple, as indicated by the arrow. (B) A schematic is
shown for a device using microfluidic chambers that was created to form a lipid membrane across an aperture using an
oil-water interface with liposomes embedded with the cell-free expressed plant photoreceptor Arch-3 [108]. The top
sequence shows the formation of the functionalized membrane and the bottom depicts the details of the aperture and a
cartoon showing the integral membrane protein. This system was electrically sealed and was used to monitor electrical
current changes through the membrane upon light excitation. (C) More advanced microfabrication techniques were used
to create a tapered aperture with better mechanical properties as shown in the image and schematic [110]. Using this
device, an important cardiac ion channel (RERG) was cell-free-expressed into liposomes to form a planar membrane. The
conductance of single channel hERG-containing membranes was monitored as shown in the image. The above figures
have been reproduced from their original source under the Creative Commons 4.0 License. Credit is given to the authors
listed under the respective citations.

[106]. Researchers have also synthesized the chimeric potassium channel KcsA-Kv1.3 into a
membrane supported SPR surface [107].

Beyond simple supports, more complicated surfaces can be used to provide sensing capabilities
to CF membrane systems. In a recent study, a microfluidic device was fabricated to create an
aperture opening in which a lipid membrane could be supported across a micron-scale channel.
The authors used commercial E. coli lysate to synthesize the plant photoreceptor
archaerhodopsin-3 into this membrane to carry out single protein electrophysiological studies
(Figure 6B) [108]. This allowed the authors to create an electrically sealed membrane that was
able to detect the function of cell-free expressed proteins. In subsequent work, more advanced
nano- and microtaper apertures were fabricated with silicon nitride supports [109]. These served
to provide increased stability to the lipid membrane while enabling the researchers to test the
effect of astemizole on single hERG channels synthesized using a wheat-germ lysate. This tech-
nigue was further refined to better characterize the fabrication process and produce more robust
hERG sensors (Figure 6C) [110].

A critical step in SLB fabrication is the successful integration of the biological membrane with the

underlying support. In early work, this supporting layer was comprised of bacterial S-layer pro-
teins, which self-assemble into a lattice and provide a protective meshwork [111]. This coating

650  Trends in Biochemical Sciences, July 2023, Vol. 48, No. 7


Image of &INS id=
CellPress logo

Trends in Biochemical Sciences

is an example of a proteinaceous supporting layer that biosensing platforms can contain; S-layer
SLBs have since been used for the CFPS of a human voltage gated ion channel, VDAC [112]. Our
research group also recently demonstrated that diblock copolymers can be used to create a
cushioning support while tuning the biophysical properties of the membrane itself [113]. These
types of systems can also be coupled with conducting polymer supports for electrical monitoring
[114,115]. Supported membranes provide access to a broad range of applications and capabil-
ities that, with CFPS, can advance the study and implementation of MPs.

Cell free MP synthesis: a tool for biopharmaceutical applications

There is a growing interest in using CFPS to manufacture biopharmaceutical remedies, such as
antibodies and therapeutic enzymes [116,117]. In recent years, biotherapeutic MPs, such as vac-
cines, have been generated due to the development of membrane mimics. Traditionally, conju-
gate vaccines incorporate a weak and strong antigen, where the strong antigen behaves as a
carrier to enhance the immune response to weak ones. Stark et al. designed a conjugate vaccine
in which CF-expressed MPs served as immunostimulatory protein carriers, to which nanodiscs
were supplemented to improve solubility [118]. This CF-based conjugate vaccine design can
overcome some of the limitations associated with vaccine manufacturing, including slow and
costly production times. Similarly, CFPS has also been used to produce proteoliposome-based
vaccine particles against Pseudomonas aeruginosa — one of the leading causes of pneumococcal
infections in hospitals [119]. A bacterial outer MP was co-translationally expressed in the pres-
ence of liposomes using CFPS and the authors showed that its epitope assembled into an active
state outside of its native bacterial environment. It is especially encouraging that in both of the
aforementioned studies, the designed vaccines showed immunogenically promising results in
murine models. Although few studies to date have showcased the potential of CFPS MPs as ther-
apeutic targets, the accessibility and robustness of the CF method wiill likely expand the use of
MPs for therapeutic development in the coming years.

Concluding remarks

MPs represent a significant scientific frontier, rife with opportunities for discovery at a basic mo-
lecular level up to complex physiological systems. Developing new techniques to interrogate
the complex structures and functions of MPs in their native environments will be required to
make progress in this area. CFPS is well suited to be used for studies of MPs, but several open
questions will need to be addressed (see Outstanding questions). These include increasing over-
all yields from CFPS, achieving proper folding, extending reaction systems to complex protein
classes, and studying molecular targets that prove too difficult to adequately study today. The
biggest challenge will be in increasing protein yields and maintaining complex structures as
these are fundamental to unlocking these future studies. Soluble protein expression has seen
dramatic improvements in this realm, but there is still much to learn about expanding membrane
protein synthesis yields. When these critical needs can be met, we expect the cell-free expression
of MPs to become more routine and adopted more widely. Beyond accelerating the discovery of
MP structures using techniques such as cryogenic electron microscopy, more efficient and cost-
effective MP production will usher in a new era in therapeutic development. With the continuing
development in the field of CFPS, this paradigm shift is only a matter of time.
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Can we develop cell-free systems ca-
pable of supporting complex folding
and post-translational modifications in
a controlled manner?

Does the cell-free synthesis approach
extend to all membrane protein clas-
ses and thus open new ways to study
such proteins?

Can CFPS be used to study TMPs
present in organelle membranes, open-
ing a means to study them in in vitro
platforms and use them for drug
screening, structure determination,
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