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ABSTRACT

Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed 
matter and build complex metamaterials with unique functionalities. Simulations predict a 
multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have 
been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean 
truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-
assemble into a hexagonal phase under an in-plane gravitational potential. Under additional 
gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-
situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a 
crystalline defect and causes a chain reaction of neighboring particle rotations. Our results 
provide a framework of studying different structures from hard-particle self-assembly and 
demonstrates the ability to use confinement to induce unusual phases. 
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INTRODUCTION
Colloidal  particles  can  self-assemble  into  ordered  crystals  with  extraordinary  nano  and 
mesoscale complexity1 and unique optical, electronic, and magnetic properties2,3. These emergent 
properties depend on the properties of the constituent particle and the crystal phase of the final 
ordered structures. The phase behavior of self-assembled colloidal structures depend on a variety 
of factors, such as shape, surface interactions, and external fields1. Two-dimensional (2D), hard-
particle colloidal systems are of interest because they are entropically driven, and their final 
assembly  state  solely  depends  on  the  shape  and  packing  fraction  of  the  particles.  Previous 
computational4 and experimental studies have shown interesting crystallization behavior (from 
liquid to solid) and crystal structures in 2D systems consisting of spherical colloids5,6, ellipses7,8, 
rods and rectangles9–11, squares12,13, triangles14,15, and hexagons16. Hard or nearly hard spheres are 
commonly observed to form face-centered cubic structures.  Complex three-dimensional (3D) 
structures  such  as  diamond,  space-filling  polyhedral  packing,  and  porous  lattices  have  been 
formed  by  using  patchy  DNA  interactions,  shape-dependent  entropic  forces,  or  magnetic, 
gravitational, and capillary forces17–22. A wide range of hard-particle 3D assemblies have been 
extensively predicted in simulation23, but are challenging to experimentally achieve and image. 

Colloidal  crystals  are  often  described  as  programmable  materials24 but  typically  form static 
structures that cannot be reconfigured into different crystals once assembled, or can only be 
dissembled and re-assembled into the same structure25. The ability to directly switch between 
distinct crystal structures is analogous to solid-solid phase transitions in atomic matter and has 
previously been studied in different colloidal self-assembled systems26. Phase transition kinetics 
in soft spherical colloids have been previous studied under electric fields27. Phase transitions that 
maintain crystal symmetry can be induced in DNA-functionalized nanoparticle superlattices by 
inserting  additional  nanoparticles  or  DNA  linkers28,29.  Phase  transitions  have  also  been 
investigated with  hard-particle spherical colloids30,31.   The majority of the studies have been in 
2D systems that require complicated external fields. 3D phase transitions (e.g. from FCC phase 
to AuCu phase) have been observed using X-ray scattering32–34 and confocal techniques 35–37. In 
hard-particle systems, one strategy is to change the colloidal shape to an anisotropic, or higher 
order polygon, which can result in complex phase behavior such as crystal-crystal or solid-solid 
phase transitions. Colloidal squares13 that were assembled in 2D have shown complex phase 
behavior as a function of packing fraction. Superballs38 that have been assembled in 3D have also 
shown solid-solid phase transition under different osmotic pressures. However, these superball 
assemblies show similar phase behavior as those found in 2D systems12,13. In addition to shape 
change, an external potential, such as confinement or boundary conditions, can also play a large 
role in the possible accessible crystal phases39–42.  

In general, these previous hard-particle phase transitions lack complex phase transformations, 
such as those in which the “atoms” change coordination number, or transform between crystal  
lattice systems. Further progress in this field of work could lead to metamaterials with rapidly 
switchable  properties  and  functional  structures.  Elucidating  the  kinetics  of  colloidal  phase 
transitions could also provide understanding of solid-solid phase transitions in atomic solids, 
which remain controversial  even for  elemental  materials  due to  the  challenges  of  observing 
dynamic behavior at the atomic scale43,44. The advantage of these colloidal systems is that they 
can  be  imaged  at  a  spatial  and  temporal  resolution  that  cannot  be  achieved  in  real  atomic  
systems, even with state-of-the-art experimental tools such as transmission electron microscopy45

or ultrafast X-ray diffraction46–48. 
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In  this  work,  we  assemble  lithographed  Archimedean  truncated  tetrahedrons  (ATT)  at  an 
interface to achieve quasi-2D confinement. This strategy takes advantage of the high dependence 
of shape on the phase behavior of the final assembled state, in addition to subjecting the system 
to  a  boundary  condition  that  has  been  previously  shown  to  induce  rich  phase  behavior  in 
polygons. The Archimedean truncated tetrahedron was chosen because simulations of truncated 
tetrahedrons  in  3D  show  rich  phase  behavior  that  is  highly  dependent  on  the  truncation 
parameter,  t,  (see Methods for more details) with crystalline structures that are analogous to 
important atomic crystals. For example, ATTs  (t =  2/3), which have four regular hexagonal 
faces and four regular triangular faces with all the same edge lengths, are predicted to form 
diamond  structure  at  lower  packing  densities  (≈0.6),  with  α-arsenic  as  the  densest  packing 
structure (≈1)49. Simulations of truncated polyhedrons (i.e. cubes, octahedrons) constrained to a 
2D plane has been previously explored41, but truncated tetrahedrons have yet to be studied. ATTs 
have  also  been studied  in  simulation  under  spherical  and wall  confinements40,  but  their  2D 
behavior  on  a  surface  was  not  further  explored.  Although  the  behavior  of  these  types  of 
polyhedrons are  of  interest,  the  main experimental  limitation is  the ability  to  fabricate  such 
geometries with high monodispersity. 

RESULTS

Hexagonal Phase induced at low gravitational potential
To overcome the synthetic challenges of forming polyhedral particles with high monodispersity, 
two-photon lithography is used to fabricate ATT microparticles with a side length of 3.5 μm 
(Figure 1a). Approximately 50,000 particles are fabricated with ≤ 5% variation in particle size50. 
Other tetrahedral particles, such as regular tetrahedrons (t = 0) and truncated tetrahedrons (t  = 
7/10), are also easily fabricated using this method (see Supplementary Fig. 1). After fabrication, 
the particles are dispersed in water and deposited in a well  plate for assembly. Initially,  the 
particles randomly sediment on the substrate and are dispersed across the substrate with low 
packing density.  We observe that  the particles  are  generally  oriented with a  hexagonal  side 
facing the substrate, with a triangular face pointing upward, referred to as the ‘upright’ position. 
This is due to the center of gravity of the particle being weighed towards the hexagonal face.

The substrate is then tilted to apply an in-plane (x/y direction) gravitational potential field. This 
gravitational field leads to an induced osmotic pressure and density gradient along the direction 
of tilt. After several days (≈144 hours), the particles aggregate to one side of the well plate which 
increases the local packing density and causes ordered regions to form. 

At a ≈5 degree tilt  angle,  the ATTs form a hexagonal phase (Figure 1b).  In this phase,  the 
particles,  which are oriented with their  hexagonal  face in contact  with the substrate,  have 6 
nearest neighbors. For this geometry to form, three of the triangular faces of each particle are in 
face-to-face contact with the hexagonal faces of its neighboring particles as shown in Figure 1c. 
This  effectively  “locks”  the  particle  into  place  by  preventing  the  neighboring  particle  from 
moving  in  the  z-direction.  The  grain  size  and  rotational  order  is  analyzed  using  a  bond 
orientational order parameter that accounts for the 6-fold symmetry of the assembled structures 
(see Methods for more details)49.  This order parameter is represented as colors in Figure 1d. 
Using this analysis, grains are identified as particles with the same color and found to be ≈30 μm 
or 30-40 particles in size. Grains are separated by vacancies (missing particles) and point defects 
(disordered  particles).  The  spatial  pair  distribution  function,  g(r),  is  used  to  quantify  the 
translational packing order (Figure 1e). The g(r) plot shows a first peak at ≈6.6 μm followed by a 
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double peak. This is indicative of a hexagonal phase, which has been observed in 2D assemblies  
of spherical colloids on a surface51. The corresponding Fourier transform shows bright spots in a 
hexagonal geometry, which is indicative of a hexagonal phase.

Quasi-diamond phase induced at higher gravitational potential
The ATTs are then tilted by an additional ≈5 degrees to an angle of ≈10 degrees and allowed to 
assemble over 48 hours. This results in a phase that is drastically different than the previous 
hexagonal phase. This is reflected in the optical images as triangular shapes that are arranged 
with  3  nearest  neighbors.  Because  of  the  drastically  different  particle  shape  in  the  optical  
microscope, the particle orientations are elucidated by using confocal imaging at different z-
planes (Figure 2a-c).  These images show alternating triangular and hexagonal faces near the 
substrate.  As we focus away from the substrate,  the triangular faces become larger,  and the 
hexagonal faces become more triangular (Figure 2b-c). This demonstrates that the ATTs form a 
nearly space-filling structure made up of a two-particle unit cell that consists of one ‘upright’  
facing ATT and one ‘upside-down’ facing ATT. This structure,  which we refer to as quasi-
diamond, is equivalent to a two-atom basis in diamond cubic structure. This has been predicted 
to form from ATTs that self-assemble under an entropic driving force at packing fractions above 
0.5049. 

The bond orientational order parameter is calculated for the quasi-diamond structure (Figure 2e). 
These images are obtained at a focal plane near the center of the particle which cause the ATTs 
to appear as triangular shapes under these imaging conditions. Grains are shown as regions of 
alternating colors  and are approximately half the size (≈20 um) of the hexagonal grains. The 
spatial pair distribution function, g(r), and corresponding Fourier transform show a first peak at 
≈4.4 um, a weaker second peak, and no additional peaks (Figure 2f). This indicates the formation 
of a 3-fold symmetric phase with short range order, small grains, and a higher density of defects 
as compared to the hexagonal phase. This g(r) and bond orientational order is similar to that of 
self-assembled triangular plates that form 3-fold, 2D structures14, as well as self-assembled, two-
photon lithographed regular tetrahedrons (see Supplementary Fig. 2). 

Here, we consider the thermodynamics of self-assembly. For hard particle systems, this behavior 
can be examined through the lens of entropy maximization52. In these systems, self-assembly is 
dominated by an entropic driving force due to the gain in free volume when the particles form an 
ordered arrangement. Generally, the free volume is maximized when particles are in face-to-face 
arrangements53.  For  the disordered (right  after  deposition)  to  hexagonal  phase transition,  the 
increase in face-to-face area is due to the contact of the three of the triangular faces of the ATT 
with the hexagonal faces of its neighboring particles. The hexagonal to quasi-diamond phase 
transition results in further gains in entropy because the face-to-face contact increases by >100%. 
The free volume change between hexagonal and quasi-diamond phase can also be computed 
directly. The total volume of the system is considered as an x-y box that fits N particles, with a z-
height  of  one  particle  unit.  Using  this  as  the  total  volume  accessible  to  the  particles,  the 
hexagonal phase has a maximum packing fraction of ≈64% while the quasi-diamond structure is 
a  nearly  space-filling  structure  at  ≈99%.  Therefore,  the  relative  change  in  volume  density 
between  hexagonal phase  and the quasi-diamond phase is ≈50%. This indicates that there is a 
large driving force towards the quasi-diamond phase from the hexagonal phase. Other truncated 
tetrahedrons  (t  = 7/10)  form even smaller quasi-diamond grains because of a lower  change in 
free volume and lower driving force for self-assembly (see Supplementary Fig. 3). 
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Free energy calculations suggest kinetic barriers lead to initial hexagonal phase
An approximate single-cell occupancy model is used to estimate free energy (F) as a function of 
packing fraction (ϕ) (Figure 3a)54,55. This model is one of the several methods to analytically 
calculate the free energy of a hard-particle system and has only been used to model hard spheres 
in different phases56–60.  Other similar cell methods have also been developed to calculate the 
densest  packing  states  of  polygons,  and  subsequently,  the  free  volume  of  certain  packing 
structures61,62.  Cell  models  use  the  phase  of  interest  (for  spheres,  face-centered  cubic  or 
hexagonal  closed-packed)  at  the  highest  packing  fraction  and  partitions  each  particle  center 
inside Voronoi polyhedrons, known as cells.  For spheres packed in a face-centered cubic or 
hexagonal  closed-packed  phase,  the  corresponding  Voronoi  polyhedron  would  be  a 
dodecahedron. This model assumes that each particle is constrained within its own cell and can 
only access the volume associated with its own cell. The Voronoi cell can then be scaled equally  
in 3D to decrease the packing fraction, and effectively increase the volume accessible to each 
particle. The total accessible volume of each cell can then be used to estimate the free energy of  
the system as a function of packing fraction, ϕ:

F (ϕ)/N kBT ≈ ln (V free(ϕ))      (1) 

The  single-cell  occupancy  model  is  most  accurate  at  higher  packing  fractions  when  the 
assumptions are more likely to be satisfied. For lower packing fractions, this error is associated 
with a “communal entropy”59. For our system, which consists of polyhedron shapes and is quasi-
2D, a slightly different procedure is taken. Instead of constructing Voronoi cells and dilating in 
3D, self-similar cells are constructed around each particle from their phase (either hexagonal or  
quasi-diamond) and then dilated in two dimensions (Figure 3a) (also see Supplementary Fig. 4). 
That is, the single-cell is constructed to be in a shape of an ATT, and then stretched only in the x-
y  dimension.  Because  of  the  shape  of  the  cell,  the  volume of  the  single  cell,  V cell,  can  be 
calculated analytically for different dilated states. The accessible free volume, V free ,is then taken 
as V cell−V ATT, where  V cell varies as a function of the dilation and V ATT is constant. 

We find that the quasi-diamond phase has a slightly lower free energy than the hexagonal phase 
at  all  packing  fractions.  However,  this  difference  becomes  larger  when  packing  fraction 
increases,  especially  when  it  approaches  the  maximum  hexagonal  packing  density.  As  the 
packing fraction reaches the theoretical maximum packing fraction of its phase, the free energy 
approaches this limit at a packing fraction of ≈0.64, the quasi-diamond phase is not accessible 
until  there  is  sufficient  energy  to  overcome  the  thermodynamic  or  kinetic  barrier  of  this 
transition. We attribute this barrier to the effects of the quasi-2D confinement, which prevents 
particle out-of-plane rotation. A thermodynamic barrier exists due to the gravitational potential at 
low  tilt  angles.  A  hexagonal  to  quasi-diamond  phase  transition  would  require  50%  of  the 
particles to flip from an ‘upright’ orientation to an ‘upside-down’ orientation. The flipping of a  
particle corresponds to an increase in gravitational potential energy. The gravitational energy 
required to flip a particle upside down is calculated as  ΔE=mgΔh , where Δhis the change in 
height of the center of gravity of the particle in its “upright” (hexagonal face is adjacent to the 
substrate) vs “upside down” (triangular face is adjacent to the substrate) position. The energy 
needed to flip the particles is ≈10 kBT , which suggests that it is very unlikely that out of plane 
rotation  can  occur  spontaneously  at  room  temperature  without  external  energy  input  (see 
Supplementary Movie 1). In addition, a kinetic barrier also exists due to the free volume required 
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to mediate the rotation of a particle out-of-plane from its locked hexagonal phase to the quasi-
diamond phase. 

We can test the hypothesis that the phase transition energy barrier is related to an out-of-plane 
particle  rotation  by  using  hard  particle  Monte  Carlo  simulations  (Figure  3b-c) (also  see 
Supplementary Movie 2). ATTs are first confined to a 2D plane such that the particles cannot 
rotate  out-of-plane  and  can  only  move  in  the  x-y  directions.  The  particles  are  laterally 
compressed until  they approach the maximum theoretical  packing fraction.  This leads to the 
formation of an hexagonal structure, with some defects (Figure 3b) as seen in experiments. This 
2D  constraint  is  then  removed,  which  allows  out-of-plane  rotation.  Once  this  constraint  is 
removed, the particles almost immediately form the quasi-diamond phase under continued lateral  
compression (Figure 3c).

In-situ optical microscopy reveals the kinetics of phase transition. First, a hexagonal sample is 
assembled through a small tilt angle (≈ 5 degrees) as previously described. This sample is then 
tilted by an additional  ≈5-10 degrees and moved to  the microscope stage.  By the time that 
imaging begins (≈10 min after tilting to  ≈5-10 degrees), many hexagonal regions have already 
transformed to quasi-diamond. However, the transition of the remaining hexagonal phase can be 
observed. 

Phase transitions are initiated by defects
These in-situ experiments show that the phase transition is mediated by defects and that these  
defects allow for out-of-plane particle rotation. Figure 4 shows specific instances of these defect 
induced phase transitions (see Supplementary Movies 3 and 4). Figure 4a-h show a vacancy 
mediated phase transition. Initially, a hexagonal grain is surrounded by the quasi-diamond phase 
with a vacancy present near the phase boundary. The hexagonal particle adjacent to the vacancy 
rotates out-of-plane and is ‘upside-down’, in which a triangular face is adjacent to the substrate 
(Figure 4i). This leads to a chain reaction in which the next particle rotates and transforms, and 
then the next particle,  until  the hexagonal phase has fully transformed into a quasi-diamond 
phase.  The presence of  the vacancy seems to facilitate  an out-of-plane rotation of  the ATT 
particle by providing the free volume to accommodate an out-of-plane rotation. 

Direct observation of a phase transition is also observed at an anti-phase boundary between two 
hexagonal grains which have particles oriented in different directions (Figure 4i-l). The two rows 
above  (orange  hexagonal  grain)  and  the  row  below  (pink  hexagonal  grain)  the  anti-grain 
boundary  (dashed  blue  line)  undergo  a  phase  transition  to  the  quasi-diamond  phase.  The 
transition occurs rapidly for half the particles, while the remaining particles in these rows begin 
to rotate into a transition state (begin flipping out-of-plane) (Figure 4j). This is followed by the 
transition of the remaining particles at the anti-phase boundary into the quasi-diamond phase 
(Figure 4k) and further growth of the quasi-diamond phase until two smaller, isolated hexagonal 
grains remain (Figure 4l). 

In Figure 4, the propagation of the phase transformations is perpendicular to the tilt direction 
with  the  transition  proceeding  in  a  linear  direction.  However,  this  is  not  always  the  case.  
Supplementary  Movie  5  shows  a  randomly  proceeding  phase  transition  for  ATTs.  Multiple 
particle flipping events occur and propagate inward, transforming the structure from a hexagonal 
to quasi-diamond phase. This suggests that while a mechanical driving force is necessary to 
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induce the phase transition, entropy does in fact play a role. Likely, the phase transition is driven  
by a combination of mechanical and thermodynamic driving forces.

Without  these  defects,  the  hexagonal  to  quasi-diamond  phase  transitions  is  kinetically 
improbable: an ATT particle would need to escape from its “locked” hexagonal configuration, 
and then rotate out-of-plane. This kinetic pathway is unlikely, given that the “locked” hexagonal 
configuration geometrically prevents out-of-plane motion. However, once a particle successfully 
rotates into a quasi-diamond phase, the local packing density of the particles around it is lowered  
because  the  quasi-diamond  phase  is  ≈50%  denser  than  the  hexagonal  phase.  This  allows 
neighboring  particles  to  also  have  more  free  space  to  rotate  out-of-plane  and  continue 
propagating the  phase  transition.  This  type of  defect  mediated transition is  also  seen in  the 
simulations,  right  after  the  removal  of  the  2D constraint  (see  Supplementary  Movie  2).  By 
analyzing a hexagonal to quasi-diamond phase transition, the phase transition rate was found to 
follow Avrami’s solid-solid phase kinetic theory in 2D63,64 (see Supplementary Fig. 5). 

In  summary,  we  have  assembled  Archimedean  truncated  tetrahedrons  under  quasi-2D 
confinement and shown a hexagonal phase that has not been previously reported in literature for  
this shape. We directly imaged a novel phase transition from a hexagonal phase, which has 6 
nearest neighbors, into a quasi-diamond phase, which has 3 nearest neighbors. We determined 
the  thermodynamics  and  kinetic  mechanism  of  this  phase  transition  using  analytical  and 
computational  methods.  Other  3D polyhedral  geometries  can  be  easily  fabricated  using  3D 
nanoprinting  methods,  such  as  two-photon  lithography,  to  access  a  huge  phase  space  of 
additional crystal phases, especially when under quasi-2D confinement. While the size of the 
current lattices is too large for optical frequency photonic crystals or metamaterials, two-photon 
lithographed structures can be shrunk up to ≈20% of their original size to form sub-micron scale  
particles through pyrolysis65. In addition, chemistries exist for directly printing high dielectric 
materials such as silica, which is also necessary for optical applications66. Magnetic, plasmonic 
and  luminescent  nanoparticles  can  be  incorporated  into  photoresists  to  impart  further 
functionality and enable self-assembly under external stimuli. This could be used to generate a  
novel  class  of  programmable  matter  in  which  dynamic  phase  transitions  are  used  to  switch 
between structures and properties. 

METHODS

Fabrication of tetrahedrons and truncated tetrahedrons
Microscale tetrahedrons, truncated tetrahedrons (t  =  7/10) and ATTs (t  = 2/3) are fabricated 
using  two-photon  lithography  on  the  Nanoscribe  Photonic  GT (Nanoscribe,  GmbH). Three-
dimensional  models  of  tetrahedrons  and  ATTs  are  generated  in  Solidworks  2021  and  then 
exported to STL files. These STL files are then imported into slicing software (DeScribe 2019, 
Nanoscribe, GmbH), to control printing conditions. The particles are printed in 10x10 arrays, 
resulting in a total of ≈50,000 particles for a single print. IP-Dip resist (Nanoscribe, GmbH), and 
a high magnification objective (63x NA 1.4 Zeiss) are used to fabricate the particles on a quartz  
coverslip  (0.25  mm,  SPI  Supplies).  After  fabrication,  the  particles  are  developed  in  SU-8 
developer (Kayaki Advanced Materials) for 10 min and then 2-propanol (>99.5%, J.T. Baker) for 
1 min. The particles are placed under a UV lamp for 30 min to improve surface roughness and 
cure any remaining surface monomers. The particles are treated with 1% w.t. Pluronic F127 to 
stabilize the particles in solution. The substrate is then placed in a beaker filled with Milli-Q 
water and sonicated for < 30 s to remove the particles from the substrate. The solution is then 
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transferred  to  a  centrifuge  tube  and  centrifuged  at  ~7,500×  g for  20  min  to  aggregate  the 
particles. The supernatant is removed, and the remaining solution is sonicated for 5-10 min to  
redisperse the particles.

Colloidal assembly
The colloidal solution is deposited into a glass bottom well plate (Sensoplate, Greiner). The well  
plate is placed on an orbital shaker plate (Troemner Talboys, Fisher Scientific) at a setting of 5.  
This well plate is placed at an angle (≈15 degrees for the tetrahedrons and ≈5 degrees for the 
truncated tetrahedrons) to allow the particles to aggregate at the edge of the well  plate.  The 
particles sediment and assemble for several days (3-5 days) before imaging. To induce a phase 
transition, the particles are tilted at a higher angle for several days (3-5 days) before imaging.  

Microscopy
Bright-field optical images are captured using a Nikon Eclipse Ti2 with a CCD camera. Confocal 
images are taken using a Zeiss LSM 780 microscope. For high magnification images, an index 
matching oil is used between the objective and the glass bottom of the well plate. SEM images 
are taken on a FEI Helios NanoLab 600i Dual Beam SEM/FIB. For in-situ videos, particles are  
imaged over several hours using a Nikon Eclipse Ti2 with a CCD camera (0.2 fps).  

Monte Carlo simulations
Three-dimensional  models  of  ATTs  are  generated  in  Solidworks  2021,  and  the  vertex 
coordinates are referenced with the origin (0,0,0) coincident with the center of mass. HOOMD 
hard particle Monte Carlo package (v3.2.0) is used to simulate the assembly of ATTs. For the 
hexagonal structure, two impenetrable planes are placed at the top and bottom of the simulation 
box to constrain motion to a 2D plane (to prevent out-of-plane rotation). Particles (N = 400) are 
initialized in a simple array and Monte Carlo steps are run to randomize the initial configuration.  
After this, the simulation box is compressed in  x-y. The final hexagonal phase is used as the 
initial  configuration for  the simulation of  the quasi-diamond structure.  The top impenetrable 
plane is  raised to  allow out-of-plane rotation.  The simulation box is  then compressed in  all 
directions. These simulations are stopped once the simulation box dimensions converge, and the 
structure is stable.

Truncation parameter
The  truncation  parameter  describes  the  level  of  truncation  of  a  tetrahedron.  The  truncation 
parameter, t, can range from 0 to 1, and corresponds to a regular tetrahedron when t  = 0 and a 
regular octahedron when t = 1. A truncated tetrahedron with truncation parameter of t will have 4 
equilateral triangles with edge length a(t/2) and four hexagons with two edge lengths of a(1-t)  
and a(t/2) as described by Damasceno et al49.

Bond order analysis
The bond orientational order parameter describes the angular positions of neighboring particles.  
The bond orientational order parameter, ψk , p , is defined as: 

ψk , p
a = 1

p∑b
ei k αab                   (2)
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where  a is the reference particle,  b  is a neighboring particle,  k  is the fold symmetry,  p is the 
number of expected neighboring particles, and  α ab is the angle between  a  and  b in the global 
frame. This is calculated for neighboring particles,  b, a certain radius away from the reference 
particle. This radius is equal to the first valley after the first peak in the g(r). For a quasi-diamond 
phase, k = p = 3.  For a hexagonal phase, k = p = 6.  The resulting ψk , p is a complex number that 
can be represented on a color wheel, in which the x-axis (real) is normalized to the average bond 
order, ⟨ψk , p⟩. 
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Figure 1. Hexagonal phase. (a) SEM image and 3D model of ATT (left to right: isometric, top, 
bottom view). Scale bar is 5 μm. (b) Optical image of self-assembled hexagonal structure. Scale 
bar  is  20 μm.  (c) 3D model  of  self-assembled structure (isometric  and top view).  (d) Bond 
orientational  order  parameter  of  the  particles  represented  as  different  colors.  Particles  with 
similar  colors have similar  rotational  orientation.  Particles with opposite  colors on the color 
wheel are rotated by 30°. Scale bar is 20  μm. (e) Pair distribution function,  g(r) and Fourier 
transform of image (b). Scale bar is 0.5 μm-1.
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Figure 2. Quasi-diamond phase.  (a) 3D model  of  self-assembled structure.  The planes that 
correspond to images b and c are marked.  (b-c) Confocal images and 2D models of the same 
quasi-diamond structure at different focal planes. (b) is focused at the substrate (gray) and (c) is 
focused at the middle of the particle. The peach outline shows the analogous geometry between 
the model and the confocal images. Scale bars are 5 μm. (d) Confocal image of a large region of 
the sample. Scale bar is 20 μm.  (e) The bond orientational order parameter of the particles is 
represented  as  different  colors. Adjacent  particles  with  opposite  colors  on  the  color  wheel 
indicate  the  quasi-diamond  structure  (e.g.  blue  and  brown). Scale  bar  is  20  μm.  (f) Pair 
distribution function, g(r), and Fourier transform of image (d). Scale bar is 0.5 μm-1.
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Figure 3. Analytical model and hard particle Monte Carlo simulation. (a) Geometric models 
of self-assembled particles within volumetric cells and the resulting single-cell occupancy free 
energy calculations as a function of packing fraction of the hexagonal state (navy blue) and the 
quasi-diamond state (pink). (b) Monte Carlo simulation of ATTs constrained to a 2D plane and 
laterally compressed results in the formation of a hexagonal phase. (c) Monte Carlo simulation of 
ATTs after removal of the 2D constraint. Continued lateral compression leads to the formation of 
the quasi-diamond phase. 
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Figure 4. Direct imaging of defect mediated phase transitions.  In-situ optical images of the 
(a) initial hexagonal grain and vacancy,  (b) first particle rotation,  (c) propagation of the phase 
transition through the hexagonal grain, (d) final quasi-diamond state. The vacancy is marked by 
a navy-blue circle. The adjacent ATT is marked by a pink circle, which is the first particle to 
transform. (e-h) The same images with colors that indicate the hexagonal phase (green), quasi-
diamond  phase  (mustard  yellow),  particle  in  transition  (pink),  and  vacancy  (navy-blue).  (i) 
Illustration of the kinetics of a particle rotation from an ‘upright’ to ‘upside-down’ position.  (j) 
Two hexagonal grains with different orientations are shown in green and peach-orange with 
corresponding 3D models. These grains are separated by an anti-phase boundary (army-green 
dashed line). Green and pPeach-range arrows show the alignment of the particles and point in the 
direction of a triangular vertex. (k) Transition of hexagonal grains (green or peachpeach-orange) 
to quasi-diamond (mustard yellow) at the anti-phase boundary is preceded by the rotation of 
particles into a transition state (pink) along these rows. (l) The anti-phase boundary is replaced 
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by the quasi-diamond phase (mustard yellow) which separates  the two remaining hexagonal 
grains (green or peach-orange). (m) The phase transition begins to propagate in the lower grain 
and transform the hexagonal phase (peach-orange) to the quasi-diamond phase (mustard yellow). 
All scale bars are 25 μm.
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