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ABSTRACT

Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed
matter and build complex metamaterials with unique functionalities. Simulations predict a
multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have
been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean
truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-
assemble into a hexagonal phase under an in-plane gravitational potential. Under additional
gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-
situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a
crystalline defect and causes a chain reaction of neighboring particle rotations. Our results
provide a framework of studying different structures from hard-particle self-assembly and
demonstrates the ability to use confinement to induce unusual phases.
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INTRODUCTION

Colloidal particles can self-assemble into ordered crystals with extraordinary nano and
mesoscale complexity' and unique optical, electronic, and magnetic properties*’. These emergent
properties depend on the properties of the constituent particle and the crystal phase of the final
ordered structures. The phase behavior of self-assembled colloidal structures depend on a variety
of factors, such as shape, surface interactions, and external fields'. Two-dimensional (2D), hard-
particle colloidal systems are of interest because they are entropically driven, and their final
assembly state solely depends on the shape and packing fraction of the particles. Previous
computational* and experimental studies have shown interesting crystallization behavior (from
liquid to solid) and crystal structures in 2D systems consisting of spherical colloids>, ellipses’®,
rods and rectangles’ !, squares'>", triangles'*", and hexagons'®. Hard or nearly hard spheres are
commonly observed to form face-centered cubic structures. Complex three-dimensional (3D)
structures such as diamond, space-filling polyhedral packing, and porous lattices have been
formed by using patchy DNA interactions, shape-dependent entropic forces, or magnetic,
gravitational, and capillary forces'” . A wide range of hard-particle 3D assemblies have been
extensively predicted in simulation®, but are challenging to experimentally achieve and image.

Colloidal crystals are often described as programmable materials®* but typically form static
structures that cannot be reconfigured into different crystals once assembled, or can only be
dissembled and re-assembled into the same structure®. The ability to directly switch between
distinct crystal structures is analogous to solid-solid phase transitions in atomic matter and has
previously been studied in different colloidal self-assembled systems*®. Phase transition kinetics
in soft spherical colloids have been previous studied under electric fields?’. Phase transitions that
maintain crystal symmetry can be induced in DNA-functionalized nanoparticle superlattices by
inserting additional nanoparticles or DNA linkers®?. Phase transitions have also been
investigated with hard-particle spherical colloids***'. The majority of the studies have been in
2D systems that require complicated external fields. 3D phase transitions (e.g. from FCC phase
to AuCu phase) have been observed using X-ray scattering®*>* and confocal techniques **’. In
hard-particle systems, one strategy is to change the colloidal shape to an anisotropic, or higher
order polygon, which can result in complex phase behavior such as crystal-crystal or solid-solid
phase transitions. Colloidal squares' that were assembled in 2D have shown complex phase
behavior as a function of packing fraction. Superballs®® that have been assembled in 3D have also
shown solid-solid phase transition under different osmotic pressures. However, these superball
assemblies show similar phase behavior as those found in 2D systems'*". In addition to shape
change, an external potential, such as confinement or boundary conditions, can also play a large
role in the possible accessible crystal phases™ .

In general, these previous hard-particle phase transitions lack complex phase transformations,
such as those in which the “atoms” change coordination number, or transform between crystal
lattice systems. Further progress in this field of work could lead to metamaterials with rapidly
switchable properties and functional structures. Elucidating the kinetics of colloidal phase
transitions could also provide understanding of solid-solid phase transitions in atomic solids,
which remain controversial even for elemental materials due to the challenges of observing
dynamic behavior at the atomic scale**. The advantage of these colloidal systems is that they
can be imaged at a spatial and temporal resolution that cannot be achieved in real atomic
systems, even with state-of-the-art experimental tools such as transmission electron microscopy*
or ultrafast X-ray diffraction***®,
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In this work, we assemble lithographed Archimedean truncated tetrahedrons (ATT) at an
interface to achieve quasi-2D confinement. This strategy takes advantage of the high dependence
of shape on the phase behavior of the final assembled state, in addition to subjecting the system
to a boundary condition that has been previously shown to induce rich phase behavior in
polygons. The Archimedean truncated tetrahedron was chosen because simulations of truncated
tetrahedrons in 3D show rich phase behavior that is highly dependent on the truncation
parameter, ¢, (see Methods for more details) with crystalline structures that are analogous to
important atomic crystals. For example, ATTs (¢ = 2/3), which have four regular hexagonal
faces and four regular triangular faces with all the same edge lengths, are predicted to form
diamond structure at lower packing densities (=0.6), with a-arsenic as the densest packing
structure (=1)*. Simulations of truncated polyhedrons (i.e. cubes, octahedrons) constrained to a
2D plane has been previously explored, but truncated tetrahedrons have yet to be studied. ATTs
have also been studied in simulation under spherical and wall confinements®, but their 2D
behavior on a surface was not further explored. Although the behavior of these types of
polyhedrons are of interest, the main experimental limitation is the ability to fabricate such
geometries with high monodispersity.

RESULTS

Hexagonal Phase induced at low gravitational potential

To overcome the synthetic challenges of forming polyhedral particles with high monodispersity,
two-photon lithography is used to fabricate ATT microparticles with a side length of 3.5 pm
(Figure 1a). Approximately 50,000 particles are fabricated with < 5% variation in particle size™.
Other tetrahedral particles, such as regular tetrahedrons (¢ = 0) and truncated tetrahedrons (¢ =
7/10), are also easily fabricated using this method (see Supplementary Fig. 1). After fabrication,
the particles are dispersed in water and deposited in a well plate for assembly. Initially, the
particles randomly sediment on the substrate and are dispersed across the substrate with low
packing density. We observe that the particles are generally oriented with a hexagonal side
facing the substrate, with a triangular face pointing upward, referred to as the “upright’ position.
This is due to the center of gravity of the particle being weighed towards the hexagonal face.

The substrate is then tilted to apply an in-plane (x/y direction) gravitational potential field. This
gravitational field leads to an induced osmotic pressure and density gradient along the direction
of tilt. After several days (=144 hours), the particles aggregate to one side of the well plate which
increases the local packing density and causes ordered regions to form.

At a =5 degree tilt angle, the ATTs form a hexagonal phase (Figure 1b). In this phase, the
particles, which are oriented with their hexagonal face in contact with the substrate, have 6
nearest neighbors. For this geometry to form, three of the triangular faces of each particle are in
face-to-face contact with the hexagonal faces of its neighboring particles as shown in Figure 1c.
This effectively “locks” the particle into place by preventing the neighboring particle from
moving in the z-direction. The grain size and rotational order is analyzed using a bond
orientational order parameter that accounts for the 6-fold symmetry of the assembled structures
(see Methods for more details)*. This order parameter is represented as colors in Figure 1d.
Using this analysis, grains are identified as particles with the same color and found to be =30 um
or 30-40 particles in size. Grains are separated by vacancies (missing particles) and point defects
(disordered particles). The spatial pair distribution function, g(7), is used to quantify the
translational packing order (Figure 1e). The g(7) plot shows a first peak at ~6.6 pum followed by a



112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

double peak. This is indicative of a hexagonal phase, which has been observed in 2D assemblies
of spherical colloids on a surface’'. The corresponding Fourier transform shows bright spots in a
hexagonal geometry, which is indicative of a hexagonal phase.

Quasi-diamond phase induced at higher gravitational potential

The ATTs are then tilted by an additional =5 degrees to an angle of =10 degrees and allowed to
assemble over 48 hours. This results in a phase that is drastically different than the previous
hexagonal phase. This is reflected in the optical images as triangular shapes that are arranged
with 3 nearest neighbors. Because of the drastically different particle shape in the optical
microscope, the particle orientations are elucidated by using confocal imaging at different z-
planes (Figure 2a-c). These images show alternating triangular and hexagonal faces near the
substrate. As we focus away from the substrate, the triangular faces become larger, and the
hexagonal faces become more triangular (Figure 2b-c). This demonstrates that the ATTs form a
nearly space-filling structure made up of a two-particle unit cell that consists of one ‘upright’
facing ATT and one ‘upside-down’ facing ATT. This structure, which we refer to as quasi-
diamond, is equivalent to a two-atom basis in diamond cubic structure. This has been predicted
to form from ATTs that self-assemble under an entropic driving force at packing fractions above
0.50%.

The bond orientational order parameter is calculated for the quasi-diamond structure (Figure 2e).
These images are obtained at a focal plane near the center of the particle which cause the ATTs
to appear as triangular shapes under these imaging conditions. Grains are shown as regions of
alternating colors and are approximately half the size (=20 um) of the hexagonal grains. The
spatial pair distribution function, g(7), and corresponding Fourier transform show a first peak at
~4.4 um, a weaker second peak, and no additional peaks (Figure 2f). This indicates the formation
of a 3-fold symmetric phase with short range order, small grains, and a higher density of defects
as compared to the hexagonal phase. This g(r) and bond orientational order is similar to that of
self-assembled triangular plates that form 3-fold, 2D structures', as well as self-assembled, two-
photon lithographed regular tetrahedrons (see Supplementary Fig. 2).

Here, we consider the thermodynamics of self-assembly. For hard particle systems, this behavior
can be examined through the lens of entropy maximization®*. In these systems, self-assembly is
dominated by an entropic driving force due to the gain in free volume when the particles form an
ordered arrangement. Generally, the free volumeis maximized when particles are in face-to-face
arrangements™. For the disordered (right after deposition) to hexagonal phase transition, the
increase in face-to-face area is due to the contact of the three of the triangular faces of the ATT
with the hexagonal faces of its neighboring particles. The hexagonal to quasi-diamond phase
transition results in further gains in entropy because the face-to-face contact increases by >100%.
The free volume change between hexagonal and quasi-diamond phase can also be computed
directly. The total volume of the system is considered as an x-y box that fits N particles, with a z-
height of one particle unit. Using this as the total volume accessible to the particles, the
hexagonal phase has a maximum packing fraction of ~64% while the quasi-diamond structure is
a nearly space-filling structure at =~99%. Therefore, the relative change in volume density
between hexagonal phase and the quasi-diamond phase is =50%. This indicates that there is a
large driving force towards the quasi-diamond phase from the hexagonal phase. Other truncated
tetrahedrons (¢ = 7/10) form even smaller quasi-diamond grains because of a lower change in
free volume and lower driving force for self-assembly (see Supplementary Fig. 3).
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Free energy calculations suggest Kinetic barriers lead to initial hexagonal phase

An approximate single-cell occupancy model is used to estimate free energy (F) as a function of
packing fraction (¢) (Figure 3a)**%. This model is one of the several methods to analytically
calculate the free energy of a hard-particle system and has only been used to model hard spheres
in different phases® . Other similar cell methods have also been developed to calculate the
densest packing states of polygons, and subsequently, the free volume of certain packing
structures® >, Cell models use the phase of interest (for spheres, face-centered cubic or
hexagonal closed-packed) at the highest packing fraction and partitions each particle center
inside Voronoi polyhedrons, known as cells. For spheres packed in a face-centered cubic or
hexagonal closed-packed phase, the corresponding Voronoi polyhedron would be a
dodecahedron. This model assumes that each particle is constrained within its own cell and can
only access the volume associated with its own cell. The Voronoi cell can then be scaled equally
in 3D to decrease the packing fraction, and effectively increase the volume accessible to each
particle. The total accessible volume of each cell can then be used to estimate the free energy of
the system as a function of packing fraction, ¢:

F((:b)/NkBT%ln(Vfree((b)j (1)

The single-cell occupancy model is most accurate at higher packing fractions when the
assumptions are more likely to be satisfied. For lower packing fractions, this error is associated
with a “communal entropy”*’. For our system, which consists of polyhedron shapes and is quasi-
2D, a slightly different procedure is taken. Instead of constructing Voronoi cells and dilating in
3D, self-similar cells are constructed around each particle from their phase (either hexagonal or
quasi-diamond) and then dilated in two dimensions (Figure 3a) (also see Supplementary Fig. 4).
That is, the single-cell is constructed to be in a shape of an ATT, and then stretched only in the x-
y dimension. Because of the shape of the cell, the volume of the single cell, V,, can be
calculated analytically for different dilated states. The accessible free volume, V,,,is then taken
as V1=V arr, where V,, varies as a function of the dilation and V ,;; is constant.

We find that the quasi-diamond phase has a slightly lower free energy than the hexagonal phase
at all packing fractions. However, this difference becomes larger when packing fraction
increases, especially when it approaches the maximum hexagonal packing density. As the
packing fraction reaches the theoretical maximum packing fraction of its phase, the free energy
approaches this limit at a packing fraction of ~0.64, the quasi-diamond phase is not accessible
until there is sufficient energy to overcome the thermodynamic or kinetic barrier of this
transition. We attribute this barrier to the effects of the quasi-2D confinement, which prevents
particle out-of-plane rotation. A thermodynamic barrier exists due to the gravitational potential at
low tilt angles. A hexagonal to quasi-diamond phase transition would require 50% of the
particles to flip from an ‘upright’ orientation to an ‘upside-down’ orientation. The flipping of a
particle corresponds to an increase in gravitational potential energy. The gravitational energy
required to flip a particle upside down is calculated as AE=mgAh , where Ahis the change in
height of the center of gravity of the particle in its “upright” (hexagonal face is adjacent to the
substrate) vs “upside down” (triangular face is adjacent to the substrate) position. The energy
needed to flip the particles is =10 kz T, which suggests that it is very unlikely that out of plane
rotation can occur spontaneously at room temperature without external energy input (see
Supplementary Movie 1). In addition, a kinetic barrier also exists due to the free volume required
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to mediate the rotation of a particle out-of-plane from its locked hexagonal phase to the quasi-
diamond phase.

We can test the hypothesis that the phase transition energy barrier is related to an out-of-plane
particle rotation by using hard particle Monte Carlo simulations (Figure 3b-c) (also see
Supplementary Movie 2). ATTs are first confined to a 2D plane such that the particles cannot
rotate out-of-plane and can only move in the x-y directions. The particles are laterally
compressed until they approach the maximum theoretical packing fraction. This leads to the
formation of an hexagonal structure, with some defects (Figure 3b) as seen in experiments. This
2D constraint is then removed, which allows out-of-plane rotation. Once this constraint is
removed, the particles almost immediately form the quasi-diamond phase under continued lateral
compression (Figure 3c).

In-situ optical microscopy reveals the kinetics of phase transition. First, a hexagonal sample is
assembled through a small tilt angle (= 5 degrees) as previously described. This sample is then
tilted by an additional =5-10 degrees and moved to the microscope stage. By the time that
imaging begins (=10 min after tilting to =~5-10 degrees), many hexagonal regions have already
transformed to quasi-diamond. However, the transition of the remaining hexagonal phase can be
observed.

Phase transitions are initiated by defects

These in-situ experiments show that the phase transition is mediated by defects and that these
defects allow for out-of-plane particle rotation. Figure 4 shows specific instances of these defect
induced phase transitions (see Supplementary Movies 3 and 4). Figure 4a-h show a vacancy
mediated phase transition. Initially, a hexagonal grain is surrounded by the quasi-diamond phase
with a vacancy present near the phase boundary. The hexagonal particle adjacent to the vacancy
rotates out-of-plane and is ‘upside-down’, in which a triangular face is adjacent to the substrate
(Figure 41). This leads to a chain reaction in which the next particle rotates and transforms, and
then the next particle, until the hexagonal phase has fully transformed into a quasi-diamond
phase. The presence of the vacancy seems to facilitate an out-of-plane rotation of the ATT
particle by providing the free volume to accommodate an out-of-plane rotation.

Direct observation of a phase transition is also observed at an anti-phase boundary between two
hexagonal grains which have particles oriented in different directions (Figure 4i-1). The two rows
above (orange hexagonal grain) and the row below (pink hexagonal grain) the anti-grain
boundary (dashed blue line) undergo a phase transition to the quasi-diamond phase. The
transition occurs rapidly for half the particles, while the remaining particles in these rows begin
to rotate into a transition state (begin flipping out-of-plane) (Figure 4j). This is followed by the
transition of the remaining particles at the anti-phase boundary into the quasi-diamond phase
(Figure 4k) and further growth of the quasi-diamond phase until two smaller, isolated hexagonal
grains remain (Figure 41).

In Figure 4, the propagation of the phase transformations is perpendicular to the tilt direction
with the transition proceeding in a linear direction. However, this is not always the case.
Supplementary Movie 5 shows a randomly proceeding phase transition for ATTs. Multiple
particle flipping events occur and propagate inward, transforming the structure from a hexagonal
to quasi-diamond phase. This suggests that while a mechanical driving force is necessary to
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induce the phase transition, entropy does in fact play a role. Likely, the phase transition is driven
by a combination of mechanical and thermodynamic driving forces.

Without these defects, the hexagonal to quasi-diamond phase transitions is kinetically
improbable: an ATT particle would need to escape from its “locked” hexagonal configuration,
and then rotate out-of-plane. This kinetic pathway is unlikely, given that the “locked” hexagonal
configuration geometrically prevents out-of-plane motion. However, once a particle successfully
rotates into a quasi-diamond phase, the local packing density of the particles around it is lowered
because the quasi-diamond phase is =50% denser than the hexagonal phase. This allows
neighboring particles to also have more free space to rotate out-of-plane and continue
propagating the phase transition. This type of defect mediated transition is also seen in the
simulations, right after the removal of the 2D constraint (see Supplementary Movie 2). By
analyzing a hexagonal to quasi-diamond phase transition, the phase transition rate was found to
follow Avrami’s solid-solid phase kinetic theory in 2D®*** (see Supplementary Fig. 5).

In summary, we have assembled Archimedean truncated tetrahedrons under quasi-2D
confinement and shown a hexagonal phase that has not been previously reported in literature for
this shape. We directly imaged a novel phase transition from a hexagonal phase, which has 6
nearest neighbors, into a quasi-diamond phase, which has 3 nearest neighbors. We determined
the thermodynamics and kinetic mechanism of this phase transition using analytical and
computational methods. Other 3D polyhedral geometries can be easily fabricated using 3D
nanoprinting methods, such as two-photon lithography, to access a huge phase space of
additional crystal phases, especially when under quasi-2D confinement. While the size of the
current lattices is too large for optical frequency photonic crystals or metamaterials, two-photon
lithographed structures can be shrunk up to =20% of their original size to form sub-micron scale
particles through pyrolysis®. In addition, chemistries exist for directly printing high dielectric
materials such as silica, which is also necessary for optical applications®. Magnetic, plasmonic
and luminescent nanoparticles can be incorporated into photoresists to impart further
functionality and enable self-assembly under external stimuli. This could be used to generate a
novel class of programmable matter in which dynamic phase transitions are used to switch
between structures and properties.

METHODS

Fabrication of tetrahedrons and truncated tetrahedrons

Microscale tetrahedrons, truncated tetrahedrons (¢ = 7/10) and ATTs (¢ = 2/3) are fabricated
using two-photon lithography on the Nanoscribe Photonic GT (Nanoscribe, GmbH). Three-
dimensional models of tetrahedrons and ATTs are generated in Solidworks 2021 and then
exported to STL files. These STL files are then imported into slicing software (DeScribe 2019,
Nanoscribe, GmbH), to control printing conditions. The particles are printed in 10x10 arrays,
resulting in a total of 50,000 particles for a single print. IP-Dip resist (Nanoscribe, GmbH), and
a high magnification objective (63x NA 1.4 Zeiss) are used to fabricate the particles on a quartz
coverslip (0.25 mm, SPI Supplies). After fabrication, the particles are developed in SU-8
developer (Kayaki Advanced Materials) for 10 min and then 2-propanol (>99.5%, J.T. Baker) for
I min. The particles are placed under a UV lamp for 30 min to improve surface roughness and
cure any remaining surface monomers. The particles are treated with 1% w.t. Pluronic F127 to
stabilize the particles in solution. The substrate is then placed in a beaker filled with Milli-Q
water and sonicated for < 30 s to remove the particles from the substrate. The solution is then
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transferred to a centrifuge tube and centrifuged at ~7,500% g for 20 min to aggregate the
particles. The supernatant is removed, and the remaining solution is sonicated for 5-10 min to
redisperse the particles.

Colloidal assembly

The colloidal solution is deposited into a glass bottom well plate (Sensoplate, Greiner). The well
plate is placed on an orbital shaker plate (Troemner Talboys, Fisher Scientific) at a setting of 5.
This well plate is placed at an angle (=15 degrees for the tetrahedrons and =5 degrees for the
truncated tetrahedrons) to allow the particles to aggregate at the edge of the well plate. The
particles sediment and assemble for several days (3-5 days) before imaging. To induce a phase
transition, the particles are tilted at a higher angle for several days (3-5 days) before imaging.

Microscopy

Bright-field optical images are captured using a Nikon Eclipse Ti2 with a CCD camera. Confocal
images are taken using a Zeiss LSM 780 microscope. For high magnification images, an index
matching oil is used between the objective and the glass bottom of the well plate. SEM images
are taken on a FEI Helios NanoLab 600i Dual Beam SEM/FIB. For in-situ videos, particles are
imaged over several hours using a Nikon Eclipse Ti2 with a CCD camera (0.2 fps).

Monte Carlo simulations

Three-dimensional models of ATTs are generated in Solidworks 2021, and the vertex
coordinates are referenced with the origin (0,0,0) coincident with the center of mass. HOOMD
hard particle Monte Carlo package (v3.2.0) is used to simulate the assembly of ATTs. For the
hexagonal structure, two impenetrable planes are placed at the top and bottom of the simulation
box to constrain motion to a 2D plane (to prevent out-of-plane rotation). Particles (N = 400) are
initialized in a simple array and Monte Carlo steps are run to randomize the initial configuration.
After this, the simulation box is compressed in x-y. The final hexagonal phase is used as the
initial configuration for the simulation of the quasi-diamond structure. The top impenetrable
plane is raised to allow out-of-plane rotation. The simulation box is then compressed in all
directions. These simulations are stopped once the simulation box dimensions converge, and the
structure is stable.

Truncation parameter

The truncation parameter describes the level of truncation of a tetrahedron. The truncation
parameter, ¢, can range from 0 to 1, and corresponds to a regular tetrahedron when # = 0 and a
regular octahedron when ¢ = 1. A truncated tetrahedron with truncation parameter of ¢ will have 4
equilateral triangles with edge length a(#/2) and four hexagons with two edge lengths of a(7-t)
and a(1/2) as described by Damasceno et al®.

Bond order analysis

The bond orientational order parameter describes the angular positions of neighboring particles.
The bond orientational order parameter, ¥/, ,, is defined as:

a 1 ika,
U= et )
Py
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where a is the reference particle, b is a neighboring particle, k is the fold symmetry, p is the
number of expected neighboring particles, and «, is the angle between a and b in the global
frame. This is calculated for neighboring particles, b, a certain radius away from the reference
particle. This radius is equal to the first valley after the first peak in the g(7). For a quasi-diamond
phase, k = p = 3. For a hexagonal phase, k = p = 6. The resulting Y, , is a complex number that
can be represented on a color wheel, in which the x-axis (real) is normalized to the average bond
order, <Yy ).
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Figure 1. Hexagonal phase. (a) SEM image and 3D model of ATT (left to right: isometric, top,
bottom view). Scale bar is 5 um. (b) Optical image of self-assembled hexagonal structure. Scale
bar is 20 um. (¢) 3D model of self-assembled structure (isometric and top view). (d) Bond
orientational order parameter of the particles represented as different colors. Particles with
similar colors have similar rotational orientation. Particles with opposite colors on the color
wheel are rotated by 30°. Scale bar is 20 pm. (e) Pair distribution function, g(r) and Fourier
transform of image (b). Scale bar is 0.5 pm™.
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Figure 2. Quasi-diamond phase. (a) 3D model of self-assembled structure. The planes that
correspond to images b and ¢ are marked. (b-¢) Confocal images and 2D models of the same
quasi-diamond structure at different focal planes. (b) is focused at the substrate (gray) and (c) is
focused at the middle of the particle. The peach outline shows the analogous geometry between
the model and the confocal images. Scale bars are 5 pm. (d) Confocal image of a large region of
the sample. Scale bar is 20 um. (e) The bond orientational order parameter of the particles is
represented as different colors. Adjacent particles with opposite colors on the color wheel
indicate the quasi-diamond structure (e.g. blue and brown). Scale bar is 20 pum. (f) Pair
distribution function, g(r), and Fourier transform of image (d). Scale bar is 0.5 pm™.
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Figure 3. Analytical model and hard particle Monte Carlo simulation. (a) Geometric models
of self-assembled particles within volumetric cells and the resulting single-cell occupancy free
energy calculations as a function of packing fraction of the hexagonal state (navy blue) and the
quasi-diamond state (pink). (b) Monte Carlo simulation of ATTs constrained to a 2D plane and
laterally compressed results in the formation of a hexagonal phase. (¢) Monte Carlo simulation of
ATTs after removal of the 2D constraint. Continued lateral compression leads to the formation of
the quasi-diamond phase.
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Figure 4. Direct imaging of defect mediated phase transitions. In-situ optical images of the
(a) initial hexagonal grain and vacancy, (b) first particle rotation, (¢) propagation of the phase
transition through the hexagonal grain, (d) final quasi-diamond state. The vacancy is marked by
a navy-blue circle. The adjacent ATT is marked by a pink circle, which is the first particle to
transform. (e-h) The same images with colors that indicate the hexagonal phase (green), quasi-
diamond phase (mustard yellow), particle in transition (pink), and vacancy (navy-blue). (i)
[Nlustration of the kinetics of a particle rotation from an ‘upright’ to ‘upside-down’ position. (j)
Two hexagonal grains with different orientations are shown in green and peach-orange with
corresponding 3D models. These grains are separated by an anti-phase boundary (army-green
dashed line). Green-andpPeach-rance arrows show the alignment of the particles and point in the
direction of a triangular vertex. (k) Transition of hexagonal grains (green or pcachpeach-eransce)
to quasi-diamond (mustard yellow) at the anti-phase boundary is preceded by the rotation of
particles into a transition state (pink) along these rows. (I) The anti-phase boundary is replaced



566 by the quasi-diamond phase (mustard yellow) which separates the two remaining hexagonal
567 | grains (green or peach ). (m) The phase transition begins to propagate in the lower grain
568 | and transform the hexagonal phase (peach ) to the quasi-diamond phase (mustard yellow).
569  All scale bars are 25 um.
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