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Helping Visually Impaired People Take
Better Quality Pictures

Maniratnam Mandal , Deepti Ghadiyaram, Danna Gurari, and Alan C. Bovik , Fellow, IEEE

Abstract— Perception-based image analysis technologies can be
used to help visually impaired people take better quality pictures
by providing automated guidance, thereby empowering them to
interact more confidently on social media. The photographs taken
by visually impaired users often suffer from one or both of two
kinds of quality issues: technical quality (distortions), and seman-
tic quality, such as framing and aesthetic composition. Here we
develop tools to help them minimize occurrences of common tech-
nical distortions, such as blur, poor exposure, and noise. We do
not address the complementary problems of semantic quality,
leaving that aspect for future work. The problem of assessing, and
providing actionable feedback on the technical quality of pictures
captured by visually impaired users is hard enough, owing to
the severe, commingled distortions that often occur. To advance
progress on the problem of analyzing and measuring the technical
quality of visually impaired user-generated content (VI-UGC),
we built a very large and unique subjective image quality
and distortion dataset. This new perceptual resource, which we
call the LIVE-Meta VI-UGC Database, contains 40K real-world
distorted VI-UGC images and 40K patches, on which we recorded
2.7M human perceptual quality judgments and 2.7M distortion
labels. Using this psychometric resource we also created an
automatic limited vision picture quality and distortion predictor
that learns local-to-global spatial quality relationships, achieving
state-of-the-art prediction performance on VI-UGC pictures,
significantly outperforming existing picture quality models on
this unique class of distorted picture data. We also created a
prototype feedback system that helps to guide users to mitigate
quality issues and take better quality pictures, by creating a
multi-task learning framework. The dataset and models can be
accessed at: https://github.com/mandal-cv/visimpaired.

Index Terms— Image quality assessment, visually impaired
user-generated content, deep learning, human study.

I. INTRODUCTION

COMPUTER vision solutions can lead to scaleable
approaches for making technologies more accessible
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Fig. 1. Quality feedback to assist visually challenged users: The captured
image is passed through P2P++ (Sec. V), which generates global quality and
distortion scores. The predicted scores are used to provide suitable feedback
on distortions present and ways to mitigate them. (Sec. VI).

which, in turn, can contribute to community building. One
example is making social media more accessible to visually
impaired people. Being able to automatically understand pic-
ture and video content by AI-driven assistance could benefit
limited vision users when selecting pictures to upload on social
media. While there has been progress on building tools to
assist visually impaired users on other photography tasks [1],
[2], [3], [4], studies [5], [6], [7], [8] have shown that such
users still often rely on friends when taking pictures, leaving
them feeling vulnerable and disempowered. These studies also
have reported how visually impaired individuals often ask for
information about and assistance with capturing high quality
pictures. One way of helping these individuals to be more
independent is to develop automatic picture quality raters that
can supply guidance and feedback on the quality of pictures
photographers are capturing, while also suggesting ways to
ameliorate quality problems.

A large number of models are available that can predict both
perceptual quality (quality of content perceived by a user) and
distortion types (blur, noise, underexposed, etc). These models
typically are based on finding perturbations of perceptually
relevant ‘quality-aware’ picture statistics [9]. Yet, obtaining
high prediction accuracy on user-generated content (UGC)
like that encountered on social media platforms remains a
challenging problem [10], [11], [12] due to the wide variation
of commingled distortions which is hard to model. Analyzing
UGC pictures is difficult due to the absence of (pristine) refer-
ence pictures, leaving only No-Reference (NR) picture quality
prediction models as suitable in such situations. However,
existing state-of-the-art NR picture quality do not transfer well
when applied to visually impaired user-generated pictures.
We suspect part of the reason for the poor performance is
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because predictors were trained on datasets containing pictures
captured by users without vision impairments, which is a
domain shift from the quality issues observed in images taken
by individuals with vision impairments.

Moreover, pictures that are captured by visually impaired
users, without any guiding feedback, usually suffer from
higher levels of distortion (blur, over/underexposure, etc.) [1]
as compared to users without vision impairments.

In this work, we aim to introduce a computer vision solution
that can assist visually impaired people to take better pic-
tures by providing feedback (e.g., auditory, haptic) describing
distortions during picture capture and actions that may be
taken to prevent them.1 Of note, distortions may arise in
many different forms because of imperfect capture devices,
focusing issues, stabilization problems, camera movement,
sub-optimal lighting, and other sources. Such distortions can
potentially be amplified for visually impaired photographers,
since they cannot inspect their pictures to verify quality.
Moreover, multiple distortions often intermix, making them
harder to separately identify and classify.

Towards creating accurate predictors of technical picture
quality, we develop a large psychometric dataset of VI-UGC
pictures labeled by many human participants. We call this new
dataset the LIVE-Meta VI-UGC Database. This new dataset
supports creating, benchmarking, and comparing picture qual-
ity models. Moreover, it fills a gap with prior work. For
example, while a variety of public image quality datasets
are available that have driven the development of NR-IQA
(no-reference image quality assessment) predictors for natu-
ralistic pictures [10], [11], most do not contain pictures taken
by visually impaired individuals. Yet, pictures from visually
impaired individuals are different in important ways. One
dataset does contain labels of picture distortion categories for
VI-UGC: VizWiz-QualityIssues [1]. However, it only provides
categories labels for the global images rather than also for
localized regions in the images where such quality issues can
occur. Like prior work, our proposed dataset also extends
the large VizWiz dataset, which consists of images taken by
visually impaired photographers. In contrast, we conducted
a large-scale visual psychometric study on both the images
and extracted patches (randomly selected and salient patches),
whereby we collected human subjective quality scores and
distortion labels. Our work is inspired in part by the recent
finding on perceptual QA [10], [15] that modeling the rela-
tionship between local and global distortions can lead to better
visual quality predictions. We are sharing this dataset online
for public use.

We next developed models using our large scale dataset
as a promising foundation for a feedback system that can
assist visually impaired users to take higher quality pictures.
Our proposed models illustrate that using local quality and

1While pictures that are captured by visually impaired users may also suffer
from semantic/aesthetic flaws, incorrect framing, or improper orientation [2],
[13], and [14], we do not include this aspect of picture quality in the
current study, owing to the considerable difficulty in conducting massive-scale
human studies on both aspects at the same time. However, we do recognize
that photographic semantics/aesthetics are also important to address for a
comprehensive picture quality monitoring and feedback system.

distortion information can lead to accurate global and local
predictions with fewer parameters.

In summary, the contributions of this work are as follows:
• We built the largest subjective image quality and

distortion database targeting pictures captured by
visually impaired users. This new resource contains
about 40K images collected from VizWiz [1] and 40K
patches (half randomly selected and half salient) cropped
from them. We conducted a large-scale subjective picture
quality study on them, collecting 2.7M labels of both
perceived quality and judged distortion types. The new
LIVE-Meta VI-UGC dataset is also the largest publicly
available distortion classification dataset. Further, as a
control, we also collected about 75K ratings on 2.2K
frames from videos captured by visually impaired pho-
tographers, which are provided in the ORBIT [16] dataset
(Sec. III).

• We created a state-of-the-art limited vision (or no-
reference) VI-UGC picture quality and distortion
predictor. Using a deep neural architecture based on the
recent successful PaQ-2-PiQ model [10], we created a
multi-task learning system that is able to predict both
the perceptual quality of pictures captured by visually
impaired users, and the possible presence of five common
picture distortions. Since the model is trained on patches,
it is able to predict spatial maps of both quality and
distortion types. We implemented the new prediction
model as an algorithm that we will refer to as P2P++.
It achieves top performance on the new dataset and on
the independent dataset of ORBIT images, as compared
to other NR-IQA models (Sec. V and VI-B.3).

• Using the multi-task model, we also created a proto-
type feedback system to assist visually impaired users
to take better quality pictures. The P2P++ system pro-
vides feedback on overall (global) picture quality, along
with suggestions on how to mitigate quality issues. This
discussion includes ways by which the obtained spatial
distortion maps can be used to generate detailed, localized
feedback, and realized these ideas in actual smartphone
(iOS and Android) implementations (Sec. VI-B).

II. RELATED WORK

A. Image Quality and Distortion Datasets
The most heavily-used datasets in image quality research

remain older corpora of synthetically applied distortions of
natural pictures. Since synthetic distortions are quite different
from authentic, real-world distortions, NR-IQA models trained
on them perform poorly on real-world distorted content [17].
Such “legacy” datasets include LIVE [18], CSIQ [19], TID-
2008 [20], and TID-2013 [21]. These contain small numbers
(< 30) of unique picture contents that have been synthetically
distorted by applying single quality impairments (JPEG, Gaus-
sian blur, etc.). As such, they do not capture the extremely
diverse, complex mixtures of distortions that arise in real-
world settings. It is important to understand that the degree
of technical distortion is not the same as perceived quality,
since the latter is also deeply affected by the content and by

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 05,2024 at 01:28:04 UTC from IEEE Xplore.  Restrictions apply. 



MANDAL et al.: HELPING VISUALLY IMPAIRED PEOPLE TAKE BETTER QUALITY PICTURES 3875

perceptual processes such as masking [22], [23]. Accomplish-
ing both tasks is both important and more difficult.

More recent datasets such as Live Challenge [17],
KonIQ [24], and LIVE-FB [10] have tried to address these
problems by obtaining subjective labels on much larger num-
bers of UGC images affected by real-world distortions. While
these resources contain subjective quality labels, they do
not include labels of distortion types, except for the smaller
LIVE Challenge dataset [17], which contains both quality and
distortion labels on about 1200 images captured with mobile
devices. The Flickr-Distortion dataset [25] contains synthetic
distortion labels on 804 Flickr UGC images, but it does not
contain any quality labels, and it has not been made public.
The VizWiz-QualityIssues [1] dataset is the only available
resource that contains images taken by visually impaired users.
It also contains distortion labels for some common types
of quality impairments and aesthetic flaws. However, since
it lacks picture quality scores and supplies only 5 human
distortion classification ratings per image, it cannot be used
for our purposes. The lack of any substantial UGC dataset
(captured by visually impaired users or otherwise) containing
large numbers of both quality scores and distortion labels
motivated us to conduct a large-scale psychometric study
of the perceptual quality and distortions present in typical
VI-UGC pictures. The dataset we created is 33 times larger
than any prior picture quality and distortion labeled dataset,
and it is the only dataset of this kind that targets the area of
assisting visually impaired photographers.

B. Image Quality Models

For this application, full-reference (FR) image quality mod-
els like SSIM [26] are of no use, since they require the
availability of pristine reference images to predict relative
picture fidelity. Instead, we are constrained to consider NR
(limited vision) models, several of which have achieved suc-
cess. Popular NR picture quality prediction models include
BRISQUE [9], NIQE [27], CORNIA [28], and FRIQUEE [29],
which use “handcrafted” statistical features to train shallow
learners (typically support vector regressors, or SVRs) to
predict picture quality. While these models work well on
legacy single synthetic distortion datasets [18], [20], [21]
they perform poorly on real-world, UGC data [10], [24].
Deep NR-IQA models [30], [31], [32], [33] have also been
developed that also perform quite well on synthetic distortion
datasets, but still struggle on UGC datasets like LIVE-
Challenge [17] and LIVE-FB [10]. An advanced deep model
called PaQ-2-PiQ [10] leverages relationships between local
and global quality predictions to achieve SOTA performance
on the largest and most comprehensive UGC picture quality
datasets. A few multi-task models like IQA-CNN++ [34] and
QualNet [35] are available that use relationships between
quality and distortion features to predict both picture quality
scores and distortion categories. These multi-task models also
perform well on synthetic datasets, but struggle on real-world
UGC pictures and distortions. The authors of [1] used an
Xception backbone pre-trained on ImageNet [36] to predict
distortion categories on the VizWiz pictures, achieving promis-
ing results.

C. Assisting the Visually Impaired

Making visual media accessible to visually impaired users
has been a long standing problem. For example, earlier work
attempted to convert visual signals to be perceived into tactile
forms to mitigate the lack of sight [37], [38], [39]. Over the
last decade, several applications have been developed to help
visually impaired users capture better images. Most of these
applications were built for visual recognition tasks [2], [4],
[14]. TapTapSee [4] helps a user take focus-adjusted images,
whereas applications like VizWiz Ver2 [2] and EasySnap [14]
use simple darkness and blur detection algorithms. All of
these make simple distortion measurements to assist automated
object recognition. The authors of [13] developed an assisted
photography framework to help users better frame their photos,
using an image composition model that assesses aesthetic qual-
ity. The Scan Search [3] application uses the Lucas-Kanade
[40] optical flow method to track feature points and determine
the stability of the camera. The most stable frames are used for
online object detection. Both provide automatic selection of a
best image. The authors of [1] also developed algorithms to
detect the recognizability and answerability of images captured
by limited vision users, for image captioning and visual ques-
tion answering applications. None of these efforts were predi-
cated on perceptual models, perceptual quality, or were trained
on human data. The absence of any robust model that can
predict distortions that commonly afflict VI-UGC pictures, and
that can be used to monitor and guide perceptual quality during
capture motivated us to create a system capable of doing so.

III. DATASET AND HUMAN STUDY

This section elaborates the construction of the new
LIVE-Meta VI-UGC dataset and details the online human
study by which we collected subjective quality labels.
The proposed dataset contains 39, 660 images, along with
39, 660 patches extracted from them, half of which are salient
patches, and the other half randomly cropped. We also col-
lected 2.7M ratings and distortion labels on the images, and
equal numbers on the patches. This dataset is much larger
than any previous legacy synthetic dataset [18], [20], [21],
and significantly larger than any UGC dataset containing
both quality and distortion labels [17]. It is also the first
quality-focused dataset dedicated towards developing assistive
technology for visually impaired photographers.

A. Constructing the Dataset
1) Building on VizWiz: VizWiz [41] was the first pub-

licly available dataset containing content generated by limited
vision users. The images in the dataset (Fig. 2) were generated
under real use conditions via the VizWiz mobile applica-
tion [2]. Fig. 3 shows the diversity in resolution and aspect
ratio of the dataset. Since the main purpose of the application
was to submit images for image captioning and to answer
visual questions, it addressed a practical need for visually
impaired users, and is a suitable platform on which to develop
quality-perceptive assistive technology. The authors of [1] used
the same dataset to collect some common quality (blur, expo-
sure) and aesthetic labels (framing, obstruction, orientation)
along with information on image recognizability. To the best of
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Fig. 2. Sample images from the two datasets - VizWiz (top row) and
ORBIT (bottom row), each resized to fit. The actual images are of highly
diverse sizes and resolutions.

Fig. 3. Left: Scatter plot of picture sizes (width vs. height), where the circle
sizes code the number of pictures of each size in the VizWiz database.

our knowledge, this was the first attempt to develop a dataset
of this kind. A deeper analysis of the data collected revealed
important insights on VI-UGC images. The authors considered
blur and framing to be the most prevalent flaws of VI-UGC
content that often render images unrecognizable. They also
carried out a detailed analysis on the correlations between
the different impairments, the relationships between recogniz-
ability and distortions, and pointed out crucial directions that
research in this area should progress.

However, that work did not address measurement and anal-
ysis of the perceived qualities of VI-UGC pictures, which we
have addressed by developing a large new dataset, on which
we created VI-UGC specific IQA algorithms. These models
address technical distortions such as blur, over/under exposure,
and noise, but not semantic/aesthetic flaws such as framing,
mood, and content selection. While the latter are important,
they involve different capture problems and perceptual pro-
cesses and should be treated differently [10], including using
different kinds of training data.

2) Categorizing Distortions: As mentioned previously,
natural distortions are extremely diverse and commingle
with each other, making it hard to exhaustively categorize
them [17], [24]. Since the images in our dataset were captured
by visually impaired persons, there is a prevalence of heavy
distortions. Among these, we chose to focus on the most
common and identifiable ones. This resulted in five major
categories: focus blur (‘blurry’), motion blur (‘shaky’), overex-
posure (‘bright’), underexposure (‘dark’), and noise (‘grainy’).
We also included two other categories: ‘none’ (signifying the
absence of any distortion) and ‘other’ (distortions that are
non-identifiable or cannot be categorized as being one of the
other options).

Fig. 4. Two kinds of spatial patches were cropped from images, all to
40% of the original image dimensions: randomly selected and salient patches
cropped from disjoint halves of the overall image corpus.

3) Cropping Patches: The relationships between local and
global spatial quality have been shown to be important and,
when modeled, to lead to improved quality predictions [10],
[15]. Here, we carry these ideas further by studying the impact
of the method of choosing patches on quality prediction. To do
this, we divided the entire dataset into two random halves.
On half of the images, each randomly selected patch was
cropped to 40% of each of its linear spatial dimensions. On the
other half of the images, a most visually salient patch of the
same (40%) dimensions was cropped. The SOTA pyramid
feature attention network [42] was used to create saliency
maps, from which the most salient patch was cropped. All of
the patches have the same aspect ratios as the original image
they were cropped from (Fig. 4).

4) ORBIT Data: To study the cross-dataset performance
of our model and its applicability to video tasks, we also
created a separate, smaller dataset containing images extracted
from the ORBIT video database [16]. The ORBIT dataset
includes videos captured by visually impaired users, with the
identification of common objects as the objective, under two
environmental conditions - clean and cluttered. We selected
59 types of objects at random, and from each we selected
two videos (one clean and one cluttered). We then sampled
each video at one frame per second, collecting a total of
2, 235 frame images in total (Fig. 2). Each image in the ORBIT
sub-dataset has the same spatial dimensions as the original
videos (1080 × 1080). As before, we then collected global
quality ratings on these to form the auxiliary LIVE-ORBIT
frame quality dataset.

B. Subjective Quality and Distortion Study
Amazon Mechanical Turk (AMT) is a well-established

crowdsourcing platform for subjective quality studies [1], [10],
[15], [17], [43]. Our human study was carried out in three
stages of data collection - image, patch, and ORBIT sessions.
Overall, 3, 945 subjects participated in the study and, after
rejection and cleaning, we collected an average of about
34 ratings on each image and each patch. Our study was
accessible to all platforms and geographical locations.

1) AMT Study Design: The study workflow is shown
in Fig. 5. The subjects were asked to participate in two
tasks - image quality rating and distortion type identification.
The AMT study started with a series of instructions, followed
by a quiz, and then the training and testing phases. Before
accepting the task, the workers could read a brief summary
on the introductory page. Having accepted, they then had to
read a second introductory page on distortions, then a set of
timed instruction pages: Rating Instructions, Phase Instruc-
tions, Additional Instructions, and Ethics Policy. While they
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Fig. 5. Study workflow for both image and patch sessions.

Fig. 6. Rating interface.

read the instructions, the subjects were screened based on the
study criteria described in Sec. III-B.2. Following the instruc-
tion pages, they then had to pass a quiz in order to proceed to
the training and testing phases. The training phase contained
five sample distorted images to familiarize the subjects with
the task. After training, the subjects entered the testing phase,
where each subject rated 110 images. Afterwards, each subject
completed their task by answering a questionnaire regarding
the study conditions and their demography.

The rating interface that the human subjects deployed is
shown in Fig. 6. The image was displayed on the left, and the
rating section was on the right. The top half of the rating
section displays the rating bar, which allowed the subjects
to tender overall quality scores on a continuous scale from
0 − 100 using a sliding cursor. The subjects were asked to
provide their ratings anywhere they felt appropriate, guided
by Likert scale [44] markings BAD, POOR, FAIR, GOOD, and
EXCELLENT. On the bottom half, they were asked to choose
the distortion(s) that they deemed present in the image, from
among the seven options discussed earlier (Sec III-A).

2) Study Requirements: Each subject viewed either only
images, or only patches. For both image and patch sessions,
each batch was published in four phases. The workers had to
satisfy the following criteria to be eligible for the study:

• Worker Reliability: Only accepted workers with an
approval rate of > 75%, with > 1000 HITs approved.

• Browser Resolution: > 480p for mobile devices, and
> 720p for others.

• Browser Versions: Latest versions of Chrome, Firefox,
Edge, or Safari.

• Browser Zoom: Set to 100%.
3) Subject Rejection: As has been discussed in previous

studies [1], [10], [15], [17], [24], [43], [45], online crowd-
sourcing carries the risk of distracted, inadequately equipped,
disengaged, or even frankly dishonest subjects, so there is
often a high percentage of unreliable labels. We used various
strategies to screen the subjects using criteria applied both
during and after the study.

a) During task: During the instruction phase,
we checked whether the subject’s browser window, browser
and OS version, and zoom (non-magnified) condition satisfied
the requirements stated in the instructions. If they did not,
their participation was ended. To detect dishonest workers,
at the halfway point of each testing phase, we processed
the scores already given to determine whether they had
been giving unchanging ratings (only nudging the slider /
supplying haphazard scores) on either task, and were rejected
accordingly.

b) Post task: Of the 110 images viewed in a session,
5 were randomly repeated. A subject was rejected if their
“repeat” scores were not consistently similar to the scores
given the first time. We also included 5 images from the
LIVE-FB dataset [10] designated as the “golden” set, and
removed the subjects if their ratings did not adequately match
the golden ones. Overall, we rejected the scores given by
814 subjects.

4) Data Cleaning: The remaining scores after subject
rejection were processed by a series of data cleaning steps:
(1) removed 43 images (1.3K ratings) of a constant value.
(2) removed the ratings provided by subjects who did not
wear their prescribed lenses (0.9% of total ratings removed).
(3) applied the ITU-R BT.500-14 [46] (Annex 1, Sec II-C)
subject rejection protocol to screen 56 more outlier subjects.
(4) For each image and patch, we also rejected outliers
from the individual score distributions, as follows. We first
calculated the kurtosis [47] to determine the normality of the
scores. If they were determined to be normal, the Z-score
outlier rejection method [48] was applied. Otherwise, the
Tukey IQR method [49] was applied. Overall, including all
subject and score outlier rejections, around 1.7% of the ratings
were tossed out. We were left with about 2.7M subject scores
(1.36M on images, 1.33M on patches) on VizWiz images, and
76K ratings on the ORBIT images.

IV. SUBJECTIVE DATA PROCESSING AND RESULTS

A. Subject Statistics
In the exit survey, the subjects were asked to provide infor-

mation regarding the following: the display, viewing distance,
gender, age, and whether the worker needed corrective lenses,
and if so, whether he/she wore them during the study.

1) Demographic Information: We did not put any regional
qualification on subject participation. Fig. 7(a) shows the
gender distribution with 64.4% male and 35.5% female partic-
ipants. Fig. 7(b) shows the age distribution with 20-40 being
the primary age group. From the age-specific MOS distribution
(Fig. 7(c)), we observe that the standard deviation of the score
distribution roughly decreases with age. This might be due
to the younger demographic being exposed more to online
user-generated digital media which has a narrow distribution,
making them more tolerant to changes in quality.

2) Viewing Conditions: Due to the nature of crowdsourc-
ing, subjects participated under diverse viewing conditions,
including at different geographies, viewing distances, display
devices, browsers, resolutions, ambient lighting, etc. Fig. 8
shows the statistics of some of the viewing conditions. Laptops
(58.3%) and desktop workstations (32.7%) were the most used
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Fig. 7. Demographic information statistics (a) MOS distribution for
different age groups, (b) Age distribution, and (c) Gender distribution of the
subjects who participated in the study.

Fig. 8. Viewing condition statistics (a) Devices and (b) Device Resolutions
used by the subjects participating in the study.

devices (Fig. 8(a)), and most subjects (62.7%) preferred 15-30
inches as the viewing distance (Fig. 8(c)). The most common
screen resolution was 768×1366 (Fig. 8(b)), and 640×360 was
the most common among mobile devices.

B. Data Analysis

1) Inter-Subject Quality Consistency: An inter-subject con-
sistency test [10], [15] was carried out by randomly dividing
the subject pool into two disjoint sets of equal size, then calcu-
lating the Spearman Rank Correlation Coefficient (SRCC) [50]
between the two corresponding sets of MOS (mean opinion
score). The average SRCC over 50 such random splits yields
a useful measure of inter-subject consistency. The average
SRCC on VizWiz images was 0.93, on patches was 0.90
(0.87 on random and 0.92 on salient patches), and on ORBIT
was 0.93. Among the patches, the average SRCC on the ran-
dom patch set was 0.87, but for the salient patches was 0.92,
hence the ratings on salient patches were more consistent.
These results substantially validate the efficacy of our data
collection and subject rejection processes.

Fig. 9. Scatter plots of patch vs image MOS correlations. Image MOS
vs all patches (left), random patch (middle) and salient patch (right) MOS
cropped from the same image.

2) Intra-Subject Quality Consistency: Each subject rated 5
“golden” images. We computed the Linear Correlation Coef-
ficient (LCC) [51] between the mean of the ratings on the 5
“golden” images with the original scores. The median PCC
value over all subjects was 0.90 for the VizWiz image study,
0.90 for the patch study, and 0.87 for the ORBIT study. Again,
these high correlations serve to validate our overall subjective
study protocol.

3) Patch Vs Image Quality: Fig. 9 shows scatter plots of
image MOS against patch MOS, for both kinds of patches.
The SRCC obtained between image and patch MOS was 0.84,
indicating a strong relationship between local and global image
quality. The SRCC between image MOS and random and
salient patch MOS was 0.82 and 0.86, respectively, suggesting
that salient patches may play a strong role in the perception of
global picture quality. This may be because some distortions
are salient, and/or that distortions on salient regions are more
annoying.

4) Quality Rating Consistency Among Subject Demograph-
ics: We studied the effects of different parameters, associated
with the study environment, on MOS. The SRCC of quality
ratings collected on laptops and desktops (collectively account-
ing for 91% of the devices used) against MOS was 0.91, while
the SRCC of ratings provided on phones and other devices
was 0.7. These results strongly suggest that perceptual quality
is affected by the size of the display. We also studied other
parameters by computing correlations between two major
resolutions: 768 × 1366 and 1080 × 1920 (0.87); between
two major viewing distances; < 15 and 15-30 inches (0.89);
major age groups: 20-30 and 30-40 (0.91); and genders (0.92).
As before, we observed high consistency in the data, affirming
the validity and efficacy of our data cleaning methodology.

5) Distortion Score Analysis: To conduct a consistency
analysis, we converted the binary distortion labels into prob-
abilistic values by dividing the number of positive labels
of each distortion by the total number of labels collected,
and then computed the correlations between the resulting
vectors. The average SRCC (inter-subject consistency) values
for the distortion categories were: blurry (0.75), shaky (0.62),
bright (0.68), dark (0.60), grainy (0.35), and none (0.85).
Some distortion categories were harder to consistently identify
than others. The high agreement on ‘none’ shows that it is
easier to determine the absence of distortions. Similarly, the
SRCC values computed between image and patch distortions
were: blurry (0.73), shaky (0.68), bright (0.60), dark (0.62),
grainy (0.46), and none (0.73). The lower correlations for
some distortions (like ‘dark’) suggests that the perception of
distortions that are globally apparent may be more weakly
impacted by local quality.
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Fig. 10. Ground Truth MOS and distortion histograms of the two
databases. Left column is the data collected on VizWiz [1] images, and right
column is the data collected on ORBIT [16] images. The plots below show
the distribution of the distortions in each dataset.

6) MOS and Distortion Distributions: Fig. 10 (top) plots
the MOS distribution of the images in the VizWiz and ORBIT
datasets. Fig. 10 (bottom) shows the proportional distribution
of distortion ratings in the two datasets. As expected, ‘blurry’
was the most prominent distortion in both datasets. Overall,
ORBIT contains more images of higher quality and with
fewer distortions. Also, ‘grainy’ and ‘dark’ images, which
occurred less often, are associated with less consistent ratings
and are thus harder to predict. As we show in Sec. V-C, this
non-uniform distribution of distortion types makes it harder to
train models that can perform equally well on all classes.

V. MODELING AND EXPERIMENTS

The new database just described is intended to serve as a
basic tool for developing models, and algorithms derived from
them, that are able to accurately predict, and provide feedback
on, the perceptual quality and distortions present in pictures.
Towards realizing this aim, we have designed efficient model
architectures able to predict technical quality and distortions
on this kind of impaired content, while accounting for local-
to-global percepts, using a multi-task learning framework.

A. Data Pre-Processing
Unlike the collected human opinion scores, which can

be used in their raw form, the distortion labels had to be
transformed into suitable output labels for training. Since
distortion type prediction is a classification task, we considered
the possibility of binarizing the labels. We considered a variety
of binarization parameters. For example, the authors of [1]
considered 40% (2 out of 5) agreement to affirm the presence
of a distortion. Since there were no perceptual principles to
guide us, we experimented on three threshold values: 0.3,
0.4, and 0.5 and assumed the top three distortions (highest
proportions of the total number of labels) to be present in each
analyzed image. Unfortunately, an inter-subject consistency
analysis on the binarized labels found that the SRCC values
dropped by 17%–34% as compared to those obtained on
the probabilistic values in Sec. IV. Similarly, we noticed
a drop of 27%–44% of correlation between assigned patch

vs image distortion classes, as compared to the probabilistic
approach. Among all the binarization strategies, the ‘max-
three’ approach led to the worst correlation values. Moreover,
as the thresholds were increased, the distortion distributions
became more skewed, leading to worse predictions, since hard
labels reduce robustness on out-of-distribution samples [52].
Hence, in the end, we decided to train and test all models
using probabilistic labels.

Given the two prediction tasks at hand, we studied the
design of both no-reference image quality prediction models
and distortion classification models, with a goal of building
multi-task models capable of both tasks.

B. Image Quality Models
1) Architecture: The model structure we employed consists

of a deep CNN backbone, followed by two-dimensional global
average pooling, then two fully connected layers of size
512 and 32, respectively, and a single output neuron. The
model was trained for 10 epochs using the Adam optimizer
with MSE loss. The learning rate was set to 5 × 10−4 for
the first 5 epochs, then with a decay rate of 0.1 per epoch.
We experimented with ResNet-50V2 [53], Xception [54], and
ResNeXt-50 [55] backbones pre-trained on ImageNet [36] and
fine-tuned on VizWiz images.

2) Dataset Splits: We used the same train-validation-test
split as provided by the authors of VizWiz-QualityIssues [1].
The training, validation, and testing set consists of 23.9K
(60.3%), 7.7K (19.6%), and 8K (20.1%) images respectively.
A similar split was applied on the patch dataset.

3) Baselines and Evaluation Metrics: The trained models
were compared against several baselines, including shal-
low and deep learners (whose code was publicly available).
We included the popular NR image quality prediction models,
BRISQUE [9], NIQE [27], and FRIQUEE [29], which extract
perceptually relevant statistical image features to train an SVR.
We also compared against deep picture quality models such as
CNNIQA [12] and NIMA [11] (with a VGG-16 [56] backbone
and a single regressed quality score as output), the PaQ-2-PiQ
baseline, and the PaQ-2-PiQ RoIPool model with backbones
pre-trained on the large LIVE-FB [10] dataset, then fine-tuned
on our dataset. Following standard comparison methods in the
field of image quality assessment, we evaluated the model
performances using SRCC and LCC.

4) Results: From Table I, we note that models trained with
shallow learners on extracted features yielded lower predic-
tion accuracy than the deep models, reflecting the limited
abilities of traditional features to capture complex distor-
tions of natural images. CNNIQA [12], which is a shallow
CNN model, outperformed the traditional algorithms, but fell
short of the performances of deeper models. We observed
that performance generally was higher for deeper models
(ResNet-50V2, ResNeXt-50, and Xception), which outper-
formed NIMA [11] implemented with a VGG-16 backbone.
The PaQ-2-PiQ RoIPool model achieved the best performance,
demonstrating the efficacy of exploiting the relationships that
exist between local (patch) and global quality perception. The
performances of the deeper backbones were similar (and close
to human performance – SRCC 0.93 as observed in Sec. IV),
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TABLE I
PERFORMANCE OF IMAGE QUALITY MODELS EVALUATED ON THE

NEW LIVE-META VI-UGC DATASET. HIGHER VALUES INDICATE
BETTER PERFORMANCE

suggesting that even heavier models would not produce better
performances.

C. Distortion Prediction Models
1) Architecture and Implementation: Because our mod-

els generate continuous probabilistic outputs, as described
in Sec. V-A, we treat distortion prediction as a regression
problem. Similar to the quality model architecture, our pro-
posed model consists of a deep CNN backbone, followed by
global pooling, and two fully connected layers. Instead of
producing a single output, it has seven output neurons, each
expressing a score for a separate distortion class. As before,
we experimented with three backbones - ResNet-50V2 [53],
Xception [54], and ResNeXt-50 [55]. The hyperparameters
were kept the same, except the initial learning rate was set
to 10−3. The same train-validation-test split was used.

2) Baselines and Evaluation: The trained models were
compared against other deep models. We include two mod-
els from [25], where the authors used pre-trained Atrous
VGG-16 [57] and ResNet-101 [58] backbones with a single
fully-connected head layer to predict synthetic distortions.
We also tested the model [1] composed of an Xception [54]
backbone (pre-trained on ImageNet [36]), by fine-tuning the
head layers only. The distortion labels and outputs lie within
[0,1], and we again used SRCC to evaluate the performance.

3) Results: As may be observed from Table II, the
fine-tuned deep models outperformed the baselines. Atrous
VGG-16 [25] performed the worst, while ResNet-50V2 [53]
and ResNeXt-50 [55] models consistently performed best on
most distortion classes. All the fine-tuned models yielded sim-
ilar performances across all classes. However, the distortion
distribution in the dataset is quite skewed (Fig. 10), hence
the prediction performances varied across classes. The low
performance on the ‘bright’ and ‘grainy’ classes is consistent
with the low agreement among the subjects on these distortions
(Sec. IV).

D. Multi-Task Models
1) Architecture and Implementation: Combining both

tasks – quality and distortion type predictions – into a sin-
gle model bears two advantages: a) fewer computations and
faster inferencing, crucial for supplying real-time feedback
to users (Sec. VI-B); and b) shared distortion and quality
features can lead to better predictions [35]. Starting with

TABLE II
PERFORMANCES OF DISTORTION PREDICTION MODELS ON THE NEW

DATASET. ALL VALUES ARE SRCC; HIGHER VALUES
INDICATE BETTER PERFORMANCE

Fig. 11. The proposed P2P++ model extends the PaQ-2-PiQ RoIPool [10]
model by including a multi-task head that simultaneously produces both
quality and distortion scores, at both patch and whole image scales.

PaQ-2-PiQ (P2P) RoIPool [10] model as a base, we modified
it by attaching a multi-task head to conduct both quality and
distortion predictions. This multi-task model, which we call
P2P++, produces quality and distortion predictions for each
class, on both entire images and local patches simultaneously
(Fig. 11). The head has a shared layer of size 512, followed
by two separate layers of size 32, dedicated to separate tasks.
In addition to training P2P++ (which has a ResNet-18 [58]
backbone pre-trained on LIVE-FB [10]), we also experimented
with ResNet-50V2 [53] and Xception [54] baselines trained
on images only. The hyperparameters for training were the
same as for the distortion model setup, using the same train-
validation-test split.

2) Baselines and Evaluation: We compared the perfor-
mance of our models against two competitive multi-task deep
models - IQACNN++ [34] and QualNet [35]. IQACNN++
consists of a shallow CNN backbone, while QualNet contains
a VGG-16 [56] backbone and predicts global quality using
fused distortion and quality features.

3) Results: From Table III, it may be observed that the
shallow IQACNN++ [34] model yielded the worst results.
QualNet [35] was able to outperform IQACNN++, but strug-
gled on multiple distortion categories. The larger models
equipped with ResNet-50V2 and Xception backbones per-
formed quite well, but the much lighter P2P++ model was
able to achieve the best performance on almost all categories.
Again, by inferencing on learned local-to-global quality and
distortion features, better results were obtained at lower cost.
As before, all of the models had more difficulty predicting the
‘bright’ and ‘grainy’ distortion types.

E. Ablations

1) Performance on Patches: Table IV summarizes the qual-
ity performance of the multi-task models on patches. This is
important, since giving feedback on local distortion occurences
may further assist visually impaired users. P2P++ performs the
best on both the random and salient patches, closely followed
by ResNet-50V2. This validates the localization capabilities
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TABLE III
PERFORMANCE OF THE MULTI-TASK MODELS ON THE NEW SUBJECTIVE

TEST DATASET. ALL VALUES ARE SRCC; HIGHER VALUES INDICATE
BETTER PERFORMANCE

TABLE IV
QUALITY PREDICTION RESULTS ON THE PATCHES IN THE NEW

SUBJECTIVE DATASET. HIGHER VALUES INDICATE
BETTER PERFORMANCE

TABLE V
DISTORTION PREDICTION PERFORMANCE OF THE MULTI-TASK

MODELS ON ALL PATCHES IN THE NEW SUBJECTIVE TEST
DATASET. ALL VALUES ARE SRCC; HIGHER VALUES

INDICATE BETTER PERFORMANCE

of the patch model. The performance on salient patches was
slightly better than on random patches, perhaps because they
tend to capture visibly obvious and annoying distortions that
draw attention and are easier to predict.

The distortion performances of the multi-task models on
all patches are summarized in Table V. P2P++ performed the
best on average, whereas, the models with Xception [54] and
ResNet-50V2 [53] backbones also performed very well.

2) Prediction on Different MOS Ranges: To analyze the
performances of the models on images, we divided the MOS
range into three equal non-overlapping ranges: 0 − 33 (18.4%
of images), 34 − 66 (64.6% of images), and 67 − 100
(17% of images), representing low, medium, and high quality
images, respectively. Table VI shows the quality prediction
performances of the different multi-task models on separate
MOS ranges. It was observed that most models performed well
in the middle range (medium quality images) compared to the
low and high MOS ranges. This is likely due to the higher
number of medium quality images in our dataset compared to
the two extremes.

3) Mobile-Friendly Version: In a guided feedback system,
fast inference is necessary. Hence, we also implemented
an efficient lighter version of P2P++, where, instead of
a ResNet-18 [58], we used a MobileNetV2 backbone and
reduced the RoIPool output size to 1×1. We noticed a drop of
8.9% in quality prediction and 8.6% in distortion prediction
performances when compared to P2P++ (with ResNet-18

Fig. 12. Failure cases: VizWiz images where predictions differed the most
from human quality scores.

backbone). However, the MobileNetV2 version contains only
1/4 as many parameters compared to P2P++, making it much
more desirable for mobile implementations.

4) Failure Cases: Fig. 12 (a) was rated high (MOS = 76.2)
by the humans, but obtained a low predicted score (MOS =
50.2) from P2P++. Perhaps the blurry “bokeh” effect on
regions around the hand and background was less noticeable
to the human raters than the high quality (salient) foreground.
The image Fig. 12 (b) was rated as worse (MOS = 42.5) by the
subjects than by P2P++ (MOS = 62.7). The non-uniformity
of the blur across the image also could have caused this
discrepancy. While the sharp and distorted regions of the
image are of roughly equal areas, the distortions were likely
more salient to the human subjects, causing them to rate
it severely. The same regions were likely predicted as less
salient by P2P++. These results suggest that more work needs
to be done on understanding the interplay between saliency,
distortion annoyance, and bokeh.

VI. APPLICATIONS OF THE PROPOSED MODEL

The models described in Sec. V can be extended to provide
visualization and feedback to directly assist visually impaired
users, as we describe next.

A. Predicting Quality and Distortion Maps
The P2P++ model can be used to compute both spatial

quality maps and distortion classification maps. Since it is
trained on both global and local patch labels, it is flexible
enough to compute quality predictions and distortion type
predictions on any number and sizes of image patches. Inspired
by [10], we utilized these outputs to create perceptual quality
and distortion classification maps that span the entire image
space. To generate spatial quality maps, each image is divided
into non-overlapping patches of size N × N , on which pre-
dicted quality scores are obtained from the model output on
every patch. Similarly, on each patch, a predicted distortion
vector is obtained, with multiple values corresponding to each
distortion type. Each distortion output can be used to generate
a corresponding distortion-specific map. The patch size (N ) is
easily varied, allowing the generation of finer or coarser maps.

Fig 13 shows the predicted quality and distortion maps (for
the two most prominent predicted distortions) computed on
a sample test image. The quality map accurately predicted
the bottom-right part of the image to be of the highest
quality, while the distortion maps predicted the bottom-left
area to be blurry, and the topmost region of the image to
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TABLE VI
QUALITY PREDICTION RESULTS ON DIFFERENT DISJOINT MOS RANGES OF THE NEW LIVE-META VI-UGC DATASET.

HIGHER VALUES INDICATE BETTER PERFORMANCE

Fig. 13. Spatial quality and distortion maps: Predicted perceptual
quality and distortion maps were generated on a sample image from the new
LIVE-Meta VI-UGC database VI-A. The top-right image shows the predicted
perceptual quality map (blended with the original image using a magma
colormap). The bottom two images show the ‘blur’ and ‘dark’ distortion maps
(and their global scores) blended with a cividis colormap. Best viewed in color.

be underexposed. This example shows the interplay between
perceived quality and distortion localization.

B. Feedback to Assist Visually Impaired Users
1) Guided Photography: There are many ways of provid-

ing feedback to visually impaired users to try to help the
take pictures of better perceived technical quality. This is
a very challenging, multi-dimensional, and human-oriented
problem, which will, over time, require strong engagement
with the community of visually impaired people, and extensive
ergonomic and validation studies involving visually impaired
volunteer subjects. As a demonstration of the potential of our
concept, we built a prototype early-stage, guided feedback
system to show how our work can be used to assist visually
impaired users to take better photos. The current implementa-
tion of our framework is illustrated in Fig. 14. The assistive
model has two parts, a quality feedback loop, and a distortion
feedback loop. The high-level, immediate model outputs are
approximate English expressions of the global picture quality
prediction, and of the predicted distortion levels. Specifically,
the user is provided an image rating from among ‘Bad’
(0-20), ‘Poor’ (20-40), ‘Fair’ (40-60), ‘Good’ (60-80), and
‘Excellent’ (80-100). If the user is satisfied with the quality,
he/she can choose to save it, or otherwise ask for distortion
feedback. In our current prototype, which is implemented on a
workstation (but see below for parallel work), the feedback is
given by output text; naturally, transcribed audio expressions
would be used in practice. If the quality is substandard, then

Fig. 14. Guided Photography Framework: Flowchart of the assistive
photography framework (Sec. VI-B), showing the series of prompts and
advice given to guide visually impaired users, from capturing through saving
a satisfactory photo. Here, ‘mod’ stands for ‘moderate distortion’.

further feedback is required to make the application useful.
If feedback on the distortion is requested, the user is informed
of the three major distortions determined to be present in
the image, along with the severity of each: High (> 0.50),
Moderate (0.20 − 0.50), and Low (< 0.20).

Based on the nature and severities of the distortions
detected, our system also suggests simple ways (base feed-
back) to mitigate them. The following feedbacks (suggested
actions) are given to the visually impaired users to mitigate
those distortions predicted to be present:

• ‘Blur’: ‘The phone may be too close to the object, move
it away from it.’

• ‘Shaky’: ‘Hold the phone and the object steady.’
• ‘Bright’: ‘Scene is too bright’ + ‘Try turning off the

flash’ / ‘Find proper lighting if you can.’
• ‘Dark’: ‘Scene is too dark, try turning on the flash or

switch on the lights.’
• ‘Noisy’: ‘Try increasing the lighting or move the camera

further from the subject.’
• ‘None’: ‘No major distortions seem to be present.’

As the user becomes more adept at the P2P++ system,
they will be able to request and take advantage of additional,
more detailed (localized) feedback on the picture distortions.
To facilitate this, P2P++ also generates 3 × 3 distortion maps
for the three most dominant impairments, and informs the user
of their relative locations in the image (top-left, bottom-right,
center, etc.), as also depicted in Fig. 14.

2) Automated Photography: Although guided photography
promises to be a transformative technology, we acknowledge
that much work remains on developing successful feedback
languages and interfaces, which in term will require working
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Fig. 15. Automated photography: The outputs of P2P++ on a sequence
are used to determine the highest quality frame among a temporally sampled
ORBIT [16] video (highlighted in red). Best viewed in color.

TABLE VII
PERFORMANCE OF THE MULTI-TASK MODELS WHEN TRAINED ON OUR

NEW DATASET AND TESTED ON THE EXCERPTED ORBIT DATASET
WITHOUT FINE-TUNING. ALL VALUES ARE SRCC; HIGHER

VALUES INDICATE BETTER PERFORMANCE

with visually impaired subjects to test and advance future
systems. In the interim, there are more immediate ways
to assist visually impaired users to take better pictures via
simpler, albeit less comprehensive applications, which can
automatically help them take better quality pictures. This
can be accomplished by capturing a short video clip of the
scene the subject is trying to photograph, that includes and
is approximately centered at the moment the ‘shutter button’
is depressed. By using a broad sampling of a single frame
per second, a fairly wide range of qualities may be presented.
Given the sampled frames, P2P++ then computes the global
quality of each to determine the frame having the highest
perceptual quality. The user is provided feedback on this
quality (‘Poor’ to ‘Excellent’) and given the option to save or
discard the image. A simple demonstration on an ORBIT [16]
video is shown in Fig. 15.

3) Performance on ORBIT: To study the generalizability of
our model, and the representation capabilities of our dataset,
we also sought to test P2P++ on other, independent VI-UGC
datasets. Since we could not find any such datasets, we evalu-
ated and compared the multi-task models on a special-purpose
excerpt we created from the ORBIT dataset, consisting of
frames sampled from ORBIT [16] videos. As may be observed
from Table VII, P2P++ performs very well, and generally
better than the much heavier ResNet-50V2 and Xception
models. All of our models outperformed other multi-task
models when trained on our new database and tested on the
excerpted ORBIT dataset. Attaining such high performance on
most distortion classes on ORBIT validates the generalizability
of P2P++ to other VI-UGC media. The lower performance
(of all models) on the ‘bright’ and ‘grainy’ categories is again
due to subject ambiguity on these classes. Fig. 15 illustrates
the actual performance and outputs produced by P2P++ when
compared to the ground truth quality scores obtained on an
ORBIT video.

4) Smartphone Application: In parallel with this work,
we supervised a 5-member undergraduate Honors Senior
Design team at UT-Austin over two semesters, who imple-
mented the P2P++ MobileNetV2 version into a functioning
application, available on both iOS and Android, using tools
available in the SDK. The app includes an easy to use
user interface and more detailed feedback expressions that is
communicated via the phone’s audio speaker. A demo of the
application has been made available online at [59].

VII. CONCLUDING REMARKS

The success of computer vision algorithms can be largely
measured by the benefits granted to ordinary people to enhance
their quality of life. To that end, assisting visually impaired
people to take better quality pictures can give them more
prominent voices on social media platforms, and can also
assist them with other visual tasks such as recognition and
captioning. Assessing perceptual quality and distortions on
VI-UGC is a difficult, but important and little-addressed prob-
lem. Our work makes substantive progress towards that goal
by the proposed VI-UGC targeted dataset, a VI-UGC quality
and distortion prediction model, and a prototype system that
supplies specialized feedback to help guide, assist, automate,
and improve their photographic efforts. Of course, while we
believe that this work is a step in the right direction, this field
is still nascent with very significant challenges remaining.
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