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A bstr a ct — Wit h t h e c o nti n u o us i n c r e as e i n t h e si z e a n d c o m-
pl e xit y of m a c hi n e l e a r ni n g m o d els, t h e n e e d f o r s p e ci ali z e d
h a r d w a r e t o ef fi ci e ntl y r u n s u c h m o d els is r a pi dl y g r o wi n g. T o a d-
d r ess s u c h a n e e d, sili c o n- p h ot o ni c- b as e d n e u r al n et w o r k ( S P- N N)
a c c el e r at o rs h a v e r e c e ntl y e m e r g e d as a p r o misi n g alt e r n ati v e
t o el e ct r o ni c a c c el e r at o rs d u e t o t h ei r l o w e r l at e n c y a n d hi g h e r
e n e r g y ef fi ci e n c y. N ot o nl y c a n S P- N Ns all e vi at e t h e f a n-i n a n d
f a n- o ut p r o bl e m wit h li n e a r al g e b r a p r o c ess o rs, t h ei r o p e r ati o n al
b a n d wi dt h c a n m at c h t h at of t h e p h ot o d et e cti o n r at e (t y pi c all y
≈ 1 0 0 G H z), w hi c h is at l e ast o v e r a n o r d e r of m a g nit u d e f ast e r
t h a n el e ct r o ni c c o u nt e r p a rts t h at a r e r est ri ct e d t o a cl o c k r at e of
a f e w G H z. U nf o rt u n at el y, t h e u n d e rl yi n g sili c o n p h ot o ni c d e vi c es
i n S P- N Ns s uff e r f r o m i n h e r e nt o pti c al l oss es a n d c r osst al k n ois e
o ri gi n ati n g f r o m f a b ri c ati o n i m p e rf e cti o ns a n d u n d esi r e d o pti c al
c o u pli n gs, t h e i m p a ct of w hi c h a c c u m ul at es as t h e n et w o r k s c al es
u p. C o ns e q u e ntl y, t h e i nf e r e n ci n g a c c u r a c y i n a n S P- N N c a n b e
aff e ct e d b y s u c h i n ef fi ci e n ci es — e. g., c a n d r o p t o b el o w 1 0 % —
t h e i m p a ct of w hi c h is y et t o b e f ull y st u di e d. I n t his p a p e r,
w e c o m p r e h e nsi v el y m o d el t h e o pti c al l oss a n d c r osst al k n ois e
usi n g a b ott o m- u p a p p r o a c h, f r o m t h e d e vi c e t o t h e s yst e m l e v el,
i n c o h e r e nt S P- N Ns b uilt usi n g M a c h – Z e h n d e r i nt e rf e r o m et e r
( M ZI) d e vi c es. T h e p r o p os e d m o d els c a n b e a p pli e d t o a n y
S P- N N a r c hit e ct u r e wit h diff e r e nt c o n fi g u r ati o ns t o a n al y z e t h e
eff e ct of l oss a n d c r osst al k. S u c h a n a n al ysis is i m p o rt a nt w h e r e
t h e r e a r e i nf e r e n ci n g a c c u r a c y a n d s c al a bilit y r e q ui r e m e nts t o
m e et w h e n d esi g ni n g a n S P- N N. Usi n g t h e p r o p os e d a n al yti c al
f r a m e w o r k, w e s h o w a c at ast r o p hi c i nf e r e n ci n g a c c u r a c y d r o p of
u p t o 8 4 % f o r S P- N Ns of diff e r e nt s c al es wit h t h r e e k n o w n M ZI
m es h c o n fi g u r ati o ns (i. e., R e c k, Cl e m e nts, a n d Di a m o n d) d u e t o
a c c u m ul at e d o pti c al l oss a n d c r osst al k n ois e.

I n d e x Ter ms — Sili c o n p h ot o ni c i nt e g r at e d ci r c uits, d e e p l e a r n-
i n g, o pti c al n e u r al n et w o r ks, o pti c al l oss, o pti c al c r osst al k n ois e.

I. I N T R O D U C T I O N

Wit h t h e risi n g d e m a n d f or l ar g er n e ur al n et w or ks t o a d dr ess
c o m pl e x a n d c o m p ut ati o n all y e x p e nsi v e pr o bl e ms, arti fi ci al
i nt elli g e n c e ( AI) a c c el er at ors n e e d t o c o nsist e ntl y d eli v er b et-
t er p erf or m a n c e a n d i m pr o v e d a c c ur a c y w hil e b ei n g e n er g y-
ef fi ci e nt. I n t his c o nt e xt, d e e p n e ur al n et w or ks h a v e attr a ct e d
s u bst a nti al i nt er est f or v ari o us a p pli c ati o ns r a n gi n g fr o m i m a g e
r e c o g niti o n t o n et w or k a n o m al y d et e cti o n, d e cisi o n- m a ki n g
pr o bl e ms, s elf- dri vi n g c ars, p a n d e mi c r at e pr e di cti o n, a n d
e arl y-st a g e c a n c er d et e cti o n [ 1]. Gi v e n t h e si g ni fi c a nt gr o wt h
i n t h e d e m a n d f or d at a- dri v e n a n d c o m p ut ati o n all y e x p e nsi v e
a p pli c ati o ns, t h e e n er g y ef fi ci e n c y of el e ctr o ni c- b as e d d e e p-
l e ar ni n g i nf er e n c e a c c el er at ors h as b e e n r el ati v el y l o w, a n d

T his w or k w as s u p p ort e d i n p art b y t h e N ati o n al S ci e n c e F o u n d ati o n ( N S F)
u n d er gr a nt n u m b ers C C F- 2 0 0 6 7 8 8 a n d C N S- 2 0 4 6 2 2 6.
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Fi g. 1: O v er vi e w of a c o h er e nt S P- N N wit h N 1 i n p uts, N 2

o ut p uts, a n d M l a y ers.

t h e y h a v e b e e n u n a bl e t o k e e p u p wit h t h e p erf or m a n c e
r e q uir e m e nts of e m er gi n g d e e p-l e ar ni n g a p pli c ati o ns [ 2], [ 3].

Sili c o n p h ot o ni cs ( Si P h) e n a bl es t h e d e pl o y m e nt of i nt e-
gr at e d p h ot o ni cs a cr oss a wi d e r a n g e of a p pli c ati o ns, fr o m
r e ali zi n g ultr a-f ast c o m m u ni c ati o n f or D at a c o m a p pli c ati o ns
[ 4] –[ 7] t o e n er g y- ef fi ci e nt o pti c al c o m p ut ati o n i n e m er gi n g
h ar d w ar e a c c el er at ors f or d e e p l e ar ni n g [ 8] –[ 1 0]. T o all e vi-
at e t h e li mit ati o ns of c o n v e nti o n al C M O S- b as e d el e ctr o ni c
a c c el er at ors i n t er ms of e n er g y c o ns u m pti o n a n d l at e n c y,
n e w Si P h- b as e d h ar d w ar e a c c el er at ors o pti mi z e d f or d e e p
l e ar ni n g a p pli c ati o ns ar e o n t h e ris e. B y l e v er a gi n g o pti c al
i nt er c o n n e cts f or c o m m u ni c ati o n a n d p h ot o ni c d e vi c es f or
c o m p ut ati o n, sili c o n- p h ot o ni c- b as e d n e ur al n et w or k ( S P- N N)
a c c el er at ors off er t h e pr o mis e of u p t o 1 0 0 0 ti m es hi g h er
e n er g y ef fi ci e n c y f or p erf or mi n g c o m p ut ati o n all y e x p e nsi v e
m ulti pl y- a n d- a c c u m ul at e o p er ati o ns [ 2], w hi c h ar e t h e m ost
p o w er- h u n gr y a n d c o m m o n o p er ati o ns i n d e e p l e ar ni n g a p pli-
c ati o ns [ 2].

A m o n g diff er e nt S P- N N i m pl e m e nt ati o ns, c o h er e nt S P-
N Ns, w hi c h o p er at e o n a si n gl e w a v el e n gt h, h a v e a n i n h er-
e nt a d v a nt a g e o v er n o n c o h er e nt S P- N Ns t h at r e q uir e p o w er-
h u n gr y w a v el e n gt h- c o n v ersi o n st e ps a n d m ulti pl e w a v el e n gt h
s o ur c es [ 1 1]. Fi g. 1 pr es e nts a n o v er vi e w of a m ulti-l a y er
c o h er e nt S P- N N wit h N 1 i n p uts, N 2 o ut p uts, a n d M l a y ers.
E a c h l a y er c o m pris es a n o pti c al-i nt erf er e n c e u nit ( OI U) i m-
pl e m e nt e d usi n g a n arr a y of M a c h – Z e h n d er i nt erf er o m et ers
( M ZIs) wit h a s p e ci fi c ar c hit e ct ur e, c o n n e ct e d t o a n o nli n e ar-
a cti v ati o n u nit ( N A U). Wit hi n a n OI U, M ZIs c a n b e us e d
t o r e ali z e m atri x- v e ct or m ulti pli c ati o n as s h o w n b y [ 2], [ 1 2].
A c c or di n gl y, s e v er al c o h er e nt S P- N N ar c hit e ct ur es h a v e b e e n
pr o p os e d b y c as c a di n g arr a ys of M ZIs t o p erf or m l ar g e-s c al e
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linear multiplication in the optical domain [13]–[15].
While SP-NNs are promising alternatives to electronic-

based deep learning hardware accelerators, several factors limit
their performance and scalability. The underlying devices in
SP-NNs (e.g., MZIs in coherent SP-NNs) suffer from optical
loss and crosstalk noise due to device fabrication imperfections
(e.g., sidewall roughness) and undesired mode couplings [8],
[16]. For example, prior work has shown up to 1.5 dB insertion
loss and 18 dB crosstalk in a 2 2 MZI [17]. While optical
loss and crosstalk noise are small and seem to be negligible
at the device level, they accumulate as the network scales
up, hence leading to severe performance degradation at the
network and system level (e.g., drop in inferencing accuracy).
Moreover, crosstalk cannot be filtered in coherent SP-NNs—
our focus in this paper—due to the coherence between the
noise and victim signals. Therefore, there is a critical need for
careful analysis of optical loss and crosstalk noise in coherent
SP-NNs and exploring their impact on SP-NN performance.

The novel contribution of this paper is to comprehensively
analyze optical loss and crosstalk noise and their impact on
coherent SP-NN performance from the device level to the
system level. We develop a realistic device-level MZI compact
model to analyze the optical loss from different sources (i.e.,
propagation loss, directional coupler loss, and metal absorption
loss) and the coherent crosstalk noise in the MZI. This model
is also able to capture the impact of optical phase settings,
which represent weight parameters in coherent SP-NNs, on
the MZI’s optical loss and crosstalk noise. Leveraging our
accurate device-level models, we present layer- and network-
level optical loss and coherent crosstalk models that scale
with the number of inputs and layers in coherent SP-NNs. In
addition, we propose a detailed analysis of the effect of optical
loss and crosstalk in SP-NNs when the optoelectronic NAU
units are used. The proposed framework enables an accurate
exploration of the inferencing accuracy drop in SP-NNs with
different mesh configurations under the effect of optical loss
and crosstalk noise. Leveraging our proposed framework, we
also quantify the maximum optical loss acceptable in the
underlying devices when specific inferencing accuracy goals
must be met within an SP-NN.

The proposed analytical framework can be applied to any
coherent SP-NN architecture of any size to analyze the optical
loss and crosstalk noise in the network. In this paper, we
consider three well-known MZI-based coherent SP-NN archi-
tectures, namely Clements [14], Reck [15], and Diamond [13].
For example, for the case study of the Clements SP-NN with
16 inputs and 2 hidden layers, we show that the optical loss
can be as high as 38 dB and the signal-to-noise ratio (SNR)
can be as low as 7.3 dB. Furthermore, considering the MNIST
classification task as an example, we show that the network
inferencing accuracy can drop by about 84.6% due to optical
loss and crosstalk noise. We also show that by increasing
the number of inputs from 16 to 64 in the same network,
the resulting optical loss increases significantly to as high as
140 dB and the SNR decreases to as low as 1 dB. Moreover,
we also demonstrate that increasing the input optical power
to compensate for the effect of accumulated optical loss and
crosstalk will be an impractical solution as it also increases the

noise at the outputs of the SP-NNs while maintaining the same
SNR. The proposed analyses in this paper extend our prior
work in [12] by performing the loss and crosstalk analysis for
two more SP-NN configurations, analyzing the effect of optical
loss and crosstalk in SP-NNs when optoelectronic nonlinear
activation units are used, presenting SNR and optical power
penalty models for SP-NNs, and analysing the scalability
constraints due to the optical loss and crosstalk in the MZI-
based SP-NNs when being used as a photonic processing unit
for high-performance computation.

The rest of the paper is organized as follows. Section II
presents an overview of the building blocks in SP-NNs, SP-
NN design and working mechanism, and prior related work.
Section III presents analytical models to analyze the impact of
optical loss and crosstalk from the device level to the system
level in SP-NNs. The impact of the optical loss and crosstalk
in optoelectronic NAU units is modeled in this section. Section
IV presents the simulation results to show the impact of loss
and crosstalk on the performance of SP-NNs with the three
MZI mesh configurations of Clements, Reck, and Diamond.
Section V presents the discussion on the effect of optical loss
and crosstalk noise on SP-NN power consumption (i.e., laser
power penalty) as well as scalability constraints in SP-NNs.
Finally, Section VI concludes this work.

II. BACKGROUND AND PRIOR RELATED WORK

In this section, we present an overview of the MZI build-
ing block in coherent SP-NNs as the primary vector-matrix
multiplier unit and some fundamentals of MZI-based coherent
SP-NNs. We also discuss different sources of optical loss
and crosstalk in MZIs. Moreover, we review prior work on
studying the effect of loss and crosstalk in SP-NNs.

A. Mach–Zehnder Interferometer (MZI)

MZIs can be used to realize linear multiplication between
a 2 1 vector (signals applied to the two inputs) and a 2 2
matrix (defined based on the phase settings in the MZI). Such
an MZI-based multiplier unit can be constructed using two 3-
dB directional couplers (DCs) with an ideal splitting ratio of
50:50 and two integrated phase shifters ( and ), as shown
in Fig. 2. Phase shifters in this design can be implemented,
for example, using microheaters on top of the underlying
waveguide [17]. By introducing a temperature change using
microheaters, the refractive index of the underlying silicon
waveguide will change due to the thermo-optic effect, leading
to a change in the phase of the electric field of the propagating
optical signal. Therefore, by controlling the phase shift be-
tween the two arms in an MZI, we can control the interference
in the output. Note that in the MZI in Fig. 2, and

. The transfer matrix of an MZI-based multiplier
unit can be realized by multiplying the transfer matrices of
the two 3-dB DCs ( ) and the transfer matrices of
the two phase shifters ( ). Accordingly, the ideal transfer
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Fi g. 2: S c h e m ati c of a 4 × 4 si n gl e M ZI- b as e d o pti c al i nt erf a c e
u nit (t o p) wit h diff er e nt m es h c o n fi g ur ati o ns. ( a) R e c k, ( b)
Cl e m e nts, a n d ( c) Di a m o n d.

m atri x of a n M ZI- b as e d m ulti pli er u nit (i. e., wit h o ut o pti c al
l oss a n d cr osst al k n ois e) c a n b e d e fi n e d as [ 1 3], [ 1 8]:

T M Z I (θ, ϕ ) = T D C 2 · T θ · T D C 1 · T ϕ

=
e i ϕ

2 (e i θ − 1) i
2 (e i θ + 1)

i e i ϕ

2 (e i θ + 1) − 1
2 (e i θ − 1)

. ( 1)

W hil e M ZIs c a n h el p p erf or m m atri x- v e ct or m ulti pli c ati o n
i n t h e o pti c al d o m ai n, t h e y h a v e a l ar g e f o ot pri nt. F or e x a m pl e,
st at e- of-t h e- art M ZI m ulti pli ers c a n b e u p t o a b o ut 3 0 0 µ m
l o n g a n d 3 0 µ m wi d e [ 8], li miti n g t h e s c al a bilit y of M ZI- b as e d
c o h er e nt S P- N Ns [ 1 7], [ 1 9]. I n a d diti o n t o a l ar g e f o ot pri nt,
t h e y als o s uff er fr o m hi g h o pti c al l oss es a n d cr osst al k n ois e
[ 2 0]. T h e o pti c al l oss i n a n M ZI ori gi n at es fr o m t h e a bs or pti o n
i n t h e m et alli c c o nt a cts i n pr o xi mit y t o t h e w a v e g ui d es w h e n
usi n g mi cr o h e at ers f or a p pl yi n g t h e r e q uir e d p h as e s hifts o n
t h e M ZI ar ms, t h e dir e cti o n al c o u pl er i m p erf e cti o ns, a n d t h e
pr o p a g ati o n l oss of t h e w a v e g ui d es, w hi c h is m ai nl y d u e t o
t h eir si d e w all r o u g h n ess. T h e o pti c al l oss a n d cr osst al k n ois e
i n M ZIs will b e dis c uss e d i n d et ail i n S e cti o n III.

B. M ZI- b as e d C o h er e nt S P- N Ns

M ZI- b as e d S P- N Ns r el y o n t h e m a ni p ul ati o n of t h e el e c-
tri c al fi el d’s p h as e of a si n gl e o pti c al w a v el e n gt h t o p erf or m
m atri x- v e ct or m ulti pli c ati o n. M ZIs i n s u c h S P- N Ns ar e r e-
s p o nsi bl e f or p h as e m a ni p ul ati o ns a n d i nt erf er e n c e t o c arr y o ut
t h e c o m p ut ati o ns [ 1 1], [ 1 3] –[ 1 5], [ 1 7]. M ZIs c a n b e c as c a d e d
i n t h e f or m of a n arr a y f oll o wi n g a s p e ci fi c c o n fi g ur ati o n
t o i m pl e m e nt a n OI U f or p erf or mi n g l ar g e m atri x- v e ct or
m ulti pli c ati o n i n t h e o pti c al d o m ai n. Fi g. 1 s h o ws a n o v er vi e w
of a c o h er e nt S P- N N c o m p os e d of a n o pti c al i nt erf a c e u nit
( OI U) a n d n o nli n e ar a cti v ati o n u nit ( N A U). A f ull y c o n n e ct e d
l a y er (L i ) wit h n i n p uts p erf or ms m atri x- v e ct or m ulti pli c ati o n
b et w e e n t h e i n p ut v e ct or ( I i ) a n d a w ei g ht m atri x (W i ). N ot e
t h at t o r e ali z e u nit ar y m atri c es wit h ar bitr ar y m a g nit u d es,
w e c a n s c al e t h e i n p ut o pti c al p o w er w h e n i nf er e n ci n g [ 2],
[ 1 3], [ 2 1]. T h e o ut p ut v e ct or of t h e OI U e v e nt u all y will b e
p ass e d i nt o t h e N A U t o a p pl y a n o nli n e ar a cti v ati o n f u n cti o n
(f i ), t h e r es ult of w hi c h will b e t h e i n p ut t o t h e n e xt l a y er
(L i + 1 ). T h e o ut p ut of L i c a n b e m at h e m ati c all y m o d el e d as
O n i × 1

i = f i (W
n i × n i − 1

i , O
n i − 1 × 1
i − 1 ), i n w hi c h W i is t h e l a y er’s

c orr es p o n di n g w ei g ht m atri x. T h e w ei g ht m atri x ( W i ) c a n b e
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Fi g. 3: S c h e m ati c of a 2 × 2 M ZI m ulti pli er u nit wit h diff er e nt
s o ur c es of o pti c al l oss a n d cr osst al k n ois e. H er e, I 2 → O 2 is
s h o w n as a n e x a m pl e wit h θ = π (lM Z I : M ZI l e n gt h, α m :
l oss d u e t o m et alli c a bs or pti o n, α D C : D C’s i ns erti o n l oss, α p :
pr o p a g ati o n l oss).

o bt ai n e d b y tr ai ni n g t h e n et w or k. Usi n g si n g ul ar v al u e d e-
c o m p ositi o n ( S V D), t h e o bt ai n e d w ei g ht m atri x c a n b e m at h-
e m ati c all y m o d el e d as W i = U n i × n i

i Σ
n i × n i − 1

i V
H, n i − 1 × n i − 1

i .
I n t his f or m ul ati o n, U i a n d V i ar e u nit ar y m atri c es. M or e o v er,
V H

i d e n ot es t h e H er miti a n tr a ns p os e of V i a n d Σ i is a di a g o n al
m atri x c o nsisti n g of t h e ei g e n v al u es of W i . A u nit ar y m atri x
c a n b e i m pl e m e nt e d b y a n arr a y of c as c a d e d 2 × 2 M ZIs i n a
s p e ci fi c c o n fi g ur ati o n a c c or di n g t o:

U n i × n i
i = D





( m, n ) ∈ S

T M Z I m , n



 . ( 2)

Usi n g t his s c h e m e, e a c h u nit ar y m atri x U c a n b e d e c o m p os e d
i nt o t h e pr o d u cts of s e v er al M ZIs’ tr a nsf er m atri c es. T h e
or d er of t h e m ulti pli c ati o n of M ZIs’ tr a nsf er m atri c es pl a ys
a n i m p ort a nt r ol e i n S P- N Ns, d et er mi ni n g t h e c o n fi g ur ati o n
of t h e M ZIs i n t h e S P- N Ns (i. e. Cl e m e nts, R e c k, or Di a m o n d
s e e Fi g. 2). I n ( 2), D is a di a g o n al m atri x wit h c o m pl e x
el e m e nts wit h a u nit y m o d ul us [ 1 4], a n d S d e n ot es t h e or d er
of t h e m ulti pli c ati o n of t h e M ZIs’ tr a nsf er m atri c es. S will b e
d et er mi n e d b as e d o n t h e c o n fi g ur ati o n of t h e arr a y of c as c a d e d
M ZIs us e d t o m a p t h e w ei g ht m atri c es i n or d er t o p erf or m
m atri x- v e ct or m ulti pli c ati o n i n t h e o pti c al d o m ai n. M or e o v er,
m a n d n d e n ot e t h e i n p ut p orts (i. e., I 1 − I 4 i n Fi g. 2 ( a))
w hi c h r e q uir e tr a nsf or m ati o n usi n g e a c h M ZI i n t h e n et w or k.
F or e x a m pl e, m = 1 a n d n = 2 r ef er t o t h e M ZI i n b et w e e n
i n p ut p orts 1 a n d 2 i n t h e n et w or k. N ot e t h at n = m + 1 al w a ys
a p pli es [ 1 4]. T h e l o c ati o n of e a c h M ZI i n t h e n et w or k c a n b e
d et er mi n e d d uri n g t h e m a p pi n g of t h e w ei g hts t o t h e arr a y of
c as c a d e d M ZIs w hi c h its elf d e p e n ds o n t h e c o n fi g ur ati o n of
t h e n et w or k.

S e v er al c o n fi g ur ati o ns h a v e b e e n pr o p os e d f or t h e n et w or k
t o p ol o g y of c as c a d e d M ZIs a n d t o c arr y o ut t h e u nit ar y
tr a nsf or m ati o n of t h e i n p ut o pti c al si g n als. T hr e e w ell- k n o w n
m es h c o n fi g ur ati o ns: R e c k, Cl e m e nts, a n d Di a m o n d [ 1 3] –[ 1 5]
ar e c o nsi d er e d i n t his p a p er t o r e ali z e M ZI- b as e d u nit ar y
m ulti pli ers. A 4 × 4 R e c k m es h c o n fi g ur ati o n is s h o w n i n Fi g.
2( a) or g a ni zi n g a n arr a y of M ZIs i n a tri a n g ul ar s h a p e. I n
g e n er al, a n y N × N u nit ar y m ulti pli er b as e d o n t h e R e c k
d esi g n c o nsists of N ( N − 1 )

2 M ZIs, w h er e N is t h e n u m b er of
t h e i n p ut p orts. T h e s a m e n u m b er of M ZIs c a n b e c o n fi g ur e d
i n a r e ct a n g ul ar s h a p e as is s h o w n i n Fi g. 2( b), a n d t his
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configuration is called the Clements mesh. The advantage of
the Clements design over the Reck is that the network is more
symmetric, hence making the unitary multiplier more resilient
to propagation loss due to more symmetric and, on average,
shorter optical paths compared to the Reck design [14]. We
can also increase the number of MZIs to make the Reck design
more symmetric. The work in [13] proposed this symmetric
design by adding additional MZIs to the Reck
configuration to design the Diamond mesh configuration,
shown in Fig. 2(c). For an array of cascaded MZIs with
inputs, MZIs will be used in a diamond shape.
Although the network topology includes a higher number of
input and output ports, only the last inputs are used to
perform matrix-vector multiplication, while the rest of the
inputs can be used for characterization and calibration of the
MZIs in the network [13].

C. Optical Loss and Crosstalk Noise in MZIs

MZIs intrinsically suffer from optical loss and crosstalk
noise. The schematic of a single 2 2 MZI multiplier is
shown in Fig. 3. An optical signal traversing an MZI can
undergo different losses based on the MZI phase settings.
The main sources of optical loss in an MZI are the DCs,
metal absorption due to the proximity of microheater’s metallic
contacts to waveguides, and propagation loss mainly due to
sidewall roughness in waveguides [22]. Note that the metallic
absorption loss varies slightly with the adjusted phase settings,
corresponding to different temperatures, in the MZI. The
reason for this slight change (i.e., 1 – 3%) in the loss is
due to slight changes in the propagation constant at different
temperatures due to the thermo-optic effect, which also affect
the optical mode confinement and light-matter interaction in
the waveguide. In addition, crosstalk noise can originate from
the undesired coupling of light in the DCs in an MZI due to
an imbalance in the DC’s splitting ratio. In coherent SP-NNs,
we deal with coherent (i.e., intra-channel or in-band) crosstalk.
As shown in Fig. 3, coherent crosstalk noise can interfere with
the main optical signal (victim signal) based on their phase
difference, imposing power fluctuations on the victim signal.
Unlike incoherent networks, in coherent networks like MZI-
based SP-NNs, the in-band coherent crosstalk noise cannot be
easily filtered in the output due to the coherence between the
crosstalk and victim signals (i.e., on the same wavelength).

Unlike in SP-NNs, optical loss and crosstalk noise have
been widely studied in chip-scale Datacom photonic networks
(e.g., [23] and [24]), showing signal integrity degradation
and scalability constraints in these networks due to optical
loss and crosstalk noise. Unfortunately, the existing work on
optical loss and crosstalk analysis in such networks cannot
be applied to SP-NNs because optical loss and crosstalk
noise characteristics of silicon photonic devices for photonic
computation in SP-NNs are different. For example, a 2 2
MZI switching cell, whose structure is similar to the one in
Fig. 3 but without , in an optical switch fabric can only take
two functional states based on for optical loss and crosstalk
analysis: the Cross-state, where and and

, and the Bar-state, where and

and . As a result, crosstalk noise can be easily
characterized in such a device. However, in the coherent SP-
NNs, , which determines the MZI state, can take any value
between 0 and (0 ) to perform computation via
interference between the inputs. The analysis of optical loss
and crosstalk in SP-NNs should therefore account for various
phase settings in the underlying MZI devices.

D. Prior Related Work

While several coherent SP-NNs have been recently proposed
[13], [25], the work in [8], [26] showed that the inferencing
accuracy of such networks can drop by up to 90% due to
fabrication-process variations and thermal crosstalk. In addi-
tion to such variations, the work in [13] explored the impact
of optical loss and phase noise in MZIs for the Diamond SP-
NN configuration and showed that the SP-NN’s inferencing
accuracy can drop to below 20% when scaling the network
in the presence of phase errors and MZI losses. However, the
work in [13] simply assumed that the loss in different devices
in a network to be normally distributed (irrespective of their
phase settings).

The work in [27] systematically analyzed the impact of
loss and crosstalk in SP-NNs. However, the loss and crosstalk
models presented in [27] are not a function of the phase
settings of the MZIs. Hence, only the maximum and minimum
loss and crosstalk are calculated. In addition, the models
illustrated in [27] cannot be extended to OIUs of any arbitrary
configuration. As the size and complexity of emerging SP-
NNs increase to handle more complex tasks, the total insertion
loss accumulated in the network increases as well. This
necessitates the use of power-hungry optical amplification
devices [28] and higher laser power at the input. Uncertainties
due to fabrication-process variations—the analysis of which is
beyond the scope of this paper—in the two DCs in an MZI can
degrade the extinction ratio (ER) of the device which, in turn,
will increase the loss and crosstalk in the output [29]. Yet, no
prior work comprehensively analyzes the impact of optical loss
and crosstalk noise in coherent SP-NNs from the device to the
system level. Although the work in [29] suggests that using
silicon nitride instead of silicon to implement MZI-based SP-
NNs as a possible solution to reduce losses, the performance
degradation due to coherent crosstalk in SP-NNs still remains
unaddressed.

Different from the aforementioned work, this paper presents
a comprehensive modeling framework for the optical loss and
coherent crosstalk noise in coherent SP-NNs. The proposed
loss and crosstalk analysis at the MZI device level takes
into account the phase settings on the device. In addition,
the models developed at the network level are adaptable
meaning that the number of inputs/outputs and layers in SP-
NNs can vary to explore SP-NN optical power penalty and
scalability constraints while evaluating average and worst-case
optical loss and crosstalk. Compared to our prior work in
[12], we extended our analysis for two more well-known SP-
NN configurations (Reck and Diamond) in addition to the
Clements configurations. We show that our proposed models
can be applied to any SP-NN with any configuration, proving
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their versatility. We present a comprehensive analysis of the
laser power penalty and inferencing accuracy loss in SP-NNs
due to optical loss and crosstalk noise. In addition, we present
an analysis of the effect of optical loss and crosstalk when
optoelectronic NAUs are used in the SP-NNs. We also present
a detailed analysis of scalability constraints of SP-NNs due to
optical loss and crosstalk when a single OIU is being used as
a processing unit to carry out the computations in the optical
domain.

III. OPTICAL LOSS AND CROSSTALK NOISE ANALYSIS

This section presents the compact models developed to
analyze optical loss and crosstalk noise in MZI-based coherent
SP-NNs from the device level to the network level. We
also model the loss and crosstalk noise in the optoelectronic
nonlinear activation unit in coherent SP-NNs. All these models
will be used to explore the power penalty, performance (e.g.,
inferencing accuracy), and scalability constraints in SP-NNs
of different sizes and architectures under optical loss and
crosstalk noise, as will be discussed in Section IV.

A. Modeling Optical Loss and Crosstalk at Device Level

The schematic of a single 2 2 MZI-based multiplier unit
is shown in Fig. 3. It comprises two 3-dB DCs and two
integrated phase shifters ( and ) on the upper arm. DCs in
the MZI structure are responsible for splitting and combining
the optical signals traversing the MZI. Optical crosstalk noise
stems from undesired mode coupling in these DCs in the
MZI structure. The splitting ratio for an optical signal at the
input of a DC can be determined by the cross-over coupling
coefficient ( ) and transmission coefficient ( ) in the DC.
Considering the DC’s total transmission at its outputs,
encapsulates the DC’s optical insertion loss as we can write

. Note that for a lossless DC,
and for a DC including its optical insertion loss, .
To be used in an MZI-based multiplier unit for coherent SP-
NNs, the DCs should perform exact 50:50 splitting/combining
( ). Both and are wavelength dependent and
they also depend on the waveguide width and thickness and
the gap between the waveguides in DCs. As discussed in
Section II, the main sources of optical loss in an MZI are
the DC’s loss ( ), propagation loss ( ), and the metal
absorption loss ( ) due to interaction of the propagating light
with the metallic contacts integrated on top of the waveguide
when using microheaters to implement the phase shifters.
The propagation loss originates from sidewall roughness and
scattering loss in the waveguides [16]. The metal absorption
loss depends on the metal used to implement the heater’s
contacts and their geometry such as thickness, width, length,
and the longitudinal distance between the waveguide and the
contacts [30].

Considering (1) and the MZI’s optical loss parameters
defined (i.e., , , and , as shown in Fig. 3), an optical-
loss-aware transfer matrix model for the 2 2 MZI multiplier
unit can be defined as:

(3)

(3.a)

(3.b)

(3.c)

(3.d)

(3.e)

In this model, and are the cross-over coupling coeffi-
cients in the two DCs and represents the total propagation
loss related to the MZI.

Optical crosstalk noise in a 2 2 MZI switching element,
whose structure is similar to the one shown in Fig. 3 but
without phase shifter at the input of the MZI, can be
analyzed by considering the MZI in the Bar ( ) or
in the Cross-state ( 0). By injecting an optical signal
into one of the input ports of the MZI, the crosstalk noise
can be determined by capturing the undesired optical signal
transmission on the opposite output when in Cross- or Bar-
states. For example, considering the MZI schematic depicted
in Fig. 3, when injecting light into , by setting , the
crosstalk noise in the Bar-state ( ) can be captured on .
Similarly, it is possible to capture the Cross-state crosstalk
noise ( ) on by setting 0. Different from the MZIs
used in switching networks, MZIs in coherent SP-NNs can
take more than the two Bar-state and Cross-state, depending
on the value of . In a 2 2 MZI-based multiplier unit, can
assume any value between 0 and (0 ) to perform
a 2 2 unitary multiplication ( does not change
the MZI state). Therefore, the exact analysis of the crosstalk
noise per device’s output ports cannot be easily performed in
coherent SP-NNs.

To address this limitation, we can define a statistical model
to estimate the crosstalk noise on the output ports of each
MZI in coherent SP-NNs depending on the MZI’s phase
setting. Considering the crosstalk noise in the two known
Cross-state and Bar- state ( and , where typically

[31]), we can statistically model the crosstalk noise
in the MZI in any intermediate state ( ) as the function of
using a Gaussian distribution whose mean can be calculated
according to and standard deviation
of 0.05 , considered here as an example. Note that the
Gaussian distribution for the crosstalk noise model in the MZI
in intermediate states is assumed as an example, and it is
similar to the assumptions made for the noise distribution in
optical communication and computation systems [32]. Using
the crosstalk noise in intermediate states , the transfer matrix
of a 2 2 MZI-based multiplier unit in (3) can be written as:

(4)
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(a) MZI insertion loss (b) MZI crosstalk
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Fig. 4: (a) Insertion loss and (b) crosstalk noise at the outputs
of the 2 2 MZI in Fig. 3 simulated using the parameters listed
in Table I.

Models presented in (3) and (4) can be used to analyze
the optical loss and crosstalk noise in any MZI with different
phase settings. Considering the parameters listed in Table I,
Fig. 4 shows the insertion loss and crosstalk for a single 2 2
MZI multiplier unit. In this figure, the x-axis shows the state
of the MZI based on where .

It should be noted that does not change the MZI state,
but its loss is included in the results shown. Observe that the
insertion loss on each output port is 0.52–0.72 dB. we used
Ansys Lumerical [33] to validate the results in Fig. 4(a). Note
that commercial tools (e.g., Lumerical or Synopsys) cannot
analyze the crosstalk in intermediate states in the MZI, hence
their results are not considered in Fig. 4(b). We can see from
Fig. 4 that by changing the state of the MZI, the device-level
loss and crosstalk noise also change. In Fig. 4(a), compared to
input , the optical signal on experiences higher insertion
loss because of through (see Fig. 3). Therefore, for
example, the insertion loss is higher on for the Cross-state
when , and it is higher on for the Bar-state when

. As for , the MZI in fact acts like a 50:50
splitter where the loss at the outputs is the same.

It should be mentioned that the fluctuations in the crosstalk
in Fig. 4(b) are due to the Gaussian noise model defined for
the MZI. The coherent crosstalk in the MZI output changes
between 18 dBm and 25 dBm, when the input power
is 0 dBm.

B. Modeling Optical Loss and Crosstalk at Network Level

As discussed in Section II-B, the weight matrix of each
hidden layer in an SP-NN architecture with inputs
and outputs can be decomposed into a multiplication of
two unitary and one diagonal matrix implemented by OIUs
followed by an NAU, as shown in Fig. 1. The number of
MZIs in an OIU depends on the mesh configuration (Clements,
Reck, or Diamond) and the number of inputs ( ) and outputs
( ). Moreover, as discussed in Section III-A, the optical loss
and crosstalk noise at the outputs of an MZI in an OIU is a
function of and in the MZI, which can be obtained during
the training of the network [12].

The optical loss in the output of an SP-NN can be system-
atically modeled as:

(5)

In (5), is the insertion loss in the OIUs that can be
calculated using (3) for each MZI, and it depends on the OIU’s
mesh configuration ( ), its dimension ( and ), and the
phase settings of MZIs in the OIU. Moreover the is
the insertion loss due to the NAU. Also, the insertion of the
optoelectronic NAU is considered to be 0–1 dB,
depending on its nonlinear response [25].

Optical crosstalk noise from each MZI will be accumulated
at the outputs of the OIU as the optical signal propagates
through the SP-NN. Therefore, following the same approach
for optical loss calculation, the accumulated optical crosstalk
noise power at the end of the SP-NN can be modeled as:

(6)

In (6), is the total number of MZIs in the network and
it depends on the configuration of the OIUs as well as their
dimension. Also, is the optical power at input . Moreover,

can be calculated using (4) and is the coherent
crosstalk on the output of the OIU originating from MZI
in the network. Also, is the optical phase of the crosstalk
signal. Similarly, is the insertion loss in the OIU, which
can be calculated using (3) for each MZI, experienced by

as it traverses the network towards output . Note
that using an optical gain unit such as semiconductor optical
amplifiers (SOAs) to compensate for the accumulated optical
losses or scaling the outputs of the OIUs can be problematic.
This is due to the fact that SOAs will also amplify the coherent
crosstalk noise at the outputs of the OIUs. In addition, at low
input powers due to accumulated optical losses, SOAs suffer
from amplified spontaneous emission noise (ASE), resulting
in high noise figures in the output, where the SOA’s noise can
dominate the main output signal and coherent crosstalk noise
[34]–[36], hence further degrading the network performance.
Note that to realize unitary matrices with arbitrary magnitudes
without using SOAs, we can scale the input optical power as
shown by [2], [13], [21].

C. Modeling Optical Loss and Crosstalk in Optoelectronic
NAUs

Nonlinear activation functions are an integral part of deep
neural networks due to the essential need for the realization
of the complex nonlinear relationship between the inputs and
outputs of the SP-NNs [25]. NAUs are responsible to trigger a
single activation at the end of each layer’s output and pass the
output to the input of the next layer. NAUs can be implemented
electronically [2], optoelectronically [25], or optically [37],
each with different costs. High power consumption and latency
as well as the need for lasers because of the need for multiple
E-O and O-E conversions can be named as limitations related
to electronically implemented NAUs. Moreover, very large
waveguide lengths and high optical power must be used
for optical NAUs due to the weak nonlinearity of photonic
platforms [25], [38]. Optoelectronic NAUs presented in [21],
[25] show great promise as alternatives to electronic ones due
to the ability to implement an arbitrary nonlinear response
via self-intensity modulation (e.g., MZI-based electro-optical
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modulators) of the input optical signal. Note that research
on optical NAUs is still ongoing. Therefore, in most cases,
optoelectronic or electronic NAU are used in SP-NNs.

The schematic diagram of the optoelectronic NAU consid-
ered in our work to realize ReLU-like activation response is
shown in Fig. 5. The optical signal at each output of the OIU
( ) will pass through a directional coupler with a cross-
over coupling coefficient of ( 0.1 in this paper, see
Table I). The larger portion of the split power ( )
will go through an intensity modulation using an MZI-based
electro-optical modulator (see Fig. 5). The remaining portion
of the input optical power ( ) is used to drive the MZI-
based optical modulator used in the NAU [25], based on the
following principle: the optical signal routed in the
upper branch enters a photodetector (PD) with the responsivity
of (A/W)— for an ideal PD where is the
PD’s photocurrent—followed by a transimpedance amplifier
(TIA) with a gain of , to apply a gain to the output
of the PD and convert the PD’s photocurrent to a voltage
output. The output of the TIA will then go through a signal
conditioning unit ( ) to apply an arbitrary function to the
output voltage of the TIA. In our analysis, we used the identity
function for the sake
of simplicity as the conditioning unit. Finally, an additional
bias voltage ( ) and the output of the conditioning unit
will be used to drive the MZI-based electro-optical intensity
modulator in the lower branch.

The ideal nonlinearity ( ) of the MZI-based optoelec-
tronic NAU depicted in Fig. 5 can be mathematically modeled
as [21], [25]:  

 
(7)

Here, is the voltage that is required to impose a phase
shift in the MZI-based intensity modulator in the optoelec-
tronic NAU. A ReLU-like nonlinear activation response can be
realized by setting in the formulation proposed in (7).
Note that in the activation function modeled in (7) and [21],
[25], the effect of optical loss and crosstalk noise from the OIU
unit, PD’s sensitivity, shot noise, dark current (output current
of the PD in the absence of any optical signal), and optical
insertion loss of the DC and MZI in the NAU architecture is
not considered.

To update (7) for analyzing the effect of optical loss and
crosstalk noise in SP-NNs when optoelectronic NAUs are
used, we can replace in (7) with

. Note that in these formulations, the loss values
are considered in terms of power amplification and attenuation
coefficient. Moreover, takes into account the phase of
the crosstalk noise at the output of the OIU unit. Using this
approach, we can write the input of the optoelectronic NAU
unit including the optical loss and crosstalk from OIU ( )
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Modulator

TIA !"# $ %!

&"!

%! ' !"%#"#$$
()&"!

* + ()&"!

,

, ()&"!

%#"#$ - ,.$%& ()&"!

/"&"!$

!! "#" $

!

Fig. 5: Schematic block diagram of the optoelectronic non-
linear activation unit used to realize ReLU-like nonlinear
activation function [21], [25].

as [39]:

(8)

The output photocurrent of the PD with a responsivity of and
shot noise of and dark current of can be modeled
as:

(9)

where in which is the PD’s bandwidth
and C is the electronic charge [39]. The
output photocurrent then enters the TIA with the gain of
and will be converted to an amplified voltage according
to:

(10)

Keeping the assumption of ,
we can systematically model the activation function response
using an MZI-based optoelectronic intensity modulator men-
tioned in [21], [25] under optical loss and crosstalk noise from
the OIU unit as:

(11)

where
(12)

Here, we also assumed that to realize ReLU-like
activation response and the output photocurrent of the PD is
considered to be zero ( ) for , where

stands for PD sensitivity (the minimum detectable optical
power by the PD). In (11), is the optical crosstalk
noise related to the MZI-based electro-optical modulator,
is its insertion loss, and is the phase of the optical
crosstalk noise from the MZI in the intensity modulator in
the optoelectronic NAU [21].

IV. SIMULATION RESULTS AND DISCUSSIONS

Optical loss and crosstalk noise lead to the deterioration of
the performance of SP-NNs. We developed a framework to
analyze the effect of optical loss and crosstalk noise in MZI-
based coherent SP-NNs on top of Neuroptica [13], [42].
Neuroptica is a flexible chip-level simulation platform for
nanophotonic neural networks written in Python/NumPy. It
provides a wide range of abstraction levels for simulating
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TABLE I: Device-level loss, crosstalk, power, gain, and NAU
parameters considered in this paper (PhS: Phase shifter, PD:
Photodetector).

Par. Definition Value Ref.

Crosstalk in Bar-state -25 dB [31]
Crosstalk in Cross-state -18 dB [31]

MZI length 300 m [17]
PhS (metal) absorption loss 0.23 dB [30]

Propagation loss 2 dB/cm [16]
Insertion loss of DC 0.13 dB [16]
Input optical power 0 dBm -

TIA gain [25]
Responsivity 1 A/W [21], [25], [40]

DC’s splitting ratio in NAU 0.1 [21], [25], [40]
Intensity modulator voltage 10 V [21], [25], [40]

NAU’s bias voltage 10 V [21], [25], [40]
PD’s bandwidth 42.5 GHz [40]

PD’s dark current 3.5 A [40]
Intensity modulator’s loss 1 dB [25]

PD’s sensitivity -11.7 dBm [40], [41]

optical neural networks [42]. We expanded the analysis of
loss and crosstalk noise for a single MZI using the defined
mathematical models in Section III and parameters listed in
Table I to perform layer-level (i.e., OIU), network-level (i.e.,
multi-layer SP-NN), and system-level (i.e., network accuracy)
analyses using Neuroptica [42].

For layer- and network-level analyses, we consider random
phase settings for MZIs in OIUs of different dimensions and
configurations ( 8, 16, 32, and 64, 1, 2, and 3
layers ). SVD is used to obtain the corresponding weight
matrix in an SP-NN (see Fig. 1) with three mesh configurations
of Reck, Diamond, and Clements (see Fig. 2). Note that the
random phases are only used for layer- and network-level
analyses. As for the system-level analysis, we use shifted fast
Fourier transform (shifted-FFT) on the MNIST handwritten
digit dataset. The reason for using shifter-FFT is to reduce
the number of inputs which leads to the size of the mesh
configurations being smaller and more manageable so we can
carry out the training of the SP-NNs of different configurations
(i.e., Reck, Diamond, and Clements). Note that the training of
the network is performed on complex inputs which leads to
complex values of the weights when the training of the SP-NN
is finished [43].

We use inferencing accuracy as a figure of merit to an-
alyze the effect of optical loss and crosstalk noise at the
system level in the SP-NNs using the ideal ReLU activation
function. Moreover, we use relative-variation distance (RVD)
(a measure of the deviation of two matrices [26]) for the
scalability analysis of OIUs of different scales with different
mesh configurations. Such an analysis is helpful when using
standalone OIUs as a photonic multiplication unit to perform
matrix-vector multiplication. We also present a comprehensive
analysis of the effect of optical loss and crosstalk noise on
the SP-NNs’ performance when optoelectronic NAUs are used
instead of the ideal ReLU activation response. In addition,
we analyze the laser power penalty in SP-NNs with different
scales and configurations to compensate for optical loss and
crosstalk noise.

A. Optical Loss and Crosstalk in OIUs

Using the analytical models in (5) and (6) proposed in
Section III, a single layer ( ) with 8 (considered as
an example), three different mesh configurations of Clements,
Reck, and Diamond are simulated to capture the impact of
optical loss and crosstalk noise at the SP-NN outputs. In
these simulations, the optical insertion loss is calculated for
1000 random weight matrices and the results are shown in
the form of conventional box plots in Fig. 6. We can see
from Fig. 6(a) that for the Clements configuration, the average
insertion loss among all the output ports is 6.5 dB, while
the worst-case insertion loss can be as high as 16 dB. The
average insertion loss for Reck and Diamond configurations
is 6 dB and 6.5 dB, respectively. As for the worst-case loss,
the Reck configuration experiences 16 dB, while the Diamond
configuration undergoes 18 dB of optical loss. In addition,
observe that the insertion loss for the Clements and Reck
configuration is almost similar on all the outputs due to their
more symmetric layer configuration compared to Diamond [2].

We also analyze optical crosstalk noise power for a single
layer OIU with 8 across different mesh configurations.
We used 1000 random weight matrices to perform statistical
analysis of accumulated coherent crosstalk noise at each output
in the OIU with Clements, Reck, and Diamond configura-
tions. In each iteration, a random optical phase ( ), where

, is assigned to the crosstalk noise signal from each
MZI in the OIU structure to emulate the crosstalk noise signal
phase and behavior throughout the network. Note that the
crosstalk signal from each MZI will interact with each other
and the victim signal at the outputs of the OIUs. This approach
is acceptable when optical signals traverse a large network
of devices (e.g., in OIUs), and hence experience random
phase shifts. The crosstalk noise including the insertion loss
is shown in Fig. 7 for each network. Note that 0 dBm input
optical power at the input of the OIUs has been considered
in these simulations. Observe that the average crosstalk noise
for the Clements, Reck, and Diamond meshes can be as
high as 21.3, 22.1, and 22.4 dB, respectively. As for
the worst-case crosstalk noise, the three mesh configurations
of Clements, Reck, and Diamond exhibit 15.3, 15.1, and

12.2 dB, respectively. Note that the reason for the higher
worst-case crosstalk noise in the Diamond mesh is due to
the larger number of MZIs in this network where each MZI
generates some crosstalk that is accumulated on the outputs.
In addition, note that although the Diamond mesh has a higher
number of MZIs compared to Reck and Clements when being
used in the OIU units, some of the output ports ( )
are not used during inferencing and are reserved only for the
characterization and calibration of the MZIs in the Diamond
mesh [13].

B. Optical Loss and Crosstalk in Multi-Layer SP-NNs

The optical loss and crosstalk power can be analyzed in an
SP-NN comprising multiple hidden layers and with different
dimensions and configurations using the models developed
in (5) and (6). We extended the layer-level insertion loss
and crosstalk models in (5) and (6) for the full-network to
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Fig. 6: Optical loss analysis for 1000 random weight matrices mapped to a fully connected 8 8 OIU with different mesh
configurations: (a) Clements, (b) Reck, and (c) Diamond. Output IDs are numbered from top to bottom.
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Fig. 7: Optical crosstalk analysis for 1000 random weight matrices mapped to a fully connected 8 8 OIU with different mesh
configurations: (a) Clements, (b) Reck, and (c) Diamond. Output IDs are numbered from top to bottom.

demonstrate how the crosstalk and optical loss impact the
integrity of optical signal (measured by SNR) as we scale
up SP-NNs. We considered 1000 random weight matrices for
SP-NNs with different dimensions ( 8, 16, 32, and 64)
and numbers of layers ( 1, 2, and 3). For each matrix, we
performed three different experiments on the same network.
The first experiment included the ideal network with ideal
output powers (i.e., without optical loss and crosstalk noise).
The second experiment included the case where optical losses
of the MZIs in the network were included. The optical loss
reported in Figs. 8(a)–8(c) is calculated by comparing the
network outputs from the first and the second experiments.
As for the third experiment, we included both the optical
loss of the components and accumulated crosstalk noise from
them on the outputs. The outputs of the second and the third
experiments were used to calculate the crosstalk at the outputs,
and also the SNR.

The optical loss, crosstalk, output power, and SNR distribu-
tion among the outputs of MZI-based SP-NNs with different
dimensions and configurations are depicted in the form of box
plots in Figs. 8. Note that the average values over 1000 random
weight matrices for each output are used for the results in
Fig. 8. In addition, the insertion loss of the optoelectronic NAU
is included in the results. As can be seen from Figs. 8(a)–8(c),
insertion loss for SP-NNs increases drastically as and
increase for all the three mesh configurations. Observe that
the dynamic range in the output of the Diamond’s network
is larger compared to that in Clements and Reck, because
of the asymmetric design of the network (i.e., asymmetric
distribution of MZIs) in the Diamond network. Furthermore,

the optical loss (in dB) scales almost linearly (see Figs. 8(a)–
8(c)) when scaling the SP-NNs.

Following the same approach, the crosstalk noise and output
power distribution have been captured over the SP-NNs out-
puts of different dimensions and configurations. The results are
depicted in Figs. 8(d)–8(i) using box plots. Observe that for
all of the cases, the crosstalk and the output power decrease as
we increase the number of inputs and/or the number of layers.
The reason for this is the increase in the accumulated insertion
loss as we scale up the SP-NNs. Similar to the optical loss,
for the crosstalk noise and output power, compared to Reck
and Clements, Diamond mesh suffers from significantly larger
dynamic range in the output due to its asymmetric design.

Using the crosstalk and output power for SP-NNs of differ-
ent scales and configurations under the impact of optical loss
and crosstalk noise, the signal-to-noise ratio (SNR) at each
output can be calculated as:

(13)
Here, and are the optical powers at the output
and input , respectively. Also, is the crosstalk power
at output and can be calculated based on (6). It should
be noted that the output powers in SP-NNs are a function
of network input powers, optical losses in each MZI, and
phase configurations in each MZI in the network. Therefore,
the output optical power values cannot be precisely estimated
by having only the optical loss of the network. The results
for SNR related to SP-NNs of different scales and mesh
configurations are depicted in Figs. 8(j)–8(l). Observe that

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2024.3373250

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 28,2024 at 04:09:26 UTC from IEEE Xplore.  Restrictions apply. 



1 0

8 1 6 3 2 6 4

8

Op
ti

ca
l 

Lo
ss

 (
d

B)

N
1 6 3 2 6 4 8

Cr
os

st
al

k 
(
d

B)

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4

8

Op
ti

ca
l 

Lo
ss

 (
d

B)

N
1 6 3 2 6 4 8

Cr
os

st
al

k 
(
d

B)

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4

8

Op
ti

ca
l 

Lo
ss

 (
d

B)

N
1 6 3 2 6 4 8

Cr
os

st
al

k 
(
d

B)

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4 8

N
1 6 3 2 6 4

M 
=1

M 
= 

2

M 
= 

3

M 
=1

M 
= 

2

M 
= 

3

M 
=1

M 
= 

2

M 
= 

3 M 
=1 M 

= 
2

M 
= 

3

( a) ( d) ( g) (j)

( b) ( e) ( h) ( k)

( c) (f) (i) (l)

1 5

1 0

5

0

-1 0

-1 5

-2 0

-2 5

-3 0

0

-5

-1 0

-1 5

1 6

1 4

1 2

1 0

8

1 5

1 0

5

0

-1 0

-1 5

-2 0

-2 5

-3 0

0

-5

-1 0

-1 5

1 6

1 4

1 2

1 0

8

1 4

1 2

1 0

0

8

6

4

2

-1 0

-1 5

-2 0

-2 5

-3 0

0

-5

-1 0

-1 5

2 0

1 8

1 6

1 5

1 2

1 3

1 0

Fi g. 8: B o x pl ot pr es e nt ati o n of t h e a v er a g e o pti c al l oss, cr osst al k, o ut p ut p o w er, a n d S N R distri b uti o n o v er t h e S P- N Ns’
o ut p uts f or 1 0 0 0 r a n d o m w ei g ht m atri c es, b as e d o n t h e n et w or k i n Fi g. 1 a n d wit h diff er e nt n u m b ers of i n p uts ( N), l a y ers ( M),
a n d m es h c o n fi g ur ati o ns. I n ( g), ( h), a n d (i), t h e o pti c al i n p ut p o w er at l a y er o n e is 0 d B m. T h e S N R is c al c ul at e d c o nsi d eri n g
t h e o ut p ut p o w ers, w hi c h c o nsi d er o pti c al l oss es, a n d t h e cr osst al k n ois e o n t h e o ut p uts. F or b ett er visi bilit y, t h e i ns ets s h o w
t h e r es ults f or N = 8.

f or all of t h e c as es, S N R c a n b e as hi g h as 1 5 d B f or R e c k
a n d Cl e m e nts a n d a b o ut 1 9 d B f or Di a m o n d, a n d d e cr e as es
si g ni fi c a ntl y as w e s c al e u p t h e n et w or k w hi c h s h o ws t h e
d o mi n ati o n of a c c u m ul at e d cr osst al k o v er t h e m ai n o pti c al
si g n al at t h e S P- N Ns’ o ut p uts. N ot e t h at als o i n t his c as e, t h e
S N R distri b uti o n o n t h e Di a m o n d m es h’s o ut p uts is s pr e a d
m or e c o m p ar e d t o t h at i n R e c k a n d Cl e m e nts, b e c a us e of t h e
as y m m etri c m es h d esi g n i n Di a m o n d c o n fi g ur ati o n.

C. I m p a ct of O pti c al L oss a n d Cr osst al k N ois e o n S P- N N
I nf er e n ci n g A c c ur a c y Wit h I d e al N A Us

T o u n d erst a n d t h e s yst e m-l e v el p erf or m a n c e d e gr a d ati o n
i n S P- N Ns d u e t o t h e i m p a ct of o pti c al l oss a n d cr osst al k
n ois e, w e c o nsi d er t hr e e c as e st u di es of a n S P- N N wit h t w o
hi d d e n l a y ers ( M = 3) of 1 6 n e ur o ns e a c h ( N = 1 6) wit h
Cl e m e nts, R e c k, a n d Di a m o n d m es h c o n fi g ur ati o ns, tr ai n e d
o n t h e M NI S T h a n d writt e n di git cl assi fi c ati o n t as k usi n g t h e
s a m e h y p er p ar a m et ers i n all t h e t hr e e c as e st u di es. E a c h i m a g e
i n t h e M NI S T d at as et is c o n v ert e d t o a c o m pl e x f e at ur e
v e ct or of l e n gt h 1 6 usi n g t h e s hift e d f ast F o uri er tr a nsf or m
(s hift e d- F F T), dis c uss e d i n [ 2 6]. T h e n o mi n al t est a c c ur a c y
aft er tr ai ni n g is 9 1. 5 %, 9 2. 4, a n d 9 0. 6 f or R e c k, Cl e m e nts,

a n d Di a m o n d m es h c o n fi g ur ati o ns, r es p e cti v el y. N ot e t h at t h e
n o mi n al t est a c c ur a c y is sli g htl y diff er e nt f or t h e t hr e e c as e
st u di es d u e t o str u ct ur al diff er e n c es i n t h e m es h c o n fi g ur ati o ns
w hi c h l e a ds t o diff er e nt p h as e s etti n gs a n d distri b uti o n o v er
t h e M ZIs i n t h e S P- N Ns. T o a n al y z e t h e eff e ct of o pti c al
l oss a n d cr osst al k n ois e d uri n g i nf er e n ci n g, w e i nt e gr at e d
t h e pr o p os e d M ZI m o d els i n ( 3) a n d ( 4) i nt o o ur S P- N N
m o d el i m pl e m e nt ati o n. N ot e t h at i n all of t h e si m ul ati o ns i n
t his s e cti o n, a n i d e al R e L U n o nli n e ar a cti v ati o n r es p o ns e w as
c o nsi d er e d f o c usi n g o n t h e i m p a ct of o pti c al l oss a n d cr osst al k
fr o m OI Us o n t h e S P- N Ns i nf er e n ci n g a c c ur a c y.

We c o nsi d er t h e e x p e ct e d v al u es of α D C , α m , a n d α p

wit hi n t h e r a n g es 0. 1 – 0. 4 d B [ 1 6], 0. 1 – 0. 3 d B [ 3 0], a n d 1 – 4
d B/ c m [ 1 6], r es p e cti v el y. C o nsi d eri n g a n M ZI wit h a l e n gt h
of lM Z I = 3 0 0 µ m fr o m [ 1 7], t h e pr o p a g ati o n l oss p er
M ZI ( α p · lM Z I ) is 0. 0 3 – 0. 1 2 d B. O ur a n al ys es s h o w e d t h at
t h e i m p a ct of t h e D C i ns erti o n l oss (α D C ) o n t h e S P- N N’s
i nf er e n ci n g a c c ur a c y is si g ni fi c a ntl y hi g h er c o m p ar e d t o t h at
of α m a n d α p f or Cl e m e nts: t h e a c c ur a c y dr o p p e d t o ≈ 1 0 %
w h e n o nl y t h e i m p a ct of α D C w as c o nsi d er e d i n t h e n et w or k
(s e e Fi g. 9( a)-( c)). N ot e t h at t h e si m ul ati o n r es ults i n Fi g. 9( a)
s h o w e d t h e s a m e i m p a ct of α D C o n i nf er e n ci n g a c c ur a c y f or
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Fig. 9: SP-NN inferencing accuracy in the presence of (a) DC insertion loss ( ), (b) propagation loss in the MZI ( ),
and (c) absorption loss through phase shifter metal planes ( ).

SP-NNs with Reck and Diamond mesh configurations when
only one source of optical loss was considered at a time.
Moreover, the Diamond mesh configuration showed the most
susceptibility to the optical insertion loss when one source of
optical loss in the MZI was considered at a time (see Fig. 9(a)-
(c)).

To understand the simultaneous effect of different optical
loss sources (i.e., DCs) on the SP-NN inferencing accuracy,
for each case study (i.e., SP-NNs with Clements, Reck, and
Diamond mesh configurations), two experiments are defined
in which all of the three device-level loss values vary simul-
taneously from a half-normal distribution. Note that for each
experiment, the simulations were repeated 1000 times to avoid
loss of generality. The statistical characterization of the two
experiments is as the following:

(EXPT1) considers a mean of minimum expected
loss value and standard deviation, , such that their
maximum expected loss value. Results for EXPT1 are
shown in Fig. 10(a)–(c).
(EXPT2) considers loss values with a mean of 0
and the same standard deviation as EXPT1. Results for
EXPT2 are shown in Fig. 10(d)–(f).

As can be seen from EXPT1 results in Fig. 10(a)–(c), out of the
three mesh configurations, Clements shows the most resilience
to optical loss. Considering Fig. 10(a), almost 60% of the
1000 scenarios show inferencing accuracy less than 25%. This
is much lower compared to the Reck and Diamond which
show about 90% and 100% of the cases with an accuracy
below 25%, respectively (see Figs. 10(b) and (c)). Note that
in the Clements mesh configuration, only 14% of 1000 sce-
narios show inferencing accuracy higher than 50% and none
of the scenarios in Reck and Diamond mesh configurations
show accuracy higher than 50%. Considering the results for
EXPT2 shown in Figs. 10(d)–(c), we can obtain the maximum
tolerable device-level optical loss (for each source of optical
loss) while considering a threshold for maximum acceptable
drop in the inferencing accuracy. In this paper, we consider
5% accuracy drop in the presence of the simultaneous effect
of all sources of optical loss. Accordingly, the Clements mesh
configuration can tolerate up to 0.22 dB of metallic loss,
0.04 dB of propagation loss, and 0.08 dB of DC’s loss in

the MZIs, while these values are lower for the other two
configurations (see Figs. 10(d)–(c)).

Considering (6), to understand the impact of optical
crosstalk noise on SP-NN inferencing accuracy, we model
the crosstalk noise using a linear interpolation between
the worst-case (MZI in Cross-bar, 18 dB) and the
best-case (MZI in Bar-state, 25 dB) crosstalk; see
Section III. Fig. 11 shows the inferencing accuracy in the
three SP-NN mesh configurations in the presence of both
optical loss and crosstalk when and for
different and values and with optical losses set to their
corresponding minimum expected values. As shown in Fig. 11,
when 18 dB and 25 dB (considered as an
example based on the work in [31]), the accuracy drops to
11.5% for Clements, 10.1 % for Reck, and 8.3% for Diamond.
We also found that under expected values of optical crosstalk
and loss, the accuracy remains at 10% in all three mesh
configurations. Note that when decreases to below -
50 dBm (lower-left corner in Figs. 11(a)-(c)), the accuracy
saturates at about 68% for Clements which is significantly
higher than Reck at 43.3% and Diamond at 10.1%. In all
three case studies presented in this paper, only considering
crosstalk noise and neglecting the loss parameters led to an
accuracy lower than 25%. This shows the more critical effect
of the crosstalk noise than the loss parameters on SP-NNs’
accuracy.

The results presented in this section motivate the need for
SP-NN design exploration and optimization from the device
to the system level to alleviate the impact of optical loss and
crosstalk. Moreover, our proposed approach can be used to
determine the suitable mesh configuration based on design
requirements, and also the maximum tolerable crosstalk and
component optical losses to guarantee certain inferencing
accuracy.

D. Impact of Optical Loss and Crosstalk Noise on SP-NN
Inferencing Accuracy with Non-Ideal NAUs

To understand the impact of optical loss and crosstalk noise
on SP-NNs’ system-level performance when optoelectronic
NAUs are used, we use the analytical model in (11) and param-
eters reported in Table I to emulate the ReLU as the nonlinear
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Fi g. 1 0: I nf er e n ci n g a c c ur a c y w h e n t h e l oss p ar a m et ers (α D C , α m , a n d α p · lM Z I ) ar e si m ult a n e o usl y v ari e d f or t hr e e diff er e nt
OI U m es h c o n fi g ur ati o ns. T w o 1 6 × 1 6 hi d d e n l a y ers ( M = 3 ) h a v e b e e n c o nsi d er e d f or e a c h c as e. ( a) –( c) s h o w t h e c as e w h er e
e a c h of t h e 1 0 0 0 p oi nts i n t h e s c att er pl ot r e pr es e nts a n i nst a n c e of t h e S P- N N w h er e t h e α ’s ar e s a m pl e d fr o m a h alf- n or m al
distri b uti o n wit h m e a n, µ = t h eir mi ni m u m e x p e ct e d v al u e a n d st a n d ar d d e vi ati o n, σ , s u c h t h at 3 σ = t h eir m a xi m u m e x p e ct e d
v al u e. ( d) –(f) s h o w t h e c as e w h er e α ’s ar e s a m pl e d fr o m a h alf- n or m al distri b uti o n wit h m e a n, µ = 0 a n d st a n d ar d d e vi ati o n,
σ , s u c h t h at 3 σ = t h eir m a xi m u m e x p e ct e d v al u e t o s h o w t h e m a xi m u m t ol er a bl e α v al u es f or e a c h c o n fi g ur ati o n. N ot e t h at
t h e eff e ct of t h e o pti c al cr osst al k n ois e is n e gl e ct e d i n t h es e si m ul ati o ns f o c usi n g o n t h e eff e ct of o pti c al l oss o n t h e S P- N Ns
i nf er e n ci n g a c c ur a c y.

a cti v ati o n f u n cti o n usi n g t h e N A U d e pi ct e d i n Fi g. 5. T h e
m e a n-s q u ar e err or ( M S E) of t h e N A U’s r es p o ns e ( c o m p ar e d
t o t h e i d e al c as e) wit h p ar a m et ers list e d i n Ta bl e I is us e d
as a m etri c t o u n d erst a n d h o w o pti c al l oss a n d cr osst al k n ois e
fr o m OI Us d et eri or at es t h e o pt o el e ctr o ni c N A U’s p erf or m a n c e.
N ot e t h at f or e a c h it er ati o n, 1 0 0 0 r a n d o m cr osst al k n ois e
p h as es ( θ e r r , s e e ( 1 1)) ar e c o nsi d er e d a n d t h e m e a n of t h e
r es ulti n g M S E is r e p ort e d i n Fi g. 1 2. I n t his si m ul ati o n, t h e
P D’s s e nsiti vit y, d ar k c urr e nt, a n d b a n d wi dt h ar e c o nsi d er e d
a c c or di n g t o Ta bl e I i n t h e o pt o el e ctr o ni c N A U [ 3 0]. M or e o v er,
w e als o c o nsi d er t h e o pti c al l oss a n d cr osst al k n ois e r el at e d t o
t h e i n p ut D C a n d t h e M ZI i n t h e o pt o el e ctr o ni c N A U (s e e Fi g.
5). C o nsi d eri n g t h e cr osst al k n ois e a n d l oss at t h e o ut p ut of t h e
OI U u nit, w e c a n s e e t h at t h e M S E f or a si n gl e o pt o el e ctr o ni c

N A U us e d i n t h e S P- N N c a n b e as hi g h as 1 8 0 m e a ni n g t h at
t h e a ct u al r es p o ns e of t h e N A U is si g ni fi c a ntl y d e vi at e d fr o m
t h e i d e al R e L U n o nli n e ar a cti v ati o n r es p o ns e. T o a n al y z e t h e
s yst e m-l e v el eff e ct of o pti c al l oss a n d cr osst al k n ois e i n S P-
N Ns i m pl e m e nt e d usi n g o pt o el e ctr o ni c N A Us, t hr e e diff er e nt
S P- N N n et w or ks wit h 2 hi d d e n l a y ers ( M = 3) a n d 1 6
i n p uts wit h Cl e m e nts, R e c k, a n d Di a m o n d m es h c o n fi g ur ati o n
f or t h e OI U a n d t h e o pt o el e ctr o ni c a cti v ati o n as t h e N A U
(s e e ( 1 1)) w er e tr ai n e d o n s hift e d- F F T M NI S T h a n d writt e n
di git d at as et usi n g N e u r o p t i c a wit h n o mi n al t est s et
a c c ur a c y of 9 0 %, 9 3. 8, a n d 9 4. 1 % f or t h e Di a m o n d, R e c k,
a n d Cl e m e nts, r es p e cti v el y. We f o u n d o ut t h at f or all t hr e e
c as es w h e n c o nsi d eri n g t h e mi ni m u m e x p e ct e d v al u es of t h e
d e vi c e-l e v el l oss p ar a m et ers r e p ort e d i n Ta bl e I f or M ZIs i n

T hi s arti cl e h a s b e e n a c c e pt e d f or p u bli c ati o n i n I E E E/ O S A J o ur n al of Li g ht w a v e T e c h n ol o g y. T hi s i s t h e a ut h or' s v er si o n w hi c h h a s n ot b e e n f ull y e dit e d a n d 
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Fig. 11: Inferencing accuracy in the presence of both optical loss and crosstalk noise for different values of and
where (see Section III) for different OIU mesh configurations. Two 16 16 hidden layers ( ) have been
considered for each case. The minimum expected value for optical loss parameters has been considered in these simulations
(See Table I). (a) Clements, (b) Reck, and (c) Diamond. The dashed line shows the case where .
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Fig. 12: Average MSE for optoelectronic NAU under the effect
of the optical loss and crosstalk noise from OIUs. Each point
in the figure has been averaged over 1000 random phases for
input crosstalk noise interfering with the victim optical signal.

the OIU and optoelectronic NAU, even a negligible crosstalk
noise related to the MZIs in the OIUs ( 60 dBm) can lead
to a significant drop in the inferencing accuracy to below
15%, which is drastically lower than the accuracy reported
in Fig. 11 when ideal ReLU activation function is used (68%
for Clements and 43.3% for the Reck). Therefore, the SP-
NNs which are implemented using optoelectronic NAUs are
significantly sensitive to the optical loss and crosstalk noise
from OIUs. Note that only considering standalone optical loss
and crosstalk from optoelectronic NAUs while neglecting the
optical loss and crosstalk from OIUs leads to less than 2%
drop in the SP-NNs inferencing accuracy.

V. POWER PENALTY AND SCALABILITY CONSTRAINT

Leveraging the results from the previous section, here we
analyze the impact of optical loss and crosstalk noise on SP-
NN power consumption (i.e., laser power penalty) as well as
scalability constraints in SP-NNs.

A. Power Penalty due to Optical Loss and Crosstalk

The optical loss and coherent crosstalk necessitate an in-
crease in the laser power at the input to compensate for optical
loss and crosstalk in SP-NNs. We study this power penalty by
considering the input optical laser power ( ) required at the
SP-NN input to compensate for the impact of optical loss and
coherent crosstalk at the output (see Fig. 1). For the network
output in a coherent SP-NN, the input optical laser power
should satisfy:

(13)

Here, and are the insertion loss (in dB)
and coherent crosstalk power (in dBm), respectively, at the
network output . They can be calculated using (5) and (6).
Note that the total insertion loss for a signal at output
is determined by both and the interference between the
victim signal and the coherent crosstalk signal (determined
by crosstalk signal phase ) at the same output, where the
coherent crosstalk power also depends on . Also,
is the sensitivity of the photodetector (in dBm) in electronic
or optoelectronic NAUs [25], taken to be 11.7 dBm in this
paper [41]. The output power and crosstalk power, averaged
across all the network outputs, for SP-NNs of different scales
and configurations as a function of the input laser power is
depicted in Figs. 13(a)–13(c). Observe that as the input laser
power increases to compensate for the effect of optical loss
and crosstalk, both the output power and the crosstalk power
increase at almost similar rates. This indicates that increasing
the input laser power will not enhance the SNR in the output
due to the increased amount of coherent optical crosstalk
power, which increases with the input power as shown in (13),
on the outputs of the SP-NNs. Moreover, from Fig. 13 we
can see that as we scale up the network, higher input power
is required for the output power to be detected by the PDs.
In addition, observe the significant decrease in output power
due to accumulated optical loss and crosstalk as we scale up
SP-NNs, making experimental detection of the output power
extremely challenging (see Fig. 13 (a)–(c)).
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Fig. 14: Average RVD values for 1000 random weight matrices
for SP-NNs with different sizes and mesh configurations.
Three different scenarios of loss only, crosstalk only, and loss
and crosstalk values are considered.

B. Scalability Constraints due to Optical Loss and Crosstalk

As it was shown in the previous sections, optical loss
and crosstalk significantly limit the scalability of the MZI-
based SP-NNs. The work in [27] showed that the matrix-
vector multiplications can be done in multiple steps using
a single MZI-based OIU. The trained weight matrix can be
broken down into multiple sub-matrices and by loading the
sub-matrices into memory and repeatedly updating the phase
settings of the MZIs in the network, one large matrix-vector
multiplication can be carried out using a smaller mesh of
OIU to limit the effect of optical loss and crosstalk on the
network’s performance. Another example of this application
is when MZI-based OIUs are used in a crossbar architecture
to carry out optical multiplication, which was presented in
[44].

To analyze the scalability constraints due to optical loss and
crosstalk noise in SP-NNs for the aforementioned scenarios,
we use RVD as a parameter to measure the deviation between

an intended transfer matrix and a deviated transfer matrix (due
to loss and crosstalk) in an OIU. As a result, this metric can
be used to assess how the ideal transfer matrix deviates when
optical loss and crosstalk noise are included in OIUs. RVD
can be written as:

(6)

In this formulation, and are the transfer matrices of the
OIU with different mesh configurations with and without the
loss and crosstalk noise, respectively. When the RVD is closer
to 0, the deviated transfer matrix is closer to the ideal one,
hence the inferencing accuracy is higher, as shown by [8]. Fig.
14 reports the RVD values for Clements, Reck, and Diamond
mesh configurations with different sizes under optical loss
and crosstalk reported in Table I. For these simulations, 1000
random weight matrices were tested on a single MZI-based
OIU with Clements, Reck, and Diamond configuration with
sizes of 4, 8, 16, 32, and 64. The reason for using
1000 random weight matrices is to avoid loss of generality
in our analysis. As shown by Fig. 14, in all cases the impact
of optical crosstalk is more critical for scalability than the
optical loss (see the results for crosstalk noise in the figure).
One reason for this is due to using SOAs to compensate for
the total insertion loss of the network that also amplifies the
coherent optical crosstalk noise. Moreover, the RVD increases
as the network scales up. Observe that the RVD increase is
even worse for the Diamond mesh due to using a larger number
of MZIs when scaling the network.

To better understand the relationship between RVD and
inferencing accuracy of SP-NNs, a single OIU of different
mesh configurations with 4, 8, 16, 32, and 64 followed
by an ideal ReLU NAU were trained on a linearly separable
Gaussian dataset presented in [13]. The test set accuracy
is 100% for all the case studies. Note that the proposed
Gaussian dataset is considered because it is simpler than
MNIST dataset and requires a single layer only. As a result,
we use it as an example to show the relationship between
RVD, network accuracy, and the scalability constraints in
OIUs across different OIU mesh configurations. The RVD
values against the inferencing accuracy of a single OIU of
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Fi g. 1 5: R V D v al u es f or w ei g ht m atri c es f or S P- N Ns wit h
diff er e nt si z es a n d m es h c o n fi g ur ati o ns tr ai n e d o n a li n e arl y
s e p ar a bl e G a ussi a n d at as et a g ai nst t h e i nf er e n ci n g a c c ur a c y

diff er e nt si z es a n d c o n fi g ur ati o ns u n d er t h e i m p a ct of b ot h
o pti c al l oss a n d cr osst al k n ois e ( usi n g t h e p ar a m et ers list e d
i n Ta bl e I) tr ai n e d o n a li n e arl y s e p ar a bl e G a ussi a n d at as et is
r e p ort e d i n Fi g. 1 5. O bs er v e t h at as t h e R V D i n cr e as es, t h e
n et w or k’s a c c ur a c y d e cr e as es. M or e o v er, o ut of t hr e e m es h
c o n fi g ur ati o ns, Cl e m e nts s h o w e d l ess t h a n 4 % a n d 1 5 % dr o p
i n t h e i nf er e n ci n g a c c ur a c y w h e n N = 8 a n d N = 1 6,
r es p e cti v el y, w hi c h is si g ni fi c a ntl y l o w er t h a n R e c k wit h 5 3 %
a n d 7 5 % a n d t h a n Di a m o n d wit h 6 3 % a n d 8 1 % a c c ur a c y
dr o ps, r es p e cti v el y. T h e R e c k c o n fi g ur ati o n s h o ws a b o ut a 4 %
dr o p i n a c c ur a c y w h e n N = 4. F urt h er m or e, t h e Di a m o n d
c o n fi g ur ati o n s h o ws a c at astr o p hi c 3 0 % dr o p i n a c c ur a c y e v e n
w h e n a d e fi ci e nt n u m b er of i n p uts N = 4 is us e d.

Alt h o u g h t h e Di a m o n d str u ct ur e s h o ws t h e l e ast t ol er a n c e
t o o pti c al l oss a n d cr osst al k, t h e w or k i n [ 1 3] s u g g ests t h at
t his m es h c o n fi g ur ati o n h as t h e m ost t ol er a n c e t o f a bri c ati o n-
pr o c ess v ari ati o ns c o m p ar e d t o Cl e m e nts [ 8]. H o w e v er, o ur
r es ults pr es e nt e d i n t his p a p er s h o w t h at Di a m o n d m es h c a n n ot
b e s c al e d u p i n t h e pr es e n c e of o pti c al l oss a n d cr osst al k n ois e.
N ot e t h at a m o n g t h e t hr e e m es h c o n fi g ur ati o ns st u di e d i n t his
p a p er, Cl e m e nts ar c hit e ct ur e s h o w e d t h e hi g h est r esili e n c e t o
o pti c al l oss a n d c o h er e nt cr osst al k, m a ki n g it t h e pr ef err e d
c o n fi g ur ati o n t o i m pl e m e nt S P- N Ns.

S yst e m ar c hit e cts c a n b e n e fit fr o m t h e pr o p os e d a n al ys es
i n t his p a p er t o b ett er u n d erst a n d t h e i m p a ct of o pti c al l oss
a n d cr osst al k n ois e i n S P- N Ns, a n d h o w s u c h a n i m p a ct
c h a n g e a m o n g diff er e nt S P- N N ar c hit e ct ur e c h oi c es. Als o, o ur
a n al ys es c a n h el p d e vi c e d esi g n ers t o b ett er u n d erst a n d d e vi c e-
l e v el p erf or m a n c e r e q uir e m e nts ( e. g., m a xi m u m o pti c al l oss at
t h e d e vi c e l e v el) t o a c hi e v e c ert ai n p erf or m a n c e a n d a c c ur a c y
i n S P- N Ns. L oss- a n d cr osst al k- a w ar e tr ai ni n g of t h e M ZI-
b as e d S P- N Ns c a n b e c o nsi d er e d as a p ossi bl e s ol uti o n t o
all e vi at e t h e eff e ct of o pti c al l oss a n d cr osst al k i n M ZI- b as e d
p h ot o ni c c o m p uti n g s yst e ms, n ot st u di e d i n t his p a p er.

VI. C O N C L U S I O N

T h e p erf or m a n c e a n d s c al a bilit y of S P- N Ns ar e li mit e d b y
o pti c al l oss a n d cr osst al k n ois e i n sili c o n p h ot o ni c d e vi c es.
T his p a p er pr es e nts a fr a m e w or k f or m o d eli n g o pti c al l oss a n d
cr osst al k n ois e f or S P- N Ns of diff er e nt s c al es wit h diff er e nt

m es h c o n fi g ur ati o ns. We pr es e nt e d a d et ail e d a n d c o m pr e-
h e nsi v e a n al ysis of o pti c al l oss a n d cr osst al k n ois e a n d t h e
c orr es p o n di n g S N R i n S P- N Ns wit h t hr e e diff er e nt m es h c o n-
fi g ur ati o ns of Cl e m e nts, R e c k, a n d Di a m o n d w hil e e x pl ori n g
t h e dr o ps i n i nf er e n ci n g a c c ur a c y u n d er diff er e nt s c e n ari os. I n
p arti c ul ar, t h e r es ults s h o w e d a si g ni fi c a nt a c c ur a c y l oss of at
l e ast 8 4 % a n d dr a m ati c S N R d e gr a d ati o n f or all c as e st u di es
d u e t o o pti c al l oss a n d cr osst al k n ois e as w e s c al e u p t h e
S P- N Ns. A d diti o n all y, w e c o n d u ct e d a n e xt e nsi v e a n al ysis of
o pti c al l oss a n d cr osst al k i n o pt o el e ctr o ni c N A Us. M or e o v er,
w e t h or o u g hl y a n al y z e d t h e s c al a bilit y li mit ati o ns of S P- N Ns
arisi n g fr o m o pti c al l oss a n d cr osst al k. T h e v al u a bl e i nsi g hts
pr es e nt e d i n t his st u d y c a n b e l e v er a g e d b y S P- N N d e vi c e a n d
s yst e m ar c hit e cts t o e x pl or e a n d o pti mi z e diff er e nt c h all e n g es
i n t h e d e v el o p m e nt a n d e v al u ati o n of S P- N Ns i n t h e pr es e n c e
of i n e vit a bl e o pti c al l oss a n d cr osst al k n ois e.
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