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Abstract

Given a graph G, a random (k, n)-list assignment L for edges of G is an assignment of an independent,

uniformly random set L(e) ∈
(

[n]
k

)

of colors to each edge e and a proper L-list coloring of G is a proper edge-
coloring where the color of an edge e belongs to L(e). We show that for a random (O(log n), n)-list assignment
L for edges of the complete bipartite graph Kn,n, there is a an L-list coloring of Kn,n with high probability. We
also prove analogous results for the thresholds of Steiner triple systems and Latin squares in random (binomial)
hypergraphs. All of our results are optimal up to absolute constants, and resolve several related conjectures
of Johansson, Luria-Simkin, Casselgren-Häggkvist, Simkin, and Kang-Kelly-Kühn-Methuku-Osthus.

A key contribution of our work is to show that in natural settings, the Lovász Local Lemma – a central
tool in probabilistic combinatorics to establish the existence of objects with desired properties – can also be
used to design optimally “spread” distributions on such objects. This is made possible by carefully exploiting
the local uniformity property of the so-called Lovász Local Lemma distribution, an important observation
that has recently been utilized in finding efficient algorithms for sampling approximately uniformly random
solutions to constraint satisfaction problems. In conjunction with the recently proved Kahn-Kalai conjecture,
this opens the door to obtaining optimal threshold results for the appearance of many interesting objects.

1 Introduction

Given a finite set X and p ∈ (0, 1), let Xp ¦ X be a random subset where each element of X is sampled
independently with probability p. For a non-trivial monotone property P ¦ 2X over subsets of X, the threshold
pc(P) of P is the value p∗ at which P(Xp∗ ∈ P) = 1/2. When X =

(
[n]
k

)
, Xp is precisely the Erdős-Rényi

random k-uniform hypergraph G(k)(n, p), for which estimating thresholds of interesting combinatorial properties
has been a major direction in combinatorics, going back to a seminal result of Erdős and Rényi that the threshold
for the appearance of perfect matchings in G(2)(n, p) is log n/n [6]. The determination of the threshold for the
appearance of perfect matchings in k-uniform hypergraphs for k g 3 is a notorious problem of Shamir, for which
the threshold Θ((log n)/nk−1) was established in the celebrated work of Johansson, Kahn and Vu [14].

A closely related object to perfect matchings in 3-uniform hypergraphs, which constitutes another way of
generalizing the definition of perfect matchings in graphs to 3-uniform hypergraphs, is a Steiner triple system.
Whereas perfect matchings require that every vertex appears in exactly one hyperedge, a Steiner triple system
requires that every pair of vertices appears in exactly one hyperedge. The tripartite analogue of a Steiner triple
system is a Latin square, namely, a Latin square may equivalently be defined as a tripartite 3-uniform hypergraph
with vertex parts of size n, where each pair of vertices in different parts is contained in exactly one hyperedge. The
question of determining the threshold for which G3((n, n, n), p) – the random tripartite 3-uniform hypergraph on
parts of size n each – contains a Latin square was raised by Johansson in 2006 [13] and has been popularized by
Simkin in the past few years as his favorite open problem. Luria and Simkin [19] conjectured that this threshold
is Θ(log n/n). It is easily seen using a coupon-collector argument (see, e.g., [21]) that the threshold is Ω(log n/n),
so that the challenge is in proving the upper bound.

We mention three related conjectures:

• Simkin [22] conjectured that the threshold for containment of a Steiner triple system in the random 3-uniform
hypergraph G3(n, p), with n ≡ 1, 3 mod 6, is Θ((log n)/n).

• Given a graph G, a random (k, n)-list assignment L for edges of G is an assignment of an independent,

uniformly random set L(e) ∈
(
[n]
k

)
of colors to each edge e and a proper L-list coloring of G is a proper
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edge-coloring where the color of an edge e belongs to L(e). Casselgren and Häggkvist [5] conjectured that
for a random (O(log n), n)-list assignment L for edges of Kn,n, there is an L-list coloring of Kn,n with
probability at least 1/2. We remark that in the setting of vertex coloring graphs with a number of colors
slightly larger than the maximum degree, a similar problem has been studied by the algorithms community
under the name of ‘palette sparsification’, with applications to streaming/sublinear/distributed algorithms
for graph vertex coloring (see, e.g. [1, 4, 10]).

• A non-partite version of the above, namely that a random O((log n), 2n− 1)-list assignment L for edges of
K2n admits an L-list coloring of K2n with probability at least 1/2, was conjectured by Kang, Kelly, Kühn,
Methuku and Osthus [15].

We refer the reader to [21, 15] for further discussion of the history, as well as for more precise versions of the
aforementioned conjectures.

In this paper, we resolve all of these conjectures.

Theorem 1. There exists an absolute constant C > 0 such that for all n g C, each of the following statements
hold with probability at least 1/2.

1. The random 3-uniform hypergraph G(3)(n,C(log n)/n) contains a Steiner triple system, provided n ≡ 1, 3
mod 6.

2. The random tripartite 3-uniform G(3)((n, n, n), C(log n)/n) contains a Latin square.

3. A random (C log n, n)-list assignment L for edges of Kn,n admits a proper L-list coloring.

4. A random (C log n, 2n− 1)-list assignment L for edges of K2n admits a proper L-list coloring.

1.1 Background and related work Recently, Park and Pham [20] proved the Kahn–Kalai conjecture;
a weaker fractional version conjectured by Talagrand [23] was obtained earlier in work of Frankston, Kahn,
Narayanan, and Park [7] building on the sunflower breakthrough of Alweiss, Lovett, Wu and Zhang [3]. The
(fractional) Kahn-Kalai conjecture allows one (among other things) to get a much simpler proof of the resolution
of Shamir’s problem by Johansson-Kahn-Vu [14]. To state the result of [20], we say that H ¦ 2X is p-small if
there exists G ¦ 2X such that any set in H contains a set from G and

∑

G∈G p|G| < 1
2 . Moreover, a distribution µ

supported on H is said to be p-spread if for all S ¦ X, µ({W ∈ H : S ¦ W}) f 2p|S|. Using linear programming
duality, Talagrand [23] observed that if H supports a p-spread distribution µ, then H is not p-small.

Theorem 2. ([20]) There exists C > 0 such that the following holds. Let H ¦ 2X and p ∈ (0, 1) be such that H
is not p-small. Then, XCp log |X| contains a set in H with high probability (i.e. probability going to 0 as |X| → ∞).
In particular, the same conclusion holds if there exists a distribution µ supported on H which is p-spread.

Given Theorem 2, a natural approach to all of these conjectures is to show that the corresponding property
is not O(1/n)-small, potentially by establishing the stronger statement that the relevant collection of subsets
supports an O(1/n)-spread distribution. For Shamir’s problem, simple counting shows that the uniform
distribution on perfect matchings of a k-uniform hypergraph on n vertices is Ok(1/n)-spread. On the other
hand, for complicated structures such as Steiner triple systems and Latin squares, known enumeration results are
unfortunately not precise enough to imply anything non-trivial about the spread of the uniform distribution (this
is related to the fact that, even following the breakthrough work of Keevash [16] and the many developments
since then, we have asymptotically correct estimates only for the logarithm of the number of Steiner triple systems
and other designs, see the discussion in [15, 21, 7]). In a recent breakthrough work, Sah, Sawhney and Simkin

[21] demonstrated the existence of an O(no(1)/n)-spread distribution on Steiner triple systems in K
(3)
n (n ≡ 1, 3

mod 6) and Latin squares inK
(3)
n,n,n, thereby establishing the corresponding conjectures about the threshold within

a subpolynomial factor no(1). Their proof constructs such a spread distribution using a clever “spread boosting”
argument utilizing the iterative absorption framework of Kühn, Osthus, and collaborators [8]. In a beautiful work
using a different and simpler iterative absorption scheme, Kang, Kelly, Kühn, Methuku and Osthus [15] improved
the spread parameter to O(log n/n), which is a single logarithmic factor off from the conjectured optimal bound.
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1.2 Our contribution One of the main tools in probabilistic combinatorics to establish the existence of objects
with desired properties is the Lovász Local Lemma (LLL). However, since the probability of success in the Lovász
Local Lemma is typically exponentially small in the number of events, the change of measure factor between
the so-called LLL distribution (i.e. the distribution obtained by conditioning the realisation from the product
distribution to satisfy the desired properties) and the product distribution is exponentially large. This is related
to the challenge in making the Lovász Local Lemma algorithmic – an area that has seen tremendous success
(see, e.g., [2, Chapter 5]). A key idea in our work is to show that in natural settings, the LLL distribution is
essentially as spread as the underlying product distribution. This opens up the possibility of constructing optimal
or near-optimal spread distributions on various objects, and correspondingly, obtaining optimal or near-optimal
thresholds for the appearance of such objects. In order to do so, we leverage the so-called local uniformity property
of the LLL distribution (Theorem 6), first used in works on the algorithmic Lovász Local Lemma ([9]) and more
recently, a crucial ingredient of algorithms for approximately sampling from the LLL distribution. In particular,
we remark that the distributions constructed in our proof of Theorem 3 below can be approximately sampled from
in polynomial time, due to recent progress in algorithms for sampling from the LLL distribution, in particular
[11, 12].

Concretely, in order to prove Theorem 1, we show how to construct a O(1/n)-spread distribution on ordered
one factorizations of Kn,n (i.e. a decomposition of the edges of Kn,n into a tuple (M1, . . . ,Mn) of disjoint
perfect matchings). Here, and later, for a d-regular graph G and d′|d, we say that a probability distribution
on decompositions (H1, . . . , Hd/d′) of G into d′-regular subgraphs is q-spread if for all S1, . . . , Sd/d′ ¦ E(G),

P[S1 ¦ E(H1), . . . , Sd/d′ ¦ E(Hd)] f q|S1|+···+|Sd/d′ |.

In fact, we prove the following more general result for dense quasirandom bipartite graphs:

Theorem 3. For any ε ∈ (0, 1/2), there exist sufficiently large constants N0 ∈ N and S ∈ 2N − 1 for which the
following holds. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n which is D0-regular for D0 g εn g N0

and 0-nice (Theorem 8). For r ∈ N, let Dr := D0/S
r. Then, for all r ∈ Zg0 such that Dr g N0, there exists a

probability distribution Pr on decompositions Pr of E(G) into regular subgraphs with degree (1 + on(1))Dr, with
spread 2ε−1 ·Dr/n.

The above theorem provides a quantitative strengthening of the key [15, Theorem 1.10], which applies to a
subset of the bipartite graphs considered here and crucially, loses a multiplicative factor of log n in the spreadness.
By following exactly the same reductions in [15] (see [15, Theorems 1.5,1.6,1.7]), we can deduce Theorem 1 from
Theorem 3.

1.3 Techniques In [15], the authors devised an iterative edge-absorption scheme to construct an O(log n/n)-
spread distribution on decompositions of a regular, nearly-complete, bipartite graph into regular subgraphs of
degree O(log n). Briefly, using standard concentration techniques, they first (essentially uniformly) decompose the
graph into nearly-regular subgraphs of average degree Θ(log n) satisfying some additional expansion properties,
and then iteratively correct these subgraphs to be regular by combining a novel and elegant iterative edge-
absorption procedure with a classical result about the existence of (large) regular subgraphs of a given graph
(Theorem 4). The initial decomposition is clearly spread, and the key in [15] is to show that the edge-absorption
procedure approximately preserves the spreadness. At a very high level, our approach is to recursively use a
simpler version of the framework of [15], which does not use iterative absorption, until the regular subgraphs in
the decomposition have degrees O(1). This requires a number of new ideas, which we now discuss.

The LLL distribution The reason why the argument of [15] stops at subgraphs of degree Θ(log n) is that for
sub-logarithmic degrees, one cannot use the union bound to guarantee near-regularity of the initial decomposition.
However, if one could replace the argument of [15] by an iterative procedure, where the degree of the new subgraphs
is only a constant factor (say) smaller than the degree of the original graph, one might hope that replacing the
union bound by the Lovász Local Lemma (LLL) would immediately do the trick. Unfortunately, this is not the
case – in our setting, for graphs of sublogarithmic degree, the LLL only guarantees that the initial decomposition
is nearly-regular with probability exponentially small in n (up to logarithmic factors), so that conditioning on
near-regularity (the resulting distribution is called the LLL distribution in this case) could change the measure
by an exponentially large amount, thereby completely destroying the spreadness. To overcome this, we use the
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insight that we require the LLL distribution only for some specific events. For these events, we carefully use a
refined comparison between the initial distribution and the LLL distribution (Theorem 6) to show that spreadness
does not degrade much. We believe that this technique of using event-specific comparison bounds for the LLL
distribution will be generally useful in the study of thresholds (via constructing spread measures).

Using spread to perform the union bound In order to find a sufficiently large regular subgraph inside
the initial nearly-regular graph, we need to show that the nearly-regular graph has the property of not having
‘too many’ edges between small sets of vertices (Theorem 4). For logarithmic degree, this can be accomplished
by a simple union bound over all small sets; however, this fails for sublogarithmic degree, and unfortunately the
dependencies are too numerous to employ the LLL. We overcome this issue using the spreadness of the iterates.
Roughly, in Theorem 15, we show using a direct union bound argument that if a regular graph of degree D is
sampled from an O(D/n)-spread distribution, then with high probability, a random decomposition into nearly-
regular subgraphs has the requisite expansion property.

Lossless edge-absorption In [15], the iterative edge-absorption procedure blows up the spread of the initial
decomposition into nearly-regular subgraphs by a factor of approximately 2. While this is certainly sufficient for
their result, it is not amenable to recursion, since to go to subgraphs of degree O(1), we must recurse Ω(log∗ n)
times. To circumvent this issue, we devise a simple, yet refined, edge-absorption procedure (Theorem 11), which
only uses edges from a randomly chosen, polynomially small part of the graph to make corrections. This ensures
that the spread of the corrected distribution is approximately the same as the spread of the initial decomposition
into nearly-regular subgraphs, thereby permitting recursion.

1.4 Concurrent and independent work Keevash has independently and concurrently proved Theorem 1
and essentialy the same result as Theorem 3 (cf. [17, Section 2.4] and Theorem 8) in [17]. His proof is substantially
different from ours, relying instead on a very careful analysis of a randomized greedy process.

2 Preliminaries

We will use the following lemma, which follows easily from the max-flow min-cut theorem (see [18]), and was also
employed in [15].

Lemma 4. Consider a bipartite graph G = (A,B,E). Given f : A → Zg0 and g : B → Zg0 with
∑

a∈A f(a) =
∑

b∈B g(b), there exists a spanning subgraph H of G with dH(a) = f(a) for all a ∈ A and dH(b) = g(b) for all b ∈ B
if and only if the following holds: for every subset A′ ¦ A and B′ ¦ B, |EG(A

′, B′)| g
∑

a∈A′ f(a)−
∑

b/∈B′ g(b).

A key ingredient in our work is the following comparison between the so-called “Lovász Local Lemma
distribution” and the product distribution on a collection of random variables. (see, e.g., Theorem 2.1 of [9]).
The proof of this result follows directly from the inductive proof of the Lovász Local Lemma (see, e.g. [2]).

Definition 5. Given independent random variables {Xi}i∈I and events Ej (j ∈ J), where each Ej depends on a
subset Sj ¦ I of variables, we say that a graph Γ on vertex set J is a dependency graph if it holds that Sj ∩Sj′ = ∅
whenever j and j′ are not adjacent in Γ.

Proposition 6. With notation as in Theorem 5, denote by P the usual product measure on the random variables
{Xi}i∈I and by P, the conditional measure P(· | ∩jE

c
j ). Assume that P(Ej) f p for all j ∈ J and that the

maximum degree of Γ, denoted by ∆, satisfies 4p∆ f 1. Given an event E depending on a subset of variables
S ¦ I, letting N be the number of events Ej (j ∈ J) with Sj ∩ S ̸= ∅, we have

P[E ] f P[E ] exp(6pN).

Finally, we will use the following standard version of the Chernoff bound.

Lemma 7. Let X1, . . . , Xm be independent Bernoulli(p) random variables. Then, for δ > 0,

P[X1 + · · ·+Xm > (1 + δ)pm] f

(
eδ

(1 + δ)1+δ

)pm

f exp

(

−
δ2pm

2 + δ

)

P[X1 + · · ·+Xm < (1− δ)pm] f

(
e−δ

(1− δ)1−δ

)pm

f exp

(

−
δ2pm

2

)

.
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3 Proof of Theorem 3

3.1 Recursion Throughout this section, we use the notation appearing in the statement of Theorem 3. In the
following definition, S denotes a positive integer which, in our application, will be chosen to be sufficiently large
depending on ε. We define

qr := D−1/8
r , δr := 210 · S ·

∑

r′fr

qr.

Definition 8. (r-niceness) For r ∈ Zg0, we say that a bipartite graph G = (A,B,E) with |A| = |B| = n is
r-nice if the following properties hold:

(N1) G is DG-regular, with

DG = exp(±δr−1) ·Dr i.e. DG ∈ [exp(−δr−1) ·Dr, exp(δr−1) ·Dr]

(N2) For all A′ ¦ A,B′ ¦ B with |B′| g |A′| > n/S and n− |B′| = 1.01|A′|,

|EG(A
′, B \B′)| f exp(1 + δr−1) ·DG|A

′| ·max

(
1

3
,
n− |B′|

n

)

,

and similarly with the role of A′ and B′ interchanged.

For r ∈ Zg0 and a regular bipartite graph G = (A,B,E) with |A| = |B| = n and degree D0, a decomposition
P of E(G) is said to be r-nice if |P| = D0/Dr(= Sr) and every G ∈ P is r-nice.

Theorem 3 follows immediately from the following proposition, whose proof is the content of the remainder
of this paper.

Theorem 9. For any ε ∈ (0, 1/2), there exist sufficiently large constants N0 ∈ N, S ∈ 2N − 1 for which the
following holds. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n which is D0-regular for D0 g εn g N0

and 0-nice (Theorem 8). For r ∈ N, let Dr := D0/S
r. Then, for all r ∈ Zg0 such that Dr g N0, there exists

a probability distribution Pr on decompositions Pr of E(G), supported on r-nice decompositions, with spread
2ε−1 ·Dr/n.

For r = 0, note that the distribution supported on the trivial decomposition consisting of only one part
satisfies the conclusion of Theorem 9. The distributions for r g 1 will be constructed recursively in Theorem 15,
starting from this choice of P0.

3.2 Admissibility The recursive construction used to prove Theorem 9 is based on a procedure to partition
a regular bipartite graph G into regular subgraphs. Throughout this subsection, we consider r ∈ Zg0 and a
DG-regular bipartite graph G = (A,B,E) with |A| = |B| = n and DG g N0, which is r-nice (Theorem 8) with
respect to the sequence Dr in the statement of Theorem 9. Recall that S ∈ N will be chosen to be sufficiently
large.

Consider the following collection of random variables:

• For each edge e ∈ G, π(e) is supported in [S](= [s0 − 1]).

• For each edge e ∈ G, ξ(e) is supported in {0, 1}.

To this collection of random variables, we associate the following collection of subgraphs of G:

• For i ∈ [S], Hi denotes the subgraph of G consisting of all edges e for which π(e) = i. Succinctly,
Hi = π−1(i).

• For i ∈ [S], H+
i = Hi ∩ {e : ξ(e) = 1} = Hi ∩ ξ−1(1).

• Let H+ = H+
1 ∪ · · · ∪H+

S .

The next definition collects the properties we will require of these random variables.
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Definition 10. (r-admissibility) With notation as above, a realisation of the collection of random variables
{π(e), ξ(e)}e∈G is said to be r-admissible if the following properties hold:

(R1) for all v ∈ V (G), for all i ∈ [S],

|dHi
(v)−DG/S| f 9

√

logDG ·DG/S;

(R2) for all v ∈ V (G), for all i ∈ [S],

|dH+

i
(v)− qrDG/S| f 9

√

logDG ·DG/S;

(E1) for all i ∈ [S] and all A′ ¦ A,B′ ¦ B with either |B′| g |A′| g 4n/5 or 4n/5 g |A′| g n/S and
n− |B′| < 1.01|A′|

|EH+

i
(A′, B′)| g (9/10) · |EG(A

′, B′)|qr/S,

(E2) for all i ∈ [S] and all A′ ¦ A,B′ ¦ B with |A′| f n/S and |B′| = 1.01|A′|

|EH+

i
(A′, B′)| f (DGqr/2S) · |A

′|,

(E3) for all i ∈ [S] and all A′ ¦ A,B′ ¦ B with |B′| g |A′| g n/S and n− |B′| = 1.01|A′|,

|EHi
(A′, B \B′)| f exp (1 + qr + δr−1)DG|A

′|β′/S,

where β′ = max(κ, 1− |B′|/n),

(E4) for all i ∈ [S] and all A′ ¦ A,B′ ¦ B with |B′| g |A′| g n/S and n− |B′| = 1.01|A′|,

∣
∣
∣EH+

i
(A′, B \B′)

∣
∣
∣ f 4DG|A

′|β′qr/S,

where β′ = max(κ, 1− |B′|/n),

and similarly the properties (E1), (E2), (E3), (E4) with the roles of A,A′ and B,B′ interchanged.

The motivation for the definition of r-admissibility comes from the next proposition which shows that given
an r-admissible realisation, one can decompose an r-nice graph G into (r + 1)-nice regular subgraphs of degree
approximately DG/S in a manner that will turn out to be sufficiently ‘spread’.

Proposition 11. Given any r-admissible realisation of {π(e), ξ(e)}e∈G, there exists a disjoint collection of regular
subgraphs {Ri}i∈[S] of G satisfying the following properties:

(P1) G = R1 ∪ · · · ∪RS;

(P2) for all i ∈ [S − 1], Hi \H
+
i ¦ Ri ¦ Hi;

(P3) HS ¦ RS ¦ HS ∪H+;

(P4) for all i ∈ [S], the degree of each Ri is in (1± 2Sqr)DG/S;

(P5) for all i ∈ [S], Ri is (r + 1)-nice i.e. it satisfies properties (N1) and (N2) in Theorem 8 with DG := DRi

and Dr+1.

Proof. Let Ki := Hi \H
+
i . Suppose that for all i ∈ [S − 1], there exists a regular subgraph satisfying

(3.1) Ki ¦ Ri ¦ Hi.

Then, we set RS := G \ (R1 ∪ · · · ∪ RS−1). Note that since G is regular and R1, . . . , RS−1 are disjoint regular
subgraphs of G, RS is also regular.
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We claim that for any r-admissible realisation, we can always find regular subgraphs satisfying eq. (3.1).
Before proving this claim, let us verify that the construction thus obtained satisfies the desired properties.
(P1), (P2), (P3) are satisfied by construction. It remains to verify that (P4) and (P5) hold. For (P4), we
have for all i ∈ [S] that

δHi −∆H+

i
f dRi f ∆Hi +∆H+ ,

where dG′ ,∆G′ , δG′ denote respectively the average, maximum and minimum degree of a subgraph G′ of G. Using
(R1), (R2), we get that

DG

S
− 18

√

logDG ·
DG

S
− qr

DG

S
︸ ︷︷ ︸

g
DG
S −4qr

DG
S

f dRi
f

DG

S
+ 9S

√

logDG ·
DG

S
+ qrDG

f
DG

S
+ 2Sqr

DG

S
,

where we have used that qr = D
−1/8
r and Dr g N0, a sufficiently large absolute constant. In particular, using

that DG = exp(±δr−1)Dr, we get that DRi
= exp(±δr)Dr+1, thereby verifying (N1) in (P5). For (N2) in

(P5), note that by (E3), (E4), for all A′ ¦ A,B′ ¦ B with |B′| g |A′| > n/S, n − |B′| = 1.01|A′|, and
β′ = max(1/3, 1− |B′|/n), we have that

|ERi
(A′, B \B′)| f |EHi

(A′, B \B′)|+
∑

i∈[S]

|EH+

i
(A′, B \B′)|

f (exp(1 + qr + δr−1) + 4Sqr)
DG

S
|A′|β′

f exp(1 + qr + δr−1) (1 + 4Sqr)
2
DRi |A

′|β′

f exp(1 + δr)DRi |A
′|β′,

where we have used that qr = D
−1/8
r and Dr g N0, a sufficiently large absolute constant.

Finally, we establish the existence of regular subgraphs satisfying eq. (3.1) by applying Theorem 4 on the
graph H+

i = (A,B,E(H+
i )) with f(a) = d − dKi

(a) and g(b) = d − dKi
(b) for d := dKi

+ 105
√

(DG/S) logDG,
where for notational convenience, we assume that second summand is an integer. Observe that this choice of f
and g is valid. Indeed, since |A| = |B|, we have that

∑

a∈A f(a) =
∑

b∈B g(b) and moreover, by (R1), (R2),

d− dKi
(v) g dKi

+ 105
√

(DG/S) logDG −∆Ki
> (105 − 72)

√

(DG/S) logDG,

so that f, g g 0. For later use, note also that by a similar computation,

d− dKi
(v) f dKi

+ 105
√

(DG/S) logDG − δKi
< (105 + 72)

√

(DG/S) logDG.

It remains to show that for all A′ ¦ A and B′ ¦ B,

(3.2)
∣
∣
∣EH+

i
(A′, B′)

∣
∣
∣ g ∆(A′, B′) :=

∑

a∈A′

(d− dKi
(a))−

∑

b/∈B′

(d− dKi
(b)).

Since ∑

a∈A′

(d− dKi
(a))−

∑

b/∈B′

(d− dKi(b)) =
∑

b∈B′

(d− dKi(b))−
∑

a/∈A′

(d− dKi(a)),

it suffices by symmetry to assume that |B′| g |A′|.
We consider a few different cases. In each case, we will use that Dr g N0, a sufficiently large absolute

constant.
Case 1: |A′| g 4n/5. In this case, |B′| g |A′| g 4n/5, so that by (E1),

∣
∣
∣EH+

i
(A′, B′)

∣
∣
∣ g (9/10) · |EG(A

′, B′)| qr/S g (9/10) · (DG|A
′| −DG(n− |B′|))qr/S g 2DGqrn/(5S),
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and hence

∆(A′, B′) f (105 + 72)|A′|
√

(DG/S) logDG − (105 − 72)(n− |B′|)
√

(DG/S) logDG

f (105 + 72)n
√

(DG/S) logDG f 2DGqrn/(5S) f
∣
∣
∣EH+

i
(A′, B′)

∣
∣
∣ .

Case 2: n/S f |A′| < 4n/5. We may assume that n− |B′| < 1.01|A′|, since otherwise,

∆(A′, B′) f
(
(105 + 72)|A′| − (105 − 72)(n− |B′|)

)
·
√

(DG/S) logDG < 0

and eq. (3.2) trivially holds. Assuming that n− |B′| < 1.01|A′|, we have by (E1) and the r-niceness of G that
∣
∣
∣EH+

i
(A′, B′)

∣
∣
∣ g (9/10) · |EG(A

′, B′)| qr/S g (9/10) · qr/S · (DG|A
′| − |EG(A

′, B \B′)|)

g DG|A
′|qr/(100S) g (105 + 72)|A′|

√

(DG/S) logDG g ∆(A′, B′).

Case 3: |A′| < n/S. As before, we may assume that n− |B′| < 1.01|A′|. By (R2) and (E2), we have

∣
∣
∣EH+

i
(A′, B′)

∣
∣
∣ g δH+

i
|A′| − |E+

Hi
(A′, B \B′)| g

(
DGqr
S

− 9
√

(DG/S) logDG −
DGqr
2S

)

|A′|

g
DGqr
4S

|A′| g (105 + 72)|A′|
√

(DG/S) logDG g ∆(A′, B′).

Remark 12. Our calculation in Case 1 and Case 2 in the above proof shows that for all A′ ¦ A and B′ ¦ B
satisfying either |B′| g |A′| g 4n/5 or 4n/5 g |A′| g n/S and n− |B′| < 1.01|A′|, we have

|EG(A
′, B′)| g DG|A

′|/100,

and similarly with the roles of A′ and B′ interchanged.

3.3 The building block Having established Theorem 11, our goal now is to construct a distribution on
{π(e), ξ(e)}e∈G such that for r-nice graphs G, the random variables are r-admissible with sufficiently high
probability and moreover, if G is drawn from an O(Dr/n)-spread distribution, then the resulting distribution
on (r+1)-nice graphs is O(Dr+1/n)-spread. As in the previous subsection, we consider r ∈ Zg0 and a DG-regular
bipartite graph G = (A,B,E) with |A| = |B| = n and DG g N0, which is r-nice (Theorem 8) with respect to the
sequence Dr in the statement of Theorem 9. For v ∈ A ∪B, consider the following events:

• R1(v) denotes the event that for some i ∈ [S], v does not satisfy (R1) in Theorem 10.

• R2(v) denotes the event that for some i ∈ [S], v does not satisfy (R2) in Theorem 10.

Let PG denote the product distribution on {π(e), ξ(e)}e∈G, where each π(e) is distributed uniformly in [S] and
each ξ(e) ∼ Bernoulli(qr). We define the probability distribution PG on {π(e), ξ(e)}e∈G to be the conditional
distribution

PG := PG

[

· | (∩v∈V (G)R1(v)
c)
⋂

(∩v∈V (G)R2(v)
c)
]

.

Using the Chernoff bound (Theorem 7) and Theorem 6, we show that with very high probability, a sample
from PG satisfies all properties of admissibility except possibly (E2).

Lemma 13. Let r and G be as above. With probability at least 1−exp(−n), a random realisation of {π(e), ξ(e)}e∈G

drawn from the distribution PG satisfies all properties in Theorem 10, except possibly (E2).

Proof. Note that (R1) and (R2) are always satisfied by construction. In order to control the probability that
at least one of (E1), (E3), (E4) fails, we will use Theorem 6. To this end, we begin by observing that a direct
application of the Chernoff bound (Theorem 7) and union bound shows that for all v ∈ V (G) and j ∈ [γ],

max (PG[R1(v)],PG[R2(v)]) f D−20
r ;(3.3)
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For the collection of events {R1(v),R2(v)}v∈V (G) and the product measure PG on {π(e), ξ(e)}e∈G, it is easily
verified that a dependency graph Γ (in the sense of Theorem 5) is given by G itself, so that the condition in
Theorem 6 is satisfied. By the Chernoff bound (Theorem 7) and Theorem 12, for any A′ ¦ A,B′ ¦ B satisfying
either |B′| g |A′| g 4n/5 or 4n/5 g |A′| g n/S and n− |B′| < 1.01|A′|, we have for any i ∈ [S] that

PG







∣∣∣EH+

i
(A′, B′)

∣∣∣ < (9/10) · EG(A
′, B′)qr/S

︸ ︷︷ ︸
E1(A′,B′,i)


 f exp

(
−
EG(A

′, B′)qr
200S

)
f exp

(
−
DG|A

′|qr
20000S

)
.

Since there are 4n events of the form R1(v) or R2(v), it follows from Theorem 6 that

P
′
G[E1(A

′, B′, i)] f exp

(
−
DG|A

′|qr
20000S

)
exp

(
24nD−20

r

)
f exp

(
−
DG|A

′|qr
40000S

)
f exp

(
−D3/4

r |A′|
)
,

so that a union bound over the relevant choices of A′, B′ and i (together with the case where the roles of A′ and
B′ are interchanged) shows that

PG[(E1) fails] f exp(−nD1/2
r ).

Since G is r-nice, we have by (N2) that for all A′ ¦ A,B′ ¦ B with |B′| g |A′| > n/S and n−|B′| = 1.01|A′|,

|EG(A
′, B \B′)| f exp(1 + δr−1)DG|A

′|max

(
1

3
,
n− |B′|

n

)

︸ ︷︷ ︸
β′

.

Therefore, by the Chernoff bound (Theorem 7),

PG [|EHi
(A′, B \B′)| > exp(1 + 10qr + δr−1)DG|A

′|β′/S] f exp

(
−
q2rDG|A

′|β′

S

)
f exp

(
−D5/8

r |A′|
)
,

so once again, using Theorem 6 and the union bound over relevant choices of A′, B′, i (together with the case
where the roles of A′ and B′ are interchanged) shows that

PG[(E3) fails] f exp(−nD1/2
r ).

A similar computation shows that

PG[(E4) fails] f exp(−nD1/2
r ).

It remains to show that the probability that (E2) is violated by a sample from PG is sufficiently small. While
this is not necessarily true for all r-nice graphs G, we show in the key Theorem 15 that if G is drawn from an
O(Dr/n)-spread distribution over r-nice graphs, then with very high probability over the choice of G, PG does
have this property.

Definition 14. (r-excellence) For r ∈ Zg0, we say that a bipartite graph G = (A,B,E) with |A| = |B| = n
is r-excellent if G is r-nice and moreover, the probability that a random realisation {π(e), ξ(e)}e∈G sampled from
PG is r-admissible is at least 1− n−50.

For r ∈ Zg0 and a regular bipartite graph G = (A,B,E) with |A| = |B| = n and degree D0, we say that a
decomposition P of E(G) is r-excellent if |P| = D0/Dr(= Sr) and every G ∈ P is r-excellent.

Proposition 15. For any C > 0, there exist N0 and S such that the following holds. With notation as above, let
Gr be a probability distribution supported on r-nice bipartite graphs with vertex sets (A,B) of size |A| = |B| = n.
If Gr is C ·Dr/n-spread, where Dr g N0, then the probability that G ∼ Gr is r-excellent is at least 1− n−50.
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Proof. By Theorem 13, it suffices to show that with probability at least 1− n−200, the collection {π(e), ξ(e)}e∈G

sampled from the measure Gr×PG (i.e. first sample G from Gr and then sample {π(e), ξ(e)}e∈G from PG) satisfies
(E2). If (E2) fails, then there exists i ∈ [S] and A′ ¦ A,B′ ¦ B with |A′| f n/S and |B′| = 1.01|A′| (or A′, B′

with their roles switched) such that
∣∣∣EH+

i
(A′, B′)

∣∣∣ >
DGqr
2S

|A′| >
Drqr
4S

|A′|.

Let T denote the collection of all subgraphs T = (A′, B′, E(T )) of Kn,n with |A′| f n/S, |B′| = 1.01|A′|, and
|E(T )| = Drqr|A

′|/4S. For fixed i ∈ [S] and any T ∈ T , note that given an r-nice G § T , the event T ¦ H+
i

shares variables with at most 4|E(T )| events of the form R1(v),R2(v). Therefore, using the spreadness of Gr,
eq. (3.3), and Theorem 6, we have that

(Gr × PG) [T ¦ H+
i ] = Gr[T ¦ G] · PG[T ¦ H+

i | T ¦ G]

f

(
CDr

n

)|E(T )|

· PG[T ¦ H+
i | T ¦ G] · e4|E(T )|D−20

r

f

(
e4D

−20
r CDr

n

)|E(T )|

·
(qr
S

)|E(T )|

f

(
2CqrDr

nS

)|E(T )|

.

Therefore, by the union bound, and assuming that Dr g N0 g 220S2 and S is sufficiently large compared to C,
it follows that

(Gr × PG)

[
⋃

T∈T

{T ¦ H+
i }

]
f
∑

T∈T

(
2CqrDr

nS

)|E(T )|

f

n/S∑

k=1

(
n

k

)(
n

1.01k

)(
1.01k2

Drqrk/4S

)
·

(
2CqrDr

nS

)Drqrk/4S

f

n/S∑

k=1

(
4n

k

)2k

·

(
100Ck

n

)Drqrk/4S

f

n/S∑

k=1

(
100Ck

n

)Drqrk/8S

f n−400.

3.4 Putting everything together Finally, we combine everything to show how to construct an O(Dr+1/n)-
spread distribution on (r + 1)-nice decompositions, starting with an O(Dr/n)-spread distribution on r-nice
decompositions. As discussed earlier, this completes the proof of Theorem 9. Inductively, the following proposition
establishes a probability distribution Pr on decompositions Pr of E(G) which is ε−1 exp(

∑
r′<r 5Sqr′)Dr/n-

spread. Note that, for N0 sufficiently large,
∑

r′<r qr < 1/(100S) whenever Dr g N0 g 220S10 and thus Pr is
2ε−1Dr/n-spread for any such r.

Proposition 16. With notation as in the statement of Theorem 9, let Pr denote a probability distribution
supported on r-nice decompositions of E(G), and let Pr+1 be the distribution on (r + 1)-nice decompositions
of E(G) defined as follows: first sample P from the conditional distribution Pr | r -excellent, then sample
{π(e), ξ(e)}e∈G from the conditional distribution PG | r -admissible for each G ∈ P, and finally use the procedure
in Theorem 11. For any C f 2ε−1, if Pr is C ·Dr/n-spread, then Pr+1 is C · e5Sqr ·Dr+1/n-spread.

Proof. Let Pr = (G1, . . . ,GSr ). DGi
= exp(±δr−1) · Dr. Since Pr is C · Dr/n-spread, the same holds by

marginalization for each of the distributions G1, . . . ,GSr . Therefore, by Theorem 15 and the union bound, the
probability that Pr drawn from Pr is r-excellent is at least 1 − n−49; in particular, the conditional distribution
P̃r := Pr | r-excellent is spread with parameter at most (1− n−49)−1 · C ·Dr/n f eqrCDr/n.

Recall that Pr+1 = (Gi,j)i∈[Sr],j∈[S] is obtained by first sampling (G1, . . . ,GSr ) from P̃r and then
decomposing Gi into Gi,1 ∪ · · · ∪ Gi,S , independently for each i ∈ [Sr], by sampling {π(e), ξ(e)}e∈Gi

from

P̃Gi
:= PGi

| r -admissible and using the procedure in Theorem 11. Let {Ti,j}i∈[Sr],j∈[S] be disjoint subsets of
E(G). For i ∈ [Sr], let Ti =

⋃
j∈[S] Ti,j . Let I ¦ [Sr] denote the subset of indices i for which Ti ̸= ∅. Then,

Pr




⋂

i∈[Sr],j∈[S]

{Ti,j ¦ Gi,j}


 = Pr




⋂

i∈I,j∈[S]

{Ti,j ¦ Gi,j} |
⋂

i∈I

{Ti ¦ Gi}


 · Pr

[
⋂

i∈I

{Ti ¦ Gi}

]
.(3.4)
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For the second term in the product, using the spreadness of P̃r, we have

(3.5) Pr

[
⋂

i∈I

{Ti ¦ Gi}

]
f

(
eqrCDr

n

)∑
i |Ti|

.

For the first term in the product, we have the upper bound

∏

i∈I

P̃Gi
[∩j∈[S]Ti,j ¦ Gi,j | Ti ¦ Gi] f (1− n−50)−|I| ·

∏

i∈I

PGi
[∩j∈[S]Ti,j ¦ Gi,j | Ti ¦ Gi],(3.6)

where we have used that each Gi is supported on r-excellent graphs. Recalling that for j ∈ [S], Gi,j is always
contained in Hj ∪H+, we can upper bound the ith term in the product by

PGi
[∩j∈[S] ∩e∈Ti,j

{(π(e) = j) ∪ (ξ(e) = 1)} | Ti ¦ Gi]

f e20|Ti|D
−20
r

(
1

S
+ qr

)|Ti|

f

(
e3Sqr

S

)|Ti|

,(3.7)

where in the first inequality, we use Theorem 6 and eq. (3.3). Combining eqs. (3.4) to (3.7), we have that

Pr




⋂

i∈[Sr],j∈[S]

{Ti,j ¦ Gi,j}


 f

(
eqrCDr

n

)∑
i |Ti|

·

(
e3Sqr

S

)∑
i |Ti|

· (1− n−50)−|I|

f

(
e5SqrCDr

nS

)∑
i |Ti|

f

(
e5SqrCDr+1

n

)∑
i,j |Ti,j |

,

as desired.
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