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Abstract—Distributed computing has attracted significant
recent attention for speeding up large-scale computations by
disseminating computational jobs from a central master node
across several worker nodes/servers. However, worker nodes are
often untrusted and can also collude to gain unauthorized access to
sensitive data. Hence, sharing sensitive data with them raises data
privacy concerns. Coded computing has emerged as a promising
framework for speeding up distributed computing and can be
also adapted to address security and privacy concerns utilizing
tools from secret sharing and multi-party computing. However,
ensuring perfect information-theoretic privacy imposes a strict
threshold on the maximum number of colluding workers the
protocol can tolerate and, also, necessitates quantizing/mapping
data to finite fields. Differential privacy is a widely accepted
practical measure to capture the privacy leakage of the shared
data. The mainstream approach is then to add perturbations to
the data via randomized mechanisms. In this paper, we revisit
coded computing, and especially when it is adapted to handle real-
valued data, and analyze the privacy guarantees through the lens
of differential privacy in terms of the (ϵ, δ)-differential privacy
metric, for the first time in the literature. All the computations
are done over the field of real/complex numbers and data privacy,
in terms of differential privacy, is attained by adding noise
terms in a certain structured way. In particular, the noise is
added through the secret sharing mechanism (which can be, in
principle, decoded and cancelled out at the master) as means
of ensuring differential privacy. Furthermore, we propose a
differentially private distributed matrix multiplication protocol
for matrix multiplications that keeps the privacy of data in the
worst adversarial case.

I. INTRODUCTION

Distributed computation on large-scale data has received
significant attention for modern and emerging computational
paradigms [1]–[3]. In general, distributed computing is much
more susceptible to adversarial attacks, compared to centralized
ones, which necessitates addressing the critical issues of
security and privacy in such systems [4]–[6]. Specifically, the
dataset held by the central master node may contain highly
sensitive information, such as financial transactions, personal
medical records, biometrical data, etc. During the computation,
some workers may collude with others to gain unauthorized
access to the data. Hence, one of the major challenges is to
utilize the computational power of the workers while preserving
data privacy, in such a way that (almost) no information is
revealed to the workers or certain subsets of the colluding
workers, often up to a threshold in size.

Coded computing has emerged as a promising framework
for speeding up distributed computing in the presence of
straggler workers [1], [7]–[9] and can be also adapted to
utilize a wide range of coding mechanisms [10]–[14] and

to address security and privacy concerns utilizing tools from
secret sharing and multi-party computing [15]–[24]. In these
protocols, in order to achieve perfect privacy guarantees, the
data symbols are assumed to be elements of a finite field.
However, this often leads to accuracy losses due to the fixed-
point representation of the data and may lead to computation
overflows. In particular, this becomes a major barrier to the
scalability of such protocols with respect to the dataset size.
Furthermore, perfect information-theoretic privacy/security, i.e.,
with absolutely no leakage, cannot be guaranteed in the analog
domain of real/complex numbers. Hence, adapting the coded
computing protocols to the analog domain necessitates careful
characterization of privacy leakage which is often lacking in
the literature.

In [25]–[27], a framework is provided to construct the
counterpart of Shamir’s secret sharing scheme [28] in the analog
domain, i.e., in the real/complex numbers, and to leverage it
to deploy coded computing protocols over analog data. In this
work, we analyze the privacy guarantees of such protocols
through the lens of differential privacy by viewing the process
of adding noise terms to the data/secret, as part of the analog
Shamir secret sharing, as a randomized mechanism that can
be utilized to as provide differential privacy guarantees. Note
that the noise terms added during the secret sharing encoding
process will be decoded and cancelled out later during the
decoding process at the master node. This is done up to a
certain accuracy loss in practical floating-point implementations.
Roughly speaking, the magnitude of such an accuracy loss
is directly related to the variance of noise terms. Therefore,
a fundamental trade-off between the privacy guarantees of
the protocol in terms of the (ϵ, δ)-differential privacy and the
accuracy of outcome in a practical setting, assuming floating-
point operations, is observed and characterized.

Differential privacy [29], [30] is a formal mathematical
notion of privacy that provides a statistical characterization of
protection against strong adversaries. Note that differential
privacy is a worst-case notion of privacy, while several
other notions, such as those based on mutual information or
distinguishability (based on total variation distance) are average-
case notions, see, e.g., [31]. Therefore, in a sense, differential
privacy is considered to be a stronger notion compared to
the average-case notions. The standard approach to achieving
differential privacy guarantees is through perturbing the original
data by introducing random noises generated according to a
certain distribution. The key aspect of differential privacy is
that the presence or absence of any individual symbol in the



data does not noticeably affect the final released statistical
information. Differential privacy has been widely considered as
one of the primary notions of data privacy in machine learning
algorithms that enable training models over distributed data in
a privacy-preserving fashion [32]–[35].

In this paper, we revisit coded computing, and especially
when it is adapted to handle real-valued data [25], [26],
and establish privacy guarantees in terms of (ϵ, δ)-differential
privacy metric in the worst adversarial case. Furthermore, we
propose a differentially private distributed computing protocol
for matrix multiplication with privacy-preserving guarantees,
also in the worst adversarial case. The proposed protocol
allows multiplication between shares while maintaining the
degree of the underlying polynomial, which relates to the
tolerated threshold T on the number of colluding workers, by
leveraging the so-called Beaver triples [36]. Specifically, our
protocol enables performing multiplications between shares
with T = N − 1, where N is the number of workers, which is
the worst adversarial case, under the (ϵ, δ)-differential privacy
guarantees.

The rest of the paper is structured as follows. In Section II,
we present the protocol and analyze its accuracy. In Section III,
the privacy guarantees of the protocol are characterized in terms
of differential privacy measures. In Section IV, the protocol
for multiplications between shares is proposed. Finally, we
conclude the paper in Section V.

II. SYSTEM MODEL AND THE PROPOSED PROTOCOL

Consider a centralized setting with a master and N workers
indexed by [N ] = {1, 2, . . . , N}. The protocol is executed
in a synchronous environment with point-to-point secure
communication channels between the master and workers. A
data symbol s is referred to as a secret/data. We denote the
computation on a data symbol by a P -degree polynomial
as f(s) =

∑︁P
i=0 fis

i, which needs to be computed by the
computation power of the N workers, and the data should
remain private assuming there are T workers colluding, for
some T < N , trying to infer the data. All workers are honest-
but-curious, which means that they strictly follow the protocol,
but the colluding workers would attempt to infer information
about the data from the master. Note that collusion of T + 1
or more workers may fully reveal the data. We summarize the
problem setting in Fig. 1.

The master randomly generates a polynomial S(x) for
sharing the data s ∈ R, where S(0) = s and deg(S(x)) = T ,
such that

S(x) = s+

T∑︂
k=1

xknk, (1)

where nk ∈ R’s are noises sampled from i.i.d. Gaussian
distribution N (0, σ2

s). We resample
∑︁T

k=1 x
knk by randomly

generating nk’s, until both Real(
∑︁T

k=1 x
knk), as the real part

of
∑︁T

k=1 x
knk, and Imag(

∑︁T
k=1 x

knk), as the imaginary part
of

∑︁T
k=1 x

knk, are within the range of [−t, t], for some t ∈ R+.
The shares for the workers are given based on the publicly
known complex-valued evaluation points ω1, . . . , ωN , where

!

!

Fig. 1: Problem setting

ωi = exp(j 2πi
N ) for j2 = −1, such that the i-th worker receives

a share as S(ωi), for all i ∈ [N ]. For simplicity, we denote
S(ωi) by [s]i ∈ C, and regard the secret sharing as applying a
randomized mechanism Mi on the data s, which we referred
to as the secret sharing mechanism, such that [s]i = Mi(s),
for i ∈ [N ]. Thus, we formulate the polynomial as follows:

S(ωi) = [s]i = Mi(s) = s+

T∑︂
k=1

ωk
i nk = s+ ñi, (2)

where ñi =
∑︁T

k=1 ω
k
i nk, for i ∈ [N ]. We resample ñi by

randomly generating nk’s, until both Real(ñi), as the real part
of ñi, and Imag(ñi), as the imaginary part of ñi, are within
the range of [−t, t], for i ∈ [N ] and t ∈ R+. The truncated
Gaussian distribution with zero mean, variance of σ2, and a
resampling parameter t is denoted by T N (0, σ2; [−t, t]) and
its pdf is given as

pÑ (y) =
ϕ(y)

2Φ( t
σ )− 1

· I[−t,t](y), (3)

where ϕ(y) is the pdf for N (0, σ2
s), I[−t,t](y) is an indicator

function that I[−t,t](y) = 1 for y ∈ [−t, t], and I[−t,t](y) = 0
otherwise. The following lemma shows the distribution of ñi,
for i ∈ [N ].

Lemma 1. The distribution of the combined noise ñi is
T N (0, σ2; [−t, t]), for i ∈ [N ], where σ2 =

∑︁T
k=1|ωk

i |2σ2
s .

The system of equations can be written as

[[s]1, . . . , [s]N ]⊤ = G[s, n1, . . . , nT ]
⊤, (4)

where G is the Vandermonde matrix associated with ωi’s as

G =

⎡⎢⎣1 ω1 · · · ωT
1

...
...

. . .
...

1 ωN · · · ωT
N

⎤⎥⎦. (5)

The i-th worker computes f([s]i) and then returns the
result to the master, for i ∈ [N ]. The master then re-
covers f(s) = f(S(0)) based on the received results



f([s]1), . . . , f([s]N ). We have f([s]i) = f(s) + a1ωi +
· · · + aPTω

PT
i = [1, ωi, . . . , ω

PT
i ]a, for i ∈ [N ], where

a = [f(s), a1, . . . , aPT ]
⊤ is the coefficients of f(S(x)). Note

that the degree of f(S(x)) is PT since deg(f(s)) = P and
deg(S(x)) = T . Thus, we can formulate a system of linear
equations as

[f([s]1), . . . , f([s]N )]⊤ = G̃a, (6)

where

G̃ =

⎡⎢⎣1 ω1 · · · ωPT
1

...
...

. . .
...

1 ωN · · · ωPT
N

⎤⎥⎦. (7)

To guarantee a successful interpolation of f(S(x)) that
deg(f(S(x))) = PT , we require N ≥ PT +1. For the rest of
this section, we assume that N = PT +1, i.e., all computation
results for all workers should be returned to the master. To
recover the result, the master does not need to recover the
entire entries in a but only interests in the first entry, i.e.,
f(s). Therefore, we need only the first row of G̃

−1
, which

we denote it by g̃. To recover the computation result f(s), the
master only needs to compute g̃[f([s]1), . . . , f([s]N )]⊤. It is
worth noting that, since ωi’s are fixed for all i ∈ [N ], we only
need to compute g̃ once, then store it at the master for each
recovery.

In [26], it is shown that the perturbation of the computations
is bounded. Theoretically, if all computations are done under
infinite precision, the outcome f(s) would be computed
accurately. However, data is represented by a finite number
of bits in practice, either in fixed-point or floating-point. In
floating-point representation, there are two parts, referred to
fixed-precision part and the exponent part. It is assumed that
the computations performed by the workers do not impose any
errors other than precision loss due to the finite representation.

III. ANALYSIS OF DIFFERENTIAL PRIVACY

In this section, we provide a preliminary of differential
privacy. Then, we provide the definitions of differential privacy
for the protocol and characterize the noise variance required
in the protocol in order to satisfy the desired privacy level.

A. Overview of Differential Privacy

We provide the formal definition of (ϵ, δ)-differential privacy.
Then, we analyze the privacy loss function.

Definition 1 ((ϵ, δ)-differential privacy). Let D and D′ be two
neighboring datasets, where D,D′ ∈ D, that only differ by a
single record, i.e., dist(D,D′) = 1. Then D and D′ satisfy
(ϵ, δ)-differential privacy for any ϵ > 0 and δ ∈ [0, 1] under
a randomized mechanism M provided that under any event
E ⊆ Range(M), we have

P[M(D) ∈ E ] ≤ eϵ · P[M(D′) ∈ E ] + δ, (8)

where δ is reffered to as the failure probability.

The sensitivity for a query function f(·) is the largest
difference between the actual outcome and the perturbed output.

Definition 2 (l2 sensitivity). For two neighboring datasets D
and D′ together with a query function f : D → R, the l2
sensitivity is defined as follows:

∆
def
= max

dist(D,D′)=1
||f(D)− f(D′)||2. (9)

The Gaussian mechanism is defined as follows.

Definition 3 (Gaussian mechanism). Consider a query function
f to be applied to a dataset D. Then the Gaussian mechanism
M is defined as

M(D)
def
= f(D) +N (0, σ2),

which adds random noise to the query result according to a
zero-mean Gaussian distribution with variance σ2.

Analysis of Privacy Loss: Consider two neighboring datasets
D and D′ and a function f . For a randomized mechanism
M, the probability density function (pdf) corresponding to the
datasets D and D′ are denoted as pM(D)(y) and pM(D′)(y),
respectively. Let

lM,D,D′(y)
def
= ln[

pM(D)(y)

pM(D′)(y)
], (10)

which is referred to as the privacy loss function, and,
LM,D,D′ = lM,D,D′(Y ), is referred to the privacy loss
random variable. Then, the (ϵ, δ)-differential privacy implies
P[LM,D,D′ ≤ ϵ] ≥ 1− δ. Consider the case where f(D) = 0
and f(D′) = ∆, we have

pM(D)(y) =
1√
2πσ2

e−
y2

2σ2 , (11)

and
pM(D′)(y) =

1√
2πσ2

e−
(y−∆)2

2σ2 . (12)

Note that although the ratio of probabilities is always positive,
the result after taking the logarithm may become negative.
Thus, typically, the absolute value of the privacy loss function
is considered as

|lM,D,D′(y)| = |ln( e(−1/2σ2)y2

e(−1/2σ2)(y−∆)2
)| = | 1

2σ2 (2y∆−∆2)|.
(13)

By the definition in (8), one needs

| 1

2σ2
(2y∆−∆2)| < ϵ (14)

with probability at least 1− δ to guarantee (ϵ, δ)-differential
privacy.

B. Differential Privacy Analysis of the Protocol

Now we analyze the differential privacy of the protocol. Note
that the analysis of differential privacy build upon the worst
adversarial case of worker collusion, i.e., T = N − 1. Fur-
thermore, we extend the analysis to matrices for more general
consideration, i.e., the master has a dataset S ∈ Rm×n, and
its share to the i-th worker becomes [S]i = S+

∑︁T
k=1 ω

k
i Nk,

for i ∈ [N ], where Nk ∈ Rm×n.



Definition 4 (Differential privacy). Given a randomized
mechanism Mi : Rm×n → Cm×n, for i ∈ [N ]. A protocol
is (ϵ, δ)-differentially private, if for the neighboring datasets
S,S′ ∈ Rm×n, where dist(S,S′) = 1, and T ⊂ Cm×n,

P(Mi(S) ∈ T ) ≤ eϵ · P(Mi(S
′) ∈ T ) + δ. (15)

Note that the randomized mechanism Mi is the secret sharing
mechanism for the master sharing its dataset to the i-th worker
as Mi(S) = [S]i = S+

∑︁T
k=1 ω

k
i Nk, for i ∈ [N ]. Then, we

define the sensitivity of the protocol.

Definition 5 (Sensitivity). Let S and S′ denote two neighboring
datasets, where S,S′ ∈ Rm×n, such that dist(S,S′) = 1. We
define the sensitivity of the datasets as

∆ = max
dist(S,S′)=1

||S− S′||F . (16)

We formulate the absolute value of the privacy loss function
for scalar-valued computations in the following lemma.

Lemma 2. Consider a pair of neighboring datasets D,D′ ∈ R
in the protocol, where D = D′ −∆. Then the absolute value
of the privacy loss for i ∈ [N ] is

|lMi,D,D′(y)| = | 1

2σ2
(−2y∆+ (∆)2)| · I[−t+∆,t](y).

In the following theorem, we show that, under a certain
constraint on the neighboring datasets, the problem of designing
the protocol with input datasets in the matrix form being (ϵ, δ)-
differential private can be reduced to the one with scalar-valued
data as the input.

Theorem 3. For a pair of neighboring datasets S and S′, where
S,S′ ∈ Rm×n, the high-dimensional case can be relaxed to
a scalar-valued case if S = S′ +W, where W ∈ Rm×n and
||W||F ≤ ∆.

The result of Theorem 3 implies that we can only con-
sider the scalar-valued computations for satisfying the (ϵ, δ)-
differential privacy. The following theorem characterizes the
(ϵ, δ)-differential privacy for the protocol.

Theorem 4. The protocol is (ϵ, δ)-differentially private if and
only if

1−
Φ(σϵ∆ + ∆

2σ )− Φ(−σϵ
∆ + ∆

2σ )

2Φ( t
σ )− 1

≤ δ, (17)

where σ ∈ (0,
√︂

t·∆
ϵ − ∆2

2ϵ ) and Φ(·) is the cumulative density
function (cdf) for the standard normal distribution.

For the sake of simplifying the derivations in the rest of the
paper, we introduce a variable α where σ = α·∆√

2ϵ
.

Corollary 5. Given ϵ, δ, t,∆, we can simplify (17) by intro-
ducing a variable α which satisfies σ = α·∆√

2ϵ
as follows:

1−
Φ(

√︁
ϵ
2 (α+ 1

α ))− Φ(
√︁

ϵ
2 (−α+ 1

α ))

2Φ( t
√
2ϵ

α·∆ )− 1
≤ δ, (18)

where α ∈ (0,
√︂

2t
∆ − 1).

For simplicity, let the LHS of (18) be denoted by B(α), i.e.,

B(α) = 1−
Φ(

√︁
ϵ
2 (α+ 1

α ))− Φ(
√︁

ϵ
2 (−α+ 1

α ))

2Φ( t
√
2ϵ

α·∆ )− 1
. (19)

The following lemmas demonstrate that B(α) is a non-negative
monotonically decreasing function for α ∈ (0,

√︂
2t
∆ − 1).

Lemma 6. B(α), specified in (19), is a non-negative function.

Lemma 7. B(α), specified in (19), is monotonically decreasing
for α ∈ (0,

√︂
2t
∆ − 1).

Building upon Lemmas 6 and 7, we are now ready to
present the proposed analytical truncated Gaussian mechanism
of choosing the optimal noise for the protocol.

Theorem 8 (Analytical truncated Gaussian mechanism). The
protocol satisfies (ϵ, δ)-differential privacy for σ = α∗·∆√

2ϵ
, where

α∗ is obtained by:

α∗ =argmax
α

B(α)

s.t. 0 ≤ B(α) ≤ δ,

0 < α <

√︃
2t

∆
− 1.

(20)

Theorem 8 characterizes an optimization problem for finding
the optimal noise for satisfying the (ϵ, δ)-differential privacy.
The following theorem demonstrates the detailed steps for
obtaining the value of noise variance.

Theorem 9 (The protocol with differential privacy guarantee
under the analytical truncated Gaussian mechanism). In order
to guarantee (ϵ, δ)-differential privacy for the protocol, it is
sufficient to set the variance of each element in the noise
matrices N1, ...,NT as

σ2
s =

(α∗)2 ·∆2

2ϵT
. (21)

IV. DIFFERENTIALLY PRIVATE MULTIPLICATION TRIPLES
IN THE ANALOG DOMAIN

In this section, we propose a protocol that is capable of
multiplying two shares with both of them having their datasets
embedded in a polynomial at degrees of T = N − 1, which
is the worst adversarial case, while maintaining the degree
of the polynomial at T = N − 1, so that the same privacy
analysis based on the (ϵ, δ)-differential privacy metric could
be recycled. Naturally, if we directly multiply two shares with
degrees at T , the degree of the polynomial increases to 2T .
To ensure a successful recovery at the master, the degree of
polynomial after multiplication cannot exceeds N − 1.

To tackle the issue of the degree of polynomials, [36]
proposed a protocol for a fully decentralized setting, where all
computations are performed as elements of a finite field. The
protocol in [36], however under the setting of a decentralized
system, still requires a third trusted entity in an offline phase
to generate a pair of triple and then shared the triple with all
parties/workers. Inspired by [36], since we naturally have a



trusted entity, i.e., the master itself, we propose a differentially
private protocol for matrix multiplications for computations in
the infinite field as real/complex numbers, while capable of
keeping the setting in the worst adversarial case as T = N −1.
With our proposed protocol for multiplications, we can multiply
any shares even considering the worst adversarial case of an
adversary as T = N − 1 since the protocol does not increase
the degree of the polynomial in the shares. It is known to
reduce communication overhead between the master and the
worker nodes by dividing the process into an offline phase and
an online phase.

A. Offline phase

In the offline phase, the master first generates random
triple A,B,C such that AB = C where A ∈ Rm1×n1 ,
B ∈ Rm2×n2 , and C ∈ Rm1×n2 , for n1 = m2. Note that
the entries of A and B are i.i.d. and chosen according to a
Gaussian distribution N (0, σ2

s). For the entries whose absolute
values exceed t, we resample them until the result is within the
range of [−t, t]. Then, the master secretly shares A, B, and
C to all workers by utilizing the protocol, in such a way that
the i-th worker holds three shares of A, B, and C, denoted
by [A]i, [B]i, and [C]i, for i ∈ [N ], respectively. Note that
this phase does not involve the input data to the protocol, and
that is why it is referred to as the offline phase.

B. Online phase

At the beginning of this phase, the master receives two
input data as matrices U and V, where U ∈ Rm1×n1 and
V ∈ Rm2×n2 . Note that we must have n1 = m2 for the matrix
multiplication. The matrices are then secretly shared with all
workers, thus the i-th worker holds shares [U]i and [V]i, for
i ∈ [N ]. Together with the shares from the offline phase, at
this stage, the i-th worker holds shares [A]i, [B]i, [C]i, [U]i,
and [V]i, for i ∈ [N ].

To proceed the algorithm, we assign two shares [D]i and
[E]i as [D]i = [U]i − [A]i and [E]i = [V]i − [B]i, where
D ∈ Rm1×n1 and E ∈ Rm2×n2 , respectively. Then, both the
matrices [D]i and [E]i are returned to the master. The master
then recover the result of D and E such that D = U−A and
E = V −B, respectively. At this stage, the i-th worker holds
shares of [A]i, [B]i, [C]i, [U]i, [V]i, and public matrices D
and E, for i ∈ [N ].

Next, the i-th worker computes its share of the multiplication,
for i ∈ [N ], denoted by [UV]i, as follows

[UV]i = D[B]i + [A]iE+DE+ [C]i. (22)

In order to decode the desired computation result UV, each
worker returns shares [UV]i, for i ∈ [N ], to the master. By
substituting D = U−A and E = V −B, the master obtains

DB+AE+DE+C

= (U−A)B+ (V −B)E+ (U−A)(V −B) +C

= UV.

At the end of this step, the master successfully recovers the
multiplication result for the two matrices U and V as UV.

Algorithm 1 Differentially private matrix multiplication

Input: Number of workers N , number of colluding workers
T , public parameters ωi’s for i ∈ [N ], the inputs U ∈
Rm1×n1 , V ∈ Rm2×n2 .

Output: UV

Offline stage.
1: Randomly generate matrices A ∈ Rm1×n1 , B ∈ Rm2×n2 ,

where all entries in both A and B are in T N (0, σ2; [−t, t]),
and C ∈ Rm1×n2 given that AB = C. Note that n1 = m2.

2: Secretly shares A,B,C to all workers so that worker i
holds [A]i,[B]i, and [C]i, for i ∈ [N ].
Online stage.

3: The master receives U ∈ Rm1×n1 , V ∈ Rm2×n2 .
4: The master secretly shares the inputs U,V to all workers.

// Worker i holds [U]i, [V]i, [A]i, [B]i, [C]i, for i ∈ [N ].
5: Worker i locally computes [D]i = [U]i − [A]i and [E]i =

[V]i − [B]i, for i ∈ [N ].
6: Worker i send the shares of [D]i and [E]i to the master,

for i ∈ [N ].
7: The master recovers D and E. Then the master shares D

and E publicly with all workers.
// Worker i now holds D,E, [A]i, [B]i, [C]i, for i ∈ [N ].

8: Worker i computes [UV]i = D[B]i+[A]iE+DE+[C]i,
for i ∈ [N ].

9: Worker i sends the share [UV]i to the master, for i ∈ [N ].

10: The master recovers UV based on [UV]i’s, for i ∈ [N ].

Note that for each multiplication between a pair of shares, we
must use new pair of triples. We summarize the differentially
private matrix multiplication in Algorithm 1.

Remark 1. Note that in the online stage for the multiplication
triple, the publicly revealed parameters D and E involve the
input data matrices U and V. Therefore, there is some privacy
leakage as the result of this particular step that needs to be
carefully characterized. Since we randomly generate the entries
of A and B according to T N (0, σ2; [−t, t]), the entries in D
and E are, in a sense from the privacy-preserving perspective,
in the same form as the shares specified in (2). Therefore, the
same privacy analysis could be recycled for the protocol of
differentially private matrix multiplication.

V. CONCLUSION

In this paper, we revisit coded computing under the compu-
tation of real-valued data, and analyze the privacy guarantees
in terms of the (ϵ, δ)-differential privacy metric. All the
computations are done over the field of real/complex numbers.
Data privacy, in terms of differential privacy, is attained by
adding noise terms through the secret sharing mechanism as
means of ensuring differential privacy. Furthermore, we propose
a differentially private distributed matrix multiplication protocol
for matrix multiplications that keeps the privacy of data in the
worst adversarial case.
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