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A B S T R A C T   

Synthetic magnetic resonance imaging (MRI) offers a scanning paradigm where a fast multi-contrast sequence 
can be used to estimate underlying quantitative tissue parameter maps, which are then used to synthesize any 
desirable clinical contrast by retrospectively changing scan parameters in silico. Two benefits of this approach 
are the reduced exam time and the ability to generate arbitrary contrasts offline. However, synthetically 
generated contrasts are known to deviate from the contrast of experimental scans. The reason for contrast 
mismatch is the necessary exclusion of some unmodeled physical effects such as partial voluming, diffusion, flow, 
susceptibility, magnetization transfer, and more. The inclusion of these effects in signal encoding would improve 
the synthetic images, but would make the quantitative imaging protocol impractical due to long scan times. 
Therefore, in this work, we propose a novel deep learning approach that generates a multiplicative correction 
term to capture unmodeled effects and correct the synthetic contrast images to better match experimental 
contrasts for arbitrary scan parameters. The physics inspired deep learning model implicitly accounts for some 
unmodeled physical effects occurring during the scan. As a proof of principle, we validate our approach on 
synthesizing arbitrary inversion recovery fast spin-echo scans using a commercially available 2D multi-contrast 
sequence. We observe that the proposed correction visually and numerically reduces the mismatch with 
experimentally collected contrasts compared to conventional synthetic MRI. Finally, we show results of a pre
liminary reader study and find that the proposed method statistically significantly improves in contrast and SNR 
as compared to synthetic MR images.   

1. Introduction 

Magnetic resonance imaging (MRI) is an important non-invasive 
clinical imaging modality that does not use ionizing radiation. A big 
benefit of MRI is its ability to capture a multitude of tissue contrasts by 
changing the acquisition parameters, providing complementary infor
mation to characterize and assess pathology. A typical clinical MRI 
protocol consists of multiple independent scans, contributing to an 
overall lengthy exam [1]. Long exams lead to high associated costs for 
patients and also reduce the overall throughput of the scanner. More
over, it is difficult for patients (especially pediatric and elderly) to hold 
still for a long scanning period, hence making the images susceptible to 
motion-induced artifacts [2]. Even when the scans are artifact-free, the 
contrast weightings represent a qualitative signal intensity that must be 

visually inspected and reported on by a clinical radiologist, and thus 
only qualitative signal abnormalities can be reported. 

Recently there has been substantial interest in extracting quantita
tive information from MRI in addition to conventional qualitative im
ages [3,4]. In quantitative MRI, biophysical tissue and system 
parameters are estimated using specialized multi-contrast acquisitions 
that acquire the MRI signal at multiple contrast points. While conven
tional quantitative imaging is slow in nature, recent work has led to fast 
and comprehensive multi-contrast scans [3–6]. After tissue quantifica
tion, arbitrary contrasts can be synthetically created by evaluating the 
MRI signal equation for a retrospectively chosen set of scan parameters 
in silico. A large body of work has focused on accurate quantification of 
T1, T2, and proton density (PD) maps [4,7]. System imperfections 
including magnetic and radio-frequency (RF) field inhomogeneities 
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have also been incorporated [3,8]. However, the underlying MRI physics 
are more nuanced and have many confounding parameters that 
contribute to the final image contrast, including magnetization transfer, 
partial voluming, diffusion, and susceptibility, to name a few. While it is 
possible to extend the quantitative imaging protocol to map these 
additional effects, the scan time can become impractical, and the 
physical modeling can be challenging. As a result, the synthetic contrast 
image often has subtle differences when compared to the image ob
tained from a real acquisition. For example, synthetic T2-FLAIR contrast 
is known to suffer from hyperintense signal artifacts surrounding the 
cerebrospinal fluid (CSF) [9,10], likely due to the over-simplification of 
the MRI signal model. 

To combat contrast-mismatch effects, researchers have recently 
leveraged deep learning to correct these artifacts [11–13]. These 
methods pose contrast correction as a supervised image-to-image 
translation, in which a particular set of experimental contrasts are ac
quired and treated as reference images, and a deep neural network is 
trained to map the incorrect contrast to the experimental contrast. While 
the results are striking, the approaches are limited in that they only 
correct a particular set of contrasts that are collected at training time, 
and therefore they lose the ability to synthesize arbitrary contrast- 
weighted images offline. 

Therefore in this work, we propose a novel physics-enabled deep 
learning method to correct arbitrary contrast-weighted images gener
ated by synthetic MRI. While we also pose the problem as supervised 
image translation, we instead aim to learn the mapping from synthetic 
MRI to experimental contrast as a function of scan parameters. Moti
vated by the main unmodeled effects in fast spin-echo (FSE) imaging, 
our proposed method generates a spatially dependent multiplicative 
correction term and a scaled apparent longitudinal relaxation time (T1). 
We provide several different experimental contrast-weighted images as 
training samples so that our network implicitly learns the relationship 
between scan parameters and the physical effects that are not captured 
by the simplified signal equation. We accomplish this using a condi
tional generative adversarial network (cGAN) framework complimented 
with perceptual loss from a separate pre-trained network [14–16]. To 
incorporate scan parameters, we include quantitative maps and syn
thetic contrast images along with scan parameters as additional chan
nels for the generator network. While we demonstrate our approach for 
a specific multi-contrast sequence available on our scanner, we 
emphasize that the framework could be used for other sequences such as 
magnetic resonance fingerprinting (MRF) [3]. 

The main contributions of our paper are as follows: i) we propose a 
novel deep learning method that explicitly incorporates the scan pa
rameters to correct arbitrary synthetic MRI contrast-weighted images 
derived from a multi-contrast sequence; ii) we show how such models 
can be trained using a 2D multi-contrast sequence as proof of principle, 
so that the pipeline can be used for other custom multi-contrast se
quences; iii) we evaluate our method on subjects and MRI contrasts that 
were not included in the training set to give evidence that the approach 
implicitly accounts for unmodeled physical effects. The proposed model 
gives better numerical error metrics than the direct and residual 
correction model. We will make our data and implementation available 
publicly upon publication. 

1.1. Related works 

Image-to-image translation has been highly successful in computer 
vision, in which conditional generative models are trained to map from 
one image style to an output image style [14,17]. Analogous to these 
tasks, researchers in medical imaging have also proposed image-to- 
image translation models; for example, computed tomography (CT) to 
MRI [18], positron emission tomography (PET) to CT [19], medical 
image segmentation [20], low-to-high gadolinium dose contrast- 
enhanced brain MRI [15], etc. Specifically in MRI, translating from 
one MRI contrast-weighted image to another contrast-weighted image is 

a well investigated problem. Authors in [16] propose multi-contrast 
synthesis through cGANs and demonstrate the applicability by trans
lating from T1-weighted to T2-weighted images and vice versa. A multi- 
stream approach was also proposed to join information from one-to-one 
and many-to-one translation streams using a fusion block [21]. The 
work in [22] proposes MRI motion correction through cGANs by 
translating from motion-corrupted to motion-free images by incorpo
rating FSE acquisition dynamics. Authors in [23] proposed a multi- 
input, multi-output GAN network to generate missing MRI sequences 
using the redundant information from other available sequences. The 
work in [24] proposed a hybrid-fusion network to generate target MRI 
contrasts from source images. The overall network consisted of two 
small sub-networks, the first network to learn representations from each 
input modality and the second network to fuse the common latent rep
resentation and synthesize target images. The authors in [25], proposed 
an edge-aware network that captures the textural details of MR images 
to improve the overall final image quality in cross-modality MR syn
thesis. A novel method to generate 3D brain MRI from learned repre
sentations using variational auto-encoder and GAN was proposed in 
[26] that generates high-quality image data from limited training data. 
Authors in [27] applied the cGAN framework to reconstruct patient 
faces from anonymized T1 sagittal slices using unsupervised training 
and were able to recover patient information from both face blurred and 
face removed data. Similarly, work in [28] showed the multimodal 
image synthesis using GANs on glioma patients. Authors in [29] pro
posed DiamondGAN to do non-aligned cross-modality synthesis and 
performed a radiologist evaluation study to show that trained radiolo
gists were not able to differentiate between experimental and synthetic 
MRI images. 

The other MRI translation task frequently considered is to correct the 
synthetic MRI contrast. The authors in [13] looked at direct contrast 
synthesis from a multi-contrast scan using a temporal-convolutional 
network on a per-pixel basis. The work in [11] extended the direct 
contrast synthesis to operate on the whole input image and output the 
desired contrast using cGANs whereas work in [30] presented a con
volutional encoder-decoder network to directly generate multiple 
contrast image from base multi-echo sequence. Authors in [31] pro
posed a deep learning method to improve the T2-FLAIR contrast gen
eration directly from base multi-contrast images. On the same track, the 
work in [12] corrected the synthetic contrasts of T2-FLAIR on a per-pixel 
basis using convolutional neural networks. Similarly, authors in [10] 
used a generative network to translate directly from the echo images of 
the base multi-contrast images to the FLAIR contrasts. The review paper 
[32] discusses the synthetic MRI methods to generate multiple contrast 
images along with some of the limitations in synthetic contrast gener
ation; in particular, they report lower quality in synthetic FLAIR images. 
Common to all these works is the need to collect the ground-truth 
experimental contrasts that are desired, and the restriction to only 
correcting those contrasts. In comparison, our goal is to maintain the 
ability to synthesize contrasts corresponding to arbitrary scan parame
ters. All of the discussed works follow the approximate framework 
shown in Fig. 1 to directly translate from base multi-contrast images to 
final target contrasts, which deviate from the premise of synthetic MRI 
to generate arbitrary contrasts. 

Several clinical validation studies have shown the benefits of syn
thetic MRI, while also highlighting its limitations. In [33], clinicians 
rated all synthetic contrasts to be inferior to the conventional scans 
except T2 weighted images. Prior to that, authors in [34] conducted a 
clinical validation study using the Multi Delay Multi Echo (MDME) 
sequence. It was reported that overall image quality was similar for all 
contrasts except for FLAIR where a conventional scan was still clinically 
necessary. Similarly, work in [35] reported satisfactory image quality 
for all contrasts except T2 FLAIR. The thread of these works is that the 
inversion recovery contrast images were hard to correctly synthesize, 
with implications on their clinical use. 
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2. Methods 

2.1. Synthetic MRI 

The premise of synthetic MRI is to use a multi-contrast sequence to 
estimate underlying tissue and system parameter maps and then 
generate new contrasts in silico. For this work, we specialize our expo
sition to the 2D MDME sequence [4], which is capable of mapping 
proton density (PD), longitudinal (T1), and transverse (T2) relaxation. 
This choice is somewhat arbitrary and only used to illustrate our method 
in the experimental results section, but the core ideas presented are 
expected to work with other base multi-contrast sequences. The MDME 
sequence uses an FSE train at different echo time (TE) points to encode 
T2 information. Additionally, different delay times (TD) are set in be
tween a saturation pulse and an acquisition block, which encodes the T1 
information of a particular slice. The underlying tissue parameters can 
then be estimated using the known signal model, for example through 
dictionary matching [3]. Finally, synthetic contrasts are generated by 
simulating the MRI signal equation (either analytically or algorithmi
cally) for arbitrary scan parameters. The MDME signal after the satu
ration pulse is known to follow the following expression: 

I = PD

[
1 − (1 − cosθ)e

−TD
T1 − cos(θ)e

−TR
T1

1 − cos(θ)cos(γ)e
−TR
T1

]

e
−TE
T2 , (1)  

where PD is the proton density, γ is the RF excitation flip angle, θ is the 
RF saturation flip angle, TD is the delay time, TE is the echo time, and TR 
is the repetition time. The specific protocol settings for the MDME 
sequence are provided in the later part of this section. To estimate 
parameter maps with dictionary fitting, a signal dictionary was created 
by varying the T1 values from 100 to 6000 ms with a step size of 20 ms 
and the T2 values from 10 to 1000 ms with a step size of 2 ms to cover 
relaxation parameters in the brain at 3 Tesla. The signal evolution for the 
dictionary generation was simulated using the Extended Phase Graph 
algorithm [36]. Dictionary matching was performed on the experi
mental signal to evaluate T1, T2, and PD values. 

As a proof of concept, in this work, we restrict our method to syn
thesizing arbitrary inversion recovery spin-echo (IR-SE) contrasts as 
typically these synthetic contrast images are the most susceptible to 
artifacts [9,10,33–35]. The IR-SE contrast sequence can be described by 
{

β1 − TI − β2 − TE
2 − β3 −

(
TR − TI − TE

2
) }

, where typically β1 = β3 =

180◦ and β2 = 90◦. Assuming no RF inhomogeneity, the IR-SE contrast 
can be generated according to [37]. 

I = PD
[

1 − 2e−TI
T1 − e−TR

T1 + 2e−
TR−TE

2
T1

]

e−TE
T2 , (2)  

where the scan parameters are echo time (TE), repetition time (TR) and 
inversion time (TI), and the signal evolution is evaluated for each pixel 
location. Generated example synthetic contrasts are shown in Figs. 4, 5, 
6, and 7 for different inversion times. It can be clearly observed that the 
synthetic contrasts are different than the experimentally acquired 
ground truth contrasts shown in the first column. As the synthetically 
generated and true contrasts differ, in the next section we look at the 
possible unmodeled parameters and propose a deep learning framework 
to correct this mismatch. 

2.2. Unmodeled parameters 

There are many physical effects that are typically unmodeled when 
generating synthetic MR images from PD, T1, and T2 maps. Chief among 
them are RF-field (B1) inhomogeneity, diffusion and flow effects, and 
magnetization transfer (MT). In the following subsections, we briefly 
discuss their main impact on the observed image contrast. 

2.2.1. B1 inhomogeneity 
To flip the magnetization vectors from the steady state longitudinal 

direction, an RF pulse B1 is applied whose strength is dependent upon 
the prescribed angle of rotation. The actual flip angle would not be same 
as the desired angle at all of the locations due to non-linear performance 
of the transmit system components responsible for B1 magnetization. 
When this B1 field inhomogeneity is not corrected, it can lead to errors in 
quantitative MRI parameter estimation [38,39]. If a signal with flip 
angle αf is acquired, its location-dependent intensity would be [40]. 

I(r) = sin
(
αf (r)

)
⋅Mo, (3)  

where Mo is the longitudinal magnetization and αf (r) is location 
dependent due to variation in B1 values based on location. Therefore, 
the outcome of this effect is a multiplicative term. 

2.2.2. Diffusion 
Diffusion weighting is based on the Brownian motion of water mol

ecules in biological tissues, and it provides a powerful tool for investi
gating tissue microstructure and organization. The diffusion rate and 
direction will vary spatially due to differences in cellular membranes, 
tissue boundaries, etc. These can be probed by applying gradients 
separated by a particular delay. The net effect is a reduced magnetiza
tion which is dependent upon location and given as follows [41,42]: 

Meff = Mo⋅e
−t
T2 ⋅e− b→⋅ D→( r→) (4)  

where D→ is the diffusion coefficient that is unique for each spatial 

Fig. 1. Conventional contrast correction using deep neural networks, the objective is to correct a particular contrast of interest or to translate from the base multi 
contrast images to a fixed contrast of interest. 
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location r→. b
→

is a function of magnetic gradients 
(

G→(τ)
)

, the time (̂t)

for which gradients are applied, and the echo time: 

b
→

= γ2
∫ TE

0

( ∫ t̂

0
G→(τ)dτ

)

dt̂, (5)  

where γ is the gyromagnetic ratio. The multi-contrast sequence is likely 
to introduce some diffusion weighting due to gradients, and therefore 
the resulting images will have a spatial multiplicative factor. 

2.2.3. Magnetization transfer 
Magnetization transfer contrast is observed due to the transfer of 

protons in tissue from bound to free water molecules. When multiple 
saturation RF pulses are used, a new equilibrium is reached between the 
bound and free pools, leading to a change in contrast. The net effect is a 
reduced apparent longitudinal relaxation time T*

1 as compared to the 
normal T1 relaxation time. Furthermore, due to MT, the total measur
able MR signal at all voxels is decreased [43,44]. Formally, we can 
represent this as follows: 

T*
1 =

1
R1 + Kfor

, (6)  

where R1( = 1/T1) is the longitudinal relaxation rate without the MT 
effects, and Kfor is the magnetization transfer exchange rate between the 
bound and free pools of hydrogen nuclei. For an equilibrium longitu
dinal magnetization of M0, the effective magnetization due to MT effects 
is as follows: 

Meff =
M0

1 + Kfor⋅T1
. (7) 

As the multi-contrast sequence involves echo trains of RF pulses, the 
sequence will have inherent MT contrast. However, the sequence itself is 
not designed to estimate Kfor. Nonetheless, it can be observed that the 
effect of reduced magnetization is a multiplicative term after generating 
the synthetic contrasts and a decrease in the T1 value for different 
voxels. 

2.2.4. Summary 
In conclusion, the net effect of B1 inhomogeneity, diffusion, and MT 

is a reduced total magnetization and T1 relaxation time. Therefore each 
synthetic contrast will require a different multiplicative term to correct 
for unmodeled effects. The updated system model with multiplicative 
correction term is shown in Fig. 2. To compensate for the reduced T1 
value, we introduce an additional factor α into the synthetic contrast Eq. 
(2) as follows, 

I = PD
[

1 − 2e−α⋅TI
T1 − e−TR

T1 + 2e−
TR−TE

2
T1

]

e−TE
T2 (8) 

Intuitively α < 1 would help in countering the effect of reduced T1 

value and same is also observed in numerical experiments (Section 3.2). 
For this work, we have only included α compensation term when T1 

interacts with inversion time, as the experiments conducted in this work 
only explore the effects of variable TI. 

2.3. Proposed approach 

An overview of the proposed approach is shown in Fig. 2. A deep 

Fig. 2. Proposed contrast correction method. Parameter maps are estimated from the multi-contrast sequence (e.g. MDME echoes) and used to simulate arbitrary 
synthetic contrast images. The input to the neural network is the combination of parameter maps, sequence specifications, and the synthetic image contrast. Due to 
the inclusion of the three inputs, arbitrary contrasts can be corrected. 
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network takes as input the parameter maps (T1, T2, and PD) along with 
the synthetic MRI images and an additional channel with all values 
equal to normalized inversion time. Here the input synthetic image is 
generated using Eq. (8). The aim of the network is to generate the 
multiplicative term (M) and the final image output is Ŷ = M⋅I, where I is 
obtained from Eq. (8). Next, we explain how the network architecture is 
selected along with the loss functions used to train it. 

2.3.1. Network details 
For the purpose of generating the multiplicative correction term 

from the synthetic MRI images and the parameter maps, we employ a 
Conditional GAN (cGAN) with multiple changes. cGANs have already 
been employed in other medical image synthesis and translation tasks 
[15,18–20]. GANs have two main components; a generator (G) and 
discriminator (D). The generator's task is to generate an output contrast 
given a particular set of inputs, whereas the job of discriminator is to 
distinguish whether the output image matches the distribution of 
reference contrast images or not. 

For this work, we use a U-Net [45] as a generator, which has been 
extensively investigated for different medical imaging tasks [11,15]. To 
further inform the generator about the scan parameters, we include an 
additional channel with the same shape as the input image, but with a 
value at all pixels equal to the inversion time normalized by the 
maximum possible inversion time for the underlying anatomy (3000 ms 
in this work). This approach could be used for additional scan 
parameters. 

For the discriminator, we initially explored a multi-layer convolu
tional network as described in [14]. While PatchGAN worked well for 
the application to ImageNet and other datasets, we found that it did not 
work suitably for our application, possibly due to the higher resolution 
of MR images. We decided to use a ResNet-18 model [46] with the 
number of output classes set to one as we found it to be more stable 
during training. The input channels were additionally reduced to two to 
work with the absolute value images and TI channel, making the 
discriminator aware of the TI used in the generator. 

2.3.2. Loss functions 
The network training is performed such that the final contrast- 

weighted images are as close to the reference scans as possible, such 
that the discriminator is not able to distinguish them. Therefore, both 
the generator and the discriminator are trained using an alternating 
optimization approach. The GAN minmax objective is formulated as 
follows: 

min
G

max
D

Obj(D, G) = EY∼pdata(Y)[logD(Y) ]+

Ez∼pz(z)[log(1 − D(I⋅G(I, θ, μ) ) ) ]
(9)  

where E(⋅) is the expectation operator, Y are the reference contrast- 
weighted MR images, and z represents the input set of the generator 
consisting of synthetic MR images (I), parameter maps θ (e.g. T1, T2, and 
PD) and the scan parameters μ (i.e. TI in this work). The output Ŷ = I⋅ 
G(I, θ, μ) tries to match the output distribution to be as close to the 
distribution of experimental contrast images. 

The discriminator is trained with an adversarial loss whose objective 
is given in Eq. (9). The generator is trained with a combination of pixel- 

wise ℓ2-loss (L2 = ‖Y − Ŷ‖
2
2), adversarial loss (Ladv), and a feature 

preserving perceptual loss provided by the ImageNet pretrained VGG-19 
network [47]. The perceptual loss is the ℓ2 distance between the feature 
representations output by the last convolutional layer of the VGG 
network, given as follows [48], 

L p(Y, Ŷ ) =
1

Hi,jWi,j

∑Wi,j

x=1

∑Hi,j

z=1

⃦
⃦ψi,j(Y) − ψi,j(Ŷ )

⃦
⃦2

2 (10)  

where ψ i,j is the activation layer output from jth max pooling layer and ith 

convolution with shape of Hi,j, Wi,j. Therefore the total generator loss 
after the combination of all these loss terms becomes, 

L gen = L2 + λ1Ladv + λ2Lp (11)  

where λ1 and λ2 are hyperparameters which are optimized heuristically 
over the validation set. Fig. 3 shows the overall training framework with 
the combination of different loss functions for the generator and 
discriminator networks. 

2.3.3. Training optimization 
To further improve performance on the proposed task, we make the 

following changes to the training algorithm from [14]. The input syn
thetic MRI images were normalized by the max value before being given 
as input to the network. Different learning rates are employed for the 
generator and discriminator as this was found to help training networks 
with vastly different architectures and training objectives. At each 
round, the discriminator was trained for more epochs compared to the 
generator (20 vs 10). Further, the overall training loop consisted of 20 
epochs. We used weight clipping for the discriminator (0.01), as this is 
similar to the weight clipping proposed for the Wasserstein GAN [49]. 
Following that we also modified the discriminator loss by removing the 
logarithm from the last layer. 

The discriminator was trained with a binary cross entropy loss 
combined with a sigmoid function for numerical stability, as suggested 
by [50]. We used the ADAM optimizer [51] with β set to [0.5, 0.999] 
instead of RMSprop as suggested in [49]. To find the exact numerical 
learning rates and hyperparameters, we tuned them sequentially. First, 
the learning rates for discriminator and generator were heuristically 
determined such that the training loss stabilized and there was no 
observed mode collapse. The exact numerical learning rates for 
discriminator and generator were 0.00005 and 0.0001, respectively. The 
first regularization parameter λ1 was evaluated by linearly varying it 
while keeping λ2 = 0. Once optimal λ1 was tuned, we evaluated λ2 by 
monitoring the adversarial loss. At optimal settings, the discriminator 
should output the same scores for both reference and generated images. 
The exact optimal numerical values found for λ1 and λ2 were 1.0 and 
10.0, respectively. 

2.4. Data acquisition 

Healthy volunteers were recruited for brain MRI with institutional 
review board approval and informed consent. A total of 18 subjects were 
scanned on a Siemens 3 T Vida scanner (Siemens Healthineers, Erlangen, 
Germany) and 16-channel head coil, and 53 slices were acquired per 
subject. Of these, 14 subjects were used for training, one for validation, 
and three subjects for the test set. The central slices for each subject were 
used as these slices corresponded to predominant brain tissue. The 
overall scanning protocol consisted of the MDME sequence and several 
IR-FSE scans with with a fixed TE of 11 ms, TR of 10,180 ms, and 
inversion time between 25 ms and 2500 ms such that the latent physical 
parameters can be learned by the network for all inversion times. The 
acquired multicoil k-space data were reconstructed using the BART 
toolbox [52] and quantitative PD, T1, and T2 maps were estimated using 
Python. The network was implemented using PyTorch and training was 
done using an NVIDIA GeForce RTX 3090 GPU with a batch size of 16. 
Training took approximately 3 h for 20 overall outer epochs, while 
inference took about 2 s per slice. Full scan parameters and relevant 
protocol details are provided in the next section. 

2.5. Protocol settings 

The MDME sequence is acquired with a slice thickness of 3 mm, and a 
field of view (FOV) of 22.8 cm. Further, the slices were acquired in the 
axial direction and 53 slices were acquired per subject. The TE values of 
27 ms, 90 ms and TR value of 7680 ms were used to encode the T2 
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information. Four delay times of 7562 ms, 3504 ms, 1041 ms, and 171 
ms were used in the sequence to encode the T1 information. The con
trasts corresponding to different inversion times were acquired with the 
same FOV and resolution. The repetition and echo time are kept fixed at 
10180 ms and 10 ms respectively. The original acquired k-space matrix 
size was 320 × 288. The duration of MDME sequence was 8 mins 
whereas each individual contrast was about 3 mins long. The individual 
contrast data were acquired with an IR-FSE sequence which was further 
sub-sampled with an acceleration factor of 3.2. 

2.6. Evaluation 

To compare the effect of the multiplicative term, we trained three 
different models to correct the synthetic contrasts. In the residual model, 
the network output is added to the synthetic contrast (i.e M + I). In the 
direct model, the output of the network is the final contrast image. The 
proposed model multiplies the network output with the synthetic 
contrast. We compare both qualitative and quantitative image quality, 
where the latter is evaluated using both structural similarity index 

Fig. 3. The training of the proposed method is based on the conditional generative adversarial network training framework. The generator is trained using back
propagation on the total loss that incorporates pixel-wise L2 loss, adversarial loss provided by the discriminator, and perceptual loss provided by the pre-trained VGG 
network. The discriminator is trained using the adversarial loss, while the VGG network is kept fixed. 

Fig. 4. Comparison of contrast correction using different models. The first column is for the ground truth data, the second column is for the synthetic MR image, third 
row is for the case of the residual model, the fourth row is for the direct contrast correction model and the last column is for the proposed multiplicative model. Each 
row corresponds to a different subject from the test set and different TI values (in ms) which are as mentioned in the Figure. 
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measure (SSIM) [53] and normalized room mean square error (NRMSE). 
As numerical scores such as SSIM and NRMSE are known to be poor 

metrics, we additionally performed a blind reader study with a board- 
certified neurologist. The reader compared each of the proposed 
method and synthetic MRI images to the reference (conventional) 
contrast acquisition. The reader was blinded to the synthetic MRI and 
proposed method images, and they were randomly ordered for different 
generated contrasts. We chose 30 images from the test set displaying 
“Reference” on the left, and “A: Proposed” and “B: Synthetic MRI” on the 
right, where the order was randomly chosen. We asked the reader to rate 
the quality of the two methods with respect to the reference image on a 
scale of 1–5, 5 being best, for three categories: “Contrast”, “SNR”, and 
“Sharpness”. For each category, we performed a one-tailed paired t-test 
at a significance level of 0.05 with a null hypothesis that the score of the 
proposed method was not greater than the score of Synthetic MRI. 

3. Results 

3.1. Multiplicative model 

Fig. 4 shows the ground truth, synthetic contrasts and the contrast 
correction results for the three different correction methods as 
mentioned in Section 2.6. Here the results are shown for TI values near 
2000 ms to emphasize the nulling of CSF. Each row corresponds to a 
different test subject and a different TI value. The residual and direct 
models have error in the CSF region in the form of hyperintense and 
hypointense variation, likely due to flow and diffusion. The multipli
cative model more faithfully matches the experimental contrast. Table 1 
shows numerical error metrics for the different correction models. The 
proposed multiplicative model improves both SSIM and NRMSE metrics. 

3.2. Comparison of effective T1 

Next, to compare how much effect the introduction of α factor (as 
introduced in Eq. (8)) has on the contrast correction we conducted the 
experiments over multiple values of α. Fig. 5 shows the contrast 
correction results for the different values of α. The first column is for the 
ground truth contrasts and after that, the corrected contrasts are shown 
sequentially for 5 different α values of 1.4, 1.2, 1.0, 0.8, and 0.6. Four 
rows of results corresponding to different TI values are shown. Due to 
magnetization transfer, the effective T1 value of tissues decreases, and 
adding a α value smaller than 1, helps in alleviating that effect. A similar 
trend is observed in the results where the higher α value corrected 
contrasts still have some signal left in the CSF region. Moreover, there 
are other contrast mismatches in the white and the gray matter of the 
brain. It can be clearly observed in the CSF region that with the decrease 
of α factor the residual signal in the CSF region is also reduced. Table 2 
shows the numerical error metrics for models with different α values and 
it can be observed that the metric first improves with increasing α and 
then start to decrease. Therefore we chose α = 0.8 and held it fixed for 
all remaining results. 

3.3. Results over the full TI range 

Having shown that the multiplicative proposed model with α = 0.8 
provides best qualitative and quantitative results, next we show the 
contrast correction results over the full range of inverse times. In that 
regard, Fig. 6 shows the contrast correction results for 5 different TI 
values ranging from 100 ms to 2430 ms over the test set. The first row 
shows the results for the ground truth, the second row shows synthetic 
MRI contrasts, and the third row shows the corrected contracts ac
cording to the proposed method. The last row shows the direct contrast 
correction [11]. It can be clearly seen for TI = 1330 that there is a re
sidual signal in the CSF region for the synthetic MRI contrast whereas 
the proposed method correctly nulls it. For TI values of 1830 and 2430 
ms, the synthetic contrast correctly nulls the CSF region but exhibits 
contrast mismatch between the gray and white matter, which is cor
rected in the proposed method. Direct contrast synthesis shows excellent 
synthetic contrast, but it is only able to produce contrasts that were 
explicitly collected at scan time and hence available in the training set. 
Therefore, the higher TI values that were not in the training set cannot 
be synthesized. We are not aware of another deep learning-based 
method that can correct contrasts at arbitrary inversion times that 
were not seen during training. 

3.4. Impact of training objective 

Fig. 7 shows the experimental contrasts, synthetic contrasts, and 
corrected contrasts for three arbitrarily chosen inversion times in the 
test set for different combinations of loss functions. Synthetic MRI col
umn represent the image generated through Bloch equations (c.f. 2). The 
third and fourth columns show the result with L1-loss and with L1 +
GAN loss, respectively. The last column shows the results with L1, 
adversarial and perceptual loss combined. The inclusion of perceptual 
loss qualitatively retains sharper features. While the synthetic contrasts 
show high resolution, they distort the contrast due to the simplified 
signal model. The proposed method improves the contrast while pre
serving most fine features. 

Table 3 shows the numerical error metrics for the different training 
objectives. The UNET gives the best SSIM and NRMSE metrics. This is an 
expected result as the UNET is only trained with a L2-loss (which closely 
corresponds to NRMSE), and it has been shown to be proportional to 
these loss metrics, even though these low loss value come at a cost of 
blurring and loss of resolution in final images. Therefore we also 
included the perceptual loss value which better captures the visual 
quality. The proposed method gives the best perceptual loss metric. For 
lower TI values, both UNET and GAN based methods can correct the 
contrast but substantially reduce the sharpness of the image, whereas 
the addition of perceptual loss retains the fine features as well as corrects 
the contrast mismatch. For the higher value of TI = 1330 as shown in the 
third row, the UNET and GAN based methods were not able to remove 
the signal in from the CSF region as well as there is a leaking hazing 
effect due to the low resolution of these methods. 

3.5. Reader study scores 

Fig. 8 shows the bar plot results of the clinical reader study. For all 
three evaluation metrics contrast, SNR, and sharpness, the proposed 
method has a higher average score than the synthetic MR images. We 
found that contrast and SNR results are statistically significant with a P- 
value < 0.01. The statistical parameters of the reader study are sum
marized in Table 4. 

4. Discussion 

Synthetic MRI has the potential to greatly improve scan efficiency 
and reduce scan times. Furthermore, the ability to retrospectively syn
thesize new contrasts opens opportunities for adding new sequences in 

Table 1 
Performance comparison of different methods for contrast translation on the 
validation set. The mean value along with the standard deviation of all the error 
metrics is provided. The proposed method gives the best performance among all 
the possible correction techniques.  

Error metric SSIM NRMSE 

Synthetic MRI 0.778 ± 0.073 0.456 ± 0.117 
Direct Model 0.806 ± 0.053 0.419 ± 0.119 

Residual Model 0.819 ± 0.059 0.317 ± 0.098 
Proposed Model 0.846 ± 0.062 0.303 ± 0.132  
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silico as well as future “false contrasts” that highlight particular features. 
By using an approach that incorporates important MRI sequence pa
rameters along with synthetic MRI images, this work generates arbitrary 
synthetic contrasts that more faithfully match experimental scans. Other 
deep learning based methods directly translate from a base multi- 
contrast image to the target contrast and doing so loses the ability to 
retrospectively generate arbitrary contrasts. To show how our method is 
different, we plotted comparison results in Fig. 6, where the last row are 
the results that we would get if the model only learns to translate from 
one image to another and those TI values are already present in the 
training set. Whereas, the last three columns show the contrast correc
tion for three different inversion times which were not present in the 
training set. 

3D Synthetic MRI is an exciting emerging approach, and we did not 
explore it in this work. We emphasize that our methodology is flexible in 
that the input images can be generated with different multi-contrast 
acquisitions, although the data collection and training would need to 
be repeated for that specific acquisition. This is the case for all existing 
deep learning-based synthetic MRI methods and is not unique to ours. 
Therefore, our methodological framework was tested with the sequences 

that were available to us on our system, though future work should 
explore the use of different sequences (both 2D and 3D), for example, 2D 
and 3D MR Fingerprinting [3,54] and 3D-QALAS [55]. 

For model comparison and optimal α evaluation, we only show the 
results (Figs. 4 and 5) for higher TI values as these are the contrasts that 
are most susceptible to mismatch in the CSF due to unmodeled effects. 
We showed that naively applying deep learning contrast correction 
without regard to the nature of the unmodeled effects can lead to poor 
contrast generation. Our ablation study of the loss function does show 
the importance of incorporating both pixelwise error as well as 
perceptual error in the form of adversarial and perceptual losses. 
Analogous to prior work [11], we did observe that the vanilla UNET with 
pixelwise L2 loss gives a better SSIM and NRMSE metric as shown in 
Table 3, even though those images are blurry and may introduce arti
facts as shown in the Fig. 7. However, from visual inspection, it can be 
concluded that the GAN with perceptual loss gives better quality images 
that are free of smoothing around boundaries and are more accurate. 
This is further corroborated by the lower perceptual loss metric for the 
proposed method. Specifically, there is still some signal in the CSF re
gion for the UNET and GAN output due to partial voluming effects, 
which the inclusion of perceptual loss helps in alleviating. This shows 
that quantitative metrics alone are not sufficient to judge image quality, 
which is a known issue in the literature. 

To further corroborate the hypothesis that the proposed method 
improves image quality, results from a blind reader study were included. 
These results show with statistical significance that the proposed 
method has improved both contrast and SNR. There are improvements 
in the mean sharpness, however, those were not statistically significant. 
It can be clearly observed from that the quantitative measures of error i. 
e. NRMSE and SSIM doesn't correlate with the quality, which may also 
be due to image alignment between scans. The same observation has 
been made by multiple previous works [10,11]. 

Fig. 5. Comparison of contrast correction for different α values as used in the Eq. (8). The contrasts are shown for five different α values of 1.4, 1.2, 1.0, 0.8 and 0.6. 
The first two rows are for the same subject whereas the last two rows are for different subjects. 

Table 2 
Performance comparison of different methods for contrast translation on the 
validation set. The mean value along with the standard deviation of all the error 
metrics is provided. α = 0.8 provides the best performance among all the 
experimental α values.  

Error metric SSIM NRMSE 

α = 0.6 0.821 ± 0.069 0.332 ± 0.102 
α = 0.8 0.846 ± 0.062 0.303 ± 0.132 
α = 1.0 0.821 ± 0.061 0.370 ± 0.169 
α = 1.2 0.820 ± 0.064 0.382 ± 0.179 
α = 1.4 0.813 ± 0.063 0.401 ± 0.208  
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With MR images, there is always a possibility of motion corruption, 
noise in the reconstruction, ringing artifacts, image registration across 
different contrasts, and other artifacts. Even though the introduction of 
perceptual loss helps in retaining fine features, it depends upon the 
dataset on which the VGG network is trained and it is also known to 
introduce checkerboard patterns in the output images [56]. The 
hyperparameter tuning and training optimization was performed to find 
a stable training landscape between the generator and discriminator 
while also qualitatively producing high-quality images over the vali
dation set. Nonetheless, there is still a risk of hallucinations or artifacts 
being introduced by complicated deep learning based processing 
pipelines. 

Our approach is able to correct synthetic MRI at arbitrary contrasts. 
However, as it is a deep learning based method it is still susceptible to 
overfitting to the training set. To understand this effect, we plot the 
inversion recovery curve across the full TI range for three different re
gions of interest (ROI) in Fig. 9. The plot shows the inversion recovery 
for the contrasts generated using synthetic MRI and the proposed 
method for a single slice of one of the test subjects. The ROIs correspond 
to white matter, gray matter, and CSF were manually selected, and the 
mean signal values were taken over the ROIs. Additionally, the experi
mentally acquired data points are shown using as points on the plot for 
the corresponding tissue types for the limited contrasts that could be 
captured per volunteer due to scan time limitations. The synthetically 
generated contrasts curve follows the exponential recovery curve based 
on (2), and deviate from the experimental points. It can be observed that 
the proposed model output curve follows the experimental data points 

better at most of the inversion times, though there is clear evidence of 
overfitting at low TI values, likely due to the smaller number of TI 
contrasts collected around that region. Therefore, even though the 
proposed approach could correct arbitrary contrasts, it is critical to 
obtain sufficient training data across many subjects. Notably, it is not 
necessary to scan each subject with every training point. Nonetheless, 
the results show promise in a generalizable method for contrast gener
ation and correction for arbitrary scan parameters. Furthermore, Table 5 
shows the NRMSE for the signal value of different tissues as compared to 
the experimental data over the ROIs. The proposed method has lower 
error for all tissue types as compared with synthetic MRI. This obser
vation indicates that the proposed method better fits the experimental 
data in terms of the actual signal value at different inversion times. 

There are many choices for the discriminator network, which could 
affect the training. We chose the ResNet-18 in this work after internal 
experimentation with several architectures including PatchGAN, and 
found that the ResNet-18 is more stable during training. It is possible 
that other multi-layer convolutional network architectures could also be 
used, though we found that the ResNet-18 based discriminator had good 
classification efficiency by the end of training. 

One limitation of this work is that our training data was acquired by 
only varying the TI values and did not include TE and TR variation. We 
therefore do not know how much training data are required to train a 
network for full range of TI, TE, and TR values and how difficult that 
would be. As the method is already prone to overfitting, this limitation is 
important to consider. In addition, as more experimental scans are ac
quired, subject motion becomes an issue. Coregistering images from all 

Fig. 6. Example contrast corrections for 5 different inversion times. The first row is the ground truth contrasts, the second row is for the synthetic MRI contrasts and 
the third row is for the corrected contrasts according to the proposed method. To do a fair comparison, all the images are from a single test subject. 

S. Kumar et al.                                                                                                                                                                                                                                  



Magnetic Resonance Imaging 106 (2024) 43–54

52

the different acquired contrasts may be necessary. 
Another limitation of this work is the acquired dataset only includes 

healthy subjects and therefore does not contain pathology. We 

hypothesize that the generality of the approach could be extended to 
generating contrasts with pathology. However, in this present study we 
were not able to investigate this. It is important to explore this in clinical 
validation as a next step. Finally, though we show that a multiplicative 
factor is a more natural fit for contrast correction, it is still a heuristic 
that does not fully account for unmodeled effects, and therefore will 
need further exploration. 

5. Conclusion 

In this paper, we proposed a novel deep learning framework to 
correct the contrasts generated using synthetic MRI. The proposed 
method incorporated unmodeled physical effects through the use of a 
multiplicative correction network and an additional effective T1 
correction. Our method generates the correction image as a scan 
parameter-informed image-to-image translation using a conditional 
GAN trained along with a perceptual loss. To inform the network about 
different contrasts, the quantitative maps, synthetic MR images, and 
scan parameters as an additional channel are given as input during the 
training process. The results show the improved performance of the 
proposed multiplicative model over other deep learning based correc
tion methods. Furthermore, we were able to correct contrasts that were 
not present in the training set for different subjects. The results show 
improved performance in terms of quantitative error metrics as well as 
qualitatively. A possible extension of this work is to extend the contrast 
correction for arbitrary echo times and repetition times, which will 

Fig. 7. Example contrast corrections for 3 different inversion times. Each row corresponds to a different test subject. Third to fifth column corresponds to a different 
method of neural network training. 

Table 3 
Performance comparison of different training objectives for contrast translation 
on the validation set. The mean value along with the standard deviation of all the 
error metrics is provided.  

Error metric SSIM NRMSE Perc. Loss 

UNET 0.856 ± 0.06 0.283 ± 0.099 1.091 ± 0.279 
+ GAN 0.853 ± 0.006 0.326 ± 0.119 1.093 ± 0.273 

+ Perc. Loss 0.846 ± 0.062 0.303 ± 0.132 1.011 ± 0.263  

Fig. 8. Bar plot results of clinical reader study. For all metrics, the proposed 
method has a higher average score. The error bars represent the standard de
viation and * above a barplot represents statistical significance with p-value 
under 0.01. 

Table 4 
Statistical results from the reader study.   

Contrast SNR Sharpness 

Synthetic MRI 4.13 ± 0.43 4.6 ± 0.49 4.43 ± 0.5 
Proposed 4.7 ± 0.59 4.87 ± 0.34 4.63 ± 0.48 
T-statistic 3.319 2.804 1.533 
P-value 0.0024 0.0089 0.1360  
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likely require more training data to ensure that the network learns the 
underlying unmodeled effects. Another potential use of the proposed 
method could be to estimate the unmodeled physics in order to update 
the quantitative parameter maps. 
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