Magnetic Resonance Imaging 106 (2024) 43-54

Contents lists available at ScienceDirect

Magnetic Resonance Imaging

FI. SEVIER

journal homepage: www.elsevier.com/locate/mri

L)

Check for

Correcting synthetic MRI contrast-weighted images using deep learning e

Sidharth Kumar® , Hamidreza Saber ™, Odelin Charron ", Leorah Freeman ™, Jonathan
I. Tamir >%¢

@ Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, TX, USA
b Dell Medical School Department of Neurology, The University of Texas at Austin, Austin 78712, TX, USA

¢ Dell Medical School Department of Neurosurgery, The University of Texas at Austin, Austin 78712, TX, USA

4 Dell Medical School Department of Diagnostic Medicine, The University of Texas at Austin, Austin 78712, TX, USA

€ Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin 78712, TX, USA

ARTICLE INFO ABSTRACT

Keywords:

Synthetic MRI
Physics-enabled deep learning
Multi-contrast MRI
Quantitative MRI

Synthetic magnetic resonance imaging (MRI) offers a scanning paradigm where a fast multi-contrast sequence
can be used to estimate underlying quantitative tissue parameter maps, which are then used to synthesize any
desirable clinical contrast by retrospectively changing scan parameters in silico. Two benefits of this approach
are the reduced exam time and the ability to generate arbitrary contrasts offline. However, synthetically
generated contrasts are known to deviate from the contrast of experimental scans. The reason for contrast
mismatch is the necessary exclusion of some unmodeled physical effects such as partial voluming, diffusion, flow,
susceptibility, magnetization transfer, and more. The inclusion of these effects in signal encoding would improve
the synthetic images, but would make the quantitative imaging protocol impractical due to long scan times.
Therefore, in this work, we propose a novel deep learning approach that generates a multiplicative correction
term to capture unmodeled effects and correct the synthetic contrast images to better match experimental
contrasts for arbitrary scan parameters. The physics inspired deep learning model implicitly accounts for some
unmodeled physical effects occurring during the scan. As a proof of principle, we validate our approach on
synthesizing arbitrary inversion recovery fast spin-echo scans using a commercially available 2D multi-contrast
sequence. We observe that the proposed correction visually and numerically reduces the mismatch with
experimentally collected contrasts compared to conventional synthetic MRI. Finally, we show results of a pre-
liminary reader study and find that the proposed method statistically significantly improves in contrast and SNR
as compared to synthetic MR images.

1. Introduction

Magnetic resonance imaging (MRI) is an important non-invasive
clinical imaging modality that does not use ionizing radiation. A big
benefit of MRI is its ability to capture a multitude of tissue contrasts by
changing the acquisition parameters, providing complementary infor-
mation to characterize and assess pathology. A typical clinical MRI
protocol consists of multiple independent scans, contributing to an
overall lengthy exam [1]. Long exams lead to high associated costs for
patients and also reduce the overall throughput of the scanner. More-
over, it is difficult for patients (especially pediatric and elderly) to hold
still for a long scanning period, hence making the images susceptible to
motion-induced artifacts [2]. Even when the scans are artifact-free, the
contrast weightings represent a qualitative signal intensity that must be
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visually inspected and reported on by a clinical radiologist, and thus
only qualitative signal abnormalities can be reported.

Recently there has been substantial interest in extracting quantita-
tive information from MRI in addition to conventional qualitative im-
ages [3,4]. In quantitative MRI, biophysical tissue and system
parameters are estimated using specialized multi-contrast acquisitions
that acquire the MRI signal at multiple contrast points. While conven-
tional quantitative imaging is slow in nature, recent work has led to fast
and comprehensive multi-contrast scans [3-6]. After tissue quantifica-
tion, arbitrary contrasts can be synthetically created by evaluating the
MRI signal equation for a retrospectively chosen set of scan parameters
in silico. A large body of work has focused on accurate quantification of
T1, T2, and proton density (PD) maps [4,7]. System imperfections
including magnetic and radio-frequency (RF) field inhomogeneities
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have also been incorporated [3,8]. However, the underlying MRI physics
are more nuanced and have many confounding parameters that
contribute to the final image contrast, including magnetization transfer,
partial voluming, diffusion, and susceptibility, to name a few. While it is
possible to extend the quantitative imaging protocol to map these
additional effects, the scan time can become impractical, and the
physical modeling can be challenging. As a result, the synthetic contrast
image often has subtle differences when compared to the image ob-
tained from a real acquisition. For example, synthetic T2-FLAIR contrast
is known to suffer from hyperintense signal artifacts surrounding the
cerebrospinal fluid (CSF) [9,10], likely due to the over-simplification of
the MRI signal model.

To combat contrast-mismatch effects, researchers have recently
leveraged deep learning to correct these artifacts [11-13]. These
methods pose contrast correction as a supervised image-to-image
translation, in which a particular set of experimental contrasts are ac-
quired and treated as reference images, and a deep neural network is
trained to map the incorrect contrast to the experimental contrast. While
the results are striking, the approaches are limited in that they only
correct a particular set of contrasts that are collected at training time,
and therefore they lose the ability to synthesize arbitrary contrast-
weighted images offline.

Therefore in this work, we propose a novel physics-enabled deep
learning method to correct arbitrary contrast-weighted images gener-
ated by synthetic MRI. While we also pose the problem as supervised
image translation, we instead aim to learn the mapping from synthetic
MRI to experimental contrast as a function of scan parameters. Moti-
vated by the main unmodeled effects in fast spin-echo (FSE) imaging,
our proposed method generates a spatially dependent multiplicative
correction term and a scaled apparent longitudinal relaxation time (T7).
We provide several different experimental contrast-weighted images as
training samples so that our network implicitly learns the relationship
between scan parameters and the physical effects that are not captured
by the simplified signal equation. We accomplish this using a condi-
tional generative adversarial network (cGAN) framework complimented
with perceptual loss from a separate pre-trained network [14-16]. To
incorporate scan parameters, we include quantitative maps and syn-
thetic contrast images along with scan parameters as additional chan-
nels for the generator network. While we demonstrate our approach for
a specific multi-contrast sequence available on our scanner, we
emphasize that the framework could be used for other sequences such as
magnetic resonance fingerprinting (MRF) [3].

The main contributions of our paper are as follows: i) we propose a
novel deep learning method that explicitly incorporates the scan pa-
rameters to correct arbitrary synthetic MRI contrast-weighted images
derived from a multi-contrast sequence; ii) we show how such models
can be trained using a 2D multi-contrast sequence as proof of principle,
so that the pipeline can be used for other custom multi-contrast se-
quences; iii) we evaluate our method on subjects and MRI contrasts that
were not included in the training set to give evidence that the approach
implicitly accounts for unmodeled physical effects. The proposed model
gives better numerical error metrics than the direct and residual
correction model. We will make our data and implementation available
publicly upon publication.

1.1. Related works

Image-to-image translation has been highly successful in computer
vision, in which conditional generative models are trained to map from
one image style to an output image style [14,17]. Analogous to these
tasks, researchers in medical imaging have also proposed image-to-
image translation models; for example, computed tomography (CT) to
MRI [18], positron emission tomography (PET) to CT [19], medical
image segmentation [20], low-to-high gadolinium dose contrast-
enhanced brain MRI [15], etc. Specifically in MRI, translating from
one MRI contrast-weighted image to another contrast-weighted image is
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a well investigated problem. Authors in [16] propose multi-contrast
synthesis through ¢cGANs and demonstrate the applicability by trans-
lating from T1-weighted to T2-weighted images and vice versa. A multi-
stream approach was also proposed to join information from one-to-one
and many-to-one translation streams using a fusion block [21]. The
work in [22] proposes MRI motion correction through cGANs by
translating from motion-corrupted to motion-free images by incorpo-
rating FSE acquisition dynamics. Authors in [23] proposed a multi-
input, multi-output GAN network to generate missing MRI sequences
using the redundant information from other available sequences. The
work in [24] proposed a hybrid-fusion network to generate target MRI
contrasts from source images. The overall network consisted of two
small sub-networks, the first network to learn representations from each
input modality and the second network to fuse the common latent rep-
resentation and synthesize target images. The authors in [25], proposed
an edge-aware network that captures the textural details of MR images
to improve the overall final image quality in cross-modality MR syn-
thesis. A novel method to generate 3D brain MRI from learned repre-
sentations using variational auto-encoder and GAN was proposed in
[26] that generates high-quality image data from limited training data.
Authors in [27] applied the ¢cGAN framework to reconstruct patient
faces from anonymized T1 sagittal slices using unsupervised training
and were able to recover patient information from both face blurred and
face removed data. Similarly, work in [28] showed the multimodal
image synthesis using GANs on glioma patients. Authors in [29] pro-
posed DiamondGAN to do non-aligned cross-modality synthesis and
performed a radiologist evaluation study to show that trained radiolo-
gists were not able to differentiate between experimental and synthetic
MRI images.

The other MRI translation task frequently considered is to correct the
synthetic MRI contrast. The authors in [13] looked at direct contrast
synthesis from a multi-contrast scan using a temporal-convolutional
network on a per-pixel basis. The work in [11] extended the direct
contrast synthesis to operate on the whole input image and output the
desired contrast using cGANs whereas work in [30] presented a con-
volutional encoder-decoder network to directly generate multiple
contrast image from base multi-echo sequence. Authors in [31] pro-
posed a deep learning method to improve the T2-FLAIR contrast gen-
eration directly from base multi-contrast images. On the same track, the
work in [12] corrected the synthetic contrasts of T2-FLAIR on a per-pixel
basis using convolutional neural networks. Similarly, authors in [10]
used a generative network to translate directly from the echo images of
the base multi-contrast images to the FLAIR contrasts. The review paper
[32] discusses the synthetic MRI methods to generate multiple contrast
images along with some of the limitations in synthetic contrast gener-
ation; in particular, they report lower quality in synthetic FLAIR images.
Common to all these works is the need to collect the ground-truth
experimental contrasts that are desired, and the restriction to only
correcting those contrasts. In comparison, our goal is to maintain the
ability to synthesize contrasts corresponding to arbitrary scan parame-
ters. All of the discussed works follow the approximate framework
shown in Fig. 1 to directly translate from base multi-contrast images to
final target contrasts, which deviate from the premise of synthetic MRI
to generate arbitrary contrasts.

Several clinical validation studies have shown the benefits of syn-
thetic MRI, while also highlighting its limitations. In [33], clinicians
rated all synthetic contrasts to be inferior to the conventional scans
except T, weighted images. Prior to that, authors in [34] conducted a
clinical validation study using the Multi Delay Multi Echo (MDME)
sequence. It was reported that overall image quality was similar for all
contrasts except for FLAIR where a conventional scan was still clinically
necessary. Similarly, work in [35] reported satisfactory image quality
for all contrasts except T2 FLAIR. The thread of these works is that the
inversion recovery contrast images were hard to correctly synthesize,
with implications on their clinical use.
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Target Contrast

Fig. 1. Conventional contrast correction using deep neural networks, the objective is to correct a particular contrast of interest or to translate from the base multi

contrast images to a fixed contrast of interest.
2. Methods
2.1. Synthetic MRI

The premise of synthetic MRI is to use a multi-contrast sequence to
estimate underlying tissue and system parameter maps and then
generate new contrasts in silico. For this work, we specialize our expo-
sition to the 2D MDME sequence [4], which is capable of mapping
proton density (PD), longitudinal (T1), and transverse (T2) relaxation.
This choice is somewhat arbitrary and only used to illustrate our method
in the experimental results section, but the core ideas presented are
expected to work with other base multi-contrast sequences. The MDME
sequence uses an FSE train at different echo time (TE) points to encode
T, information. Additionally, different delay times (Tp) are set in be-
tween a saturation pulse and an acquisition block, which encodes the T;
information of a particular slice. The underlying tissue parameters can
then be estimated using the known signal model, for example through
dictionary matching [3]. Finally, synthetic contrasts are generated by
simulating the MRI signal equation (either analytically or algorithmi-
cally) for arbitrary scan parameters. The MDME signal after the satu-
ration pulse is known to follow the following expression:

T ~IR
1—(1—cosO)e™ —cos(@)e™ | -m=
I=PD — e,
1 — cos(Q)cos(y)e™

(€Y

where PD is the proton density, y is the RF excitation flip angle, 0 is the
RF saturation flip angle, T}, is the delay time, TE is the echo time, and TR
is the repetition time. The specific protocol settings for the MDME
sequence are provided in the later part of this section. To estimate
parameter maps with dictionary fitting, a signal dictionary was created
by varying the T; values from 100 to 6000 ms with a step size of 20 ms
and the T, values from 10 to 1000 ms with a step size of 2 ms to cover
relaxation parameters in the brain at 3 Tesla. The signal evolution for the
dictionary generation was simulated using the Extended Phase Graph
algorithm [36]. Dictionary matching was performed on the experi-
mental signal to evaluate T1, T2, and PD values.

As a proof of concept, in this work, we restrict our method to syn-
thesizing arbitrary inversion recovery spin-echo (IR-SE) contrasts as
typically these synthetic contrast images are the most susceptible to
artifacts [9,10,33-35]. The IR-SE contrast sequence can be described by
{pp—TI—py —ZE—py— (TR—TI - &) }, where typically p; =p =
180° and p, = 90°. Assuming no RF inhomogeneity, the IR-SE contrast
can be generated according to [37].

_IE
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where the scan parameters are echo time (TE), repetition time (TR) and
inversion time (TI), and the signal evolution is evaluated for each pixel
location. Generated example synthetic contrasts are shown in Figs. 4, 5,
6, and 7 for different inversion times. It can be clearly observed that the
synthetic contrasts are different than the experimentally acquired
ground truth contrasts shown in the first column. As the synthetically
generated and true contrasts differ, in the next section we look at the
possible unmodeled parameters and propose a deep learning framework
to correct this mismatch.

2.2. Unmodeled parameters

There are many physical effects that are typically unmodeled when
generating synthetic MR images from PD, T1, and T2 maps. Chief among
them are RF-field (B1) inhomogeneity, diffusion and flow effects, and
magnetization transfer (MT). In the following subsections, we briefly
discuss their main impact on the observed image contrast.

2.2.1. BI1 inhomogeneity

To flip the magnetization vectors from the steady state longitudinal
direction, an RF pulse B, is applied whose strength is dependent upon
the prescribed angle of rotation. The actual flip angle would not be same
as the desired angle at all of the locations due to non-linear performance
of the transmit system components responsible for B; magnetization.
When this B, field inhomogeneity is not corrected, it can lead to errors in
quantitative MRI parameter estimation [38,39]. If a signal with flip
angle ay is acquired, its location-dependent intensity would be [40].

1(r) = sin(ay(r) )-M,, 3
where M, is the longitudinal magnetization and of(r) is location
dependent due to variation in Bl values based on location. Therefore,
the outcome of this effect is a multiplicative term.

2.2.2. Diffusion

Diffusion weighting is based on the Brownian motion of water mol-
ecules in biological tissues, and it provides a powerful tool for investi-
gating tissue microstructure and organization. The diffusion rate and
direction will vary spatially due to differences in cellular membranes,
tissue boundaries, etc. These can be probed by applying gradients
separated by a particular delay. The net effect is a reduced magnetiza-
tion which is dependent upon location and given as follows [41,42]:

)

— —
-b-D

My = M,-€%-e @

where D is the diffusion coefficient that is unique for each spatial
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-
location 7. b is a function of magnetic gradients (3(1) ), the time (t)

for which gradients are applied, and the echo time:

_y /OTE</(: 6(z)dr)aﬁ,

where y is the gyromagnetic ratio. The multi-contrast sequence is likely
to introduce some diffusion weighting due to gradients, and therefore
the resulting images will have a spatial multiplicative factor.

s 5)

2.2.3. Magnetization transfer

Magnetization transfer contrast is observed due to the transfer of
protons in tissue from bound to free water molecules. When multiple
saturation RF pulses are used, a new equilibrium is reached between the
bound and free pools, leading to a change in contrast. The net effect is a
reduced apparent longitudinal relaxation time T; as compared to the
normal T; relaxation time. Furthermore, due to MT, the total measur-
able MR signal at all voxels is decreased [43,44]. Formally, we can
represent this as follows:

* 1
T, = Rt Koy (6)
where R;( = 1/T;) is the longitudinal relaxation rate without the MT
effects, and Ky, is the magnetization transfer exchange rate between the
bound and free pools of hydrogen nuclei. For an equilibrium longitu-
dinal magnetization of M, the effective magnetization due to MT effects
is as follows:

MDME Echoes

| Echo #1, Delay #1

[ Echo #0, Delay #3

| Echo #0, Delay #1
Echo #0, Delay #0

Dictionary
Matching
N N ]

Parameter Maps

Magnetic Resonance Imaging 106 (2024) 43-54

M,

My =—2—.
T+ Ko T

@)

As the multi-contrast sequence involves echo trains of RF pulses, the
sequence will have inherent MT contrast. However, the sequence itself is
not designed to estimate Kj,.. Nonetheless, it can be observed that the
effect of reduced magnetization is a multiplicative term after generating
the synthetic contrasts and a decrease in the T1 value for different
voxels.

2.2.4. Summary

In conclusion, the net effect of B; inhomogeneity, diffusion, and MT
is a reduced total magnetization and T; relaxation time. Therefore each
synthetic contrast will require a different multiplicative term to correct
for unmodeled effects. The updated system model with multiplicative
correction term is shown in Fig. 2. To compensate for the reduced T,
value, we introduce an additional factor « into the synthetic contrast Eq.
(2) as follows,

a1l IR TR’%
I=PD|l1—2¢ T —e 142 T |e" (8)
Intuitively @ < 1 would help in countering the effect of reduced T;
value and same is also observed in numerical experiments (Section 3.2).
For this work, we have only included a compensation term when T;
interacts with inversion time, as the experiments conducted in this work
only explore the effects of variable TI.

2.3. Proposed approach

An overview of the proposed approach is shown in Fig. 2. A deep

Arbitrary Synthetic Contrasts

Joint input of parameter
maps, sequence parameters,
and synthetic contrast

Encoder Layers

Final Output
Decoder Layers

= Up-Conv 2X2 ==» Concatenate

Fig. 2. Proposed contrast correction method. Parameter maps are estimated from the multi-contrast sequence (e.g. MDME echoes) and used to simulate arbitrary
synthetic contrast images. The input to the neural network is the combination of parameter maps, sequence specifications, and the synthetic image contrast. Due to

the inclusion of the three inputs, arbitrary contrasts can be corrected.
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network takes as input the parameter maps (77, T2, and PD) along with
the synthetic MRI images and an additional channel with all values
equal to normalized inversion time. Here the input synthetic image is
generated using Eq. (8). The aim of the network is to generate the
multiplicative term (M) and the final image output is Yy =M -I, where I is
obtained from Eq. (8). Next, we explain how the network architecture is
selected along with the loss functions used to train it.

2.3.1. Network details

For the purpose of generating the multiplicative correction term
from the synthetic MRI images and the parameter maps, we employ a
Conditional GAN (cGAN) with multiple changes. cGANs have already
been employed in other medical image synthesis and translation tasks
[15,18-20]. GANs have two main components; a generator (G) and
discriminator (D). The generator's task is to generate an output contrast
given a particular set of inputs, whereas the job of discriminator is to
distinguish whether the output image matches the distribution of
reference contrast images or not.

For this work, we use a U-Net [45] as a generator, which has been
extensively investigated for different medical imaging tasks [11,15]. To
further inform the generator about the scan parameters, we include an
additional channel with the same shape as the input image, but with a
value at all pixels equal to the inversion time normalized by the
maximum possible inversion time for the underlying anatomy (3000 ms
in this work). This approach could be used for additional scan
parameters.

For the discriminator, we initially explored a multi-layer convolu-
tional network as described in [14]. While PatchGAN worked well for
the application to ImageNet and other datasets, we found that it did not
work suitably for our application, possibly due to the higher resolution
of MR images. We decided to use a ResNet-18 model [46] with the
number of output classes set to one as we found it to be more stable
during training. The input channels were additionally reduced to two to
work with the absolute value images and TI channel, making the
discriminator aware of the TI used in the generator.

2.3.2. Loss functions

The network training is performed such that the final contrast-
weighted images are as close to the reference scans as possible, such
that the discriminator is not able to distinguish them. Therefore, both
the generator and the discriminator are trained using an alternating
optimization approach. The GAN minmax objective is formulated as
follows:

mén max Obj(D, G) = Eypyum[logD(Y) |+ ©
[EZNIII(Z) [ZOg(l - D(I'G(17 H?/‘) ) ) ]

where [E(-) is the expectation operator, Y are the reference contrast-
weighted MR images, and z represents the input set of the generator
consisting of synthetic MR images (I), parameter maps 6 (e.g. T1, T2, and
PD) and the scan parameters y (i.e. TI in this work). The output ¥ = I-
G(I,0,p) tries to match the output distribution to be as close to the
distribution of experimental contrast images.

The discriminator is trained with an adversarial loss whose objective
is given in Eq. (9). The generator is trained with a combination of pixel-

wise £a-loss (Ly = ||Y — 17“2), adversarial loss (Lqsy), and a feature
preserving perceptual loss provided by the ImageNet pretrained VGG-19
network [47]. The perceptual loss is the 7, distance between the feature
representations output by the last convolutional layer of the VGG
network, given as follows [48],

Wij Hij

20D = S Y ) - v, (D,

Y —

(10)

where y;; is the activation layer output from j™ max pooling layer and i?"
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convolution with shape of H;j, W;;. Therefore the total generator loss
after the combination of all these loss terms becomes,

fﬁgen =L, + AL+ }vZLp (11)
where 1; and 1 are hyperparameters which are optimized heuristically
over the validation set. Fig. 3 shows the overall training framework with
the combination of different loss functions for the generator and
discriminator networks.

2.3.3. Training optimization

To further improve performance on the proposed task, we make the
following changes to the training algorithm from [14]. The input syn-
thetic MRI images were normalized by the max value before being given
as input to the network. Different learning rates are employed for the
generator and discriminator as this was found to help training networks
with vastly different architectures and training objectives. At each
round, the discriminator was trained for more epochs compared to the
generator (20 vs 10). Further, the overall training loop consisted of 20
epochs. We used weight clipping for the discriminator (0.01), as this is
similar to the weight clipping proposed for the Wasserstein GAN [49].
Following that we also modified the discriminator loss by removing the
logarithm from the last layer.

The discriminator was trained with a binary cross entropy loss
combined with a sigmoid function for numerical stability, as suggested
by [50]. We used the ADAM optimizer [51] with f set to [0.5, 0.999]
instead of RMSprop as suggested in [49]. To find the exact numerical
learning rates and hyperparameters, we tuned them sequentially. First,
the learning rates for discriminator and generator were heuristically
determined such that the training loss stabilized and there was no
observed mode collapse. The exact numerical learning rates for
discriminator and generator were 0.00005 and 0.0001, respectively. The
first regularization parameter 1; was evaluated by linearly varying it
while keeping 1, = 0. Once optimal 1; was tuned, we evaluated 1, by
monitoring the adversarial loss. At optimal settings, the discriminator
should output the same scores for both reference and generated images.
The exact optimal numerical values found for 4; and 1, were 1.0 and
10.0, respectively.

2.4. Data acquisition

Healthy volunteers were recruited for brain MRI with institutional
review board approval and informed consent. A total of 18 subjects were
scanned on a Siemens 3 T Vida scanner (Siemens Healthineers, Erlangen,
Germany) and 16-channel head coil, and 53 slices were acquired per
subject. Of these, 14 subjects were used for training, one for validation,
and three subjects for the test set. The central slices for each subject were
used as these slices corresponded to predominant brain tissue. The
overall scanning protocol consisted of the MDME sequence and several
IR-FSE scans with with a fixed TE of 11 ms, TR of 10,180 ms, and
inversion time between 25 ms and 2500 ms such that the latent physical
parameters can be learned by the network for all inversion times. The
acquired multicoil k-space data were reconstructed using the BART
toolbox [52] and quantitative PD, T1, and T2 maps were estimated using
Python. The network was implemented using PyTorch and training was
done using an NVIDIA GeForce RTX 3090 GPU with a batch size of 16.
Training took approximately 3 h for 20 overall outer epochs, while
inference took about 2 s per slice. Full scan parameters and relevant
protocol details are provided in the next section.

2.5. Protocol settings

The MDME sequence is acquired with a slice thickness of 3 mm, and a
field of view (FOV) of 22.8 cm. Further, the slices were acquired in the
axial direction and 53 slices were acquired per subject. The TE values of
27 ms, 90 ms and TR value of 7680 ms were used to encode the T,
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Fig. 3. The training of the proposed method is based on the conditional generative adversarial network training framework. The generator is trained using back-
propagation on the total loss that incorporates pixel-wise Ly loss, adversarial loss provided by the discriminator, and perceptual loss provided by the pre-trained VGG
network. The discriminator is trained using the adversarial loss, while the VGG network is kept fixed.

information. Four delay times of 7562 ms, 3504 ms, 1041 ms, and 171
ms were used in the sequence to encode the T; information. The con-
trasts corresponding to different inversion times were acquired with the
same FOV and resolution. The repetition and echo time are kept fixed at
10180 ms and 10 ms respectively. The original acquired k-space matrix
size was 320 x 288. The duration of MDME sequence was 8 mins
whereas each individual contrast was about 3 mins long. The individual
contrast data were acquired with an IR-FSE sequence which was further
sub-sampled with an acceleration factor of 3.2.

Ground Truth Synthetic MRI

Tl =2200

Tl =2380

Residual Model

2.6. Evaluation

To compare the effect of the multiplicative term, we trained three
different models to correct the synthetic contrasts. In the residual model,
the network output is added to the synthetic contrast (i.e M + I). In the
direct model, the output of the network is the final contrast image. The
proposed model multiplies the network output with the synthetic
contrast. We compare both qualitative and quantitative image quality,
where the latter is evaluated using both structural similarity index

Direct Model Proposed Model

Fig. 4. Comparison of contrast correction using different models. The first column is for the ground truth data, the second column is for the synthetic MR image, third
row is for the case of the residual model, the fourth row is for the direct contrast correction model and the last column is for the proposed multiplicative model. Each
row corresponds to a different subject from the test set and different TI values (in ms) which are as mentioned in the Figure.
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measure (SSIM) [53] and normalized room mean square error (NRMSE).
As numerical scores such as SSIM and NRMSE are known to be poor
metrics, we additionally performed a blind reader study with a board-
certified neurologist. The reader compared each of the proposed
method and synthetic MRI images to the reference (conventional)
contrast acquisition. The reader was blinded to the synthetic MRI and
proposed method images, and they were randomly ordered for different
generated contrasts. We chose 30 images from the test set displaying
“Reference” on the left, and “A: Proposed” and “B: Synthetic MRI” on the
right, where the order was randomly chosen. We asked the reader to rate
the quality of the two methods with respect to the reference image on a
scale of 1-5, 5 being best, for three categories: “Contrast”, “SNR”, and
“Sharpness”. For each category, we performed a one-tailed paired t-test
at a significance level of 0.05 with a null hypothesis that the score of the
proposed method was not greater than the score of Synthetic MRI.

3. Results
3.1. Multiplicative model

Fig. 4 shows the ground truth, synthetic contrasts and the contrast
correction results for the three different correction methods as
mentioned in Section 2.6. Here the results are shown for TI values near
2000 ms to emphasize the nulling of CSF. Each row corresponds to a
different test subject and a different TI value. The residual and direct
models have error in the CSF region in the form of hyperintense and
hypointense variation, likely due to flow and diffusion. The multipli-
cative model more faithfully matches the experimental contrast. Table 1
shows numerical error metrics for the different correction models. The
proposed multiplicative model improves both SSIM and NRMSE metrics.

3.2. Comparison of effective T1

Next, to compare how much effect the introduction of a factor (as
introduced in Eq. (8)) has on the contrast correction we conducted the
experiments over multiple values of a. Fig. 5 shows the contrast
correction results for the different values of a. The first column is for the
ground truth contrasts and after that, the corrected contrasts are shown
sequentially for 5 different a values of 1.4, 1.2, 1.0, 0.8, and 0.6. Four
rows of results corresponding to different TI values are shown. Due to
magnetization transfer, the effective T; value of tissues decreases, and
adding a a value smaller than 1, helps in alleviating that effect. A similar
trend is observed in the results where the higher a value corrected
contrasts still have some signal left in the CSF region. Moreover, there
are other contrast mismatches in the white and the gray matter of the
brain. It can be clearly observed in the CSF region that with the decrease
of a factor the residual signal in the CSF region is also reduced. Table 2
shows the numerical error metrics for models with different a values and
it can be observed that the metric first improves with increasing a and
then start to decrease. Therefore we chose @ = 0.8 and held it fixed for
all remaining results.

Table 1

Performance comparison of different methods for contrast translation on the
validation set. The mean value along with the standard deviation of all the error
metrics is provided. The proposed method gives the best performance among all
the possible correction techniques.

Error metric SSIM NRMSE
Synthetic MRI 0.778 + 0.073 0.456 + 0.117
Direct Model 0.806 + 0.053 0.419 £ 0.119

Residual Model 0.819 + 0.059 0.317 + 0.098

Proposed Model 0.846 + 0.062 0.303 £+ 0.132
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3.3. Results over the full TI range

Having shown that the multiplicative proposed model with « = 0.8
provides best qualitative and quantitative results, next we show the
contrast correction results over the full range of inverse times. In that
regard, Fig. 6 shows the contrast correction results for 5 different TI
values ranging from 100 ms to 2430 ms over the test set. The first row
shows the results for the ground truth, the second row shows synthetic
MRI contrasts, and the third row shows the corrected contracts ac-
cording to the proposed method. The last row shows the direct contrast
correction [11]. It can be clearly seen for TI = 1330 that there is a re-
sidual signal in the CSF region for the synthetic MRI contrast whereas
the proposed method correctly nulls it. For TI values of 1830 and 2430
ms, the synthetic contrast correctly nulls the CSF region but exhibits
contrast mismatch between the gray and white matter, which is cor-
rected in the proposed method. Direct contrast synthesis shows excellent
synthetic contrast, but it is only able to produce contrasts that were
explicitly collected at scan time and hence available in the training set.
Therefore, the higher TI values that were not in the training set cannot
be synthesized. We are not aware of another deep learning-based
method that can correct contrasts at arbitrary inversion times that
were not seen during training.

3.4. Impact of training objective

Fig. 7 shows the experimental contrasts, synthetic contrasts, and
corrected contrasts for three arbitrarily chosen inversion times in the
test set for different combinations of loss functions. Synthetic MRI col-
umn represent the image generated through Bloch equations (c.f. 2). The
third and fourth columns show the result with L1-loss and with L1 +
GAN loss, respectively. The last column shows the results with L1,
adversarial and perceptual loss combined. The inclusion of perceptual
loss qualitatively retains sharper features. While the synthetic contrasts
show high resolution, they distort the contrast due to the simplified
signal model. The proposed method improves the contrast while pre-
serving most fine features.

Table 3 shows the numerical error metrics for the different training
objectives. The UNET gives the best SSIM and NRMSE metrics. This is an
expected result as the UNET is only trained with a L2-loss (which closely
corresponds to NRMSE), and it has been shown to be proportional to
these loss metrics, even though these low loss value come at a cost of
blurring and loss of resolution in final images. Therefore we also
included the perceptual loss value which better captures the visual
quality. The proposed method gives the best perceptual loss metric. For
lower TI values, both UNET and GAN based methods can correct the
contrast but substantially reduce the sharpness of the image, whereas
the addition of perceptual loss retains the fine features as well as corrects
the contrast mismatch. For the higher value of TI = 1330 as shown in the
third row, the UNET and GAN based methods were not able to remove
the signal in from the CSF region as well as there is a leaking hazing
effect due to the low resolution of these methods.

3.5. Reader study scores

Fig. 8 shows the bar plot results of the clinical reader study. For all
three evaluation metrics contrast, SNR, and sharpness, the proposed
method has a higher average score than the synthetic MR images. We
found that contrast and SNR results are statistically significant with a P-
value < 0.01. The statistical parameters of the reader study are sum-
marized in Table 4.

4. Discussion
Synthetic MRI has the potential to greatly improve scan efficiency

and reduce scan times. Furthermore, the ability to retrospectively syn-
thesize new contrasts opens opportunities for adding new sequences in
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(a=0.8)

(o = 0.6)

Fig. 5. Comparison of contrast correction for different a values as used in the Eq. (8). The contrasts are shown for five different a values of 1.4, 1.2, 1.0, 0.8 and 0.6.
The first two rows are for the same subject whereas the last two rows are for different subjects.

Table 2

Performance comparison of different methods for contrast translation on the
validation set. The mean value along with the standard deviation of all the error
metrics is provided. a = 0.8 provides the best performance among all the
experimental a values.

Error metric SSIM NRMSE
a =06 0.821 + 0.069 0.332 £ 0.102
a=08 0.846 + 0.062 0.303 £+ 0.132
a=1.0 0.821 + 0.061 0.370 £+ 0.169
a=12 0.820 + 0.064 0.382 £ 0.179
a=14 0.813 + 0.063 0.401 + 0.208

silico as well as future “false contrasts” that highlight particular features.
By using an approach that incorporates important MRI sequence pa-
rameters along with synthetic MRI images, this work generates arbitrary
synthetic contrasts that more faithfully match experimental scans. Other
deep learning based methods directly translate from a base multi-
contrast image to the target contrast and doing so loses the ability to
retrospectively generate arbitrary contrasts. To show how our method is
different, we plotted comparison results in Fig. 6, where the last row are
the results that we would get if the model only learns to translate from
one image to another and those TI values are already present in the
training set. Whereas, the last three columns show the contrast correc-
tion for three different inversion times which were not present in the
training set.

3D Synthetic MRI is an exciting emerging approach, and we did not
explore it in this work. We emphasize that our methodology is flexible in
that the input images can be generated with different multi-contrast
acquisitions, although the data collection and training would need to
be repeated for that specific acquisition. This is the case for all existing
deep learning-based synthetic MRI methods and is not unique to ours.
Therefore, our methodological framework was tested with the sequences
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that were available to us on our system, though future work should
explore the use of different sequences (both 2D and 3D), for example, 2D
and 3D MR Fingerprinting [3,54] and 3D-QALAS [55].

For model comparison and optimal « evaluation, we only show the
results (Figs. 4 and 5) for higher TI values as these are the contrasts that
are most susceptible to mismatch in the CSF due to unmodeled effects.
We showed that naively applying deep learning contrast correction
without regard to the nature of the unmodeled effects can lead to poor
contrast generation. Our ablation study of the loss function does show
the importance of incorporating both pixelwise error as well as
perceptual error in the form of adversarial and perceptual losses.
Analogous to prior work [11], we did observe that the vanilla UNET with
pixelwise Ly loss gives a better SSIM and NRMSE metric as shown in
Table 3, even though those images are blurry and may introduce arti-
facts as shown in the Fig. 7. However, from visual inspection, it can be
concluded that the GAN with perceptual loss gives better quality images
that are free of smoothing around boundaries and are more accurate.
This is further corroborated by the lower perceptual loss metric for the
proposed method. Specifically, there is still some signal in the CSF re-
gion for the UNET and GAN output due to partial voluming effects,
which the inclusion of perceptual loss helps in alleviating. This shows
that quantitative metrics alone are not sufficient to judge image quality,
which is a known issue in the literature.

To further corroborate the hypothesis that the proposed method
improves image quality, results from a blind reader study were included.
These results show with statistical significance that the proposed
method has improved both contrast and SNR. There are improvements
in the mean sharpness, however, those were not statistically significant.
It can be clearly observed from that the quantitative measures of error i.
e. NRMSE and SSIM doesn't correlate with the quality, which may also
be due to image alignment between scans. The same observation has
been made by multiple previous works [10,11].
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Fig. 6. Example contrast corrections for 5 different inversion times. The first row is the ground truth contrasts, the second row is for the synthetic MRI contrasts and
the third row is for the corrected contrasts according to the proposed method. To do a fair comparison, all the images are from a single test subject.

With MR images, there is always a possibility of motion corruption,
noise in the reconstruction, ringing artifacts, image registration across
different contrasts, and other artifacts. Even though the introduction of
perceptual loss helps in retaining fine features, it depends upon the
dataset on which the VGG network is trained and it is also known to
introduce checkerboard patterns in the output images [56]. The
hyperparameter tuning and training optimization was performed to find
a stable training landscape between the generator and discriminator
while also qualitatively producing high-quality images over the vali-
dation set. Nonetheless, there is still a risk of hallucinations or artifacts
being introduced by complicated deep learning based processing
pipelines.

Our approach is able to correct synthetic MRI at arbitrary contrasts.
However, as it is a deep learning based method it is still susceptible to
overfitting to the training set. To understand this effect, we plot the
inversion recovery curve across the full TI range for three different re-
gions of interest (ROI) in Fig. 9. The plot shows the inversion recovery
for the contrasts generated using synthetic MRI and the proposed
method for a single slice of one of the test subjects. The ROIs correspond
to white matter, gray matter, and CSF were manually selected, and the
mean signal values were taken over the ROIs. Additionally, the experi-
mentally acquired data points are shown using as points on the plot for
the corresponding tissue types for the limited contrasts that could be
captured per volunteer due to scan time limitations. The synthetically
generated contrasts curve follows the exponential recovery curve based
on (2), and deviate from the experimental points. It can be observed that
the proposed model output curve follows the experimental data points
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better at most of the inversion times, though there is clear evidence of
overfitting at low TI values, likely due to the smaller number of TI
contrasts collected around that region. Therefore, even though the
proposed approach could correct arbitrary contrasts, it is critical to
obtain sufficient training data across many subjects. Notably, it is not
necessary to scan each subject with every training point. Nonetheless,
the results show promise in a generalizable method for contrast gener-
ation and correction for arbitrary scan parameters. Furthermore, Table 5
shows the NRMSE for the signal value of different tissues as compared to
the experimental data over the ROIs. The proposed method has lower
error for all tissue types as compared with synthetic MRI. This obser-
vation indicates that the proposed method better fits the experimental
data in terms of the actual signal value at different inversion times.

There are many choices for the discriminator network, which could
affect the training. We chose the ResNet-18 in this work after internal
experimentation with several architectures including PatchGAN, and
found that the ResNet-18 is more stable during training. It is possible
that other multi-layer convolutional network architectures could also be
used, though we found that the ResNet-18 based discriminator had good
classification efficiency by the end of training.

One limitation of this work is that our training data was acquired by
only varying the TI values and did not include TE and TR variation. We
therefore do not know how much training data are required to train a
network for full range of TI, TE, and TR values and how difficult that
would be. As the method is already prone to overfitting, this limitation is
important to consider. In addition, as more experimental scans are ac-
quired, subject motion becomes an issue. Coregistering images from all
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GAN with Perc. Loss

Fig. 7. Example contrast corrections for 3 different inversion times. Each row corresponds to a different test subject. Third to fifth column corresponds to a different

method of neural network training.

Table 3

Performance comparison of different training objectives for contrast translation
on the validation set. The mean value along with the standard deviation of all the
error metrics is provided.

Error metric SSIM NRMSE Perc. Loss
UNET 0.856 + 0.06 0.283 + 0.099 1.091 + 0.279
+ GAN 0.853 + 0.006 0.326 + 0.119 1.093 + 0.273
+ Perc. Loss 0.846 + 0.062 0.303 £ 0.132 1.011 + 0.263
Il Proposed W Synthetic MRI
* >k
D 5.
V5
8 ]
n 4 B
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L 3
©
0
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Contrast SNR Sharpness

Fig. 8. Bar plot results of clinical reader study. For all metrics, the proposed
method has a higher average score. The error bars represent the standard de-
viation and * above a barplot represents statistical significance with p-value
under 0.01.

the different acquired contrasts may be necessary.
Another limitation of this work is the acquired dataset only includes
healthy subjects and therefore does not contain pathology. We
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Table 4
Statistical results from the reader study.
Contrast SNR Sharpness
Synthetic MRI 4.13 £0.43 4.6 + 0.49 4.43 +£ 0.5
Proposed 4.7 £ 0.59 4.87 £0.34 4.63 £ 0.48
T-statistic 3.319 2.804 1.533
P-value 0.0024 0.0089 0.1360

hypothesize that the generality of the approach could be extended to
generating contrasts with pathology. However, in this present study we
were not able to investigate this. It is important to explore this in clinical
validation as a next step. Finally, though we show that a multiplicative
factor is a more natural fit for contrast correction, it is still a heuristic
that does not fully account for unmodeled effects, and therefore will
need further exploration.

5. Conclusion

In this paper, we proposed a novel deep learning framework to
correct the contrasts generated using synthetic MRI. The proposed
method incorporated unmodeled physical effects through the use of a
multiplicative correction network and an additional effective T1
correction. Our method generates the correction image as a scan
parameter-informed image-to-image translation using a conditional
GAN trained along with a perceptual loss. To inform the network about
different contrasts, the quantitative maps, synthetic MR images, and
scan parameters as an additional channel are given as input during the
training process. The results show the improved performance of the
proposed multiplicative model over other deep learning based correc-
tion methods. Furthermore, we were able to correct contrasts that were
not present in the training set for different subjects. The results show
improved performance in terms of quantitative error metrics as well as
qualitatively. A possible extension of this work is to extend the contrast
correction for arbitrary echo times and repetition times, which will
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Fig. 9. Inversion recovery plot for three different tissue types for the ground truth, synthetic MRI, and proposed model improved images. CSF: cerebrospinal fluid;
WM: white matter; GM: gray matter. The left column shows the different regions selected corresponding to different tissues.

Table 5

NRMSE comparison of synthetic MRI method and the proposed method against
the experimental contrast tissue signal values over the ROIs. The proposed
method has lower numerical error values for thre three tissue regions.

Method Synthetic Proposed
CSF 0.1843 0.0972
GM 0.2878 0.1162
WM 0.2917 0.1166

likely require more training data to ensure that the network learns the
underlying unmodeled effects. Another potential use of the proposed
method could be to estimate the unmodeled physics in order to update
the quantitative parameter maps.
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