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Abstract

Since its inception in 1982, Oja’s algorithm has become an established method for streaming
principle component analysis (PCA). We study the problem of streaming PCA, where the data-
points are sampled from an irreducible, aperiodic, and reversible Markov chain. Our goal is to
estimate the top eigenvector of the unknown covariance matrix of the stationary distribution. This
setting has implications in scenarios where data can solely be sampled from a Markov Chain Monte
Carlo (MCMC) type algorithm, and the objective is to perform inference on parameters of the
stationary distribution. Most convergence guarantees for Oja’s algorithm in the literature assume
that the data-points are sampled IID. For data streams with Markovian dependence, one typically
downsamples the data to get a "nearly" independent data stream. In this paper, we obtain the first
sharp rate for Oja’s algorithm on the entire data, where we remove the logarithmic dependence on
the sample size, n, resulting from throwing data away in downsampling strategies.

1 Introduction

Streaming Principal Component Analysis (PCA) is an important and well studied problem where the
principal eigenvector of the sample covariance matrix of a dataset is computed one data-point at a
time. One of the most popular algorithms for streaming PCA was introduced by Erikki Oja in 1982
[28, 29]. Most existing analyses of Oja’s algorithm are done when the data is sampled IID.

However, in many practical applications, the data-points are dependent and are sampled from an
MCMC process converging to a target stationary distribution. This naturally arises in the context of
token algorithms for Federated PCA settings [10, 11, 12] with multiple machines communicating via
a fixed and connected graph topology. Each machine contains an arbitrary fraction of data-points
and the goal is to design a streaming algorithm that respects this topology and returns the principal
component of the whole dataset. This is typically achieved using a Metropolis-Hastings scheme that
uses local information to design the transition matrix of a Markov chain with any desired stationary
distribution. The stationary distribution, 7, of the random walk is chosen so that the distribution of
the samples under 7 matches the uniform distribution over data-points. Governed by this Markov
chain, a random walker then travels the network of machines and samples one data-point at a time
from the current machine, and computes the update. However, even under the stationary distribution,
the data-points are dependent, which deviates from the IID setup. Our goal is to obtain a sharp
analysis of the sin® error of the estimated vector w.rt true top eigenvector of the unknown covariance
matrix in the Markovian setting.

Estimating the first principal component with streaming PCA : Let X; be a mean zero d
dimensional vector with covariance matrix 3, and let 7; be a decaying learning rate. The update rule
of Oja’s algorithm is given as -

w
Wt — (I + ntXtXtT)’LUtfl, Wi — m (1)
t
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where wy is the estimate of v; and 1, is the step-size at timestep . We aim to analyse the sin” error
of Oja’s iterate at timestep ¢, defined as 1 — (wy, 111)2, where v; is the top eigenvector of 3.

Streaming PCA in the IID setting: For an IID data stream with E [X;] = 0 and E [X; X[ ]| = %,
there has been a lot of work on determining the non-asymptotic convergence rates for Oja’s algorithm
and its various adaptations [15, 1, 3, 37, 13, 14, 25, 20, 24]. Amongst these, [15], [1] and [14] match
the optimal offline sample complexity bound, suggested by the independent and identically distributed
(IID) version of Theorem 1 (See Theorem 1.1 in [15]).

We consider Oja’s algorithm in the setting where the data is generated from a reversible,
irreducible, and aperiodic Markov chain with stationary distribution 7. We denote by E.[.] the
expectation under the stationary distribution. In this setting our goal is to estimate the principal
eigenvector of E [X; X]]. As in the IID setting, E.[X;] = 0. The challenge is that the data, even
when it reaches stationarity, is dependent. Here the degree of dependence is captured by the second
eigenvalue in the magnitude of the transition matrix P (denoted as |\ (P)|) of the Markov chain.
This is closely related to the mixing time of a Markov chain [19], denoted as 7p,;x, Which is the time
after which the conditional distribution of a state is close in total variational distance to its stationary
distribution, 7 (See Section 2.1).

Our contribution: Using a series of approximations, we obtain an optimal error rate for the sin
error, which is worse by a factor of 1/(1 — |A2(P)]|) from the corresponding error rate of the IID case.
Previous work [3] has established rates worse by a poly-logarithmic factor by using downsampling,
i.e. applying the update on every k*" datapoint. In Figure 1, we compare Oja’s algorithm with
its downsampled and offline variants (see Section 6 for more details on setup). We see that Oja’s
algorithm performs significantly better than the downsampled variant, and similarly to the offline
variant where for the 7" data point we compute the eigenvector of the sample covariance matrix of
all data-points up-to . Our work provides a concrete and novel result that explains these observations.
In Table 1, we compare our bounds with related analyses of Oja’s algorithm. The last row shows that
we are the first to obtain an error whose main term is free of logarithmic dependence on n or d for
streaming PCA in the Markovian case.

We break the logarithmic barrier in previous work by considering a series of approximations
of finer granularity which uses reversibility of the Markov chain and standard mixing conditions
of irreducible and aperiodic Markov chains. Our rates are comparable to the recent work of [27]
(Proposition 1) that establishes an offline error analysis for estimating the principal component of the
empirical covariance matrix of Markovian data by using a Matrix Bernstein inequality. Our results
also imply a linearly convergent decentralized algorithm for streaming PCA in a distributed setting.
As a simple byproduct of our theoretical result, we also obtain a rate for Oja’s algorithm applied on
downsampled data, which is worse by a factor of log n, as shown in Figure 1. To our knowledge, this
is the first work that analyzes the Markovian streaming PCA problem without any downsampling that
matches the error of the offline algorithm.

The crux of our analysis uses the mixing properties of the Markov chain. Strong mixing intuitively
says that the conditional distribution of a state s in timestep & given the starting state is exponentially
close to the stationary distribution of s, the closeness being measured using the total variation distance.
All previous work on Markovian data exploits this property by conditioning on states many time steps
before. However, it is crucial to a) adaptively find how far to look back and b) bound the error of
the sequence of matrices we ignore between the current state and the state we are conditioning on.
Observe that these two components are related. Looking back too far makes the dependence very
small but increases the error resulting from approximating a larger matrix product of intermediate
matrices. We present a fine analysis that balances these two parts and then uses spectral theory to
bound the second part within a factor of a variance parameter that characterizes the variability of the
matrices and shows up in the analysis of [15, 27].

Related work on streaming PCA and online matrix decomposition on Markovian data:
Amongst recent work, [3] is very relevant to our setting, since it analyzes Oja’s algorithm with
Markovian Data samples. Inspired by the ideas of [8], the authors propose a downsampled version
of Oja’s algorithm to reduce dependence amongst samples and provide a Stochastic Differential
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Log-free

Paper Markov? | Online? main-term sin? error rate Sample-Complexity
v 1 v 1
Jain et al. N Y Y 0 (gap2 n) 0 (gap2 e)
[15] N N 0 (Vloggd) ;) O (Vlog(2d) l)
gap? n gap? ¢
Chen et al. Y Y N - O(g$2%10g2 (gﬁ)Q%))
(3]
Vlog(dzf%) 1 Vlog(d2’%> 1
Neemanetal. | ¥ N N0 (<1A2<P>|)gap2 7] | O\ T e
[27]
v 1 v 1
Theorem1 | Y Y Y| o(ewmtmert) | O (mtart)

Table 1: Comparison of sin? error rates and sample complexities. Here gap := (A; — o), where
A1, Ao are the top 2 eigenvalues of 3 and the sample complexities represent the number of samples

required to achieve sin?

error at most e. We note that [1] and [14] also match the online sample

complexity bound provided in [15]. Further, for the offline algorithm with IID data, [16] removes the
log (d) factor in exchange for a constant probability of success for large enough n.

Equation (SDE) based analysis to achieve a sample complexity of O ( )

G 1
1—X2)% €

log? (55 4) )

for sin? error smaller than €, where G is a variance parameter. We obtain a similar rate in Corollary
1 through our techniques. However, comparing with Theorem 1, we observe that downsampling
leads to an extra O (log (n)) factor. It is important to point out that [3] provides an analysis for
estimating top k principal components, whereas this paper focuses on obtaining a sharp rate for

the first principal component.

[21] consider the harder problem of online non-negative matrix

factorization for Markovian data. Their analysis establishes asymptotic convergence of error, but

does not provide a rate.

Stochastic Optimization with Markovian
Data : Markovian models are often considered
in Reinforcement Learning and Linear Dynamic
Systems[2, 5, 9, 30, 4, 34, 18, 23]. There
have been many notable nonasymptotic bounds
for stochastic gradient descent (SGD) methods
for general convex and nonconvex functions
with Markovian data [8, 31, 6, 7, 10, 38, 33].
The convergence rates (sample complexities)
obtained in these works apply to more general
problems but do not exploit the matrix product
structure inherent to Oja’s algorithm. In this
work, we develop novel techniques to show
that a sharper analysis is possible for the PCA
objective. The paper is organized as follows.
Section 2 contains the problem setup and
preliminaries about Markov Chains. Section 3
contains Theorem 1. We present a sketch of the
main technical tools in Section 4, intermediate
theorems needed for the main theorem in
Section 5 and conclude with simulations in
Section 6.
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Comparison of Oja’s algorithm with
downsampled and offline variants. The X-axis represents
the sample size and the Y axis represents the sin” error
of each algorithm’s estimate of the leading eigenvector.
The experimental setup is available in Section 6.




2 Problem Setup and Preliminaries

This section presents the problem setup and outlines important properties of the Markov chain that
will be utilized subsequently. We assume that:

Assumption 1. The Markov chain is irreducible, aperiodic, reversible, and starts in stationarity,

with state distribution "

Such a Markov chain can arise in various situations, for e.g., while performing random walks on
expander graphs which are used extensively in fields such as computer networks, error-correcting
codes, and pseudorandom generators. Each state s of the Markov chain is associated with a distribution
D(s) over d-dimensional vectors with mean y, € R? and covariance matrix 3, € R4*4,

For a random walk s1, s3, - - - s¢ on C, we define the sequence of random variables X1, X5 - - - X,
where conditioned on the state s;, X; ~ D (s;).We represent the mean as  := Eqr [f1s] = >, Tspts
and the covariance matrix as ¥ € R%*?_ which, for i € [n] can be expressed as:

Y= ]ESiNTI'ED(Si) |:(Xl - M) (X’L - M)T:| = Esw‘n' [Zs] + Eswﬂ' [MSNZ] - MMT

In this work, we assume p = 0, which is a common assumption in the IID setting (see [15, 1]). While
it may be possible to extend our analysis to the non-zero mean case, it is out of the scope of this paper.
Therefore, ¥ = By, ~rEp(s,) [XiXZ-T] fori € [n]

Let the eigenvalues of > be denoted as A\; > Ay > A3z---Ag. Let v; denote the leading
eigenvector of ¥ and V| denote the R**(=1) matrix with the remaining eigenvectors as columns.
We proceed under the following standard assumptions for i € [n], (see for eg. [14]).

Assumption 2. ||E,,~-Ep(s,) [(X; X] — 5)?]||2 < V.
Assumption 3. || X; X! — %||; < M with probability 1.

Assumption 3 also implies |2 + pspl — |j2 < M with probability 1. WLOG, we assume

M+ > 1. Weuse E[] :=EyrEp) [] to denote the expectation over state s ~ 7 and over the
state-specific distributions D (.), unless otherwise specified. Define the matrix product
By = (I +mXeX[) (I +mXeo1 X{0) . (T +mXa XT) )

Unrolling the recursion in 1, the output of Oja’s algorithm at timestep ¢ is given as wy = Bywo/ || Bywo |,
In this work, ||.||2 denotes the Euclidean Ly norm for vectors and the operator norm for matrices
unless otherwise specified. I denotes the identity matrix.

2.1 Markov chain mixing times

Now we will discuss some well-known properties of an irreducible, aperiodic, and reversible Markov
chain (also see [19]). Let | A2 (P) | denote the second largest absolute eigenvalue of the Markov
chain; let the state-distribution of the Markov chain at timestep ¢ with s; = = be P*(z, .). For any
two probability distributions 14, and v, recall that the total variational distance is TV (v, v2) :=
1 — vallrvi= 33 .cqlvi(z) — va(z)|. The distance from 7 at the t™ timestep is defined as
dmix (t) := sup,cq TV (P*(z,.), n). For irreducible and aperiodic Markov chains, by Theorem 4.9
in [19], we have dix (t) < C'exp(—ct) for some C,c > 0. The mixing time of the Markov chain is
defined as:

Tmix (€) := Inf{t : dnix(t) < €} 3)
As in [19], we will denote Tiix := Tmix (1 ). Then, we have Tix(€) < [logy(1/€)] Tmix. It is worth
mentioning the useful relationship between diy (.) and Tmix, given as dpix (1Tmix) < 2~ VI € Np.

These results about mixing time are valid for general irreducible and aperiodic Markov chains. A
reversible Markov chain satisfies V z,y € Q, 7 (z) P (z,y) = 7 (y) P (y,z). For a reversible,
irreducible, and aperiodic Markov chain, the gap 1 — |\3(P)], is inversely proportional to Tmix [19].

IThe last assumption may be eliminated by observing an initial burn-in period of 7.



3 Main Results

In this section, we present our main result, a near-optimal convergence rate for Oja’s algorithm on
Markovian data. As a corollary, we also establish a rate of convergence for Oja’s algorithm applied on
downsampled data, where every k™ data-point is considered. Supplement S.5 contains comprehensive
proofs of Theorem 1 and Corollary 1 while the proof of Proposition 1 can be found in Supplement
Section S.2.

Theorem 1. Fixa d € (0, 1) and let the step-sizes be 1; := m with ng < %, a > 2. Under

Nnn

assumptions 1, 2 and 3, for sufficiently large number of samples n such that - <” ) > 1 (B T >
og %

ey T
100002 max {Tmix log (%0) (M + )\1)2 ) wg&l)}

v (A1 — A2)?log (1 + 555)

the output wy, of Oja’s algorithm (1) satisfies

Clog (% 2o 20 (n2)?

1_ (wz;vl)Q < ng(é) d <2ﬁ) n 201V l n CoM (M + i\l) Tmix (;77),)
0 n (A1 =2A2)" (1= [A2 (P) ) (A1 = A2) n

with probability atleast (1 — 8). Here C'is an absolute constant and

B+ T7Xa (P
oy 2L 2a|—21( 6,

_35@3
Ta-—1

Next, we compare the rate of convergence proposed in Theorem 1 with the offline algorithm
having access to the entire dataset {Xi}?zl using a recent result from [27]. Here, the authors extend
the Matrix Bernstein inequality [35, 32], to Markovian random matrices. Their setup is much like
ours except that the matrix at any state is fixed, i.e., there is no data distribution D(s) as in our setup.
However, it is easy to extend their result to our setting by observing that conditioned on the state
sequence, the matrices X; X ,i € [n] are independent under our model, and we can push in the
expectation over the state-specific distributions, D(s), whenever required. Therefore, we have the
following result -

Proposition 1 (Theorem 2.2 of [27]+Wedin’s theorem). Fix § € (0, 1). Consider an irreducible and
aperiodic Markov chain. Under assumptions 2 and 3, with probability 1 — §, the leading eigenvector
dofYoiy X; XT /n satisfies

2- T 2T 2
17(@7‘” )2<C/V10g(d6 ) <1+|>\2(P)|> l+cl Mlog(d(; ) i
YETTo o e @) T i - e ()] ) e
“
for absolute constants C} and CY.
v

Observe that Theorem 1 matches the leading term RS wLICE WD in Eq 1 except the log(d)
term. We believe, much like the IID case (also see the remark in [15]), this logarithmic term in [27]’s
result is removable for large n and a constant probability of success.

Remark 1. (Comparison with IID algorithm) Fix a § € (0,1). If the data-points {X;}"_, are
sampled IID from the stationary distribution 7, then under assumptions 2 and 3, using Theorem 4.1
from [15], we have that the output w,, of Oja’s algorithm 1 satisfies -

1 7\ 2« 2
1*(w§v1)2§M [d(ﬂ) 7 4 . 5)

52 n 20 — 1) (A — )21



The leading term of Theorem 1 is worse by a factor of Further, it has an additive lower

1
) =P (P
order term O (logn#) due to the covariance between data-points in the Markovian case.

Corollary 1. (Downsampled Oja’s algorithm) Fix a 6 € (0,1). If Oja’s algorithm is applied on the

downsampled data-stream with every k™ data-point, where k 1= T, (77,%) then under the conditions
of Theorem 1 with appropriately modified o and 3, the output w,, satisfies

1-— (wgvl)Q <

Clog (%) [d (257,,,,-X log (n))%‘ N C1 Vi log (n) N CoM (M + A1)? 1og” (n) Tonix (777%)2
(

52 n A=) n (A1 — Xo)? n?
with probability atleast (1 — 8). Here C'is an absolute constant and Cy := 232‘121 , Oy = %

Remark 2. Data downsampling to reduce dependence amongst samples has been suggested in recent
work [26, 22, 3]. In Corollary 1, we establish that the rate obtained is sub-optimal compared to
Theorem 1 by alog (n) factor. We prove this by a simple yet elegant observation: the downsampled
data stream can be considered to be drawn from a Markov chain with transition kernel P* (., .) since
each data-point is k steps away from the previous one. For sufficiently large k, this implies that the
mixing time of this chain is © (1). These new parameters are used to select the modified values of
«, B according to Lemma S.12 in the Supplement.

The proof of Theorem 1 follows the same general recipe as in [15] for obtaining a bound on the
sin? error. However, the original proof techniques heavily rely on the IID setting. We carry out a
refined analysis for each step under the Markovian data model by a careful control of error terms
arising out of dependence. The first step involves obtaining a high-probability bound on the sin®
error, by noting that Oja’s algorithm on n data-points can be viewed as a single iteration of the power
method on B,,. Therefore, fixing a § € (0,1) using Lemma 3.1 from [15], we have with probability
at least (1 — ¢),

Clog (}) Tx (VI B,BIV,)
) vI' B, BLv,

sin? (wy,,v1) < (6)
where C' is an absolute constant. The numerator is bounded by first bounding its expectation (see
Theorem 3) and then using Markov’s inequality. To bound the denominator, similar to [15], we will
use Chebyshev’s inequality. Theorem 4 provides a lower bound for the expectation E [vlTBnBE vl] .
Chebyshev’s inequality also requires upper-bounding the variance of E [vanB,f vl] , which requires

us to bound E [(v?BnBZ;vl)z] (see Theorem 5).

4 Main Technical Tools

In this section, we provide a sketch of the main arguments used in our proof.

Warm-up with downsampled Oja’s algorithm: We start with the simple downsampled Oja’s
algorithm to build intuition. Here, one applies Oja’s update rule (Eq 1) to every k*" data-point, for
a suitably chosen k. For k = [L7nx logn], the total variation distance between any consecutive
data-points in the downsampled data stream is O(n~%). As we show in Corollary 1, the error of this
algorithm is similar to the error of Oja’s algorithm applied to n/k data-points in the IID setting, i.e.,
O(VTmix logn/n).

We will take E [vlTBnBZ; vl] as an example. Let us introduce some notation.

We peel this quantity one matrix at a time from the inside. Note that for a reversible Markov chain,
standard results imply (see Lemma 1) that the mixing conditions apply to the conditional distribution
of a state given another state k steps in the “future” (see Supplement section S.3 for a proof). Recall
dmix (k) from Section 2.1.



1
Lemma 1. Under Assumption 1, 5 igg Z P (Zt = s|Zyx =1t) — 7 ()| = dumix (K),

It will be helpful to explain our analysis by comparing it with the IID setting. For this reason, we will
use Eyp|.] to denote the expectation under the IID data model.

a1 i=E [ ByBIw] =E [ Buz (I +mE +m(XXT = 2)) (T +mS +m(XiX] = ))" BLy0]

=E {%TBM (I+mx)? Bf,ﬂl} +2m Ty + ;i To, (®)

where the first term is smaller than (1 4+ n; )\1)2an72. We define 17 and 715 as follows. T} :=
E[v]Byo(I+m3) (X1 XT =) BL 0], and Ty == E [UITB,Z,2 (X, XT - %) Bgzul].
For the IID setting, the second term is zero, and the third term can be bounded as follows:

2 2
EHD |:1)1TB7L72 (XleT — E) B£72U1:| = EHD [U?Bn,g]}z |:(X1X1T — Z) ] B,3;2’Ul:| S V]EHD [U?BH’QB;I;’Q’LH]

Let us denote the IID version of av, ; by &'2 = Eyp[v! B,, ;B ;v;]. The final recursion for the IID

case becomes: agl,)l < (T+42mM + nf ()\% + V))al,??l. So, for our Markovian data model, the hope
is that the cross term T3 (which has a multiplicative factor of 71) is O(n;) and Ty is O(n3). We will
start with the 7 term, which is zero in the IID setting.

We hope to reduce the product B,, o(X1 X I — %) into a product of nearly independent matrices.
One hope is that if instead of B,, 2, we had B, 51, for some suitably large integer %, then using
(reverse) mixing properties of the Markov chain, we could argue using Lemma 1 that E[X; X{ —
Y|S14ky - -, Sn] is very close to zero.The following lemma formally bounds the deviation of the

length-k matrix product from identity.

Lemma 2. Let Assumption 3 hold. IfVi € [n],nk; (M + A1) < €,e € (0,1) and n; forms a
non-increasing sequence then¥ m < n — ky,

| Btk —1,m _IHQ < (1 +€) kmnm (M + A1) and ©))
m4ky,—1
Boikp-1m—T— > X X[

t=m

< k2 n2 (M+ A)? (10)
2

Lemma 2 bounds the norm of the matrix product By, 1, at two levels. The first result provides
a coarse bound, approximating linear and higher-order terms. The second result provides a finer
bound, preserving the linear term and approximating quadratic and higher-order terms. The proofs
involve a straightforward combinatorial expansion of B, 1, and are deferred to the Supplement
section S.3.

Approximating Hf;l (I +n;X,;XT) requires 71 k to be small. Since this is a recursive argument,
we would need 7,k to be small for ¢ = 1, ... n, which is satisfied by the strong condition 7, k is small.
To obtain a tight analysis, we choose k adaptively. We set k; = Tix (1?) (see definition in Eq 3).

As we will show in detail in the Supplement, Lemma 2 Eq 10 along with the adaptive choice of
k; gives us a sharp error bound. Using it, we can bound 73 (see Eq 8) as:

k+1
Ty < anE 0] Brgoi2 E[(X;XT) (I + mE) (X1 X1 — B) [Xpgas .o Xn| BL piovr| + Omikd)an ko
j=2

Ty,

Naively bounding the T} ; term by O(1) leads to the same rate as downsampled Oja’s algorithm.

In the following lemma, we will establish that, indeed, 7' ; has a much smaller norm. The novelty
of our bound is not just in using the mixing properties of the Markov chain but also in teasing out the
variance parameter V. We will state the lemma, in a slightly more general form as -



Lemma 3. Under Assumptions 1, 2 and 3, fori < j <1+ k;,
[ [T = %) XX lsier - sull, < (1R (P V4 81ZM M+ 2) ) ],

where k; is as defined in Lemma S.12 and S is a constant symmetric positive semi-definite matrix.

Lemma 3 bounds the norm of the covariance between matrices (X; X! — %) S and X ijT.

In particular, this implies that the norm of T ; decays as |A2 (P)| ~!. The proof uses a spectral
argument that replaces a coarse approximation by a sum of k; O(1) terms to sum of k exponentially
decaying terms, thereby removing the dependence on k;, which can be as large as log(n). The proof
is deferred to the Supplement section S.4. The details can be found in Supplement section S.4.

Let {c1, co, c3, ¢4} be positive constants for ease of notation. Coming back to Eq 8, we can
C1 |/\2 (P) |V
1—[X2(P)]
to bound 7% as: T < vy g2 (V + c3mik?). Putting everything together in 8, we have

bound T3 as follows: T1 < oy, k42 (771 + cyﬁk%). A similar argument can be applied

1Az (P) |

2 37,2
) Vi k2 + cantkion kyo
N———

L . Error due to approximation of matrix product
Recursion for IID setting Error due to Markovian dependence

Recursing on this inequality gives us our bound on E [v] B, BXv1] (Theorem 2). We are now ready
to present all our accompanying theorems.

S Intermediate Theorems for Convergence Analysis

In this section, we present our accompanying theorems which are used to obtain the main result in
Theorem 1. But before doing so, we will need to establish some notation. Let k; := 7Tyix (771-2), and
the step-sizes be set as 1; := x—2yz7y; With @, § as defined in Theorem 1. Let ¢ := L As

shown in Lemma S.12 in Supplement Section S.3 our choice of step-sizes satisfy, Vi € [n], o
C.1 nik; M4+ X\) <e C.2 (Slow decay) n; < mi—k, < (1+2€)m; < 2m;
Further, we define scalar variables -
ri=2(14 &) knn M+ X)), Cry =40k (M4 X)?

14+ (3+4e)|XNg (P
Y = 6M |1+ 3k’t2+1 (M + )\1)2} ) V= (1 — |/\€2)(P2)|( )|

% (11)

and recall the definitions of B; and B; ; in Eqs 2 and 7, respectively. We are now ready to present the
theoretical results needed to prove our main result. For simplicity of notation, we present versions of
the results by using 7; := m with «, 3 as defined in Theorem 1. However, these theorems
are in fact valid under more general step-size schedules. We state and prove the more general versions
in the Supplement Section S.4.

Theorem 2. Under Assumptions 1, 2 and 3, for all n > k,, and n; satisfying C.1 and C.2, we have:

n—kp
E [v] ByByui] < (1+7)"exp ( Y @A +0f (VD) + n?wk,t)> :
t=1

The three primary differences with the IID case are a) the (1 -+ 7)? term, which arises since the

recursion sketched in Section 4 leaves out the last k,, terms which are bounded by (1 + ’I“)Q; (b) the
new factor of m with V due to the Markovian dependence between terms; and c) the extra

lower order term 774y, ; arising from the use of Lemmas 2 and 3.



Theorem 3. Let u := min{t: ¢ € [n|,t — ky > 0}. Under Assumptions 1, 2 and 3, for all n > u,
and n; satisfying C.1 and C.2,

E[Tr (VI B,BIV1)] < (1 + 5e)exp < > 2mda iy, (VAT + nfktwk,t>

t=u+1

n t
X (d + Z V' + vt Cllc,tntQ—kt exp < Z 2n; (A — )\2)>>

t=u+1 1=u-+1
where C, , := (1+ ﬁ) exp (21 3252 1j)-

Here, the difference is mainly in the new variable u, arising since the recursion stops at u, not 1.
(1 + 5¢) represents the approximation of the first u terms.

Theorem 4. Under Assumptions 1, 2 and 3, for all n > k,, n; satisfying C.1 and C.2, and

n—knp n—kny
§:=2r+ ﬁ, we have: E [’U?BHBZ;UJ > (1—s)exp < Z 2mA — Z 47],52)\%) .
t=1 t=1

This differs from its [ID counterpart by a multiplicative factor of (1 — s) for the same reason as
before, which also makes the sums go up to (n — k;,) instead of n. Note that for sufficiently large n

(Lemma S.13), 7 = O (%) is very small and ¢ € (0, 1). Therefore, (1 — s) ~ 1 as large n.

Theorem 5. Under Assumptions 1, 2 and 3, for all n > k,, and n; satisfying C.1 and C.2, we have:
n—ky, n—knp
2
E {(vantvl) ] <(1+ r)4 exp ( Z Ay + Z n?§k7t>.
t=1

= t=1

The differences are similar to the last theorems involving v;. Surprisingly, for this, the coarse
approximation suffices, leading to an absence of the V term in the bound. Having established these
results, the final step is to substitute them into Eq 6 and follow the proof recipe described earlier. This
requires significant calculations and is deferred to the Supplement Section S.5.

6 Experimental Validation

In this section, we present some simple experiments to validate our theoretical results. For more
detailed experiments, see the Supplement. We design a Markov chain with |Q|= 10 states, where the
transition matrix entries P;; equal p/(|Q2|—1) for i # j and 1 — p for i = j. Smaller values of p lead
to larger mixing times. It can be verified that the stationary distribution 7 = I/ () is uniform over
the state-space and |A\z (P) |= (1 — p). We set p = 0.2 for Figures 1 and 2a, and vary it in Figure 2b.
Each point in the plot is averaged over 20 random runs over different Markov chains, datasets, and
initialization.

Each state s €  is associated with D(s) := Bernoulli(p,) distribution. We set d = 1000 and
select p; ~ U (0,0.05) at the start of each random run. The covariance matrix, ¥, for each state is

msl%ll ,0; := 5i~P. We start with the
stationary distribution 7, and for each state s;, we draw IID samples Z; ~ D (s;). We standardize Z;

such that all components have zero mean and unit variance under the state distribution, D (s;). We
then generate the sample data-point for PCA as X; = 3?2 Z;. By construction, Ep (s, [XiXiT } =%
and E[X;] = 09. The step sizes for Oja’s algorithm are set as 1; = Frooa—y) fora =5,58 =

set as 3 (4,7) = exp (—|i — j|cs) 0505 where ¢5 :=1+9 (

%. For the downsampled variant, every 10* data-point is considered, and 3 is accordingly
divided by 10. For the offline algorithm, we recompute the leading eigenvector of the sample
covariance matrix of data-points seen so far.

Figure 1 compares the performance of different algorithms for the Bernoulli distribution. Here,
we are checking if the results obtained in Theorem 1, Proposition 1, and Corollary 1 are reflected in
the experiments. The experimental results demonstrate that Oja’s algorithm performs significantly
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Figure 2: X axis represents the sample size, and Y axis represents the sin® error.

better than the downsampled version, consistent with the theoretical results. It also shows that Oja’s
algorithm performs similarly to the offline algorithm, which is also confirmed by our theoretical results
and that of [27]. Figure 2a compares the performance of Oja’s algorithm for different covariance
matrices. Smaller values of 3 decrease the eigengap A1 — A2, and hence lead to a slower convergence.
Figure 2b confirms that smaller values of p (larger values of |A2 (P) |) also worsen the rate, which
matches with our theoretical results.

7 Conclusion

We have considered the problem of streaming PCA for Markovian data, which has implications
in various settings like decentralized optimization, reinforcement learning, etc. The analysis of
streaming algorithms in such settings has seen a renewed surge of interest in recent years. However,
the dependence between data-points makes it difficult to obtain sharp bounds. We provide, to our
knowledge, the first sharp bound for obtaining the first principal component from a Markovian data
stream that breaks the logarithmic barrier present in the analysis done for downsampled data. We
believe that the theoretical tools that we have developed in this paper would enable one to obtain
sharp bounds for other dependent data settings, learning top k principal components, and online
inference algorithms with updates involving products of matrices.
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Supplement
The Supplement is organized as follows -

* Section S.1 introduces notation that will be useful for concise representation.
* Section S.2 provides the proof of Proposition 1.

 Section S.3 contains useful intermediate results which are used in subsequent proofs of our
main results.

* Section S.4 proves bounds on v BntvlT and VLBHBEVJT (Theorems 2, 3, 4 and 5).

* Section S.5 puts everything together and provides proofs of our main result - Theorem 1, along
with Corollary 1.

* Section S.6 provides additional experiments to further support our claims.

S.1 Notation and assumptions

For conciseness, we define the stochastic function A :  — R%4*? which maps each state variable of
the Markov chain to a (d x d) positive semi-definite symmetric matrix as

A (St) = XtXtT

Where X; ~ D (s;) is drawn from the distribution corresponding to the state at timestep s;. All the
theoretical results are derived under Assumptions 1, 2 and 3.

S.2 Offline PCA with Markovian Data

In this section, we prove Proposition 1. We note that [27] considers F; (s;) to be random only with
respect to the states. Therefore, we first show that their results generalize to our setting as well, using
F; (sj) == A(s;) — X. From Eq (5) in [27], we have

2

e (fuae-»)| - Hexp (e ) [Tes (3eaen-9)

= vec (I)" Hexp (0H (s;)) | vec (Ia)
7=1

where H (s;) := 2 [(A(s;) —X) ® Is + I ® (A(s;) — ¥)]. Noting that conditioned on the state

sequence, the matrices A (s;),¢ € [n] are independent under our model, we can push in the
expectation over the state-specific distributions inside. Let [E,. denote the expectation over the
stationary state-sequence of the Markov chain, and Ep denote the distribution over states. Therefore,

2

E.Ep Hexp (g (A(sj) — E)) =E, |vec(Iy)" HED(S [exp (0H (s;))] | vec (Iq)
h j=1

Defining the multiplication operator (E]eh) () = Ep(y) [exp (0H; (x))] h (z) for any vector-valued
function h, we note that Eq (8) from [27] holds for our case as well.

Next, we adapt Proposition 5.3 from [27] for our setting. Specifically, we have the following
lemma -
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Lemma S.1. Consider the operator H (z) := $[(A(z) = %) ® I+ 14® (A(z) — ). Then,
under assumptions 3 and 2 and the definition of 3, we have,

2. H(z) < MI

3.’

Bt 7] <>

Proof. The proof follows by using the same arguments as Proposition 5.3 from [27] and using
the expectation E;Ep,) over both the state sequence and the distribution over states, along with
assumptions 3 and 2. O

Finally, to prove Bernstein’s inequality, we prove that Lemma 6.7 from [27] holds for our case. To
note this, we start with equation (57) in their work. We have, using Lemma S.1,

|<112,EW]ED(1.) [exp (0H (x))] 1}1>’ = |<112,EWIED($) [exp (0H (x))] v1>|

< [{v2,v1)] (1 +yY (Z k!Mk2>)

k=2
Therefore, Eq (60) from [27] follows. The other bounds in the proof of Lemma 6.7 from [27] follow
similarly. Therefore, we have the following version of Theorem 2.2 from [27] -

Proposition S.1. Under assumptions 2 and 3, we have

1< z /3%
P25 a0 5] =) < ton [ g O
U= +[A2(P)] 8/
ne4 X 17\A2(P)\”V+ lf\Az(P)lMt

The proof of Proposition 1 now follows by converting the tail bound into a high probability bound
and using Wedin’s theorem [36]. See proof of Theorem 1.1 in [15] for details.

S.3 Useful Results

This section presents some useful lemmas and their proofs that are subsequently used in our proofs.

Lemma S.2. (Reverse mixing) Consider a reversible, irreducible, and aperiodic Markov chain
started from the stationary distribution. Then,

1
—su P(Z = s|Ziyp, =1t) — 7 (8)| = dix (K
2t€£ZS:| (Zt = 8| Zipr = t) — 7 (3)] (k)

Proof. Let the transition probabilities of the Markov chain be represented as P(x|y) := P(Zi41 =
x|Zy = y). Consider the time-reversed chain Y; := Z,,_;y; fori = 1,2,...n. Then,
PYi=sYio1=5-1,Y1 2=8_2...Y1 = 51)

=P(Zn111=511Zn 142 =51-1,Zn—143 = 51-2,... Zpn = 1)

=P (Zn-14+1 = 81|Zn—1+2 = s;—1) using Lemma S.6

P(Zy =81, Z0 140 = 51-1)

P(Zp-112 = s1-1)
_ m (Sl) P(Slfllsl)
7 (s1-1)

= P(si|s;—1) using reversibility
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This proves that Y,, is an irreducible Markov chain with the same transition probabilities as the
original Markov chain. The irreducibility of Y,, follows from the original Markov chain being
irreducible. Therefore,

]P(Zt = 81|Zt+k = 32) =P (Yn+17t = 31|Yn+17t7k = 32) (S.12)
Then,

1 1

3 supz P (Z; = 8| Zpyr =t) — 7 (s)] = = supz P (YVot1—t = 8|Yni1—t—k =1t) — 7 (8)] = dmix (k)
e teQ

where the last inequality follows from the forward mixing properties of the Markov chain. O

Lemma S.3. Let C;; = Hi:j(l + Zy) fori < j < n, where Z; € R4 are symmetric PSD
matrices. Let U € RIX4d, Then,

Tr (UTOJ‘,H_lO z+1U) < Tr (UTOJJOJT:ZU)
Proof.
Tr (U C;iCLU) = Te (UTCyia (I + 22 + 27)CF 1, U)
=Tr (U"Cji1Cl i U) + Tr (U Cjia (22 + 27)CL 1 U)

Since Z; and Z?2 are both PSD, the second term on the RHS is always positive. This yields the
proof. O

Lemma S4. Let B, = [[,_,(I + Z:), where Z; € R%? are symmetric PSD matrices.
Tr (Bn-1B}_,) < Tr (B, BY)
Proof.

Tr (B,Bl) = Tr (I + Zn)Bp_1Br_ (I + Z,,))
= Tr (By_1Bl_)) + Tv (Z,Bn-1Bl_y) + Tt (By_1B._1Z,) + Tv (Z,Bn-1Bl_1 Zy,)
=Tr(By1BL )+ 2T (B} _Z,B,_1) + Tr (Bl_Z2B,_1)

Since Z,, and Z?2 are both PSD, the last two terms on the RHS are always positive. This yields the
proof. O

Lemma S.5. Consider matrices X € R and A € R4, Then,
T (X7 AX)| < AT (X7 )
Proof. For a matrix Z € R%*?, let the singular values be denoted as :
Omaz (Z) =01(Z) > 09(Z)... > 04(2)
Using Von-Neumann’s trace inequality, we have

|Tr (XTAX)| = |Tr (AXXT)|

<ZO‘Z ) o XXT)

d
< Oz (A) Z o (XXT)

= | All2Tx (XXT)
= | All2Tx (X7 X)
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Lemma S.6. Given the Markov property in a Markov chain, the reverse Markov property holds, i.e
P(Zt = S‘Zt—i-l = w,ZH_Q = St42.-.. Zn = Sn) = P(Zt = S|Zt+1 = w)
Proof.

P(Z; =5|Zi41 =w, Zyyo = St .. Zn = Sp)
P(Zy=58,Z411 =w,Ztyo = St19... Ly = Sp)
P(Ziy1=1,Z1490=St42...Zn = Sp)

P(Zy=5,Z141 =w)P(Ziyo = Sty . Zn = $p|Zt = 8, Z411 = w)
P(Ziy1 =w)P(Zi1a = Sty ... Zyn = $p|Zty1 = w)
P(Zi=5,Zt11 =w)P(Ziyo = St42. .- Zn = $p|Zi11 = w)
(
)

P(Ziy1 =w)P(Ziya = Sty2 ... Zpn = $p|Zty1 = w)
P(Zy=5,Z41=w
P (Zi41 = w)
=P (Z; = $|Zi11 = w)

S.3.1 Proof of Lemma 2
Now we are ready to provide a proof of Lemma 2.

Proof of Lemma 2. Without loss of generality, we prove the statement for m = 1. For convenience
of notation, we denote k := k;. Note that,

k r
Bea=>_ > JImAGi,), Go={(ir,....ir) €{L,... N} viy < < iy}
r=0 (i1,iz...i,)EG, j=1

with the convention that [ | » = 1. Therefore, since 7); forms a non-increasing sequence and |G |= (’:) ,
we have,

”Bkl IHQ Z Z H'rhj SZJ

r=1 (41,i3...i, ) EG, J=1 2
,
S E HmjA(Sij)
(i1,82...i0)EG, |[7=1 9

IN

M?r HM»

<

() o

k—: (Hm> (M+ M)

k'f‘
i
(knl (M + )\1))

n (M4 Ar) (1+Ekm (M + 1)) using S.14

(1+€) Em (M4 Ap) (S.13)

where we have used the assumptions that || A(s)||2< ||A(s)=Z||+||Z]l2= (M + A1), kmp (M + X)) <
1 and the useful result that

g
Il
—

M»

ﬁ
I
—

(M + )\1)7-

M»

ﬁ
I
—

ININ TN
;vcn

e’ <1+ax+2%xecl0,1.79) (S.14)

16



This completes the proof for (a).

For part (b), we have

k
Bk71 — I — ZntA (St

t=1

Z S IImAe)

=2 (i1,iz...i,)€EG J=1 2

k r
SN S |1 (R

r=2 (Z‘hiz...i,,.)EG,,w j=2
k k r
<> (r) (1:]277) (M+ )"
k T
<. (Hn) (M+A1)"

n (M + A1)

1 (MAA)) =1 —kmp (M + )

exp (kn
< k*p? (M 4 A1)? using S.14 along with kny (M + A\y) < 1
(8.15)

which completes the proof. O

S.3.2 Proof of Lemma 3

Before proving Lemma 3, we will need the following lemma.

Lemma S.7. For arbitrary matrices M; € R4*? i € [n] and Q € R™*", we have

S Qay) MMy | < QI || Y] MoM]

z,y€[n] 9 z€(n] 9
where |||, denotes the spectral norm.

Proof. Define matrix X € Réxnd 55 X = [Ml My ... Mn] We note that

1Xly = 4/ Amaz (XXT)

== Am,arc Z Mr M»,T

z€[n]

= Z M,.MT|| since Z M,M? is a symmetric matrix

z€[n] 9 z€[n]

Then, we have,

Z Q (z,y) Mme = X (Q® Iyxq) XT, where ® denotes the kronecker product
z,y€[n]
< |IX]131Q @ Iixal|, using submultiplicativity of the spectral norm
2 .
= [[X[]2 1@l since [[A® Bll; = [[All2[| B2

which completes our proof. O
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Proof of Lemma 3. We denote k; := k for convenience of notation. By using reversibility (see S.12),
we know that the time-reversed process is also a Markov chain with the same transition probabilities.
Then, fori < j < i+ k and any m,

P(si=s5,5; =t|si1p =u) = P(s; = s|sj = t)P(s; = t|sitr = u)
W pi=i(¢, 5) P+ (u, 1)

= P(Sm = S|sm—jti = t)P(sm—jti = t|sSm—r = u)

= P(8m =8, Sm—j+i = t|Sm—r = u) (S.16)

Step (i) uses reversibility. Therefore,

E[(A(s;) —X)SA(s))|Sitk,---Sn] = Z (Es + ,us,usT — E) S (Zt + ,ututT) P(s; = s,8; = t|Sitk,-- - Sn)

s,t
using Lemma S.6 = Z (Es + us,uf — E) S (Zt + ,utu?) P(s; =s,sj =t|siyk)
s,t
using Eq S.16 = Z (Zs + - ) S (5 + ,utuf) P(sm =8, Sm—jti = t|Sm_t = 1)
s,t

— B (A (5m) — %) SA(5m_341) [5m 4]
=E[(A(s;) —X)SA(s;)]|sj—x] settingm :=j

Therefore, without loss of generality, we proceed with the second form.

[E[(A(s;) — %) SA(si) |sj—& = wolll,
< E[(A(s5) = %) SX[sj—r = zolll, + [E[(A(s5) — £) S (A(si) — %) [sj—r = zo]ll,

Ty T>

T1 2:|

E[(A(s;) — %) SEsj—1 = 2],
[Ep(s,) [(A(s;) — D)) |sj—r = 0] ST,
(5 ) oy = 2] 5

E
E

= 1> P¥(sjk,5) (Ss + papl — %) ST
sEN

2

S Z (Pk(Sj_k,S) -7 (3)) (Es + ,USMZ - Z) +E7r [(Es + /-Ls,uz - E)] HSHQ ||E||2
seQ

= A [IS]l, (

<MSI, MY

sEN
< 2X1 ||S]ly Mdmix (Kit1)
<207 M S]], (S.17)

Z (P*(sj—ky 8) — 7 (3)) (Bs + pspl — X) )
s€Q 2

PH(s;_k,5) = 7 (5)
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Ty = |E[(A(s;) = %) S (A(si) = 2) [sj—k = wol 5

= Z P(s; =28 =yl|sj—r = 20) Ep(a) [A (z) — E] SEp(y) [A (y) — X]|| using independence of
z,yeN

D (z) and D (y) conditioned on x and y

2

= Z P(s; =x,8 =y|sj—x = xo) (Em + ,uz,uf — E) St S3 (Ey + uyug — E)
z,yeN

Wa W?/T 2

= Z P(s; =z|si = y)P(ss = y|lsj—r = x0) WJEWyT using the Markov property
z,y€Q

2
= > P (y,x) P (o, y) W W,
z,yeN 9
= || X2 (P () = w (@) PO (o, y) Wo W D (@) PP (o, ) W W
z,y€Q z,y€eN

2

= 1> (P (y,2) = () P (o, y) Wa Wy + > (@) Wa Y P4 (g, ) Wy
z,yeN zEQ yeN
0
= 2

= Z (Pj_i (y,l‘) -7 (JI)) Pi_j+k ($0,y) WIWUT
z,yeN

2
< Z (P (y,2) — 7w (2)) (PT"F (20,y) — 7 (y)) WwWyT + Z (P (y,z) — m (2)) 7 (y) WmVVyT
z,yeN 9 z,yeN 9
T2y T2
(S.18)
For 151, we have,
Ty < ) [P (y,) = w (@) [P (o) — 7w ()| [Wa W,
z,yeN
<|ISlly M2 [P (20,y) — w0 ()| D [P (g, 2) — 7 ()]
yeQ zeQ
<2 ||SH2M2dmix (.7 - Z) Z ‘Pi_j+k (330,?/> - W(y)‘
yeR
< 4(|ly MPduix (7 — 1) dinix (i — j + k)
< 45|, M2 Lo 50
< 818]l, M2~ =5 ince Va, b [a) + [b] > [a+b] — 1
< 88l M2 15w) < 81811, M2 () < 87204251, (5.19)
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For 155, we have,

Top = || > (P77 (y,2) — m () 7 (y) Wa W,
z,yeN

_ Z (Pj*i (y,:zx—)ﬂ(x)) W(WWI) (\/@WI)

2

z,yed W(:ﬂ)
(0
<Rl || 7 (@) (Zx + papts — ) S (S + papt — %)
zeN 2
= Q2 ||Bx [(Z + habg — %) S (So + pag — )],
< 1QU 151 |[Br [(S2 + parid — £)7]]|
< VIRl 1Sl (5.20)

- (P W) @) s (V7@ (B0 + patf =) 8%) (VA WIS (Sy + syl

Step (7) uses Lemma S.7 with Q(y, x) := w«/w (y) and M, = /7 (2) (S4 + popl — %) S2.

m(z)
Let’s now bound ||Q)|,. Let IT := diag (7) € R®*® and ¢ := j — i. Then, we have

Q=112 (P'—117T) 1 2
—TzPr 2 —me117me
Now, since we have a reversible Markov chain, IIP = PTTI. Therefore,
12 PII"% =121 PTIIN -
=TI = P71

Therefore, P is similar to the self-adjoint matrix I1z PII"2 and their eigenvalues are real and the
1 . . . 1 1 . . .
same. Further note that I 1 is the leading eigenvector of 11z PII~ 2 with eigenvalue 1 since

Mz PII 21121 = [12 P1
= H% 1 since P is a stochastic matrix

Now,

102 = HH%PtH—% i1t
2

- H (H%PH—%)t 13117

2
t

< ‘Ag (H%PH—%)

= (P)]f

where | A2 (.) | denotes the second-largest eigenvalue in magnitude. Therefore, using S.17, S.19 and
S.20, we have

E[(A (1) = £) SA(s5) Isins 5] < (12 (P V + 872M2 + 2020, ) [,
< (e (P V4 82M (M4 2)) |15,

Hence proved. O
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Lemma S.8. Let Vi € [n], n;k; (M + \1) < ¢, e € (0,1) and n; forms a non-increasing sequence.
Set ki := Tix ('yniz) ;v € (0,1). Then for constant matrix U € R*% and constant positive
semi-definite matrix G € Raxd 4 <j<mn,j—1i>k; wehave

|E [Tr (U Bj,i11G (A; = £) B]; ,U)]|

2V |he (P
< 77i+1||G||2<1||>\22((P))I|

x E |:TI' (UTBj,i+ki+1B}:i+k?i+l U):|

M (27 (1480 + (24 (14 %) Ry (M + W))

where B ; is defined in 7.

Proof. For the convenience of notation, we denote k;11 := k. Let Bj ;41 = Bj i+x (I + R), then

E [Tr (U"Bjis1G (Ai = %) B ,,U)] =

E |Tr (U'BjiwxG (A = S)B) ;. U) | +E | Tr (U B;i4xG (A; = Z) RTB,,.U) | +

Ty T>

E |Tr (U"Bj sk RG (A; = X) Bl U) | +E |Tr (U Bj 114 RG (A; — S) R"B], ,U)

L TB T4
(S.21)
We will now bound each of the terms E [T] , E [T3] , E [T3] and E [T}].
E[T1] =E[Tr (U Bji44G (4 — £) B ;. U)]
=E|E |:Tr (UTBj7i+kG (Al — E) B}:z—&-kU) Sitky---Sj—1, Sj:|:|
=E |Tr (UTBj7i+kG E l:(AZ - E) Sitky---Sj—1, Sj:l B}:H—kU):l
=FE|Tr (UTBJ-)H;.CG E {(Az =) 5i+k:| Bfi+kU)] using Lemma S.6
Now, using Lemma 1, we have,
H]E |:(Ai ) 3i+k] = 1D P (sitk, ) (A = %)
2 seQ 2
= Z (P (sitks8) — () (A — ) + E [(4; — 2)]
s€Q T )
= Z (P*(sis,8) — 7 (s)) (4; — 2)
seQ 2
<MD |PH(sivh,s) = (s)
seQ
< 2Mdix (kig1)
< 292 M (8.22)
where we have used Lemma S.5. Therefore,
E[T1]] < v MIGI2E [Tt (U By s BT 1 U)] (5.23)
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We will now bound E [T3]. Let Ry := Z;i’f;ll neAy. Using Lemma 2 we have
2
”R - RO”Q < 771'2+1ki2+1 (M + )\1)
Then,

E[T3]

E [Tr (U" Bji+xG (A — £) R"B],,,U)]
E[Tr (U7 By 4G (A — £) RTBT,, U)] +E [Tr (UTBNHCG (A; — ) (R — Ry)" Bfi+kU)]
E [Tr (U B,k GE[(A; — £) Rf [Sisk, - i1, 8;1B) s xU)] +

E [Tr (UTBj,HkG (A; — ) (R — Ry)" BfHkU)}

Using Lemma 3 with .S := I we have,

i+k—1
|E [(4; — %) Rg|8i+k,..., 2 < Z Ul (|/\2 1V+87771.2+1M (M—l—)\l))
l=i+1
A2 (P)] 3
<nip1V———"— + 8y kiga M (M + A S.24
—77*‘1’1 1—‘)\2(P)‘ '777+1 +1 ( 1) ( )
Therefore,
E [T3] |
) V ‘)‘2 (P)‘ 3 ) 2 2 2 T . T
S ||G||2 T/z+171 — |)\2 (P)| + 8’}/7’]1'+1kl+1./\/l (M + )\1) + ni+1ki+1M (M + )\]_) E I:T‘I' (U BJ”H’kBj,Z?HCU)]
_ VA2 (P)] s . 5
= Ni+1l|Gll2{ 7= N (P)] + 8yn7 kit MM+ ) + 01 k2 MM+ )7 ) E [Tr (U Bjaga B 4, U) ]

(S.25)
Similarly using Lemma 3 with S := G,

VA2 (P)]

IE [T3]| < 77¢+1||G||2<1 — X2 (P)]

+ 877]?+1k¢+1/\/l (M + /\1) + 7]1‘_;_1]{32»2_,'_1./\/1 (M + )\1)2> E [TI‘ (UTBj7i+kB}:i+kU)}
(5.26)
Finally,
[E[T3]] < MIIG2||RIZE [Tr (U Bji+x B} i1 U)]

< (14 2k M (M + M) |Gl2E [Tx (UT By i4,BY;,,U)] using Lemma 2
(S.27)

Therefore, using Eqs S.23, S.25, S.26, S.27 along with S.21, we have
|E[Tx (U" Bj,it1G (Ai = 2) Bj ;1 U)]|

2V |\
< Th‘+1||G2(|2()|

2
T~ (P)] + N1 M (27 +169nit1kivr (M + A1) + (2 +(1+¢) ) i (M4 ) ))

< E[Tr (U" Bji+xBji1U)]
+ M (27 (1+ 8e) + (2 F(1+ 6)2) K2,y (M + >\1)2)>

x E [Tr (UTBj,z‘+kBjT,i+kU)]

2V A2 (P)|

<malole( 222

where in the last line we used 7;41k;+1 (M + A1) < e. Hence proved. O]
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Lemma S.9. Let Vi € [n], n;k; (M + \1) < ¢, e € (0,1) and n; forms a non-increasing sequence.
Set ki := Tpix ('yniz) ,v € (0,1]. Then for constant matrices U € R4 G € R4 j < j <
n, j —1i > k;, we have

’]E {Tr (UTBj,i+1G (4; — %) BjT,,,HU)} ‘
< (VM2 @9 + (14 €) 2+ € (1 ) kiga (M + M) G E [Tr (U7 By Bk, U) |

where B ; is defined in 7.
Proof. For convenience of notation, we denote k; 1 := k. Let B; ;41 = Bj itk (I + R), then
E [Tr (UTBN-HG (4, - %)* BT, HU)} _

Js Js

E |Tr (UTBJ»,H;CG(Ai—ZfB.THkU) 4E |Tr (UTBJ,H,CG(AZ-—2)2RTB.TZ,+,€U) n

T1 T2

E|Tr (UTBj7i+kRG(AifE)QBjT’HkU) YE|Tr (UTBJ-_H;CRG(AifE)QRTBjT)HkU)

Ts Ty

We will now bound each of the terms E [T1] , E [T5] , E [T5] and E [T}).

Since

E, {(At - 2)2: H2 <V, therefore

E[T1] =E [Tr (UTBJ,H,CG (A; — %) Bfi+kU)}

=E |E |Tr (UTBj7¢+kG (4; - %) BTi-HcU)

s

Sidtky---Sj—1, S]:|:|

—E|Tr (UTBMHCG E [(Ai -%)?

T
Sitks---Sj—1, Sj] Bj,i+kU):|

= |Tr <UTBN-+;€G E |:(Ai - %)

3i+k:| B;F_Hk U)} using Lemma S.6

(@)
< (V+ 2duix (k) M?) |G|, E [Tr (U Bj ik B 44U)]

where in (¢), we used similar steps as S.22 to get

H]E {(Ai —n)? SM} < ] E, [(Ai - 2)2] H2 + 2l (k) M2 (S.28)
2
Next, using Lemma 2 we have that
HR||2 § (1 + 6) ki+177i+1 (M + )\1) . (529)

Therefore,

E[1y] =E [Ty (UTBJ,H,CG (A; — %) RTBjTi+kU)}
< (1+€) kipamip M (M + M) |G, E [Tr (U By i B] ;i 4,.U)]
Similarly,
E[l3] = E [T&« (UTBJ,H,CRG (4, - %)? B, +,CU)}
< (14 €) kig1nipaM?> (M + M) |G|, E [Tr (UTBj7i+kB}:i+kU)]
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Finally, using the bound on || R||> from Eq S.29, we have:

E[Ty) = E | Tr (U7 Bj ik RG (4; - £)* RTBY, U |
<(1+ 5)2 ki2+177i2+1M2 (M + )‘1)2 ||GH2 E [Tr (UTBj,HkBjT,iJrkU)]

< e(1+€)? kit M2 (M + A |G|, E [Tr (UT By ipx BY, ., U)] using Vi, nik; (M + A1) < c
Therefore,
‘]E {Tr (UTBJ»,MG (4; — %) BjT)HlU)} ‘

(1)
< (VA Qi M2+ (14€) 2+ € (14 ) kit M? (M + M) |G, E [Tr (U By B} i 14U)]

= (VA+nipM? 21+ (L4 €) (24 € (L4 €) kisr (M + X)) |Gl E [Tr (U B i B} ,,1.U)]
where in (7), we used dpix (k) = dmix (kix1) < ’ynfﬂ. Hence proved. O

Lemma S.10. Let Vi € [n], n;k; (M + A1) < €, e € (0, 1) and step-sizes n; forms a non-increasing
sequence. Further, let the step-sizes follow a slow-decay property, i.e, Vi,1; < mi—, < 2n;. Set
ki = T (7773) .y € (0,1]. Let G € R¥? be a constant positive semi-definite matrix, and
Pt ="Tr (BtlegllG(At - E)), then,

2V (A2 (P)|

]E[Pf] < Mt —k, (1_)\2(P)

Y (27 (14 8¢) + (2 +(1+ 6)2) K2 (M + A1)2)) |Gl E [Tr (Bi—k, B{_y,)]

where By is defined in 2.

Proof. Let By = (I + R) Bi—, with ||R||2< r. Then,

E[P] =E |Tr (By—4, B{_,G(A; — %)) | +E | Tr (By—k, B, R"G(4; — %))

P P; o

+E | Tr (Bi—g, B/, G(As = Z)R) | +E | Tr (Be—y, B{_, R"G(A; — £)R)

Py 3 Py 4

Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and S.25, we have,

E[P;1] = E [Tr (Bi—k, B{_,,E[G(A, — )51, 82, ..., 5t—1,]) ]
< E[Tr (Bi—k, B/, GE[(Ar — )|s1—,])]
<NGE[(As = 2)|st—, I, E [Tr (Be—r, Bi_s,)]
< 2Mdix (k¢) |Gl E [Tt (Be—y, B{_},)] using S.22
< 2y M||Gl, B [Tr (Bi—r, B/ 4,)]

E[P; ] = E [Tr (Bi—k,B{_1,,.E [RTG(A; — £)U|s1, 52, ., St—1,])]
< ||E[RTG(A¢ — £)Is1, 52, -, 51—k, ) || E [Tr (Bei, B4, )]
= |E[RTG(A¢ = D)lst—r,] ||, E [Tr (Be-r, B +,)]

VA (P .
<0k, |G, (1||§2((12|)| + 87, ke M (M + A1) + e, kK M (M + )\1)2> E [Tr (B¢, B{_;,)] using S.2
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VA2 (P)]
1= X2 (P)|
[P

using similar steps as £

E[Pra] < . |Gl ( S8y ke MM 4 ) i KM (M 4 A1>2) E[Tr (Br_s BT 4, )]

2]

E [P 4] = E [Tr (Bi—k, B{_;,R"G(A; — £)R)]
§7"2M||G||2 [ (Bt ktBt kt>]
<1+’ KM (M + 1) |G|y E [Tr (By—y, BL,)] using Lemma 2
< (14 n2 o k2M (M + M) |Gl E [Tr (Biy, BL,,)]

Therefore we have,

2V A
< kt( PO M (2 10 b M A+ (24 (1 0 o (M 0)7) ) 61

< E [Tr (Bi—r, B ,)]

2V A
< ( 2l +m_km (29 + 167mke (M +20) + (24 (1+ ) 17 <M+A1>Q)> Gl

|/\2
< E [Tr (Bt_ktBlfT_kt)}
(“) 2V |\
( | 2 ( oM (27(1 + 8¢) + (2 Ty 6)2) k2 (M + )\1)2)> G|, E [Tr (Bi_, BL4,)]

where in (7) we used 21—, < n¢ < 11—k, along with n:k; (M + A1) < €in (i7). Hence proved. [

Lemma S.11. Let Vi € [n], n;k; (M 4+ A1) < €,e € (0,1) and n; forms a non-increasing sequence.
Set ki := Twix (y0?) ,7 € (0,1]. Let U € R**? be a constant matrix and Q; := Tr (B;_1B{ | (A; — )U (A, — %)).
Further, let the decay of the step-sizes be slow such that Vi, n; < iy, < 2n;. Then

E[Qd < (V+ m—pys1M> 2y +2(1+€) (L +e(L+€) ke (M + A1) [U||,E [Tr (Be—y, B_y,)]
where By is defined in 2.
Proof. Let By = (I + R) By_j, with ||R||2< r. Then,

E[Q:] =E | Tr (Bi—k, B{_y, (At — S)U(A; — %)) | +E | Tr (Bi—k, B{_y, R (A — £)U (A, — 5))
Q1 Q.2

+E | Tr (RBy—k, B 1,,(Ay = S)U(A, — %)) | + E | Tr (RB—y,, B{_;,, R (As — £)U (A, — X))
Qt,3 Q.4

Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and noting that
E, {(At - 2)2} H <V, we have
2

E[Q¢t1] = E [Tr (Bi—i, B{_,E[(A — )U(Ar — Z)|s1, 82, St—k,])]
=E [Tr (Bi—k, BL 1, E[(Ae = D)U(A; — 5)[511,])]
< E[(Ae = 2)U(Ae = B)se—ro]llo E [Tr (Ber, By, )]
< ||Ul5 | E [(Ar = S)?[st—, |||, E [Tr (Be—k, B{_4,)] using 5.28
<|NUlly (V + 2dmix (k) M?) E [Tt (B—y, Bi_y,)]
< |[Ully (V+ 29mf M?) E [Tr (Bek, Bi_y, )]
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E[Qt2] = E [Tr (Bi—y, B{_,E [RT (A — S)U(Ar — X)|s1, 82, .-, St—k, ] )]
< ||E [R" (As — S)U (A — ) st—k, |||, E [Tr (Bi—r, B! 1,)]
< (1+€) ekt 1keM? (M + 1) |U|l, E [Tr (By—k, B,,)] using Lemma 2

E Q3] < (1+€) me—py41keM> (M + A1) |U|l, E [Tr (Bi—y, B{_,)] using a similar argument as Q.

E[Qt4] =E [Tr (RBy—i, B, R" (A4; — 2)U(4; — ¥))]
= E [Tr (B, B/, R" (A, = £)U (A, — T)R)]
<r?|U|ly MPE [Tr (Bi—r, By, )]
< (1+4¢)? Mgy 1 ki M> (M + M)? U, E [Tr (Bs—k, B{_y,)] using Lemma 2

Therefore, we have

E[Q]

= (V + k41 (27%/\42 +2(1+ €) ke M? (M + M) + (L+ €)° g, 41 kfM? (M + >‘1)2)> U, E [T (Be—r, B,
(i)
< (v My 1 M (QW F2(1+€) ke (M A+ A1) + 26 (14 € ky (M + Al))) U, E [Tr (Be_, BL1,)]

= (V4 i1 M? 2yme +2(1+ €) (L+ e (14 €)) ke (M + M) [[U |, E [Tx (Bi—i, B, )]

In (i), we used the slow-decay assumption on 7; mentioned in the lemma statement along with
nik; (M + A1) < e. Hence proved. O

Lemma S.12. (Learning Rate Schedule) Fix any § € (0,1). Set k; := Typix (773) Suppose the step
sizes are set such that

«

(A1 —A2) (B+1)

n;, =

Define the linear function

vi e [n], f (i) ::%: ()‘1_A2a)(5+i)’

With € := ﬁ and &1, Cr.iy V' Vit defined in S.49, set o > 2, f (0) > e, m := 200 and

3 Tix 108 (£ (0)) (M + M) @ 57mielog (£ (0)) (M + Ap)° a2 (V' +54%) 0
B =600 max{ A= A "3 - A2)?log (L4 2)  7300(A — Az)’log (1+ 2)

then we have
1 niki( M+ X)) <e

2. Y, i < nicg, < (14 2¢) m; < 2 (slow-decay)

3

30 (Vi + G +423) 02 <log (1+ 2)

@
Il
-

3

&
Il
-

i j=it1

4. (V' + &i) m7_y,, exp (— > o2m (M — )\2)) <

(2(1+1oe) a2> N 1 (24(1+106)a3> M (M +X,)* k2

200 — 1 —x)%n (a—1) (A — \o)® n?
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Proof. We use the following inequalities -
i O[
2
n; <
2 i

: a t4B+1
;"jz =) ( it B ) (8:31)
+

Usmg

(S.30)

I/\

NE

~
8| =
N—————

s
Il
-

(x +1i)?

¢ « t+p
;nﬂ' = (A — )\2) (z +8-1 (8.32)

t

gy EHBE D -+ B _ t+ B+ D)
;(ﬁﬂ) T < i1

vVi>0 (S.33)

For the first result, we observe that f(z) = log( ) is a decreasing function of x for x > e. Using
properties of the mixing time (see Section 2.1 in the manuscript), we have

e 2Tmix i _ 4Tmix (5 + 7’) ()‘1 — )‘2) _ 4Tmix
ki 1= T (1) < log (2) tos <m—2> ~ log (2) log< o ) ~ log (2 )log(f( 2
(S.34)
forn; < 1. Fori >0
A A
«
Therefore,
47_mix (M + )\1) «@ <(5 + Z) ()\1 — )\2))
MA@ B On =) a
AT (M + X)) log (f (7))
log (2) f (@)
ATmix (M 4+ A1) log (£ (0))
log (2) f(0)
From the assumptions mentioned in the Lemma statement, we have
log (f (0)) elog(2) log (2)
FO0) T (M) 2007w (M A1) (5.35)
Therefore,
Y ’i, niki (M + )\1) <e (536)

For the second result, we note that Vi € [n],

Mok, _ B+
n; B+i—ki
k;

=1+ -
B+i—

1

S
B+
Gl
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B+i
ki

. We can simplify it as :

- log (2) B+

T 4Tmix log ((ﬂ+i)(>\1*>\2)>

_ alg® £
4Tmix ()\1 - )\2) log (f (Z)>
alog (2) f(

A7mix (A1 — A2) log (f (0))

1 from S.35
€

Consider the fraction

B+i
ki

>

where we used the fact that ﬁ is an increasing function for « > e. Therefore, we have that

Ni—k; 1
77% 1+ %_ 1
1
11—
<1+ 2¢fore € (0,0.1)

For the third result, we note that
Chot o= 40kpp1 (M + A1),
Er 1= 2mM |34 9K2, (M+ M)
< 249, M [ka (M + /\1)2] since (M + A;) > 1 WLOG

S 24e (1 + 6) kt+1 (M + )\1)2 since Mt S (1 + 26) MNt+1 and T]t+1k't+1 (M + )\1) S €

Therefore,

n

Z (Vi + Coi) m7 = (

V' + 5)\%) Zn? +41 (M + )\1)2 Zﬁ?kiﬂ

i=1 i=1 i=1
(@) - -
< (V' 45M) D nf +45 (M +M)* > n?y ki (8.37)
i=1 i=1
T1 T2
where (i) follows from the slow decay property of 7;.
For T, using S.30 we have,
2
@
n<—— (S.38)
(A1 = Xo)* 8
For T, substituting the value of k; from S.34 for ; < 1 we have,
n ATy a 2 (M —Xo) (B+i+ 1)>
T = 2ok < — lo
2 ;n”l H_1_10g(2)l_z_;<()\1—>\2)(5—|—i—|—1)> g( a
(S.39)
_ A z":log(f(i+1)) (5.40)
log(2) &= f(i+1)°
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Note that f () is a linear function of 4 and Vi f (i + 1) — f (i) = 21=22. We observe that g(z) =

log(x)

= is a decreasing function of x for x > ez ~ 1.65. Therefore,

M=) <= log (f (i + 1)) Fnt1) 1og (z)
( @ )Z; fi+1)? S/f(1> e

Substituting in S.40 we have,

ATmix e’ FntD) 1og (2)
T2 S log (2) ()\1 — )\2> /);(1) 1’2 .
AT ( « > B (IOg (z) . 1) f(n)
~ log (2) \ A1 — A2 T )
ATmix ( a > <1og (f (1) N 1 >
log (2) \ A1 — A2 f () @
8 Timix ( a ) (10g (f (1)))
~log(2) \ A — A f ()
< I(ZHE;) ( " a )\2> <1Og f({O()O))) since Ing(x) is a decreasing function of x forz > e

Putting everything together in S.37 and using the bounds on 3, f (0) mentioned in the lemma
statement, we have,

n

log (f (0)) a?

Vo \ 2 2 o ' 2

; (Vkﬂ + Ck,l) n; S 460 (M + )\1) Tmix ()\1 — )\2) f (0) + (Al — )\2)2 /6 (V + 5)\1)
= 4607mix log (f (0)) @ (M+X1)* + e (V' +5X3)

™ (=)’ 8 ' (M=)’ 8 !

<log <1+ 5)
m

Finally, for the last result we first note that

€ 1= 2 M [3 +9k2,, (M + Al)ﬂ
< 24, M [kfﬂ (M + Al)ﬂ since (M + A1) > 1 WLOG
Therefore,
0

DV +G)m e [ — D 20 (M — M)

i=1 j=i+1

+2€22 V' +&.i)n exp — Z 2n; (M1 — A2)
=1

j=i+1

1+ 5¢) Z V' +&i)niexp | — Z 2n; (A — A2) | since € € (0,0.1)
i=1 j=it1

1+ 5¢) ZVW? exp | = D> 2 (=) | + ) Gunfexp [ — D> 2m (M — o)
=1 J=i+1 =1 j=i+1
(S.41)
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Let’s define

g(i _eXP( Z 2n; (A1 — Az), Ts:= nig(i), Toi=) nlg(i), Ts —Zn3k2
=1 i=1

j=i+1

Note that since k,, > k;,

Z mikig (i) <k Y nbg (i) = k2Ty
=1
Then,
S (V' + i) n g, exp (— > 2 (- /\2)) < (1 + 5e) [V/Tg + 24M (M + A1)2T5}
i=1 j=i+1

< (1+ 5¢) [V’Tg, UMM+ N)? k:gn}
(S.42)

, 2a 2 3
Using S.31, g (i) < (:Li’%iﬁ) . Noting that (%) < (%) < 2, we have

T3 —Zm exp (—2 Z n; (A — )\2)

Jj=i+1

a V<& 1 i+ B8+1\*
:(Al—Az) ;(6+i)2 (n+ﬁﬁ+1>
<< a )2<ﬂ+1>2 1 <i+ﬂ+1)2“
T\ A B T (B+i +1) n+B8+1
< o )2<6+1>2 1 <i+5+1)20‘
A=A B : 1(5+z+1) n+pB+1

o! ? 1 <y 2a-2
§2<A1A2> (n+ﬁ+1)2a;(z+6+1)

2 a \? 1 n+B+2\*"
< .
_Za—1<)\1—/\2> (n+B+2) (n—l—ﬁ—i—l) using 5.3

2 ( @ )2 1 <1+ ! >2a (S.43)
20 —1\ A1 =X/ (n+B+2) n+p+1 '

M:

2

M=

and similarly,

Ty —an exp (—2 Z n; (A — )\2)

Jj=i+1

o 3 n 1 Z+B+1 2a
</\1 /\2> Z(BJri)?’ <n+5+1>

i=1

o B+1\* & 1 i+ B+1\
S<)\1—>\2> < g );(ﬁ+z+1) (n+ﬂ+1>

i=1 Z n
3

o 1 oL 20—3
2(A1_A2> (n+5+1)2a;(z+6+1)

IN
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1 a \? 1 n+ﬁ+2>2"‘ ,
< using S.33
a—1<>\1—/\2> (n+ﬁ+2)2 (n+ﬁ+1 £

1 a 3 1 1 2o
— 1 S.44
a1<>\1/\2> (n+ﬁ+2)2( +n+ﬂ+1) 549

Using S.36, we have

«

————— = (A1 = A2) <A <Mk <e<0.1 S.45
n+B+1 Ui ( 1 2) = TinAl n 1 € ( )
Therefore, using [17]
1 29 (i) 1 (1) 4
1+ —— §72§1+7a§1+46 (S.46)
n+p8+1 - =5 n+0+1

where (i) follows since nng < 1by S.45 and (ii) follows since 1~ < 1 + 2z for € [0, 3].

Using S.46 with S.43, we have

2
T < 2 ( o ) 1 (1+ 4o )
P 2a—-1\M—-X) n+B+2) n+p+1

2 (1 + 4e) a \° 1
: (%) G G40

Using S.46 with S.44, we have

1+4 3 1
T, < 5 ( @ ) . (S.48)
a-1\A—-X/) (n+3+2)
Let
2 (14 10¢) o? 24 (1 + 10€) o3
C = C =
! 20—1 2 (a—1)

Putting together S.47, S.48 in S.42 and using the definition of k; in S.34 we have

(1 + 56) V/Tg

IN

2 (14 5€) (1 + 4e) o« NV
204_1 )\1—/\2 <n+6+2)
2 /
<205109a7 V1 G <0.05
20—-1 (A= X)"

and similarly,

3 2.2
24(1+56)M(M+)\1)2k721T4§24(1+5€)(1+4€)a M(M+/\13) k—g
a—1 (A1 =A2)” 1

Therefore from S.42, we have

n

= Vo1 MM+ X1)? k2

(V' + &h,i) 17, exp | = 2 (M =) | SCl——m -+ C———

; ’ j;m ’ (A1 = Ag)* (A —Ag)? P
Hence proved. O
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S.4 Proofs : Convergence Analysis of Oja’s Algorithm for Markovian
Data

In this section, we present proofs of Theorems 2, 3, 4 and 5. We state versions of these theorems that
are valid under more general conditions on the step sizes. Speciﬁcally, for the following, we only
require a sequence of non-increasing step-sizes which satisfy, for € := 100 ,Vi € [n] -

C.1 niki M4+ X\) <e C.2 (Slow decay) n; < ni—g, < (14 2€)n; < 2n;

The version of these theorems stated in the main manuscript are obtained by plugging in the step-sizes
asn; = m for the values of «, 5 provided in Lemma S.12. Before starting with the proofs,
we define the folsowing scalar variables -

ri=2(14 &) ki M+ X)), Cry =40k (M+X)?

Yt = 6M [1 + 3kt+1 M+ )\1)2] ) Skt = Nt—k, Ykt

14+ (3+4e) | X2 (P
1— X2 (P)|
The basic idea behind these proofs is illustrated in Figure S.1, where we are trying to approximate

the matrix product by conditioning back in time just the right amount, to balance the tradeoff between
the advantage of the mixing decay and the norm of the product of matrices.

V=

My, Vit =V 4 2 4 6 (5.49)

k

Al k
A | mEE ERn Illllvl]

e S ;

1_[ I+nX X" I+ 1L
i=2
] xxmx

Figure S.1: If we could replace the intermediate products (white matrices) by I, the conditional expectation of
the noise matrix X; X{ — X conditioned on the grey matrices would be nearly zero.

Theorem 2. (General Version) Under Assumptions 1, 2 and 3, for all n > k,, and any decaying
step-size schedule n; satisfying C.1 and C.2, we have:

n—=kny
E [vf BuaBE v1] < (1+7)exp ( 2nedi + 07 (V + A1 + & t)))
t=1
where B ; is defined in 7.

Proof. Define oy :=E [Tr (v] BBl ,v1)] = E [v] Bny Bl ,v1] ,i < t < n. Then, we have

v Bra By o1 = 0] Bnaa(I+m3)*Bqvr + 200 (vf Bpsr (1 + 0e2)(Ay — S)B) 1)
Pp ¢t
+ 07 (v Buas1(A — £)2BL, 1) (S.50)
Qn,t
< U1TBj,t+let+1U1((1 +meA1)?) + U?Qn,t + 20 P

Using Lemma S.8 with U = v1,G = (I +n:X),~ = 1 and noting that E; [A; — X] = 0, along
with observing that cip, ¢4k, ,, < Q¢+, from Lemma S.3, we have

2V | A2 (P)]

2 2 2
T (B)] T M (24 16c+ (2 (1+ ) K2y (M + A1) )) o

|mmgsmﬂu+mhw
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We note that Vi, k; > 1, therefore, using the assumption in S.49, 1 + g Ay < 14 ks (M 4+ M) <
1+e

E. [(4: - 2|, < v
2
along with observing that vy, ¢y, , < Qn ¢4k, Using Lemma S.3, we have

Next, using Lemma S.9 with U = v;,G = I, = 1 and noting that ‘

IE[Qnell < (VA+mpaM® 2ng1 + (1 +€) 2+ e(1+€) krpr (M + A1) ek,
S (V + 2677t+1M + 7715+1M2 ((1 + 6) (2 -|- € (1 + 6)) kt+1 (M + )\1))) an’tJrk;t

where in the last line, we used 7z 1 M < npp1 (M + A1) < ke (M4 X)) <e

Then from S.50 forn — k; >t > 1,

14 (3+4e) X2 (P) ]
1— [z (P)]

ane < (1+ 77t)\1)2 Qp 1+ ( ) VT]tQOén,tHct + Ck,tnfan,tJrkt (S8.51)
where C}, ¢ is defined as

Cri =M [4(1+e) (14 8¢) +2€ + k1 (M4 Ap) ((1—|—e) 24+e(l+e))M+2 (2—|—(1+e)2) kiv1 (M +>\1))}

()
<M [4(1+e)(1+8e)+26+ ((1+e) 2+e(1+e)+2 <2+(1+e)2)) k2, (M+A1)2]
— M [4+386+3262 + (6+2€+ 1+e%01 +ze)) k2, (M +A1)2}

where in (i) we used M < ki1 (M + Aq).

Then recalling the definition of & ; in S.49, and noting that oy, 1y, < ap 41 using Lemma
S.3 we have from S.51,

14+ (3+4¢) | (P
an < (1+ 77t/\1)2 Qpt+1 + <( (1 — |)\2)(|P§|( ) |) V+ fk,t) 77t204n,t+k,,

14+ (3+4e)| o (P
= (1+277t/\1 —i—nf(( (1|)\€2)(P2)|( )>V+)\%+§k,t)>an7t+1

Therefore using this recursion, we have,

n—k n—k
" ¢ 1+ (3+4e) |\ (P
" (m S ot 3o ((FREE ”)vm%ém))

t=1 t=1
Let By n—k,+1 = I + R/, where |R'||< r as.
ko1 =B [V Bon—k,41Bh g 1101]
=E[v{v1] +E [o] (R + R )] +E [v] R’ R v1]
<1+42r+ r?
Using Lemma 2 we have
1+ 5) nln—k,+1 (M =+ /\1)

<(
< (14 €) kntn—t, (M+ A1)
<21 +€)kpnn (M + A1) since np_k, < 21,

Therefore,

ke 1+ (3+4e) A
oy < (1+2r+17) exp</\1 ZnH—Z << 1_)\2)(| 2)( )|>V—‘r>\%+€k,t>>
Hence proved. O
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Theorem 3. (General Version) Let u := min{t : ¢t € [n],t — k; > 0}. Under Assumptions 1, 2
and 3, for all n > u, and any decaying step-size n; satisfying C.1 and C.2, we have,

E[Tr (VI B,BIVL)] < (1+ 5¢)exp ( > 2mida A+ (VA AT+ i) n?_ki>
1=u-+1

x [d+ Y V&) Climig e | Y, 20 (= Xa)
i=u+1 j=u+1

where Cj, , 1= exp (2/\1 Z?Zl (M5 = Me—utj) + Ei;{ n; (Ve — Vk,j+u)) and By is defined in 2.

Proof. Fort < n, let
ap =y = E [vf BBl vi] = E[Tr (v{ B;B{ v1)], as defined in Theorem 2
By :=E [T (VI B,B{V.)]
Note that oy + 5y = Tr (BtBtT) by definition. Then,
Tr (BB V.V]) = Tr (B;—1 B/ (I + n)Vi V(I + X)) + e Tr (B (I + ;Z) VLV (A — £)By1)
+n Tr (BE1 (A = )V V(T +mE)Bioy) +mf Tr (Bio1 B (A, — S)VLVI (A — )
< (L4 nX2)? Tr (Beoa BE,VAVE) + 20 Tr (By—a B (I + i)V VI (A — X))

Py

+ 07 Tt (Bio1 B (A4 — )V VI (4, - £))
Q¢

Let B;—1 = (I + R) B;_, with ||R||2< 7. Using Lemma S.10 with G = (I + ;%) V, V] =
Vi(I+ ntAL)Vf, ~v=1,where A| isad— 1 x d — 1 diagonal matrix of eigenvalues Ao, ..., Ay
of X, and noting that ||VLVJ_T||2 =1,

2V A2 (P)|
1— X2 (P)|

<(1+4+€)n—g, (m + Mg, M (2 (1+8¢) + (2 +(1+ 6)2) ktz M+ )\1)2)> (i, + Bi—k,)

E[P] < (1+ neA1) g, ( g M (2 (1+ 8¢) + (2 F(1+ 6)2) k2 (M + )\1)2)) (i, + Bizry)

where in the last line, we used A1 < ik (M + A1) <e.
Using Lemma S.11 with U = V, VI vy =1,
E[Qd] < (V4 0ttt M? (20 + 2 (1 + €) (1 + € (1 +€)) ke (M + A1) (@e—r, + Be—r,)

©)
< (VA 2emM + 20y a2 M? (L4 €) (14 € (14 €)) ke (M + M) (@i, + Ber,)
i)

< (Ve 2emM o+ 2m i M (L4 €) (1 e (L4 ) B2 (M + X)) ) (@, + Bir,)

where in () we used Vi, M < n;k; (M 4+ A1) < e and in (#4) we used M < ky (M + Ap).
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Putting everything together, we have,
E [Tr (BB V. V)]
< (1+mha)” Bioa

2V [ Ao (P
+2(14€) nen—r, (M

1— [z (P)|
0 (Vo 2em M+ 201 M (14 ) (L4 € (14 ) B M+ M)?) ) (i, + Bir,)

< (1 +nh)* B
2V | Az (P)]

+2(14€)n7y, (1 — X2 (P)]

0, (Y 2emM ot 2 M (14 € (L €1+ ) K (M+M)?) ) (@i, + Bron)

<1+ 77t)\2)2 Bi—1 + 77t2—k,, <<1 i (13ji€2)(|;2)( ) |> V+ fk,t) (ar—k, + Bi—k,)

where &, ; is as defined in S.49. Therefore using Lemma S .4,

E[Tx (BB VLV)] < (1 + 2 + 0y, ((1 = (ffﬁ?(gﬁ fp) | ) VA + fk,t)> Bia

14+ (3+4e) | A2 (P
+ 77t2—kt (( * (1 —+)\€2)(|P2)( ) |) V+ gk,t) a1 (SSZ)

Let xc := 1+ 4€(1+¢€) (1 + €+ €%) < 1.05. From Theorem 2 denoting

o M (201480 + (24 (1+0)° ) B (M + A1>2)) (Gt + Be—t,)

Fmo M (201480 + (24 (14+ ) 2 (M + W)) (et + Bror)

e i=14+4(1+€)mo1kimr (M+X)+4(1+ 0)2 k2 (M + )\1)2 <1+4+4e(1+¢) (1 + e+ 62) = Xes
(S.53)

we have,

t—ki—1 t—ki—1
1+ (3+4€) A
- 1<rkteXp<2)\1 Z M+ Z (( 1|>\2)( 2)|( )>V+>\§+§k,i>>

Now, we note the definition of Vk,t and V' as mentioned in S.49 -
S— <1+(3—|—4e) A2 (P) ]
Vk t =
1L— X2 (P)]
=‘V1+-A%4-fht

)V‘F)\%*ﬁ-fk,t

Therefore using S.52,

t—ky—1 t—ki—1
Be < (14 2o + 07—y, Vit) Beor + 1i—p, ht (V' + €k ) exp (2/\1 Z ni + Z 7712Vm>

i=1 i=1

Recursing on the above inequality for v < ¢t < n where v = min {¢ : ¢ € [n],7 — k; > 0}, we have,

Brn < Buexp (2 S onidet Y Vk”ﬁk)

i=u+1 i=u+1
n n i—k;
+ 3 a0t exe | 3 (20 +Vign ) | exw | 30 200+ Vi
i=ut1 J=itl =t
n
< exp ( Z 2n; A2 + Vk7i77i2ki>
i=u+1

>

4 ?

x| But D rhi (V+ i) miy, exp @M+ Vi) — Y (2%')\2 +W,j77?7kj>
i=u+1 j=u+1

7—

.
I
—
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Now, since k;, k; > k,, = u, therefore, we have

Bn < exp ( Z 2771>‘2 +V}€7lnz2—kz> X

1=u+1
n i—U A
But Y ma V&) miog e | Y Cnd + Vi) — D (2njda +Vini—y)
i=u+1 j=1 Jj=u+1

Recall that Cj, ; := exp (2/\1 S (5 = Mimuts) + i3 (Vg — de'_l,_u)) as defined in S.49.
Therefore,

Bn < exp ( Z 21 A2 +Vk.,i77i2—k7¢> X

i=u+1

But D> i (V4 &) Coamipexp | D 205 (A — Aa)

1=u+1 j=u+1
Let B, = I + R’ with || R'||< 7’ a.s. Using Lemma 2 we have
< (L4 €) kym (M 4+ A1)
< (1 + 6) kuno (M + /\1)
<2 (1 + 6) kunu (M + )\1) since o = Nu—k, < 27711,

<2 (1+¢)
Therefore,
=E[Tr (VI B.BV.)]
=E[Tr (VIVL)] +E [Tr (VE(R' + RT)V.)] +E [Tr (VI R'RTV,)]
<d(1+2r +17)
<d(14+4e(1+) +46 (14 ¢)%)
=d(1+4c(1+e) (L+e+€))
= x.d
The proof follows by noting that r, ; < x. as shown in S.53. O

Theorem 4. (General Version) Under Assumptions 1, 2 and 3, for all n > k,,, any decaying step-size
n; satisfying C.1 and C.2, we have:

n—kny
E [UlTBnJBz;,Wl] > (1 —t)exp ( Z 2niA1 — Z 4772>\2>
i=1

where t :== 2r + 5,5 := 3 (1 + 1) exp (X2 n?) Y W +nF exp (Z? tlj_l 171) Wit =
V' + & and Bj ; has been defined in 7.

Proof. We will start will expanding the quantity of interest using Eq S.50.
ny =E[v By BT 1] > E [vlT By (T+m%)? BY vy + QntPn,t} (S.54)

where P, ; has been defined in Theorem 2. Let’s define

1 t
Se=[[U+nS) [T +mT), So=1T and
1=1

i=t

T T
Ont:=E [U1 Bn,t+1StBn,t+1U1]
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Note that d,, o = a,,1. First we bound 6, ,,—, . Let By, ., = I + R'. By Lemma 2 along with
the slow-decay assumption on the step-sizes, we know that ||R'||o< 7 := 2 (1 + €) npkn (M + A1)
a.s. Then,

n—=kny n—=kny
Onm—r, — ] @+mM)* = =2|Ep] R'Su_p,v1]] = —2r [] @ +mM)?
i=1 i=1
Therefore,
n—k

n

Onmt, > (14 mM)° (1—2r)
=1

(1—2r) || S0

(S.55)

Now using S.54, we have

Ont—1 > Ot + 2 E 'U?Bn,t—i-l (I +mX)S—1 (A — %) Brj;,t—i—lvl

U

First, observe that S;_, = UAU”, where U denotes a matrix of eigenvectors of ¥, and A is a PSD
diagonal matrix. Since I + 1,3 = UA'U for some other PSD diagonal matrix A’, the product will
also be PSD.

By using Lemma S.8 with U = v1,G = (I + 7:X) S;—1,v = 1 and noting that E, [4; — ] = 0,
we have

2V A2 (P)|
= A2 (P)]

e M (2 (1+8¢) + (2 +(1+e) ) K2, (M + )\1)2)) Vs
< (L4 €) Mg |Se—1llo Wi potn e41

B[] < (14 moh) st el (

where W, ; = V' + &, ;. Therefore,
Oni—1 > Ope — 2(L+€) Weaniom 41 [|Si—1lly fort <n —ky

Let

;o (1 +(3+4e) |\ (P)]
V"( T D (P) )V

as defined in S.49. Unwinding the recursion for ¢t < n — k,,, we have,

—Rn

00,0 = Sty —2(1+€) Y Winianir1 [Siilly
t=1
> (1=2r)[|Sn—r, 2

n—kny n—kny
-2 (]_ + 6 Z Wi t7]t exp <2)\1 Z n; + Z 712-2 (V/ + )\% + Ck,i)) ||St71||2

i=t+1 i=t+1

where second step followed from Theorem 2 and S.55.

Using the inequalities Vx € R, 1 +z < e andVx €¢ R, = > 0,1+ 2 > 67”*‘”2, YVt we
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have,

t t
[Sell, = H(l +ni\)? < exp <2>\1 Zm) , and

=1 1=1
t t t
ISelly = TT(1+miA)® > exp <2)\1 D mi—4xt ZW?)
=1 =1 =1

Therefore denoting 6, := 2 (1 + €) exp (2A7 >_I"_; n?), we have

5n,0

n—kny n—kny r n—kny n—kny
> exp (2)\1 Z n;i — 4\ Z nf) (1-2r)—0.(1+7r)° Z Wy.4m? exp ( n? (V' + A+ Ci,i)
i=1 i=1

t=1

n—kny n—kny M n—kn n—kn
> exp (2)\1 Z ni — 4\2 Z 7)12) (1—2r)—0.(1+7r)° Z Wi.n? exp ( n? (V' + A+ Cr,i)

=1 =1 L t=1 i=t+1
n—kn n—kn B n—=kn n—=kny L
> exp (2)\1 Z ni — 4\ Z n?) 1- <2r +0.(1+7)° Z Wi 4m? exp < an;“>>]
i=1 i=1 L t=1 i=t+1
where Vy; is defined in S.49. Hence proved. O

Theorem 5. (General Version) Under Assumptions 1, 2 and 3, for all n > k,, and decaying step-size
n; satisfying C.1 and C.2, we have:

n—kny n—knp
E [(U{BnalBZ,lvl)ﬂ < (1 + r)4exp ( Z 4771')\1 -+ Z T]Z2<k71>

i=1 i=1
where B; ; has been defined in 7.
Proof. Define Q,,; := van7t+1(At — E)ngyH_lvl, and P, ; := van7t+1(I + X)) (A —
¥)BL, . v1. Using S.50, we have, forn > ¢ > 1,
0 <vf BuyBL w1 =] Byysr(I+mE)’ Bl 01 + 07 Qn + 200 Py
< vlTBj7t+1B}:t+1vl(1 + 77t>\1)2 + ntzMQ (vlTBn7t+1B£t+lv1) + 2, P
< UfBj,t+1B]7‘?t+1U1 ((1 +mA)? + 77152/\/‘2) +2n: P ¢

Ct

Thus, we have -
2
Rn,t = E [(U?Bn,tB;Z;t"Ul)ﬂ S E {(CtU{Bn,t-&-lB;{H-lvl + 27]tpn,t) :|

< hnir1 +4NIE [P,%}t] +4eymE [(UlTBn,tHBZ;tHUl) P
(S5.56)

Note that,
E[P2,) <E[(] Bt (I +n3)(A — )BL 4 y0)]
< (14 n\)*M2E [(U{Bn,tHB,{mvlﬂ
= (14 mA1 )2 M2k 141

Now we work on the cross-term. For the convenience of notation, let’s denote k£ := k1 unless
otherwise specified. Let By, 111 = By, 14+, (I + R) with,

[Bll2< (1+ ) k(M + A1) =7 <e(l+e)

38

)
)

|



Using Lemma 2, we have

T T T T T T T\ pT
|01 B t+1B5 44101 — V1 Btk By V1] = [v1 Buwk(R+ R + RRY) B, 41

Yi
< o] BuaswBL sy ivo1] (2re +17) (S.57)

We will also bound

0] Brty1(I +mX)(Ar — £)BY 01 — 0] Brgyr (I +mE) (A — S)B v

Y2
= |U?Bn,t+kR(I +n:X) (A — X)(1 + RT)Bg,tJrkUl + U{Bn,wk([ + 1 %) (A — Z)RTBE,HIW”
< (2re +17) (1 + neAr) M|o] BBy, 01 (S.58)

So, now we have:

E[(vi B ntHBgtHlen t)]

=E [(v] Bng41B. 1 1v1) (0] Bpgr (I + n:2) (A — £)B,01)]
=E [(Y1 + v But41By 1401) (Y2 + 0] B (I +0:5) (A = 2) By 1)
=E[Y1Yo] + E [Yi0] Buysu(I + mE) (A — £)BE o1 | + E [You] Basr By y01]

T Ty Ts
+ E [(v] Bnasi B 4 101) (0] Bpgyr(I + 0 S)(Ar — )BE )]
Ty

Lets start with the last term, 7). Using Lemma S.3 we have,

|T4| < {E [ Bn t—o—an t+k’Ul)(”U1 B irk(I +mX)E[(Ar — )| St4k] Biwkvl)] |
2(1 + A1) Mdix (B) B igk
< 277t2+1(1 + 77t/\1)M/‘in,t+k
< 277t2+1(1 + A )MEp 41

Using Eqs S.57 and S.58 the first three terms can be bounded as:

T [< E[V1Yal] < (2r +72)% (14 mAs) M g

< (2re + rt) (14 A1) My, 141 using Lemma S.3

= (247" 17 (14 mA1) M 41

< (1467 2+ e(L+ )" (L +mA) 41 ks MM + A1) R
<(1+e’(2+ete ) N2 k2 M (M + A1) Ko e since ey < e
|To| < E [|Y10] Bpsr(I + e 3)(Ar — Z)BL 4 on ]
24 7)) (L4 md) Meg ik

2+ 7)1 (14 mA1) MEp 141 using Lemma S.3

(
(
(24 e+€) (1 +€) (1+nh) negrkers (M + A1) M
<(1+ 6)2 (2 + e+ 62) Ner1ker1 M (M + A1) Bn et

VANRRVANIVAN I/\
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and similarly,
T3] < E [Yav] Btk By o401
<1 (24 71) (1 +mA) MEn i1k
<(1+€) (2+e+€) (L+mA) myrkept M (M+ ) Gk
<1462 (24 e+ ) mprkpt M (M + A1) Bk
< (146 (2+ e+ €%) ngp1kis1M (M + A1) Fip 41 using Lemma S.3
Note that
et = (14+n:M)2 +nPM? <14 2e + 262, and
¢ = (1+2mA +n7 (M>+ )\2))
=1+ 4223 + g (M2 +03)7 + dpehy + 400 (M2 +X3) + 202 (M2 +)3)
<1+ 4y + 07 (M2 + 607 + eM + edr) + 4pf Ay (M + A7)
<14 4dn Ay + 672 (M + M) + 40P A (M 4 A\)°
Define
de=(1+¢) (2+e+€)
We := 1 + 2¢ + 2¢>
Gt 1= (1048 (1+€) + 4 (1 +2€) o) ecrkypr (M + M)

Putting everything together in Eq S.56, for ¢t < n — k;;1 we have,
"ﬁn,t

Kot 1

< A (L) M2+ 41+ €) cmM (2051 kuey (M A0) + (24 62k2 0 (M+00)7) )
<+ 402 (1+mA) M2+ 4(1 + €) epM <2¢Entkt+1 (M4 M) + (24 62k, (M +A0)°) nf)

= ¢ o g [M? 426, (14 ) MM+ M) ] + 45 [(1+26) M + (1+ Q) oM (24 62k2, (M + \0)?)|
< A 2426 (14 ) etk ] MM+ M) + 4 (14 26) 5 M+ eoM (24 62kE, (M + 20)7)]

<1+ dpeds + 02 [10 + 8¢ (2 + €) crkpr] (M + A1) + 4 (1 + 2¢) [)\1 426 M + k2, (M + Al)ﬂ

<e (4m1 02 (10 + 86 (1 + €) cekprr) (M + A1) +4 (1 + 26) 3 ()\1 + oM+ 26,62k, (M + A1)3>)
< exp (A + 07 (104 80 (1+€) crkipyn) (M + A1) e (1+26) 7 (200 + 6Pk (M +M0)?) )

< exp (4 WA+ 1 (86 1+ 2€) we + (10 + (8 (1 + €) + de (1 + 2€) ) betwekirs) (M + )\1)2>>

<e p<4 AL+ 12 (1+ 10 + 20ks41) (M + A1) ))

<e (47%/\1 + 2 (1 + (10 4 20ke 1) (M + A1) ))

< exp (4m1 4072 ke (M + A1) ) since (M + A1), keyr > 1

Recall our definition of k£ := k;;1. We can use the above recursion for 1 <t < n — k;;1. We note
that t = n — k,, satisfies the conditions. Therefore,

n—=kn n—kn
Kn,1 < €xp ( Z AniAy + Z ni2<k',i> Kn,n—kn+1

i=1 i=1
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Let Bn’n,knJrl =1+ R, with HR/HQS 7 a.s.

Bnn—kn+1 = E {(vanyn_anBg;n_anvl)2}
=FE {(vlTvl + o] (R 4+ RT)v, + vlTR’R'Tvl)Q}
< (1 +2r + 7"2)2]E {(UlTvl)z}
Using Lemma 2, we have

r < (1 + 5) kn+177nfkn+1 (M + )\1)
< (]. + E) knnn—kn (M + )\1)
<2(1+€) kpnp (M + A1) since n,—k, < 20,

which completes our proof. O

S.5 Main Results : Details and Proofs
S.5.1 Proof of Theorem 1

Lemma S.13. This lemma proves conditions required later in the proof. Let the step-sizes be set
according to Lemma S.12 and m := 200. Define

r:=2(14€)nkn, M+ A1),

n—kp—1 n—kn—li
s=31+1)?2 Y Wk,mfeXp< > Vk,iﬂf)

t=1 i=t+1

where Wy, ; is defined in Theorem 4, Vy, ; is defined in S.49 and o, 3, f (.) , § are defined in Lemma
S.12. Then for sufficiently large number of samples n, such that

n B
log (F (n)) ~ log (f (0))

we have

1. 2r+s < £(8.63)

2.7 =2(1+4 &) nukn (M + A1) < 51357 (5.66)

Proof. For (1), using Lemma S.12-(3), we note that

n—ky,—1 n—kn,—1
s<3(1+7)* Y Wianiexp ( > Vk,ﬂ]f)

t=1 i=t+1

n—kp,—1
= )
<3147 Y Wi (Hm)

t=1
3(1+7)? 0 )
— 1+ — )1 1+ — .
< 100 + - og + - (S5.59)
2
< S log (@) o0y
50 m
Therefore,
3(147r)°
2 <2 _
r4+s<2r+4 55
3 56 3
=T (5.60)
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Setting = + 2r + 272 < 1. we have,

3,56 3, 1
25 25 25 =2
= 6r2+112r —19<0

which holds for € [0, 15].

For (2), using Lemma S.12 and substituting the value of k; := Tpix (7)1»2) < i ;“(“2") log (%) for

1; < 1, we note that

8 (1 + €) Tmix (M + A1) o (A1 = A2) (B+n)
"= log (2) EESICE < o >

(A1=A2)(B+n)
8 (1 + €) e (M A 08 (2252

log (2) (A1=2A2)(B4n)

e}

8 (14 €) Tmix (M + A1) log (f (n))
log (2) f(n)

Therefore (2) holds for sufficiently large n, i.e,

f(n) > 400 (1+%)(1+€)Tmix (M+X)
log (f (n)) — log (2) 2

m

This is satisfied if

n_ 4007 (1+2)(1+e) M+A)
log (f (n)) — log (2) (A1 = A2)

From Lemma S.12, we have

o
i (S.61)

B 6007w (1+ 2€)% (M + A1) o2 ©) 4007mis (1 + Y1 +e) M+A)a

m

log(f(0)) = (M —X)’log(1+2)  ~ log (2) (A1 — A2)

I

where (7) follows since ﬁfi; > 1, > 2and log (1 + z) < x Vz. Therefore, 1og(?(n)). > log(?(()).)
suffices. Further, we note that (2) implies (1) for m = 200, § < 1. Therefore, the condition on 7 is
sufficient for both results. Hence proved. O

Lemma S.14. Let
w:=min{i: i € [n],i — k; > 0}
where k; is defined in Lemma S.12. Then,
u<|[B] <8

Proof. Using the definition of k; mentioned in Lemma S.12, we have

2Tmi 1
ki — ) 2 < mix 1 L
s () = 51 )

e (B
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Therefore,

18] = ks 2 18]~ s tog (5 s J)

/\17)\2
> B Afmix log 25 since 8 > 1
2 log(2) ST
=4 B - S;"(“;) log (2ﬁf (0»} , where f (.) is defined in Lemma S.12

Now, from Lemma S.12, we know that f (0) > e. Therefore, log (2f (0)) < 2log (f (0)). Then,
1 87mixlog (f(0))

2 log(2) B

Again, from the conditions in Lemma S.12, we know that

log (f(0)) € A1 — A2 1 . A1 — A2 1
< < 2 1 —
B brm M+ A - 120mm YT S N S S 100

Lm—szﬁ{

IN
IN

Therefore,

1 8
mJ—kw>ﬂ<2‘1zw)g<z>>>0

Hence proved. O

S.5.1.1 Numerator
Using Theorem 3 and Markov’s Inequality, we have with probability atleast (1 — §)
Tt (VI B,BLV,) <

d+ Y (V&) Chant exp | D 20 (A = )

i=u+1 j=u+1

exp (Z?:u+1 2n;Aa + Wﬂnffkl)

1.05
1

S.5.1.2 Denominator

Using Chebyshev’s Inequality we have, with probability atleast (1 — J)

T | E[(fBuBIw)’]
v{ BBl vy > E [v{ B,Blw] | 1—4/= = —1 (S.62)
O\ E[vIB,BIv]

Letr :=2(1 4 €) nuky (M 4+ A1) < 75. Using Theorem 3, we have

i=1 i=1

n—kny n—kny
E {(U?B"ngvl)ﬂ < (1 + r)4exp ( Z dn; M + Z 77?(16,15)

Using Theorem 4, we have

n—knp n—kny n—knp n—kny
E [UianJBz;lvﬂ > exp (2)\1 Z n; — 4X\3 Z nf) [1 — (27“ +3(1+ r)? Z Wi exp ( Z T]ZQV;”>>]
i=1 i=1 t=1 i=t+1
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Let

n—kny n—kn
s:=3(1+7) Z Wi i1} exp ( Z W?Vk,z)
t=1

i=t+1
Then,
2
E[(WITB,LB;{vl) ] a +r>4 .
E [v] B, Bl v | (1-2r—ys) Pl
By Lemma S.13, we have that
1
2r4+s < > (5.63)
Then, using
#<1—|—6 forz € |0 E and, (1+2z)* <145zforze |0 L
-2~ Z Tor x "5 ) x) < x for ' 10
we have,
E (o BuBIvr)’] neko 2
. 3 < (145r)(1+ 12r + 6s) exp 07 (i +4AT)
E [v] B, B v, ] P
n—kny
(1—|—17r—|—65—|—60r +30r$ eXp ( n? Q“—&—4/\2)>
i=1
n—=kny 1
< (14 22r+12s)exp ( n7 (Cri + 4)@)) since r < I
=1
By Lemma S.12-(3), we have that
n—knp 5
exp ( 07 (Croi +4/\2)> <1+ — (S.64)
m
=1
By S.59, we have that
A8(1 + )2 5\° 5
12s < ———— 1+ — | 1 1+ —
*= 7100 Tn) ety
5\’ b 1
§§ 1+— ) log(1+ — | sincer < — (S.65)
5 m m 10
By Lemma S.13, we have that
1 4&/m
=2(1 nkn M) < ———— S.66
(1 ko (M) < gl (5.:66)
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Then,
E [(ulTBnB,{ 111)2}
E [v] B, BTv,]?

< (1+22r + 125) (1 + 5)
m

:1+5+22r<1+6>+12s<1+5>
m m m

5§ 245 3 5\? §
<l+—+——+4+-|14+—) log|{1l+—
m H50m 5 m m

b 2246 7 )
. < _
1+—m+—50—+—101 ( > since 6 < 1, m = 200
b6 2246 T4
< e I
<1+ +50m+10 since Vz, log (1 +z) <
§1—|—3é
m

Then setting m = 200, from S.62 we have

n—kny
UanBzvlzexp<Z 2\ — 4171)\2> (I1-2r—ys) (1—\/>\/ )
i=1
n—kn 1 &§/m 1 5\° 5 3
> o — A2 ) (11— =2 2 (1 D) g (1 ) ) (1 /2
_exp<; AL T 2 >< 25144/m 20( +m> og( +Tn))( m)

n—k
5 n
> —exp ( E 2mi\ — 47]1-2)\%) since § < 1 and m = 200
6 —

The second inequality uses Eqs S.65, S.66.

S.5.1.3 Fraction

Now that we have established this result let’s calculate the fraction. Let the step-sizes be set according
to Lemma S.12. Define

n—=kn
—exp< Z Viilli— g, + Z )‘1771>

1=u+1

n

Qy :=exp | 2N anf Z 14

PR
exp (Z;ﬂ 15 (Vej — Vlw‘+u)> exp (2/\1 D ki1 773')
exp (2>\1 i 77t—u+j)

kt =

Then, recall that
w:=min{i: i€ [n],i — k; > 0}
€t 1= 61, M [1 +3k2, (M + Al)ﬂ

1+(3+46)A2(P)>
V' ::< %
1— |2 (P)]

Vit =V + 20+ &t

)

u

t—u
Cl/c,t = exXp 2\ Z (nj - ntfquj) + anz (Vk,j - Vk,j+u) = QuRk,t
j=1 j=1
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Therefore,
Tr (VLTB,LBEVL)

U{BnB,’rZJ’Ul

IN

1.3exp (3041 2mide + Viani g, " :
5 o - ) (g4 V&) Caniexp [ Y 20 (M —X)
exp (Zizl "2 — 477?/\3) i—ut1 Pt

IA

1.3 8 . . :
5 0. eXP( > i (% —>\1)> d+ D (V' +&) Cramipexp | Y 205 (M — )

i=u+l i=u+1 j=u+1

IN

1.3 | dexp (X1 2m (A2 — A1) n .
TS +Cl2u + Z (V' + &) Rociip, e | — Z 2n; (A1 — A2)

i=u-+1 j=i+1

X1

X2
(S5.67)
For X, we have

< 40 (S 2020
dexp (Z?:u+1 27772 ()‘2 B Al))
exp (2)\1 (Z;‘L:I M= 2 imn—kn 41 "j))
dexp (37,11 20 (A2 — A1)
- exp (—2)\1 (Z?:n—kn-&-l 77j>>

gdexp< > ()\2—)\1)> exp (20| D
=

i=ut1 j=n—kn+1

Note that
n

exp | 2\ Z n; | <exp(2(1+ 2€) Mknnn—k,+1) using monotonicity of n;
j=n—kn+1

< exp (4 (1 + 2€) A ky,ny,) using slow-decay of 7;

o
< 1+ 2— using Lemma S.13 along with e < 1+ + 22 forz € (0, 1)
m
Therefore, using S.31

2 2a

e 2) ()
m n

Next, for X5, we first have

exp (Z;:f n; (Vi — Vk,j+u)) exp (2)‘1 D k1 77]')
exp (2/\1 > i1 77t—u+j)

t—u n

<exp [ Y nVij |exp 20 > w

j=1 j=n—kn+1

Rkt =

s

25\
< (1 + ) using Lemmas S.12 — (3), S.13 and e” < 1 + 2 4 2% for z € (0,1)
m
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Now, using S.12-(4) we have,

Zmnf—kz exp | — Z 20 (A1 —A2) | <

i=1 j=i+1

2 ((B+n)(A1—=A2)
(2(1+10e) a2) Vo1 n (800(1+106) a3> MM+ )72 log ( a )
n

20— 1 (A1 — Ag)? (a—1) (A1 — Ag)? n2
Then,
26\* | /2 (1 + 10¢) a2 Vo1 (2414 106) a3\ M (M + A\)? k2
Xp< | 14— 2 3 2
m 20 — 1 (A = A)* 7 (a—1) (A —Xg)° 7

Cl CZ
Therefore substituting in S.67,

Tr (VIB,BLV . 2 Zor ’
r (Vi n L)§13$ 1+275 d B+ u n Cc1V
vl B, BT'v, ) m n (

1

J— Jr v
A1 — /\2)2 n (M — /\2)3 n?
(S.68)

CoM (M + /\1)2 k%]

Proof of Theorem 1. To complete our proof, we bound S to simplify S.68. We note that under the
learning rate schedule presented in Lemma S.12-(3),

S < (1 + 6)
m
Therefore,

Tr(VanBzVJ_)<1.3<1+25)3ld(5+u>20‘+ av 1 Cg/\/l(/\/lJr)q)Qka]
-4 A n

vi B, Blvy n (A1 — >\2)2 (A — /\2)3 n?
1.4 20 CV' 1 CoM(M+ M) k2
B R A e
1) n (A —A)*m (A1 — A2) n

Using lemma S.14, we have that © < (. Then, using Lemma 3.1 from [15] completes our proof. [

S.5.2 Proof of Corollary 1

Proof of Corollary 1. We note that the downsampled data stream can be considered to be drawn from
a Markov chain with transition kernel PF (., .) since each data-point is k steps away from the previous
one. We will denote the parameters of this transformed chain by y when the corresponding parameter
is y under the original chain. For example, T,ix is the mixing time of the new chain.

Note that this modified transition matrix has the same stationary distribution 7. It is also
reversible. This can be seen by considering the diagonal matrix of stationary distribution probabilities
II, where II;; = ;. For a reversible Markov Chain, we have IIP = PII. However, that also
implies IIP2 = (ITP)P = (PII)P = P(ILP) = P2I1. This same technique works for P* yielding
IIP* = PFII.

Using standard results on Markov chains [19],

‘)\2 (P) ‘ 1 ‘ 1 1
T— ] (P)] log <2€) < Tmix(€) < (D] log (67Tmm> , (S.69)

where 7m.;, := min; 7;. Therefore, as noted in the theorem statement, we substitute the modified
parameters in the bound we have proven for Theorem 1.
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First, we will show that the mixing time for this new chain is ©(1). We will use k := Tiix (12).
So by definition the dpx (k) < 12 using the definition of dp, in Section 2.1. Hence dpix (k) < 1/4
using conditions on the learning rate schedule imposed in Theorem 1. Therefore, in the transformed
chain, the “new” T is ©(1).

We also have:

27—mix 1 2 log(4/77min)
1 — | < 1
%<%>‘ gz 1=y (p) %"
—_———
C

We see that C' > 1. Next, we note that for the transition kernel P* (., .), the second-largest absolute
cigenvalue is given as | Ao (P)|". Consider the function f () := 2T forx € (0,1). Then,

) = f (g 11—z —2xlog(x)
f(@—f()(xu_@2>>0

() og(n
Therefore, f (z) < lim,_,1 f (z) = 1 < 1. which implies |\, )" < (é)m em) 1. Here (i)
follows if C' > 1,n > 3, which is true. Therefore,

S <1+(3+4E)A2 (kp)kf> Y <5y
1—[A2(P)]

This also implies that the mixing time for the new Markov chain for sub-sampled data is © (1). The

bound then follows by substituting n to be % =n =06 ( ) and setting the 7, in the

__n
C'Tix log(n)
original expression of Theorem 1 to a constant. O

S.6 Additional Experiments

In this section, we provide additional experiments to support the results established in Section 3 of the
manuscript. We present experiments with distributions that have nonzero mean vectors at each state,
but zero mean with respect to the stationary distribution. This means that the Z;’s are not necessarily
zero-mean with respect to each state distribution D (s). To normalize the data-points, we estimate the
mean j and covariance matrix X empirically from a much larger independently generated dataset.
We experiment with two different settings here - Figure S.2 contains the results for each state
distribution being D(s) := Bernoulli(ps) with p, ~ U (0,0.05) being fixed for each dataset. Figure
S.3 provides results for each state distribution being D (s) := U (0, £s) with £; ~ U (0, 10) being
selected at the start of each random run. We observe that these experiments depict similar trends to
those shown in the main manuscript, which validates our results for the case of non-zero state means.
Furthermore, the Bernoulli data, being sparse compared to the Uniform one, seems to exhibit a clearer
difference between data downsampling and the traditional Oja’s algorithm. To provide clear plots
demonstrating the relative behavior of the algorithms considered in this paper, we have shown the
averaged sin? errors in Figures S.2 and S.3. In Figure S.4 we show six random runs where we fixed
the ps, s € (2 for each state for all runs. These figures clearly show that in general, Downsampled
Oja has a worse performance than Oja’s algorithm, which has a similar performance as the offline
algorithm. It also shows that the Downsampled algorithm has the most variability, whereas Oja’s
algorithm on the whole dataset has much less variability, and finally, and not surprisingly, the offline
algorithm has the least variability. Similar qualitative trends can be observed for the other settings.
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Figure S.2: Experiments with Bernoulli data. S.2a compares the three different algorithms, S.2b shows effect of
changing the eigengap of the transition_matrix and S.2c records the variation in performance on changing the
eigengap of the data covariance matrix.
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Figure S.3: Experiments with Uniform data. S.3a compares the three different algorithms, S.3b shows effect of
changing the eigengap of the transition matrix and S.3c records the variation in performance on changing the
eigengap of the data covariance matrix.
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Figure S.4: Randomly chosen runs for the Bernoulli case
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