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Abstract
Since its inception in 1982, Oja’s algorithm has become an established method for streaming

principle component analysis (PCA). We study the problem of streaming PCA, where the data-
points are sampled from an irreducible, aperiodic, and reversible Markov chain. Our goal is to
estimate the top eigenvector of the unknown covariance matrix of the stationary distribution. This
setting has implications in scenarios where data can solely be sampled from a Markov Chain Monte
Carlo (MCMC) type algorithm, and the objective is to perform inference on parameters of the
stationary distribution. Most convergence guarantees for Oja’s algorithm in the literature assume
that the data-points are sampled IID. For data streams with Markovian dependence, one typically
downsamples the data to get a "nearly" independent data stream. In this paper, we obtain the first
sharp rate for Oja’s algorithm on the entire data, where we remove the logarithmic dependence on
the sample size, n, resulting from throwing data away in downsampling strategies.

1 Introduction
Streaming Principal Component Analysis (PCA) is an important and well studied problem where the
principal eigenvector of the sample covariance matrix of a dataset is computed one data-point at a
time. One of the most popular algorithms for streaming PCA was introduced by Erikki Oja in 1982
[28, 29]. Most existing analyses of Oja’s algorithm are done when the data is sampled IID.

However, in many practical applications, the data-points are dependent and are sampled from an
MCMC process converging to a target stationary distribution. This naturally arises in the context of
token algorithms for Federated PCA settings [10, 11, 12] with multiple machines communicating via
a fixed and connected graph topology. Each machine contains an arbitrary fraction of data-points
and the goal is to design a streaming algorithm that respects this topology and returns the principal
component of the whole dataset. This is typically achieved using a Metropolis-Hastings scheme that
uses local information to design the transition matrix of a Markov chain with any desired stationary
distribution. The stationary distribution, π, of the random walk is chosen so that the distribution of
the samples under π matches the uniform distribution over data-points. Governed by this Markov
chain, a random walker then travels the network of machines and samples one data-point at a time
from the current machine, and computes the update. However, even under the stationary distribution,
the data-points are dependent, which deviates from the IID setup. Our goal is to obtain a sharp
analysis of the sin2 error of the estimated vector w.r.t true top eigenvector of the unknown covariance
matrix in the Markovian setting.

Estimating the first principal component with streaming PCA : Let Xt be a mean zero d
dimensional vector with covariance matrix Σ, and let ηt be a decaying learning rate. The update rule
of Oja’s algorithm is given as -

wt ← (I + ηtXtX
T
t )wt−1, wt ←

wt

∥wt∥2
(1)
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where wt is the estimate of v1 and ηt is the step-size at timestep t. We aim to analyse the sin2 error
of Oja’s iterate at timestep t, defined as 1− ⟨wt, v1⟩2, where v1 is the top eigenvector of Σ.

Streaming PCA in the IID setting: For an IID data stream with E [Xi] = 0 and E
[
XiX

T
i

]
= Σ,

there has been a lot of work on determining the non-asymptotic convergence rates for Oja’s algorithm
and its various adaptations [15, 1, 3, 37, 13, 14, 25, 20, 24]. Amongst these, [15], [1] and [14] match
the optimal offline sample complexity bound, suggested by the independent and identically distributed
(IID) version of Theorem 1 (See Theorem 1.1 in [15]).

We consider Oja’s algorithm in the setting where the data is generated from a reversible,
irreducible, and aperiodic Markov chain with stationary distribution π. We denote by Eπ[.] the
expectation under the stationary distribution. In this setting our goal is to estimate the principal
eigenvector of Eπ

[
XiX

T
i

]
. As in the IID setting, Eπ[Xi] = 0. The challenge is that the data, even

when it reaches stationarity, is dependent. Here the degree of dependence is captured by the second
eigenvalue in the magnitude of the transition matrix P (denoted as |λ2(P )|) of the Markov chain.
This is closely related to the mixing time of a Markov chain [19], denoted as τmix, which is the time
after which the conditional distribution of a state is close in total variational distance to its stationary
distribution, π (See Section 2.1).

Our contribution: Using a series of approximations, we obtain an optimal error rate for the sin2

error, which is worse by a factor of 1/(1− |λ2(P )|) from the corresponding error rate of the IID case.
Previous work [3] has established rates worse by a poly-logarithmic factor by using downsampling,
i.e. applying the update on every kth datapoint. In Figure 1, we compare Oja’s algorithm with
its downsampled and offline variants (see Section 6 for more details on setup). We see that Oja’s
algorithm performs significantly better than the downsampled variant, and similarly to the offline
variant where for the ith data point we compute the eigenvector of the sample covariance matrix of
all data-points up-to i. Our work provides a concrete and novel result that explains these observations.
In Table 1, we compare our bounds with related analyses of Oja’s algorithm. The last row shows that
we are the first to obtain an error whose main term is free of logarithmic dependence on n or d for
streaming PCA in the Markovian case.

We break the logarithmic barrier in previous work by considering a series of approximations
of finer granularity which uses reversibility of the Markov chain and standard mixing conditions
of irreducible and aperiodic Markov chains. Our rates are comparable to the recent work of [27]
(Proposition 1) that establishes an offline error analysis for estimating the principal component of the
empirical covariance matrix of Markovian data by using a Matrix Bernstein inequality. Our results
also imply a linearly convergent decentralized algorithm for streaming PCA in a distributed setting.
As a simple byproduct of our theoretical result, we also obtain a rate for Oja’s algorithm applied on
downsampled data, which is worse by a factor of log n, as shown in Figure 1. To our knowledge, this
is the first work that analyzes the Markovian streaming PCA problem without any downsampling that
matches the error of the offline algorithm.

The crux of our analysis uses the mixing properties of the Markov chain. Strong mixing intuitively
says that the conditional distribution of a state s in timestep k given the starting state is exponentially
close to the stationary distribution of s, the closeness being measured using the total variation distance.
All previous work on Markovian data exploits this property by conditioning on states many time steps
before. However, it is crucial to a) adaptively find how far to look back and b) bound the error of
the sequence of matrices we ignore between the current state and the state we are conditioning on.
Observe that these two components are related. Looking back too far makes the dependence very
small but increases the error resulting from approximating a larger matrix product of intermediate
matrices. We present a fine analysis that balances these two parts and then uses spectral theory to
bound the second part within a factor of a variance parameter that characterizes the variability of the
matrices and shows up in the analysis of [15, 27].

Related work on streaming PCA and online matrix decomposition on Markovian data:
Amongst recent work, [3] is very relevant to our setting, since it analyzes Oja’s algorithm with
Markovian Data samples. Inspired by the ideas of [8], the authors propose a downsampled version
of Oja’s algorithm to reduce dependence amongst samples and provide a Stochastic Differential
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Paper Markov? Online? Log-free
sin2 error rate Sample-Complexitymain-term

Jain et al. N Y Y O
(

V
gap2

1
n

)
O
(

V
gap2

1
ϵ

)
[15] N N O

(
V log(d)
gap2

1
n

)
O
(

V log(d)
gap2

1
ϵ

)
Chen et al. Y Y N - O

(
G

gap2
1
ϵ log

2
(

G
gap2

1
ϵ

))
[3]

Neeman et al. Y N N O

(
V log

(
d2−π

4

)
(1−|λ2(P )|) gap2

1
n

)
O

(
V log

(
d2−π

4

)
(1−|λ2(P )|) gap2

1
ϵ

)
[27]

Theorem 1 Y Y Y O
(

V
(1−|λ2(P )|) gap2

1
n

)
O
(

V
(1−|λ2(P )|) gap2

1
ϵ

)
Table 1: Comparison of sin2 error rates and sample complexities. Here gap := (λ1 − λ2), where
λ1, λ2 are the top 2 eigenvalues of Σ and the sample complexities represent the number of samples
required to achieve sin2 error at most ϵ. We note that [1] and [14] also match the online sample
complexity bound provided in [15]. Further, for the offline algorithm with IID data, [16] removes the
log (d) factor in exchange for a constant probability of success for large enough n.

Equation (SDE) based analysis to achieve a sample complexity of O
(

G
(λ1−λ2)

2
1
ϵ log

2
(

G
(λ1−λ2)

2
1
ϵ

))
for sin2 error smaller than ϵ, where G is a variance parameter. We obtain a similar rate in Corollary
1 through our techniques. However, comparing with Theorem 1, we observe that downsampling
leads to an extra O (log (n)) factor. It is important to point out that [3] provides an analysis for
estimating top k principal components, whereas this paper focuses on obtaining a sharp rate for
the first principal component. [21] consider the harder problem of online non-negative matrix
factorization for Markovian data. Their analysis establishes asymptotic convergence of error, but
does not provide a rate.

Figure 1: Comparison of Oja’s algorithm with
downsampled and offline variants. The X-axis represents
the sample size and the Y axis represents the sin2 error
of each algorithm’s estimate of the leading eigenvector.
The experimental setup is available in Section 6.

Stochastic Optimization with Markovian
Data : Markovian models are often considered
in Reinforcement Learning and Linear Dynamic
Systems[2, 5, 9, 30, 4, 34, 18, 23]. There
have been many notable nonasymptotic bounds
for stochastic gradient descent (SGD) methods
for general convex and nonconvex functions
with Markovian data [8, 31, 6, 7, 10, 38, 33].
The convergence rates (sample complexities)
obtained in these works apply to more general
problems but do not exploit the matrix product
structure inherent to Oja’s algorithm. In this
work, we develop novel techniques to show
that a sharper analysis is possible for the PCA
objective. The paper is organized as follows.
Section 2 contains the problem setup and
preliminaries about Markov Chains. Section 3
contains Theorem 1. We present a sketch of the
main technical tools in Section 4, intermediate
theorems needed for the main theorem in
Section 5 and conclude with simulations in
Section 6.
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2 Problem Setup and Preliminaries
This section presents the problem setup and outlines important properties of the Markov chain that
will be utilized subsequently. We assume that:

Assumption 1. The Markov chain is irreducible, aperiodic, reversible, and starts in stationarity,
with state distribution π1.

Such a Markov chain can arise in various situations, for e.g., while performing random walks on
expander graphs which are used extensively in fields such as computer networks, error-correcting
codes, and pseudorandom generators. Each state s of the Markov chain is associated with a distribution
D(s) over d-dimensional vectors with mean µs ∈ Rd and covariance matrix Σs ∈ Rd×d.

For a random walk s1, s2, · · · st on C, we define the sequence of random variables X1, X2 · · ·Xt,
where conditioned on the state si,Xi ∼ D (si).We represent the mean as µ := Es∼π [µs] =

∑
s πsµs

and the covariance matrix as Σ ∈ Rd×d, which, for i ∈ [n] can be expressed as:

Σ := Esi∼πED(si)

[
(Xi − µ) (Xi − µ)T

]
= Es∼π [Σs] + Es∼π

[
µsµ

T
s

]
− µµT

In this work, we assume µ = 0, which is a common assumption in the IID setting (see [15, 1]). While
it may be possible to extend our analysis to the non-zero mean case, it is out of the scope of this paper.
Therefore, Σ = Esi∼πED(si)

[
XiX

T
i

]
for i ∈ [n]

Let the eigenvalues of Σ be denoted as λ1 > λ2 ≥ λ3 · · ·λd. Let v1 denote the leading
eigenvector of Σ and V⊥ denote the Rd×(d−1) matrix with the remaining eigenvectors as columns.
We proceed under the following standard assumptions for i ∈ [n], (see for eg. [14]).

Assumption 2. ∥Esi∼πED(si)[(XiX
T
i − Σ)2]∥2 ≤ V .

Assumption 3. ∥XiX
T
i − Σ∥2 ≤M with probability 1.

Assumption 3 also implies ∥Σs + µsµ
T
s − Σ∥2 ≤ M with probability 1. WLOG, we assume

M+ λ1 ≥ 1. We use E [.] := Es∼πED(s) [.] to denote the expectation over state s ∼ π and over the
state-specific distributions D (.), unless otherwise specified. Define the matrix product

Bt :=
(
I + ηtXtX

T
t

) (
I + ηtXt−1X

T
t−1

)
. . .
(
I + η1X1X

T
1

)
(2)

Unrolling the recursion in 1, the output of Oja’s algorithm at timestep t is given aswt = Btw0/ ∥Btw0∥2.
In this work, ∥.∥2 denotes the Euclidean L2 norm for vectors and the operator norm for matrices
unless otherwise specified. I denotes the identity matrix.

2.1 Markov chain mixing times
Now we will discuss some well-known properties of an irreducible, aperiodic, and reversible Markov
chain (also see [19]). Let |λ2 (P ) | denote the second largest absolute eigenvalue of the Markov
chain; let the state-distribution of the Markov chain at timestep t with s1 = x be P t(x, .). For any
two probability distributions ν1 and ν2, recall that the total variational distance is TV (ν1, ν2) :=
∥ν1 − ν2∥TV :=

1
2

∑
x∈Ω|ν1(x) − ν2(x)|. The distance from π at the tth timestep is defined as

dmix(t) := supx∈Ω TV (P t(x, .), π). For irreducible and aperiodic Markov chains, by Theorem 4.9
in [19], we have dmix(t) ≤ C exp(−ct) for some C, c > 0. The mixing time of the Markov chain is
defined as:

τmix(ϵ) := inf{t : dmix(t) ≤ ϵ} (3)

As in [19], we will denote τmix := τmix
(
1
4

)
. Then, we have τmix(ϵ) ≤ ⌈log2(1/ϵ)⌉ τmix. It is worth

mentioning the useful relationship between dmix (.) and τmix, given as dmix (lτmix) ≤ 2−l ∀l ∈ N0.
These results about mixing time are valid for general irreducible and aperiodic Markov chains. A
reversible Markov chain satisfies ∀ x, y ∈ Ω, π (x)P (x, y) = π (y)P (y, x). For a reversible,
irreducible, and aperiodic Markov chain, the gap 1− |λ2(P )|, is inversely proportional to τmix [19].

1The last assumption may be eliminated by observing an initial burn-in period of τmix.
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3 Main Results
In this section, we present our main result, a near-optimal convergence rate for Oja’s algorithm on
Markovian data. As a corollary, we also establish a rate of convergence for Oja’s algorithm applied on
downsampled data, where every kth data-point is considered. Supplement S.5 contains comprehensive
proofs of Theorem 1 and Corollary 1 while the proof of Proposition 1 can be found in Supplement
Section S.2.

Theorem 1. Fix a δ ∈ (0, 1) and let the step-sizes be ηi := α
(λ1−λ2)(β+i) with η0 ≤ 1

e , α > 2. Under

assumptions 1, 2 and 3, for sufficiently large number of samples n such that n

log( 1
ηn
)
> β

log
(

1
η0

) ,

β :=

1000α2 max

{
τmix log

(
1
η0

)
(M+ λ1)

2
,

(
V

1−|λ2(P )|+λ2
1

)
100

}
(λ1 − λ2)2 log

(
1 + δ

200

)
the output wn of Oja’s algorithm (1) satisfies

1−
(
wT

n v1
)2 ≤ C log

(
1
δ

)
δ2

[
d

(
2β

n

)2α

+
C1V

(λ1 − λ2)2 (1− |λ2 (P ) |)
1

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
τmix

(
η2n
)2

n2

]

with probability atleast (1− δ). Here C is an absolute constant and

C1 :=
α2 (3 + 7|λ2 (P ) |)

2α− 1
, C2 :=

35α3

α− 1

Next, we compare the rate of convergence proposed in Theorem 1 with the offline algorithm
having access to the entire dataset {Xi}ni=1 using a recent result from [27]. Here, the authors extend
the Matrix Bernstein inequality [35, 32], to Markovian random matrices. Their setup is much like
ours except that the matrix at any state is fixed, i.e., there is no data distribution D(s) as in our setup.
However, it is easy to extend their result to our setting by observing that conditioned on the state
sequence, the matrices XiX

T
i , i ∈ [n] are independent under our model, and we can push in the

expectation over the state-specific distributions, D(s), whenever required. Therefore, we have the
following result -

Proposition 1 (Theorem 2.2 of [27]+Wedin’s theorem). Fix δ ∈ (0, 1). Consider an irreducible and
aperiodic Markov chain. Under assumptions 2 and 3, with probability 1− δ, the leading eigenvector
v̂ of

∑n
i=1XiX

T
i /n satisfies

1−
(
v̂T v1

)2 ≤ C ′
1

V log
(

d2−π
4

δ

)
(λ1 − λ2)2

(
1 + |λ2 (P )|
1− |λ2 (P )|

)
.
1

n
+ C ′

2

 M log
(

d2−π
4

δ

)
(λ1 − λ2) (1− |λ2 (P ) |)

2

.
1

n2

(4)

for absolute constants C ′
1 and C ′

2.

Observe that Theorem 1 matches the leading term V
(λ1−λ2)

2(1−|λ2(P )|) in Eq 1 except the log(d)

term. We believe, much like the IID case (also see the remark in [15]), this logarithmic term in [27]’s
result is removable for large n and a constant probability of success.

Remark 1. (Comparison with IID algorithm) Fix a δ ∈ (0, 1). If the data-points {Xi}ni=1 are
sampled IID from the stationary distribution π, then under assumptions 2 and 3, using Theorem 4.1
from [15], we have that the output wn of Oja’s algorithm 1 satisfies -

1−
(
wT

n v1
)2 ≤ C log

(
1
δ

)
δ2

[
d

(
β′

n

)2α

+
α

′2V
(2α′ − 1) (λ1 − λ2)2

1

n

]
(5)
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The leading term of Theorem 1 is worse by a factor of 1
1−|λ2(P )| . Further, it has an additive lower

order term O
(

log2(n)
n2

)
due to the covariance between data-points in the Markovian case.

Corollary 1. (Downsampled Oja’s algorithm) Fix a δ ∈ (0, 1). If Oja’s algorithm is applied on the
downsampled data-stream with every kth data-point, where k := τmix

(
η2n
)

then under the conditions
of Theorem 1 with appropriately modified α and β, the output wn satisfies

1−
(
wT

n v1
)2 ≤

C log
(
1
δ

)
δ2

[
d

(
2βτmix log (n)

n

)2α

+
C1Vτmix

(λ1 − λ2)2
log (n)

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
log2 (n) τmix

(
η2n
)2

n2

]

with probability atleast (1− δ). Here C is an absolute constant and C1 := 30α2

2α−1 , C2 := 35α3

α−1 .

Remark 2. Data downsampling to reduce dependence amongst samples has been suggested in recent
work [26, 22, 3]. In Corollary 1, we establish that the rate obtained is sub-optimal compared to
Theorem 1 by a log (n) factor. We prove this by a simple yet elegant observation: the downsampled
data stream can be considered to be drawn from a Markov chain with transition kernel P k (., .) since
each data-point is k steps away from the previous one. For sufficiently large k, this implies that the
mixing time of this chain is Θ(1). These new parameters are used to select the modified values of
α, β according to Lemma S.12 in the Supplement.

The proof of Theorem 1 follows the same general recipe as in [15] for obtaining a bound on the
sin2 error. However, the original proof techniques heavily rely on the IID setting. We carry out a
refined analysis for each step under the Markovian data model by a careful control of error terms
arising out of dependence. The first step involves obtaining a high-probability bound on the sin2

error, by noting that Oja’s algorithm on n data-points can be viewed as a single iteration of the power
method on Bn. Therefore, fixing a δ ∈ (0, 1) using Lemma 3.1 from [15], we have with probability
at least (1− δ),

sin2 (wn, v1) ≤
C log

(
1
δ

)
δ

Tr
(
V T
⊥ BnB

T
n V⊥

)
vT1 BnBT

n v1
, (6)

where C is an absolute constant. The numerator is bounded by first bounding its expectation (see
Theorem 3) and then using Markov’s inequality. To bound the denominator, similar to [15], we will
use Chebyshev’s inequality. Theorem 4 provides a lower bound for the expectation E

[
vT1 BnB

T
n v1

]
.

Chebyshev’s inequality also requires upper-bounding the variance of E
[
vT1 BnB

T
n v1

]
, which requires

us to bound E
[(
vT1 BnB

T
n v1

)2]
(see Theorem 5).

4 Main Technical Tools
In this section, we provide a sketch of the main arguments used in our proof.

Warm-up with downsampled Oja’s algorithm: We start with the simple downsampled Oja’s
algorithm to build intuition. Here, one applies Oja’s update rule (Eq 1) to every kth data-point, for
a suitably chosen k. For k = ⌈Lτmix log n⌉, the total variation distance between any consecutive
data-points in the downsampled data stream is O(n−L). As we show in Corollary 1, the error of this
algorithm is similar to the error of Oja’s algorithm applied to n/k data-points in the IID setting, i.e.,
O(Vτmix log n/n).

We will take E
[
vT1 BnB

T
n v1

]
as an example. Let us introduce some notation.

Bj,i :=
(
I + ηjXjX

T
j

) (
I + ηj−1Xj−1X

T
j−1

)
. . .
(
I + ηiXiX

T
i

)
(7)

We peel this quantity one matrix at a time from the inside. Note that for a reversible Markov chain,
standard results imply (see Lemma 1) that the mixing conditions apply to the conditional distribution
of a state given another state k steps in the “future” (see Supplement section S.3 for a proof). Recall
dmix(k) from Section 2.1.
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Lemma 1. Under Assumption 1,
1

2
sup
t∈Ω

∑
s

|P (Zt = s|Zt+k = t)− π (s)| = dmix (k).

It will be helpful to explain our analysis by comparing it with the IID setting. For this reason, we will
use EIID[.] to denote the expectation under the IID data model.

αn,1 := E
[
vT1 BnB

T
n v1

]
= E

[
vT1 Bn,2

(
I + η1Σ+ η1(X1X

T
1 − Σ)

) (
I + η1Σ+ η1(X1X

T
1 − Σ)

)T
BT

n,2v1

]
= E

[
vT1 Bn,2 (I + η1Σ)

2
BT

n,2v1

]
+ 2η1T1 + η21T2, (8)

where the first term is smaller than (1 + η1λ1)
2αn,2. We define T1 and T2 as follows. T1 :=

E
[
vT1 Bn,2 (I + η1Σ)

(
X1X

T
1 − Σ

)
BT

n,2v1
]
, and T2 := E

[
vT1 Bn,2

(
X1X

T
1 − Σ

)2
BT

n,2v1

]
.

For the IID setting, the second term is zero, and the third term can be bounded as follows:

EIID

[
vT1 Bn,2

(
X1X

T
1 − Σ

)2
BT

n,2v1

]
= EIID

[
vT1 Bn,2E

[(
X1X

T
1 − Σ

)2]
BT

n,2v1

]
≤ VEIID

[
vT1 Bn,2B

T
n,2v1

]
Let us denote the IID version of αn,i by αIID

n,i = EIID[v
T
1 Bn,iB

T
n,iv1]. The final recursion for the IID

case becomes: αIID
n,1 ≤ (1 + 2η1λ1 + η21

(
λ21 + V

)
)αIID

n,1. So, for our Markovian data model, the hope
is that the cross term T1 (which has a multiplicative factor of η1) is O(η1) and T2 is O(η21). We will
start with the T1 term, which is zero in the IID setting.

We hope to reduce the product Bn,2(X1X
T
1 − Σ) into a product of nearly independent matrices.

One hope is that if instead of Bn,2, we had Bn,2+k for some suitably large integer k, then using
(reverse) mixing properties of the Markov chain, we could argue using Lemma 1 that E[X1X

T
1 −

Σ|s1+k, . . . , sn] is very close to zero.The following lemma formally bounds the deviation of the
length-k matrix product from identity.

Lemma 2. Let Assumption 3 hold. If ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and ηi forms a
non-increasing sequence then ∀ m ≤ n− kn,

∥Bm+km−1,m − I∥2 ≤ (1 + ϵ) kmηm (M+ λ1) and (9)∥∥∥∥∥Bm+km−1,m − I −
m+km−1∑

t=m

ηtXtX
T
t

∥∥∥∥∥
2

≤ k2mη2m (M+ λ1)
2 (10)

Lemma 2 bounds the norm of the matrix product Bt+kt−1,t at two levels. The first result provides
a coarse bound, approximating linear and higher-order terms. The second result provides a finer
bound, preserving the linear term and approximating quadratic and higher-order terms. The proofs
involve a straightforward combinatorial expansion of Bt+kt−1,t and are deferred to the Supplement
section S.3.

Approximating
∏k+1

i=2 (I + ηiXiX
T
i ) requires η1k to be small. Since this is a recursive argument,

we would need ηik to be small for i = 1, . . . n, which is satisfied by the strong condition η1k is small.
To obtain a tight analysis, we choose k adaptively. We set ki = τmix(η

2
i ) (see definition in Eq 3).

As we will show in detail in the Supplement, Lemma 2 Eq 10 along with the adaptive choice of
ki gives us a sharp error bound. Using it, we can bound T1 (see Eq 8) as:

T1 ≤
k+1∑
j=2

ηjE

vT1 Bn,k+2 E
[(
XjX

T
j

)
(I + η1Σ) (X1X1 − Σ) |Xk+2, . . . , Xn

]︸ ︷︷ ︸
T1,j

BT
n,k+2v1

+O(η21k
2
1)αn,k+2

Naively bounding the T1,j term by O(1) leads to the same rate as downsampled Oja’s algorithm.
In the following lemma, we will establish that, indeed, T1,j has a much smaller norm. The novelty

of our bound is not just in using the mixing properties of the Markov chain but also in teasing out the
variance parameter V . We will state the lemma, in a slightly more general form as -
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Lemma 3. Under Assumptions 1, 2 and 3, for i < j ≤ i+ ki,∥∥E [(XiX
T
i − Σ

)
SXjX

T
j |si+ki

, . . . sn
]∥∥

2
≤
(
|λ2 (P )|j−i V + 8η2iM (M+ λ1)

)
∥S∥2

where ki is as defined in Lemma S.12 and S is a constant symmetric positive semi-definite matrix.

Lemma 3 bounds the norm of the covariance between matrices
(
XiX

T
i − Σ

)
S and XjX

T
j .

In particular, this implies that the norm of T1,j decays as |λ2 (P )|j−1. The proof uses a spectral
argument that replaces a coarse approximation by a sum of ki O(1) terms to sum of k exponentially
decaying terms, thereby removing the dependence on ki, which can be as large as log(n). The proof
is deferred to the Supplement section S.4. The details can be found in Supplement section S.4.

Let {c1, c2, c3, c4} be positive constants for ease of notation. Coming back to Eq 8, we can

bound T1 as follows: T1 ≤ αn,k+2

(
η1
c1|λ2(P )|V
1− |λ2(P )|

+ c2η
2
1k

2
1

)
. A similar argument can be applied

to bound T2 as: T2 ≤ αn,k+2

(
V + c3η1k

2
1

)
. Putting everything together in 8, we have

αn,1 ≤
(
(1 + η1λ1)

2
+ V

)
αn,2︸ ︷︷ ︸

Recursion for IID setting

+

(
c1|λ2 (P ) |
1− |λ2 (P )|

)
Vη21αn,k+2︸ ︷︷ ︸

Error due to Markovian dependence

+ c4η
3
1k

2
1αn,k+2︸ ︷︷ ︸

Error due to approximation of matrix product

Recursing on this inequality gives us our bound on E
[
vT1 BnB

T
n v1

]
(Theorem 2). We are now ready

to present all our accompanying theorems.

5 Intermediate Theorems for Convergence Analysis
In this section, we present our accompanying theorems which are used to obtain the main result in
Theorem 1. But before doing so, we will need to establish some notation. Let ki := τmix

(
η2i
)
, and

the step-sizes be set as ηi := α
(λ1−λ2)(β+i) with α, β as defined in Theorem 1. Let ϵ := 1

100 . As
shown in Lemma S.12 in Supplement Section S.3 our choice of step-sizes satisfy, ∀i ∈ [n],

C.1 ηiki (M+ λ1) ≤ ϵ C.2 (Slow decay) ηi ≤ ηi−ki ≤ (1 + 2ϵ) ηi ≤ 2ηi

Further, we define scalar variables -

r := 2 (1 + ϵ) knηn (M+ λ1) , ζk,t := 40kt+1 (M+ λ1)
2

ψk,t := 6M
[
1 + 3k2t+1 (M+ λ1)

2
]
, V ′ :=

1 + (3 + 4ϵ) |λ2 (P ) |
1− |λ2 (P )|

V (11)

and recall the definitions of Bt and Bj,i in Eqs 2 and 7, respectively. We are now ready to present the
theoretical results needed to prove our main result. For simplicity of notation, we present versions of
the results by using ηi := α

(λ1−λ2)(β+i) with α, β as defined in Theorem 1. However, these theorems
are in fact valid under more general step-size schedules. We state and prove the more general versions
in the Supplement Section S.4.

Theorem 2. Under Assumptions 1, 2 and 3, for all n > kn, and ηi satisfying C.1 and C.2, we have:

E
[
vT1 BnB

T
n v1

]
≤ (1 + r)

2
exp

(
n−kn∑
t=1

(
2ηtλ1 + η2t

(
V ′ + λ21

)
+ η3tψk,t

))
.

The three primary differences with the IID case are a) the (1 + r)
2 term, which arises since the

recursion sketched in Section 4 leaves out the last kn terms which are bounded by (1 + r)
2; (b) the

new factor of 1
1−|λ2(P )| with V due to the Markovian dependence between terms; and c) the extra

lower order term η3tψk,t arising from the use of Lemmas 2 and 3.
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Theorem 3. Let u := min {t : t ∈ [n], t− kt ≥ 0}. Under Assumptions 1, 2 and 3, for all n > u,
and ηi satisfying C.1 and C.2,

E
[
Tr
(
V T
⊥ BnB

T
n V⊥

)]
≤ (1 + 5ϵ) exp

(
n∑

t=u+1

2ηtλ2 + η2t−kt

(
V ′ + λ21

)
+ η3t−kt

ψk,t

)

×

(
d+

n∑
t=u+1

(V ′ + ηtψk,t)C
′
k,tη

2
t−kt

exp

(
t∑

i=u+1

2ηi (λ1 − λ2)

))

where C ′
k,t :=

(
1 + δ

200

)
exp (2λ1

∑u
i=1 ηj).

Here, the difference is mainly in the new variable u, arising since the recursion stops at u, not 1.
(1 + 5ϵ) represents the approximation of the first u terms.

Theorem 4. Under Assumptions 1, 2 and 3, for all n > kn, ηi satisfying C.1 and C.2, and

s := 2r + δ
1000 , we have: E

[
vT1 BnB

T
n v1

]
≥ (1− s) exp

(
n−kn∑
t=1

2ηtλ1 −
n−kn∑
t=1

4η2t λ
2
1

)
.

This differs from its IID counterpart by a multiplicative factor of (1− s) for the same reason as
before, which also makes the sums go up to (n− kn) instead of n. Note that for sufficiently large n
(Lemma S.13), r = O

(
log(n)

n

)
is very small and δ ∈ (0, 1). Therefore, (1− s) ≈ 1 as large n.

Theorem 5. Under Assumptions 1, 2 and 3, for all n > kn, and ηi satisfying C.1 and C.2, we have:

E
[(
vT1 BnB

T
n v1

)2] ≤ (1 + r)
4
exp

(
n−kn∑
t=1

4ηtλ1 +

n−kn∑
t=1

η2t ζk,t

)
.

The differences are similar to the last theorems involving v1. Surprisingly, for this, the coarse
approximation suffices, leading to an absence of the V term in the bound. Having established these
results, the final step is to substitute them into Eq 6 and follow the proof recipe described earlier. This
requires significant calculations and is deferred to the Supplement Section S.5.

6 Experimental Validation
In this section, we present some simple experiments to validate our theoretical results. For more
detailed experiments, see the Supplement. We design a Markov chain with |Ω|= 10 states, where the
transition matrix entries Pij equal ρ/(|Ω|−1) for i ̸= j and 1− ρ for i = j. Smaller values of ρ lead
to larger mixing times. It can be verified that the stationary distribution π = U (Ω) is uniform over
the state-space and |λ2 (P ) |≈ (1− ρ). We set ρ = 0.2 for Figures 1 and 2a, and vary it in Figure 2b.
Each point in the plot is averaged over 20 random runs over different Markov chains, datasets, and
initialization.

Each state s ∈ Ω is associated with D(s) := Bernoulli(ps) distribution. We set d = 1000 and
select ps ∼ U (0, 0.05) at the start of each random run. The covariance matrix, Σs, for each state is
set as Σs (i, j) = exp (−|i− j|cs)σiσj where cs := 1 + 9

(
s−1
|Ω|−1

)
, σi := 5i−β . We start with the

stationary distribution π, and for each state si, we draw IID samples Zi ∼ D (si). We standardize Zi

such that all components have zero mean and unit variance under the state distribution, D (si). We

then generate the sample data-point for PCA as Xi = Σ
1
2
i Zi. By construction, ED(si)

[
XiX

T
i

]
= Σi

and E[Xi] = 0d. The step sizes for Oja’s algorithm are set as ηi = α
(β+i)(λ1−λ2)

for α = 5, β =
5

1−|λ2(P )| . For the downsampled variant, every 10th data-point is considered, and β is accordingly
divided by 10. For the offline algorithm, we recompute the leading eigenvector of the sample
covariance matrix of data-points seen so far.

Figure 1 compares the performance of different algorithms for the Bernoulli distribution. Here,
we are checking if the results obtained in Theorem 1, Proposition 1, and Corollary 1 are reflected in
the experiments. The experimental results demonstrate that Oja’s algorithm performs significantly

9



(a) Variation of sin2 error with β (b) Variation of sin2 error with |λ2 (P ) |

Figure 2: X axis represents the sample size, and Y axis represents the sin2 error.

better than the downsampled version, consistent with the theoretical results. It also shows that Oja’s
algorithm performs similarly to the offline algorithm, which is also confirmed by our theoretical results
and that of [27]. Figure 2a compares the performance of Oja’s algorithm for different covariance
matrices. Smaller values of β decrease the eigengap λ1−λ2, and hence lead to a slower convergence.
Figure 2b confirms that smaller values of ρ (larger values of |λ2 (P ) |) also worsen the rate, which
matches with our theoretical results.

7 Conclusion
We have considered the problem of streaming PCA for Markovian data, which has implications
in various settings like decentralized optimization, reinforcement learning, etc. The analysis of
streaming algorithms in such settings has seen a renewed surge of interest in recent years. However,
the dependence between data-points makes it difficult to obtain sharp bounds. We provide, to our
knowledge, the first sharp bound for obtaining the first principal component from a Markovian data
stream that breaks the logarithmic barrier present in the analysis done for downsampled data. We
believe that the theoretical tools that we have developed in this paper would enable one to obtain
sharp bounds for other dependent data settings, learning top k principal components, and online
inference algorithms with updates involving products of matrices.
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Supplement
The Supplement is organized as follows -

• Section S.1 introduces notation that will be useful for concise representation.

• Section S.2 provides the proof of Proposition 1.

• Section S.3 contains useful intermediate results which are used in subsequent proofs of our
main results.

• Section S.4 proves bounds on v1BnB
T
n v

T
1 and V⊥BnB

T
n V

T
⊥ (Theorems 2, 3, 4 and 5).

• Section S.5 puts everything together and provides proofs of our main result - Theorem 1, along
with Corollary 1.

• Section S.6 provides additional experiments to further support our claims.

S.1 Notation and assumptions
For conciseness, we define the stochastic function A : Ω→ Rd×d which maps each state variable of
the Markov chain to a (d× d) positive semi-definite symmetric matrix as

A (st) := XtX
T
t

Where Xt ∼ D (st) is drawn from the distribution corresponding to the state at timestep st. All the
theoretical results are derived under Assumptions 1, 2 and 3.

S.2 Offline PCA with Markovian Data
In this section, we prove Proposition 1. We note that [27] considers Fj (sj) to be random only with
respect to the states. Therefore, we first show that their results generalize to our setting as well, using
Fj (sj) := A (sj)− Σ. From Eq (5) in [27], we have∥∥∥∥∥∥

n∏
j=1

exp

(
θ

2
(A (sj)− Σ)

)∥∥∥∥∥∥
2

F

= Tr

 n∏
j=1

exp

(
θ

2
(A (sj)− Σ)

) 1∏
j=n

exp

(
θ

2
(A (sj)− Σ)

)
= vec (Id)

T

 n∏
j=1

exp (θH (sj))

 vec (Id)

where H (sj) :=
1
2 [(A (sj)− Σ)⊗ Id + Id ⊗ (A (sj)− Σ)]. Noting that conditioned on the state

sequence, the matrices A (si) , i ∈ [n] are independent under our model, we can push in the
expectation over the state-specific distributions inside. Let Eπ denote the expectation over the
stationary state-sequence of the Markov chain, and ED denote the distribution over states. Therefore,

EπED


∥∥∥∥∥∥

n∏
j=1

exp

(
θ

2
(A (sj)− Σ)

)∥∥∥∥∥∥
2

F

 = Eπ

vec (Id)T
 n∏

j=1

ED(sj) [exp (θH (sj))]

 vec (Id)


Defining the multiplication operator

(
Eθ

jh
)
(x) = ED(x) [exp (θHj (x))]h (x) for any vector-valued

function h, we note that Eq (8) from [27] holds for our case as well.

Next, we adapt Proposition 5.3 from [27] for our setting. Specifically, we have the following
lemma -
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Lemma S.1. Consider the operator H (x) := 1
2 [(A (x)− Σ)⊗ Id + Id ⊗ (A (x)− Σ)]. Then,

under assumptions 3 and 2 and the definition of Σ, we have,

1. EπED(x) [H (x)] = 0

2. H (x) ⪯MI

3.
∥∥∥EπED(x)

[
H (x)

2
]∥∥∥

2
≤ V

Proof. The proof follows by using the same arguments as Proposition 5.3 from [27] and using
the expectation EπED(x) over both the state sequence and the distribution over states, along with
assumptions 3 and 2.

Finally, to prove Bernstein’s inequality, we prove that Lemma 6.7 from [27] holds for our case. To
note this, we start with equation (57) in their work. We have, using Lemma S.1,∣∣〈v2,EπED(x) [exp (θH (x))] v1

〉∣∣ = ∣∣〈v2,EπED(x) [exp (θH (x))] v1
〉∣∣

=

∣∣∣∣∣
〈
v2,

(
I + EπED(x) [H (x)] +

∞∑
k=2

θk

k!
EπED(x)

[
H (x)

k
])

v1

〉∣∣∣∣∣
=

∣∣∣∣∣⟨v2, v1⟩+
〈
v2

( ∞∑
k=2

θk

k!
EπED(x)

[
H (x)

k
])

v1

〉∣∣∣∣∣
≤ |⟨v2, v1⟩|

(
1 + V

( ∞∑
k=2

θk

k!
Mk−2

))
Therefore, Eq (60) from [27] follows. The other bounds in the proof of Lemma 6.7 from [27] follow
similarly. Therefore, we have the following version of Theorem 2.2 from [27] -

Proposition S.1. Under assumptions 2 and 3, we have

P

∥∥∥∥∥∥ 1n
n∑

j=1

A (sj)− Σ

∥∥∥∥∥∥
2

≥ t

 ≤ d2−π
4 exp

 t2/ 32
π2

1+|λ2(P )|
1−|λ2(P )|nV + 8/π

1−|λ2(P )|Mt


The proof of Proposition 1 now follows by converting the tail bound into a high probability bound

and using Wedin’s theorem [36]. See proof of Theorem 1.1 in [15] for details.

S.3 Useful Results
This section presents some useful lemmas and their proofs that are subsequently used in our proofs.

Lemma S.2. (Reverse mixing) Consider a reversible, irreducible, and aperiodic Markov chain
started from the stationary distribution. Then,

1

2
sup
t∈Ω

∑
s

|P (Zt = s|Zt+k = t)− π (s)| = dmix (k)

Proof. Let the transition probabilities of the Markov chain be represented as P (x|y) := P (Zt+1 =
x|Zt = y). Consider the time-reversed chain Yi := Zn−i+1 for i = 1, 2, . . . n. Then,

P (Yl = sl|Yl−1 = sl−1, Yl−2 = sl−2 . . . Y1 = s1)

= P (Zn−l+1 = sl|Zn−l+2 = sl−1, Zn−l+3 = sl−2, . . . Zn = s1)

= P (Zn−l+1 = sl|Zn−l+2 = sl−1) using Lemma S.6

=
P (Zn−l+1 = sl, Zn−l+2 = sl−1)

P (Zn−l+2 = sl−1)

=
π (sl)P (sl−1|sl)

π (sl−1)

= P (sl|sl−1) using reversibility
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This proves that Yn is an irreducible Markov chain with the same transition probabilities as the
original Markov chain. The irreducibility of Yn follows from the original Markov chain being
irreducible. Therefore,

P (Zt = s1|Zt+k = s2) = P (Yn+1−t = s1|Yn+1−t−k = s2) (S.12)

Then,

1

2
sup
t∈Ω

∑
s

|P (Zt = s|Zt+k = t)− π (s)| = 1

2
sup
t∈Ω

∑
s

|P (Yn+1−t = s|Yn+1−t−k = t)− π (s)| = dmix (k)

where the last inequality follows from the forward mixing properties of the Markov chain.

Lemma S.3. Let Cj,i =
∏i

t=j(I + Zt) for i ≤ j ≤ n, where Zt ∈ Rd×d are symmetric PSD
matrices. Let U ∈ Rd×d′

. Then,

Tr
(
UTCj,i+1C

T
j,i+1U

)
≤ Tr

(
UTCj,iC

T
j,iU

)
Proof.

Tr
(
UTCj,iC

T
j,iU

)
= Tr

(
UTCj,i+1(I + 2Zi + Z2

i )C
T
j,i+1U

)
= Tr

(
UTCj,i+1C

T
j,i+1U

)
+Tr

(
UTCj,i+1(2Zi + Z2

i )C
T
j,i+1U

)
Since Zi and Z2

i are both PSD, the second term on the RHS is always positive. This yields the
proof.

Lemma S.4. Let Bt =
∏1

i=t(I + Zi), where Zi ∈ Rd×d are symmetric PSD matrices.

Tr
(
Bn−1B

T
n−1

)
≤ Tr

(
BnB

T
n

)
Proof.

Tr
(
BnB

T
n

)
= Tr

(
(I + Zn)Bn−1B

T
n−1(I + Zn)

)
= Tr

(
Bn−1B

T
n−1

)
+Tr

(
ZnBn−1B

T
n−1

)
+Tr

(
Bn−1B

T
n−1Zn

)
+Tr

(
ZnBn−1B

T
n−1Zn

)
= Tr

(
Bn−1B

T
n−1

)
+ 2Tr

(
BT

n−1ZnBn−1

)
+Tr

(
BT

n−1Z
2
nBn−1

)
Since Zn and Z2

n are both PSD, the last two terms on the RHS are always positive. This yields the
proof.

Lemma S.5. Consider matrices X ∈ Rd×d′
and A ∈ Rd×d. Then,∣∣Tr (XTAX
)∣∣ ≤ ∥A∥2Tr (XTX

)
Proof. For a matrix Z ∈ Rd×d, let the singular values be denoted as :

σmax (Z) = σ1 (Z) ≥ σ2 (Z) . . . ≥ σd (Z)

Using Von-Neumann’s trace inequality, we have∣∣Tr (XTAX
)∣∣ = ∣∣Tr (AXXT

)∣∣
≤

d∑
i=1

σi (A)σi
(
XXT

)
≤ σmax (A)

d∑
i=1

σi
(
XXT

)
= ∥A∥2Tr

(
XXT

)
= ∥A∥2Tr

(
XTX

)
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Lemma S.6. Given the Markov property in a Markov chain, the reverse Markov property holds, i.e

P (Zt = s|Zt+1 = w,Zt+2 = st+2 . . . Zn = sn) = P (Zt = s|Zt+1 = w)

Proof.

P (Zt = s|Zt+1 = w,Zt+2 = st+2 . . . Zn = sn)

=
P (Zt = s, Zt+1 = w,Zt+2 = st+2 . . . Zn = sn)

P (Zt+1 = t, Zt+2 = st+2 . . . Zn = sn)

=
P (Zt = s, Zt+1 = w)P (Zt+2 = st+2 . . . Zn = sn|Zt = s, Zt+1 = w)

P (Zt+1 = w)P (Zt+2 = st+2 . . . Zn = sn|Zt+1 = w)

=
P (Zt = s, Zt+1 = w)P (Zt+2 = st+2 . . . Zn = sn|Zt+1 = w)

P (Zt+1 = w)P (Zt+2 = st+2 . . . Zn = sn|Zt+1 = w)

=
P (Zt = s, Zt+1 = w)

P (Zt+1 = w)

= P (Zt = s|Zt+1 = w)

S.3.1 Proof of Lemma 2
Now we are ready to provide a proof of Lemma 2.

Proof of Lemma 2. Without loss of generality, we prove the statement for m = 1. For convenience
of notation, we denote k := k1. Note that,

Bk,1 =
k∑

r=0

∑
(i1,i2...ir)∈Gr

r∏
j=1

ηijA(sij ), Gr = {(i1, . . . , ir) ∈ {1, . . . , N}r : i1 < · · · < ir}

with the convention that
∏

ϕ = I . Therefore, since ηi forms a non-increasing sequence and |Gr|=
(
k
r

)
,

we have,

∥Bk,1 − I∥2 =

∥∥∥∥∥∥
k∑

r=1

∑
(i1,i2...ir)∈Gr

r∏
j=1

ηijA(sij )

∥∥∥∥∥∥
2

≤
k∑

r=1

∑
(i1,i2...ir)∈Gr

∥∥∥∥∥∥
r∏

j=1

ηijA(sij )

∥∥∥∥∥∥
2

≤
k∑

r=1

(
k

r

)( r∏
i=1

ηi

)
(M+ λ1)

r

≤
k∑

r=1

kr

r!

(
r∏

i=1

ηi

)
(M+ λ1)

r

≤
k∑

r=1

kr

r!
ηr1 (M+ λ1)

r

≤ exp (kη1 (M+ λ1))− 1

≤ kη1 (M+ λ1) (1 + kη1 (M+ λ1)) using S.14
≤ (1 + ϵ) kη1 (M+ λ1) (S.13)

where we have used the assumptions that ∥A(s)∥2≤ ∥A(s)−Σ∥+∥Σ∥2= (M+ λ1), kη1 (M+ λ1) <
1 and the useful result that

ex ≤ 1 + x+ x2, x ∈ [0, 1.79] (S.14)
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This completes the proof for (a).

For part (b), we have∥∥∥∥∥Bk,1 − I −
k∑

t=1

ηtA (st)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑

r=2

∑
(i1,i2...ir)∈Gr

r∏
j=1

ηijA(sij )

∥∥∥∥∥∥
2

≤
k∑

r=2

∑
(i1,i2...ir)∈Gr

∥∥∥∥∥∥
r∏

j=2

ηijA(sij )

∥∥∥∥∥∥
2

≤
k∑

r=2

(
k

r

)( r∏
i=2

ηi

)
(M+ λ1)

r

≤
k∑

r=2

kr

r!

(
r∏

i=2

ηi

)
(M+ λ1)

r

≤
k∑

r=2

kr

r!
ηr1 (M+ λ1)

r

≤ exp (kη1 (M+ λ1))− 1− kη1 (M+ λ1)

≤ k2η21 (M+ λ1)
2 using S.14 along with kη1 (M+ λ1) < 1

(S.15)

which completes the proof.

S.3.2 Proof of Lemma 3
Before proving Lemma 3, we will need the following lemma.

Lemma S.7. For arbitrary matrices Mi ∈ Rd×d, i ∈ [n] and Q ∈ Rn×n, we have∥∥∥∥∥∥
∑

x,y∈[n]

Q (x, y)MxM
T
y

∥∥∥∥∥∥
2

≤ ∥Q∥2

∥∥∥∥∥∥
∑
x∈[n]

MxM
T
x

∥∥∥∥∥∥
2

where ∥.∥2 denotes the spectral norm.

Proof. Define matrix X ∈ Rd×nd as X :=
[
M1 M2 . . . Mn

]
. We note that

∥X∥2 =
√
λmax (XXT )

=

√√√√√λmax

∑
x∈[n]

MxMT
x



=

√√√√√
∥∥∥∥∥∥
∑
x∈[n]

MxMT
x

∥∥∥∥∥∥
2

since
∑
x∈[n]

MxM
T
x is a symmetric matrix

Then, we have,∑
x,y∈[n]

Q (x, y)MxM
T
y = X (Q⊗ Id×d)X

T , where ⊗ denotes the kronecker product

≤ ∥X∥22 ∥Q⊗ Id×d∥2 using submultiplicativity of the spectral norm

= ∥X∥22 ∥Q∥2 since ∥A⊗B∥2 = ∥A∥2∥B∥2

which completes our proof.

17



Proof of Lemma 3. We denote ki := k for convenience of notation. By using reversibility (see S.12),
we know that the time-reversed process is also a Markov chain with the same transition probabilities.
Then, for i < j ≤ i+ k and any m,

P (si = s, sj = t|si+k = u) = P (si = s|sj = t)P (sj = t|si+k = u)

(i)
= P j−i(t, s)P i+k−j(u, t)

= P (sm = s|sm−j+i = t)P (sm−j+i = t|sm−k = u)

= P (sm = s, sm−j+i = t|sm−k = u) (S.16)

Step (i) uses reversibility. Therefore,

E [(A (si)− Σ)SA (sj) |si+k, . . . sn] =
∑
s,t

(
Σs + µsµ

T
s − Σ

)
S
(
Σt + µtµ

T
t

)
P (si = s, sj = t|si+k, . . . sn)

using Lemma S.6 =
∑
s,t

(
Σs + µsµ

T
s − Σ

)
S
(
Σt + µtµ

T
t

)
P (si = s, sj = t|si+k)

using Eq S.16 =
∑
s,t

(
Σs + µsµ

T
s − Σ

)
S
(
Σt + µtµ

T
t

)
P (sm = s, sm−j+i = t|sm−k = u)

= E [(A (sm)− Σ)SA (sm−j+i) |sm−k]

= E [(A (sj)− Σ)SA (si) |sj−k] setting m := j

Therefore, without loss of generality, we proceed with the second form.

∥E [(A (sj)− Σ)SA (si) |sj−k = x0]∥2
≤ ∥E [(A (sj)− Σ)SΣ|sj−k = x0]∥2︸ ︷︷ ︸

T1

+ ∥E [(A (sj)− Σ)S (A (si)− Σ) |sj−k = x0]∥2︸ ︷︷ ︸
T2

T1 := ∥E [(A (sj)− Σ)SΣ|sj−k = x0]∥2
=
∥∥E [ED(sj) [(A (sj)− Σ)] |sj−k = x0

]
SΣ
∥∥
2

=
∥∥∥E [(Σsj + µsjµ

T
sj − Σ

)
|sj−k = x0

]
SΣ
∥∥∥
2

=

∥∥∥∥∥∑
s∈Ω

P k(sj−k, s)
(
Σs + µsµ

T
s − Σ

)
SΣ

∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥
∑
s∈Ω

(
P k(sj−k, s)− π (s)

) (
Σs + µsµ

T
s − Σ

)
+ Eπ

[(
Σs + µsµ

T
s − Σ

)]︸ ︷︷ ︸
=0

∥∥∥∥∥∥∥
2

∥S∥2 ∥Σ∥2

= λ1 ∥S∥2

(∥∥∥∥∥∑
s∈Ω

(
P k(sj−k, s)− π (s)

) (
Σs + µsµ

T
s − Σ

)∥∥∥∥∥
2

)

≤ λ1 ∥S∥2M
∑
s∈Ω

∣∣∣∣P k(sj−k, s)− π (s)
∣∣∣∣

≤ 2λ1 ∥S∥2Mdmix (ki+1)

≤ 2η2iMλ1 ∥S∥2 (S.17)
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T2 = ∥E [(A (sj)− Σ)S (A (si)− Σ) |sj−k = x0]∥2

=

∥∥∥∥∥∥
∑

x,y∈Ω

P (sj = x, si = y|sj−k = x0)ED(x) [A (x)− Σ]SED(y) [A (y)− Σ]

∥∥∥∥∥∥
2

using independence of

D (x) and D (y) conditioned on x and y

=

∥∥∥∥∥∥∥∥
∑

x,y∈Ω

P (sj = x, si = y|sj−k = x0)
(
Σx + µxµ

T
x − Σ

)
S

1
2︸ ︷︷ ︸

Wx

S
1
2

(
Σy + µyµ

T
y − Σ

)︸ ︷︷ ︸
WT

y

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x,y∈Ω

P (sj = x|si = y)P (si = y|sj−k = x0)WxW
T
y

∥∥∥∥∥∥
2

using the Markov property

=

∥∥∥∥∥∥
∑

x,y∈Ω

P j−i (y, x)P i−j+k (x0, y)WxW
T
y

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)
P i−j+k (x0, y)WxW

T
y +

∑
x,y∈Ω

π (x)P i−j+k (x0, y)WxW
T
y

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)
P i−j+k (x0, y)WxW

T
y +

∑
x∈Ω

π (x)Wx︸ ︷︷ ︸
=0

∑
y∈Ω

P i−j+k (x0, y)W
T
y

∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)
P i−j+k (x0, y)WxW

T
y

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

) (
P j−i+k (x0, y)− π (y)

)
WxW

T
y

∥∥∥∥∥∥
2︸ ︷︷ ︸

T21

+

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)
π (y)WxW

T
y

∥∥∥∥∥∥
2︸ ︷︷ ︸

T22

(S.18)

For T21, we have,

T21 ≤
∑

x,y∈Ω

∣∣P j−i (y, x)− π (x)
∣∣ ∣∣P i−j+k (x0, y)− π (y)

∣∣ ∥∥WxW
T
y

∥∥
2

≤ ∥S∥2M
2
∑
y∈Ω

∣∣P i−j+k (x0, y)− π (y)
∣∣∑
x∈Ω

∣∣P j−i (y, x)− π (x)
∣∣

≤ 2 ∥S∥2M
2dmix (j − i)

∑
y∈Ω

∣∣P i−j+k (x0, y)− π (y)
∣∣

≤ 4 ∥S∥2M
2dmix (j − i) dmix (i− j + k)

≤ 4 ∥S∥2M
22

−
⌊

j−i
τmix

⌋
2
−
⌊

i−j+k
τmix

⌋

≤ 8 ∥S∥2M
22

−
⌊

j−i+i−j+k
τmix

⌋
since ∀a, b ⌊a⌋+ ⌊b⌋ ≥ ⌊a+ b⌋ − 1

≤ 8 ∥S∥2M
22

−
⌊

k
τmix

⌋
≤ 8 ∥S∥2M

2dmix (k) ≤ 8η2iM2 ∥S∥2 (S.19)
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For T22, we have,

T22 =

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)
π (y)WxW

T
y

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)√
π (x)

√
π (y)

(√
π (x)Wx

)(√
π (y)WT

y

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

x,y∈Ω

(
P j−i (y, x)− π (x)

)√
π (x)

√
π (y)

(√
π (x)

(
Σx + µxµ

T
x − Σ

)
S

1
2

)(√
π (y)S

1
2

(
Σy + µyµ

T
y − Σ

))∥∥∥∥∥∥
2

(i)

≤ ∥Q∥2

∥∥∥∥∥∑
x∈Ω

π (x)
(
Σx + µxµ

T
x − Σ

)
S
(
Σx + µxµ

T
x − Σ

)∥∥∥∥∥
2

= ∥Q∥2
∥∥Eπ

[(
Σx + µxµ

T
x − Σ

)
S
(
Σx + µxµ

T
x − Σ

)]∥∥
2

≤ ∥Q∥2 ∥S∥2
∥∥∥Eπ

[(
Σx + µxµ

T
x − Σ

)2]∥∥∥
2

≤ V ∥Q∥2 ∥S∥2 (S.20)

Step (i) uses Lemma S.7 withQ(y, x) :=
(P i−j(y,x)−π(x))√

π(x)

√
π (y) andMx =

√
π (x)

(
Σx + µxµ

T
x − Σ

)
S

1
2 .

Let’s now bound ∥Q∥2. Let Π := diag (π) ∈ RΩ×Ω and t := j − i. Then, we have

Q = Π
1
2

(
P t − 11TΠ

)
Π− 1

2

= Π
1
2P tΠ− 1

2 −Π
1
211

TΠ
1
2

Now, since we have a reversible Markov chain, ΠP = PTΠ. Therefore,

Π
1
2PΠ− 1

2 = Π
1
2Π−1PTΠΠ− 1

2

= Π− 1
2PTΠ

1
2

Therefore, P is similar to the self-adjoint matrix Π
1
2PΠ− 1

2 and their eigenvalues are real and the
same. Further note that Π

1
21 is the leading eigenvector of Π

1
2PΠ− 1

2 with eigenvalue 1 since

Π
1
2PΠ− 1

2Π
1
21 = Π

1
2P1

= Π
1
21 since P is a stochastic matrix

Now,

∥Q∥2 =
∥∥∥Π 1

2P tΠ− 1
2 −Π

1
211

TΠ
1
2

∥∥∥
2

=

∥∥∥∥(Π 1
2PΠ− 1

2

)t
−Π

1
211

TΠ
1
2

∥∥∥∥
2

≤
∣∣∣λ2 (Π 1

2PΠ− 1
2

)∣∣∣t
= |λ2 (P )|t

where |λ2 (.) | denotes the second-largest eigenvalue in magnitude. Therefore, using S.17, S.19 and
S.20, we have

E [(A (si)− Σ)SA (sj) |si+k, ...sn] ≤
(
|λ2 (P )|j−i V + 8η2iM2 + 2η2iMλ1

)
∥S∥2

≤
(
|λ2 (P )|j−i V + 8η2iM (M+ λ1)

)
∥S∥2

Hence proved.

20



Lemma S.8. Let ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and ηi forms a non-increasing sequence.
Set ki := τmix

(
γη2i
)
, γ ∈ (0, 1]. Then for constant matrix U ∈ Rd×d′

, and constant positive
semi-definite matrix G ∈ Rd×d, i ≤ j ≤ n, j − i ≥ ki, we have∣∣E [Tr (UTBj,i+1G (Ai − Σ)BT

j,i+1U
)]∣∣

≤ ηi+1∥G∥2
(

2V |λ2 (P )|
1− |λ2 (P )|

+ ηi+1M
(
2γ (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2i+1 (M+ λ1)

2
))

× E
[
Tr
(
UTBj,i+ki+1B

T
j,i+ki+1

U
)]

where Bj,i is defined in 7.

Proof. For the convenience of notation, we denote ki+1 := k. Let Bj,i+1 = Bj,i+k (I +R), then

E
[
Tr
(
UTBj,i+1G (Ai − Σ)BT

j,i+1U
)]

=

E

Tr (UTBj,i+kG (Ai − Σ)BT
j,i+kU

)︸ ︷︷ ︸
T1

+ E

Tr (UTBj,i+kG (Ai − Σ)RTBT
j,i+kU

)︸ ︷︷ ︸
T2

+

E

Tr (UTBj,i+kRG (Ai − Σ)BT
j,i+kU

)︸ ︷︷ ︸
T3

+ E

Tr (UTBj,i+kRG (Ai − Σ)RTBT
j,i+kU

)︸ ︷︷ ︸
T4


(S.21)

We will now bound each of the terms E [T1] ,E [T2] ,E [T3] and E [T4].

E [T1] = E
[
Tr
(
UTBj,i+kG (Ai − Σ)BT

j,i+kU
)]

= E
[
E
[
Tr
(
UTBj,i+kG (Ai − Σ)BT

j,i+kU
) ∣∣∣∣si+k, . . . sj−1, sj

]]
= E

[
Tr

(
UTBj,i+kG E

[
(Ai − Σ)

∣∣∣∣si+k, . . . sj−1, sj

]
BT

j,i+kU

)]
= E

[
Tr

(
UTBj,i+kG E

[
(Ai − Σ)

∣∣∣∣si+k

]
BT

j,i+kU

)]
using Lemma S.6

Now, using Lemma 1, we have,∥∥∥∥E [(Ai − Σ)

∣∣∣∣si+k

]∥∥∥∥
2

=

∥∥∥∥∥∑
s∈Ω

P k(si+k, s) (Ai − Σ)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
s∈Ω

(
P k(si+k, s)− π (s)

)
(Ai − Σ) + Eπ [(Ai − Σ)]︸ ︷︷ ︸

=0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∑
s∈Ω

(
P k(si+k, s)− π (s)

)
(Ai − Σ)

∥∥∥∥∥
2

≤M
∑
s∈Ω

∣∣∣∣P k(si+k, s)− π (s)
∣∣∣∣

≤ 2Mdmix (ki+1)

≤ 2γη2i+1M (S.22)

where we have used Lemma S.5. Therefore,

|E [T1]| ≤ γη2i+1M∥G∥2E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
(S.23)
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We will now bound E [T2]. Let R0 :=
∑i+k−1

ℓ=i+1 ηℓAℓ. Using Lemma 2 we have

∥R−R0∥2 ≤ η2i+1k
2
i+1 (M+ λ1)

2

Then,

E[T2] = E
[
Tr
(
UTBj,i+kG (Ai − Σ)RTBT

j,i+kU
)]

= E
[
Tr
(
UTBj,i+kG (Ai − Σ)RT

0 B
T
j,i+kU

)]
+ E

[
Tr
(
UTBj,i+kG (Ai − Σ) (R−R0)

T
BT

j,i+kU
)]

= E
[
Tr
(
UTBj,i+kGE[(Ai − Σ)RT

0 |si+k, . . . sj−1, sj ]B
T
j,i+kU

)]
+

E
[
Tr
(
UTBj,i+kG (Ai − Σ) (R−R0)

T
BT

j,i+kU
)]

Using Lemma 3 with S := I we have,

∥E
[
(Ai − Σ)RT

0 |si+k, . . . , sj
]
∥2 ≤

i+k−1∑
ℓ=i+1

ηℓ

(
|λ2 (P )|ℓ−i V + 8γη2i+1M (M+ λ1)

)
≤ ηi+1V

|λ2 (P )|
1− |λ2 (P )|

+ 8γη3i+1ki+1M (M+ λ1) (S.24)

Therefore,

|E [T2] |

≤ ∥G∥2
(
ηi+1

V |λ2 (P )|
1− |λ2 (P )|

+ 8γη3i+1ki+1M (M+ λ1) + η2i+1k
2
i+1M (M+ λ1)

2

)
E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
= ηi+1∥G∥2

(
V |λ2 (P )|
1− |λ2 (P )|

+ 8γη2i+1ki+1M (M+ λ1) + ηi+1k
2
i+1M (M+ λ1)

2

)
E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
(S.25)

Similarly using Lemma 3 with S := G,

|E [T3]| ≤ ηi+1∥G∥2
(
V |λ2 (P )|
1− |λ2 (P )|

+ 8γη2i+1ki+1M (M+ λ1) + ηi+1k
2
i+1M (M+ λ1)

2

)
E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
(S.26)

Finally,

|E [T4]| ≤ M∥G∥2∥R∥22E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
≤ (1 + ϵ)

2
η2i+1k

2
i+1M (M+ λ1)

2 ∥G∥2E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
using Lemma 2

(S.27)

Therefore, using Eqs S.23, S.25, S.26, S.27 along with S.21, we have∣∣E [Tr (UTBj,i+1G (Ai − Σ)BT
j,i+1U

)]∣∣
≤ ηi+1∥G∥2

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηi+1M
(
2γ + 16γηi+1ki+1 (M+ λ1) +

(
2 + (1 + ϵ)

2
)
k2i+1 (M+ λ1)

2
))

× E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
≤ ηi+1∥G∥2

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηi+1M
(
2γ (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2i+1 (M+ λ1)

2
))

× E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
where in the last line we used ηi+1ki+1 (M+ λ1) ≤ ϵ. Hence proved.
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Lemma S.9. Let ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and ηi forms a non-increasing sequence.
Set ki := τmix

(
γη2i
)
, γ ∈ (0, 1]. Then for constant matrices U ∈ Rd×d′

, G ∈ Rd×d, i ≤ j ≤
n, j − i ≥ ki, we have∣∣∣E [Tr(UTBj,i+1G (Ai − Σ)

2
BT

j,i+1U
)]∣∣∣

≤
(
V + ηi+1M2 (2γηi+1 + (1 + ϵ) (2 + ϵ (1 + ϵ)) ki+1 (M+ λ1))

)
∥G∥2 E

[
Tr
(
UTBj,i+ki+1B

T
j,i+ki+1

U
)]

where Bj,i is defined in 7.

Proof. For convenience of notation, we denote ki+1 := k. Let Bj,i+1 = Bj,i+k (I +R), then

E
[
Tr
(
UTBj,i+1G (Ai − Σ)

2
BT

j,i+1U
)]

=

E

Tr(UTBj,i+kG (Ai − Σ)
2
BT

j,i+kU
)

︸ ︷︷ ︸
T1

+ E

Tr(UTBj,i+kG (Ai − Σ)
2
RTBT

j,i+kU
)

︸ ︷︷ ︸
T2

+

E

Tr(UTBj,i+kRG (Ai − Σ)
2
BT

j,i+kU
)

︸ ︷︷ ︸
T3

+ E

Tr(UTBj,i+kRG (Ai − Σ)
2
RTBT

j,i+kU
)

︸ ︷︷ ︸
T4


We will now bound each of the terms E [T1] ,E [T2] ,E [T3] and E [T4].

Since
∥∥∥Eπ

[
(At − Σ)

2
]∥∥∥

2
≤ V , therefore

E [T1] = E
[
Tr
(
UTBj,i+kG (Ai − Σ)

2
BT

j,i+kU
)]

= E
[
E
[
Tr
(
UTBj,i+kG (Ai − Σ)

2
BT

j,i+kU
) ∣∣∣∣si+k, . . . sj−1, sj

]]
= E

[
Tr

(
UTBj,i+kG E

[
(Ai − Σ)

2

∣∣∣∣si+k, . . . sj−1, sj

]
BT

j,i+kU

)]
= E

[
Tr

(
UTBj,i+kG E

[
(Ai − Σ)

2

∣∣∣∣si+k

]
BT

j,i+kU

)]
using Lemma S.6

(i)

≤
(
V + 2dmix (k)M2

)
∥G∥2 E

[
Tr
(
UTBj,i+k B

T
j,i+kU

)]
where in (i), we used similar steps as S.22 to get∥∥∥∥E [(Ai − Σ)

2

∣∣∣∣si+k

]∥∥∥∥
2

≤
∥∥∥Eπ

[
(Ai − Σ)

2
]∥∥∥

2
+ 2dmix (k)M2 (S.28)

Next, using Lemma 2 we have that

∥R∥2 ≤ (1 + ϵ) ki+1ηi+1 (M+ λ1) . (S.29)

Therefore,

E [T2] = E
[
Tr
(
UTBj,i+kG (Ai − Σ)

2
RTBT

j,i+kU
)]

≤ (1 + ϵ) ki+1ηi+1M2 (M+ λ1) ∥G∥2 E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
Similarly,

E [T3] = E
[
Tr
(
UTBj,i+kRG (Ai − Σ)

2
BT

j,i+kU
)]

≤ (1 + ϵ) ki+1ηi+1M2 (M+ λ1) ∥G∥2 E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
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Finally, using the bound on ∥R∥2 from Eq S.29, we have:

E [T4] = E
[
Tr
(
UTBj,i+kRG (Ai − Σ)

2
RTBT

j,i+kU
)]

≤ (1 + ϵ)
2
k2i+1η

2
i+1M2 (M+ λ1)

2 ∥G∥2 E
[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
≤ ϵ (1 + ϵ)

2
ki+1ηi+1M2 (M+ λ1) ∥G∥2 E

[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
using ∀i, ηiki (M + λ1) ≤ c

Therefore,∣∣∣E [Tr(UTBj,i+1G (Ai − Σ)
2
BT

j,i+1U
)]∣∣∣

(i)

≤
(
V + ηi+1

(
2γηi+1M2 + (1 + ϵ) (2 + ϵ (1 + ϵ)) ki+1M2 (M+ λ1)

))
∥G∥2 E

[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
=
(
V + ηi+1M2 (2γηi+1 + (1 + ϵ) (2 + ϵ (1 + ϵ)) ki+1 (M+ λ1))

)
∥G∥2 E

[
Tr
(
UTBj,i+kB

T
j,i+kU

)]
where in (i), we used dmix (k) = dmix (ki+1) ≤ γη2i+1. Hence proved.

Lemma S.10. Let ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and step-sizes ηi forms a non-increasing
sequence. Further, let the step-sizes follow a slow-decay property, i.e, ∀i, ηi ≤ ηi−ki

≤ 2ηi. Set
ki := τmix

(
γη2i
)
, γ ∈ (0, 1]. Let G ∈ Rd×d be a constant positive semi-definite matrix, and

Pt := Tr
(
Bt−1B

T
t−1G(At − Σ)

)
, then,

E [Pt] ≤ ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−ktM
(
2γ (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))
∥G∥2 E

[
Tr
(
Bt−ktB

T
t−kt

)]
where Bt is defined in 2.

Proof. Let Bt = (I +R)Bt−kt
with ∥R∥2≤ r. Then,

E [Pt] = E

Tr (Bt−kt
BT

t−kt
G(At − Σ)

)︸ ︷︷ ︸
Pt,1

+ E

Tr (Bt−kt
BT

t−kt
RTG(At − Σ)

)︸ ︷︷ ︸
Pt,2



+ E

Tr (Bt−ktB
T
t−kt

G(At − Σ)R
)︸ ︷︷ ︸

Pt,3

+ E

Tr (Bt−ktB
T
t−kt

RTG(At − Σ)R
)︸ ︷︷ ︸

Pt,4


Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and S.25, we have,

E [Pt,1] = E
[
Tr
(
Bt−kt

BT
t−kt

E [G(At − Σ)|s1, s2, . . . , st−kt
]
)]

≤ E
[
Tr
(
Bt−ktB

T
t−kt

GE [(At − Σ)|st−kt ]
)]

≤ ∥GE [(At − Σ)|st−kt
]∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
≤ 2Mdmix (kt) ∥G∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
using S.22

≤ 2γη2tM∥G∥2 E
[
Tr
(
Bt−ktB

T
t−kt

)]
E [Pt,2] = E

[
Tr
(
Bt−kt

BT
t−kt

,E
[
RTG(At − Σ)U |s1, s2, . . . , st−kt

])]
≤
∥∥E [RTG(At − Σ)|s1, s2, . . . , st−kt

]∥∥
2
E
[
Tr
(
Bt−kt

BT
t−kt

)]
=
∥∥E [RTG(At − Σ)|st−kt

]∥∥
2
E
[
Tr
(
Bt−kt

BT
t−kt

)]
≤ ηt−kt

∥G∥2

(
V |λ2 (P )|
1− |λ2 (P )|

+ 8γη2t−kt
ktM (M+ λ1) + ηt−kt

k2tM (M+ λ1)
2

)
E
[
Tr
(
Bt−kt

BT
t−kt

)]
using S.25
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E [Pt,3] ≤ ηt−kt
∥G∥2

(
V |λ2 (P )|
1− |λ2 (P )|

+ 8γη2t−kt
ktM (M+ λ1) + ηt−kt

k2tM (M+ λ1)
2

)
E
[
Tr
(
Bt−kt

BT
t−kt

)]
using similar steps as E [Pt,2]

E [Pt,4] = E
[
Tr
(
Bt−ktB

T
t−kt

RTG(At − Σ)R
)]

≤ r2M∥G∥2 E
[
Tr
(
Bt−kt

BT
t−kt

)]
≤ (1 + ϵ)

2
η2t−kt+1k

2
tM (M+ λ1)

2 ∥G∥2 E
[
Tr
(
Bt−kt

BT
t−kt

)]
using Lemma 2

≤ (1 + ϵ)
2
η2t−kt

k2tM (M+ λ1)
2 ∥G∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
Therefore we have,

E [Pt]

≤ ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+M
(
2γηt + 16γη2t−kt

kt (M+ λ1) +
(
2 + (1 + ϵ)

2
)
ηt−kt

k2t (M+ λ1)
2
))
∥G∥2

× E
[
Tr
(
Bt−ktB

T
t−kt

)]
(i)

≤ ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−kt
M
(
2γ + 16γηtkt (M+ λ1) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))
∥G∥2

× E
[
Tr
(
Bt−kt

BT
t−kt

)]
(ii)

≤ ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−ktM
(
2γ (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))
∥G∥2 E

[
Tr
(
Bt−ktB

T
t−kt

)]
where in (i) we used 2ηt−kt

≤ ηt ≤ ηt−kt
along with ηtkt (M+ λ1) ≤ ϵ in (ii). Hence proved.

Lemma S.11. Let ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and ηi forms a non-increasing sequence.
Set ki := τmix

(
γη2i
)
, γ ∈ (0, 1]. LetU ∈ Rd×d be a constant matrix andQt := Tr

(
Bt−1B

T
t−1(At − Σ)U(At − Σ)

)
.

Further, let the decay of the step-sizes be slow such that ∀i, ηi ≤ ηi−ki
≤ 2ηi. Then

E [Qt] ≤
(
V + ηt−kt+1M2 (2γηt + 2 (1 + ϵ) (1 + ϵ (1 + ϵ)) kt (M+ λ1))

)
∥U∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
where Bt is defined in 2.

Proof. Let Bt = (I +R)Bt−kt
with ∥R∥2≤ r. Then,

E [Qt] = E

Tr (Bt−kt
BT

t−kt
(At − Σ)U(At − Σ)

)︸ ︷︷ ︸
Qt,1

+ E

Tr (Bt−kt
BT

t−kt
RT (At − Σ)U(At − Σ)

)︸ ︷︷ ︸
Qt,2



+ E

Tr (RBt−ktB
T
t−kt

(At − Σ)U(At − Σ)
)︸ ︷︷ ︸

Qt,3

+ E

Tr (RBt−ktB
T
t−kt

RT (At − Σ)U(At − Σ)
)︸ ︷︷ ︸

Qt,4


Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and noting that∥∥∥Eπ

[
(At − Σ)

2
]∥∥∥

2
≤ V , we have

E [Qt,1] = E
[
Tr
(
Bt−kt

BT
t−kt

E [(At − Σ)U(At − Σ)|s1, s2, . . . , st−kt
]
)]

= E
[
Tr
(
Bt−ktB

T
t−kt

E [(At − Σ)U(At − Σ)|st−kt ]
)]

≤ ∥E [(At − Σ)U(At − Σ)|st−kt
]∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
≤ ∥U∥2

∥∥E [(At − Σ)2|st−kt

]∥∥
2
E
[
Tr
(
Bt−ktB

T
t−kt

)]
using S.28

≤ ∥U∥2
(
V + 2dmix (kt)M2

)
E
[
Tr
(
Bt−kt

BT
t−kt

)]
≤ ∥U∥2

(
V + 2γη2tM2

)
E
[
Tr
(
Bt−ktB

T
t−kt

)]
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E [Qt,2] = E
[
Tr
(
Bt−ktB

T
t−kt

E
[
RT (At − Σ)U(At − Σ)|s1, s2, . . . , st−kt

])]
≤
∥∥E [RT (At − Σ)U(At − Σ)|st−kt

]∥∥
2
E
[
Tr
(
Bt−kt

BT
t−kt

)]
≤ (1 + ϵ) ηt−kt+1ktM2 (M+ λ1) ∥U∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
using Lemma 2

E [Qt,3] ≤ (1 + ϵ) ηt−kt+1ktM2 (M+ λ1) ∥U∥2 E
[
Tr
(
Bt−kt

BT
t−kt

)]
using a similar argument as Qt,2

E [Qt,4] = E
[
Tr
(
RBt−ktB

T
t−kt

RT (At − Σ)U(At − Σ)
)]

= E
[
Tr
(
Bt−kt

BT
t−kt

RT (At − Σ)U(At − Σ)R
)]

≤ r2 ∥U∥2M
2E
[
Tr
(
Bt−kt

BT
t−kt

)]
≤ (1 + ϵ)

2
η2t−kt+1k

2
tM2 (M+ λ1)

2 ∥U∥2 E
[
Tr
(
Bt−kt

BT
t−kt

)]
using Lemma 2

Therefore, we have

E [Qt]

≤
(
V + ηt−kt+1

(
2γηtM2 + 2 (1 + ϵ) ktM2 (M+ λ1) + (1 + ϵ)

2
ηt−kt+1k

2
tM2 (M+ λ1)

2
))
∥U∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
(i)

≤
(
V + ηt−kt+1M2

(
2γηt + 2 (1 + ϵ) kt (M+ λ1) + 2ϵ (1 + ϵ)

2
kt (M+ λ1)

))
∥U∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
=
(
V + ηt−kt+1M2 (2γηt + 2 (1 + ϵ) (1 + ϵ (1 + ϵ)) kt (M+ λ1))

)
∥U∥2 E

[
Tr
(
Bt−kt

BT
t−kt

)]
In (i), we used the slow-decay assumption on ηi mentioned in the lemma statement along with
ηiki (M+ λ1) ≤ ϵ. Hence proved.

Lemma S.12. (Learning Rate Schedule) Fix any δ ∈ (0, 1). Set ki := τmix
(
η2i
)
. Suppose the step

sizes are set such that

ηi =
α

(λ1 − λ2) (β + i)

Define the linear function

∀i ∈ [n], f (i) :=
1

ηi
=

(λ1 − λ2) (β + i)

α
,

With ϵ := 1
100 and ξk,t, ζk,t,V ′,Vk,t defined in S.49, set α > 2, f (0) ≥ e, m := 200 and

β := 600max

{
τmix log (f (0)) (M+ λ1)α

λ1 − λ2
,
5τmix log (f (0)) (M+ λ1)

2
α2

3 (λ1 − λ2)2 log
(
1 + δ

m

) ,

(
V ′ + 5λ21

)
α2

300 (λ1 − λ2)2 log
(
1 + δ

m

)}

then we have

1. ηiki (M+ λ1) ≤ ϵ

2. ∀i, ηi ≤ ηi−ki
≤ (1 + 2ϵ) ηi ≤ 2ηi (slow-decay)

3.
n∑

i=1

(
Vk,i + ζk,i + 4λ21

)
η2i ≤ log

(
1 + δ

m

)
4.

n∑
i=1

(V ′ + ξk,i) η
2
i−ki

exp

(
−

n∑
j=i+1

2ηj (λ1 − λ2)

)
≤

(
2 (1 + 10ϵ)α2

2α− 1

)
V ′

(λ1 − λ2)2
1

n
+

(
24 (1 + 10ϵ)α3

(α− 1)

)
M (M+ λ1)

2

(λ1 − λ2)3
k2n
n2
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Proof. We use the following inequalities -

t∑
j=i

η2j ≤
α2

(λ1 − λ2)2 (β + i− 1)

(
Using

1

x+ 1
≤

∞∑
i=1

1

(x+ i)2
≤ 1

x

)
(S.30)

t∑
j=i

ηj ≥
α

(λ1 − λ2)
log

(
t+ β + 1

i+ β

)
(S.31)

t∑
j=i

ηj ≤
α

(λ1 − λ2)
log

(
t+ β

i+ β − 1

)
(S.32)

t∑
j=i

(j + β)ℓ ≤ (t+ β + 1)ℓ+1 − (i+ β)ℓ+1

ℓ+ 1
≤ (t+ β + 1)ℓ+1

ℓ+ 1
∀ ℓ > 0 (S.33)

For the first result, we observe that f(x) = log(x)
x is a decreasing function of x for x ≥ e. Using

properties of the mixing time (see Section 2.1 in the manuscript), we have

ki := τmix
(
η2i
)
≤ 2τmix

log (2)
log

(
1

η2i

)
=

4τmix

log (2)
log

(
(β + i) (λ1 − λ2)

α

)
=

4τmix

log (2)
log (f (i))

(S.34)

for ηi < 1. For i ≥ 0

f (i) ≥ f (0) = β (λ1 − λ2)
α

≥ e

Therefore,

ηiki (M+ λ1) ≤
4τmix (M+ λ1)

log (2)

α

(β + i) (λ1 − λ2)
log

(
(β + i) (λ1 − λ2)

α

)
=

4τmix (M+ λ1)

log (2)

log (f (i))

f (i)

≤ 4τmix (M+ λ1)

log (2)

log (f (0))

f (0)

From the assumptions mentioned in the Lemma statement, we have

log (f (0))

f (0)
<

ϵ log (2)

4τmix (M+ λ1)
=

log (2)

400τmix (M+ λ1)
(S.35)

Therefore,

∀ i, ηiki (M+ λ1) ≤ ϵ (S.36)

For the second result, we note that ∀i ∈ [n],

ηi−ki

ηi
=

β + i

β + i− ki

= 1 +
ki

β + i− ki

= 1 +
1

β+i
ki
− 1
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Consider the fraction β+i
ki

. We can simplify it as :

β + i

ki
≥ log (2)

4τmix

β + i

log
(

(β+i)(λ1−λ2)
α

)
=

α log (2)

4τmix (λ1 − λ2)
f (i)

log (f (i))

≥ α log (2)

4τmix (λ1 − λ2)
f (0)

log (f (0))

≥ 1

ϵ
from S.35

where we used the fact that x
log(x) is an increasing function for x ≥ e. Therefore, we have that

ηi−ki

ηi
≤ 1 +

1
1
ϵ − 1

=
1

1− ϵ
≤ 1 + 2ϵ for ϵ ∈ (0, 0.1)

For the third result, we note that

ζk,t := 40kt+1 (M+ λ1)
2
,

ξk,t := 2ηtM
[
3 + 9k2t+1 (M+ λ1)

2
]

≤ 24ηtM
[
k2t+1 (M+ λ1)

2
]

since (M+ λ1) ≥ 1 WLOG

≤ 24ϵ (1 + ϵ) kt+1 (M+ λ1)
2 since ηt ≤ (1 + 2ϵ) ηt+1 and ηt+1kt+1 (M+ λ1) ≤ ϵ

Therefore,

n∑
i=1

(
Vk,i + ζk,i

)
η2i =

(
V ′ + 5λ21

) n∑
i=1

η2i + 41 (M+ λ1)
2

n∑
i=1

η2i ki+1

(i)

≤
(
V ′ + 5λ21

) n∑
i=1

η2i︸ ︷︷ ︸
T1

+45 (M+ λ1)
2

n∑
i=1

η2i+1ki+1︸ ︷︷ ︸
T2

(S.37)

where (i) follows from the slow decay property of ηi.

For T1, using S.30 we have,

T1 ≤
α2

(λ1 − λ2)2 β
(S.38)

For T2, substituting the value of ki from S.34 for ηi < 1 we have,

T2 :=
n∑

i=1

η2i+1ki+1 ≤
4τmix

log (2)

n∑
i=1

(
α

(λ1 − λ2) (β + i+ 1)

)2

log

(
(λ1 − λ2) (β + i+ 1)

α

)
(S.39)

=
4τmix

log (2)

n∑
i=1

log (f (i+ 1))

f (i+ 1)
2 (S.40)
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Note that f (i) is a linear function of i and ∀i f (i+ 1)− f (i) = λ1−λ2

α . We observe that g(x) =
log(x)
x2 is a decreasing function of x for x ≥ e 1

2 ∼ 1.65. Therefore,(
λ1 − λ2

α

) n∑
i=1

log (f (i+ 1))

f (i+ 1)
2 ≤

∫ f(n+1)

f(1)

log (x)

x2
dx

Substituting in S.40 we have,

T2 ≤
4τmix

log (2)

(
α

λ1 − λ2

)∫ f(n+1)

f(1)

log (x)

x2
dx

=
4τmix

log (2)

(
α

λ1 − λ2

)−( log (x)

x
+

1

x

) ∣∣∣∣∣
f(n)

f(1)


≤ 4τmix

log (2)

(
α

λ1 − λ2

)(
log (f (1))

f (1)
+

1

f (1)

)
≤ 8τmix

log (2)

(
α

λ1 − λ2

)(
log (f (1))

f (1)

)
≤ 8τmix

log (2)

(
α

λ1 − λ2

)(
log (f (0))

f (0)

)
since

log (x)

x
is a decreasing function of x for x ≥ e

Putting everything together in S.37 and using the bounds on β, f (0) mentioned in the lemma
statement, we have,

n∑
i=1

(
Vk,i + ζk,i

)
η2i ≤ 460 (M+ λ1)

2
τmix

(
α

λ1 − λ2

)
log (f (0))

f (0)
+

α2

(λ1 − λ2)2 β
(
V ′ + 5λ21

)
= 460τmix log (f (0))

α2

(λ1 − λ2)2 β
(M+ λ1)

2
+

α2

(λ1 − λ2)2 β
(
V ′ + 5λ21

)
≤ log

(
1 +

δ

m

)
Finally, for the last result we first note that

ξk,t := 2ηtM
[
3 + 9k2t+1 (M+ λ1)

2
]

≤ 24ηtM
[
k2t+1 (M+ λ1)

2
]

since (M+ λ1) ≥ 1 WLOG

Therefore,

n∑
i=1

(V ′ + ξk,i) η
2
i−ki

exp

− n∑
j=i+1

2ηj (λ1 − λ2)


≤ (1 + 2ϵ)

2
n∑

i=1

(V ′ + ξk,i) η
2
i exp

− n∑
j=i+1

2ηj (λ1 − λ2)


≤ (1 + 5ϵ)

n∑
i=1

(V ′ + ξk,i) η
2
i exp

− n∑
j=i+1

2ηj (λ1 − λ2)

 since ϵ ∈ (0, 0.1)

= (1 + 5ϵ)

 n∑
i=1

V ′η2i exp

− n∑
j=i+1

2ηj (λ1 − λ2)

+
n∑

i=1

ξk,iη
2
i exp

− n∑
j=i+1

2ηj (λ1 − λ2)


(S.41)
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Let’s define

g (i) := exp

− n∑
j=i+1

2ηj (λ1 − λ2)

 , T3 :=
n∑

i=1

η2i g (i) , T4 :=
n∑

i=1

η3i g (i) , T5 :=
n∑

i=1

η3i k
2
i g (i) ,

Note that since kn ≥ ki,

T5 =
n∑

i=1

η3i k
2
i g (i) ≤ k2n

n∑
i=1

η3i g (i) = k2nT4

Then,

n∑
i=1

(V ′ + ξk,i) η
2
i−ki

exp

− n∑
j=i+1

2ηj (λ1 − λ2)

 ≤ (1 + 5ϵ)
[
V ′T3 + 24M (M+ λ1)

2
T5

]
≤ (1 + 5ϵ)

[
V ′T3 + 24M (M+ λ1)

2
k2nT4

]
(S.42)

Using S.31, g (i) ≤
(

i+β+1
n+β+1

)2α
. Noting that

(
β+1
β

)2
≤
(

β+1
β

)3
≤ 2, we have

T3 :=
n∑

i=1

η2i exp

−2 n∑
j=i+1

ηj (λ1 − λ2)


=

(
α

λ1 − λ2

)2 n∑
i=1

1

(β + i)
2

(
i+ β + 1

n+ β + 1

)2α

≤
(

α

λ1 − λ2

)2(
β + 1

β

)2 n∑
i=1

1

(β + i+ 1)
2

(
i+ β + 1

n+ β + 1

)2α

=

(
α

λ1 − λ2

)2(
β + 1

β

)2 n∑
i=1

1

(β + i+ 1)
2

(
i+ β + 1

n+ β + 1

)2α

≤ 2

(
α

λ1 − λ2

)2
1

(n+ β + 1)
2α

n∑
i=1

(i+ β + 1)
2α−2

≤ 2

2α− 1

(
α

λ1 − λ2

)2
1

(n+ β + 2)

(
n+ β + 2

n+ β + 1

)2α

using S.33

=
2

2α− 1

(
α

λ1 − λ2

)2
1

(n+ β + 2)

(
1 +

1

n+ β + 1

)2α

(S.43)

and similarly,

T4 :=
n∑

i=1

η3i exp

−2 n∑
j=i+1

ηj (λ1 − λ2)


=

(
α

λ1 − λ2

)3 n∑
i=1

1

(β + i)
3

(
i+ β + 1

n+ β + 1

)2α

≤
(

α

λ1 − λ2

)3(
β + 1

β

)3 n∑
i=1

1

(β + i+ 1)
3

(
i+ β + 1

n+ β + 1

)2α

=

(
α

λ1 − λ2

)3(
β + 1

β

)3 n∑
i=1

1

(β + i+ 1)
2

(
i+ β + 1

n+ β + 1

)2α

≤ 2

(
α

λ1 − λ2

)3
1

(n+ β + 1)
2α

n∑
i=1

(i+ β + 1)
2α−3
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≤ 1

α− 1

(
α

λ1 − λ2

)3
1

(n+ β + 2)
2

(
n+ β + 2

n+ β + 1

)2α

using S.33

=
1

α− 1

(
α

λ1 − λ2

)3
1

(n+ β + 2)
2

(
1 +

1

n+ β + 1

)2α

(S.44)

Using S.36, we have

α

n+ β + 1
= ηn (λ1 − λ2) ≤ ηnλ1 ≤ ηnknλ1 ≤ ϵ ≤ 0.1 (S.45)

Therefore, using [17](
1 +

1

n+ β + 1

)2α (i)

≤ 1

1− 2α
n+β+1

(ii)

≤ 1 +
4α

n+ β + 1
≤ 1 + 4ϵ (S.46)

where (i) follows since 2α
n+β+1 < 1 by S.45 and (ii) follows since 1

1−x ≤ 1 + 2x for x ∈ [0, 12 ].
Using S.46 with S.43, we have

T3 ≤
2

2α− 1

(
α

λ1 − λ2

)2
1

(n+ β + 2)

(
1 +

4α

n+ β + 1

)
≤ 2 (1 + 4ϵ)

2α− 1

(
α

λ1 − λ2

)2
1

(n+ β + 2)
(S.47)

Using S.46 with S.44, we have

T4 ≤
1 + 4ϵ

α− 1

(
α

λ1 − λ2

)3
1

(n+ β + 2)
2 (S.48)

Let

C1 :=
2 (1 + 10ϵ)α2

2α− 1
, C2 :=

24 (1 + 10ϵ)α3

(α− 1)
,

Putting together S.47, S.48 in S.42 and using the definition of ki in S.34 we have

(1 + 5ϵ)V ′T3 ≤
2 (1 + 5ϵ) (1 + 4ϵ)

2α− 1

(
α

λ1 − λ2

)2 V ′

(n+ β + 2)

≤ 2 (1 + 10ϵ)α2

2α− 1

V ′

(λ1 − λ2)2
1

n
since ϵ ≤ 0.05

and similarly,

24 (1 + 5ϵ)M (M+ λ1)
2
k2nT4 ≤

24 (1 + 5ϵ) (1 + 4ϵ)α3

α− 1

M (M+ λ1)
2

(λ1 − λ2)3
k2n
n2

Therefore from S.42, we have

n∑
i=1

(V ′ + ξk,i) η
2
i−ki

exp

− n∑
j=i+1

2ηj (λ1 − λ2)

 ≤ C1
V ′

(λ1 − λ2)2
1

n
+ C2

M (M+ λ1)
2

(λ1 − λ2)3
k2n
n2

Hence proved.
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S.4 Proofs : Convergence Analysis of Oja’s Algorithm for Markovian
Data

In this section, we present proofs of Theorems 2, 3, 4 and 5. We state versions of these theorems that
are valid under more general conditions on the step sizes. Specifically, for the following, we only
require a sequence of non-increasing step-sizes which satisfy, for ϵ := 1

100 , ∀i ∈ [n] -

C.1 ηiki (M+ λ1) ≤ ϵ C.2 (Slow decay) ηi ≤ ηi−ki ≤ (1 + 2ϵ) ηi ≤ 2ηi

The version of these theorems stated in the main manuscript are obtained by plugging in the step-sizes
as ηi := α

(λ1−λ2)(β+i) for the values of α, β provided in Lemma S.12. Before starting with the proofs,
we define the following scalar variables -

r := 2 (1 + ϵ) knηn (M+ λ1) , ζk,t := 40kt+1 (M+ λ1)
2

ψk,t := 6M
[
1 + 3k2t+1 (M+ λ1)

2
]
, ξk,t := ηt−kt

ψk,t

V ′ :=
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|
V, Vk,t := V ′ + λ21 + ξk,t (S.49)

The basic idea behind these proofs is illustrated in Figure S.1, where we are trying to approximate
the matrix product by conditioning back in time just the right amount, to balance the tradeoff between
the advantage of the mixing decay and the norm of the product of matrices.

Figure S.1: If we could replace the intermediate products (white matrices) by I , the conditional expectation of
the noise matrix X1X

T
1 − Σ conditioned on the grey matrices would be nearly zero.

Theorem 2. (General Version) Under Assumptions 1, 2 and 3, for all n > kn, and any decaying
step-size schedule ηi satisfying C.1 and C.2, we have:

E
[
vT1 Bn,1B

T
n,1v1

]
≤ (1 + r)

2
exp

(
n−kn∑
t=1

(
2ηtλ1 + η2t

(
V ′ + λ21 + ξk,t

)))
where Bj,i is defined in 7.

Proof. Define αn,t := E
[
Tr
(
vT1 Bn,tB

T
n,tv1

)]
= E

[
vT1 Bn,tB

T
n,tv1

]
, i ≤ t ≤ n. Then, we have

vT1 Bn,tB
T
n,tv1 = vT1 Bn,t+1(I + ηtΣ)

2BT
n,t+1v1 + 2ηt

(
vT1 Bn,t+1(I + ηtΣ)(At − Σ)BT

n,t+1v1
)︸ ︷︷ ︸

Pn,t

+ η2t
(
vT1 Bn,t+1(At − Σ)2BT

n,t+1v1
)︸ ︷︷ ︸

Qn,t

(S.50)

≤ vT1 Bj,t+1B
T
j,t+1v1((1 + ηtλ1)

2) + η2tQn,t + 2ηtPn,t

Using Lemma S.8 with U = v1, G = (I + ηtΣ) , γ = 1 and noting that Eπ [At − Σ] = 0, along
with observing that αn,t+kt+1 ≤ αn,t+kt from Lemma S.3, we have

|E [Pn,t]| ≤ ηt+1 (1 + ηtλ1)

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt+1M
(
2 + 16ϵ+

(
2 + (1 + ϵ)

2
)
k2t+1 (M+ λ1)

2
))

αn,t+kt
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We note that ∀i, ki ≥ 1, therefore, using the assumption in S.49, 1 + ηtλ1 ≤ 1 + ηtkt (M+ λ1) ≤
1 + ϵ.

Next, using Lemma S.9 with U = v1, G = I, γ = 1 and noting that
∥∥∥Eπ

[
(At − Σ)

2
]∥∥∥

2
≤ V

along with observing that αn,t+kt+1
≤ αn,t+kt

using Lemma S.3, we have

|E [Qn,t]| ≤
(
V + ηt+1M2 (2ηt+1 + (1 + ϵ) (2 + ϵ (1 + ϵ)) kt+1 (M+ λ1))

)
αn,t+kt

≤
(
V + 2ϵηt+1M+ ηt+1M2 ((1 + ϵ) (2 + ϵ (1 + ϵ)) kt+1 (M+ λ1))

)
αn,t+kt

where in the last line, we used ηt+1M≤ ηt+1 (M+ λ1) ≤ ηt+1kt+1 (M+ λ1) ≤ ϵ.

Then from S.50 for n− kt ≥ t ≥ 1,

αn,t ≤ (1 + ηtλ1)
2
αn,t+1 +

(
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
Vη2tαn,t+kt

+ Ck,tη
3
tαn,t+kt

(S.51)

where Ck,t is defined as

Ck,t :=M
[
4 (1 + ϵ) (1 + 8ϵ) + 2ϵ+ kt+1 (M+ λ1)

(
(1 + ϵ) (2 + ϵ (1 + ϵ))M+ 2

(
2 + (1 + ϵ)

2
)
kt+1 (M+ λ1)

)]
(i)

≤ M
[
4 (1 + ϵ) (1 + 8ϵ) + 2ϵ+

(
(1 + ϵ) (2 + ϵ (1 + ϵ)) + 2

(
2 + (1 + ϵ)

2
))

k2t+1 (M+ λ1)
2
]

=M
[
4 + 38ϵ+ 32ϵ2 +

(
6 + 2ϵ+ (1 + ϵ)

2
(1 + 2ϵ)

)
k2t+1 (M+ λ1)

2
]

where in (i) we usedM≤ kt+1 (M+ λ1).

Then recalling the definition of ξk,t in S.49, and noting that αn,t+kt
≤ αn,t+1 using Lemma

S.3 we have from S.51,

αn,t ≤ (1 + ηtλ1)
2
αn,t+1 +

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + ξk,t

)
η2tαn,t+kt

=

(
1 + 2ηtλ1 + η2t

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ21 + ξk,t

))
αn,t+1

Therefore using this recursion, we have,

αn,1 ≤ αn,n−kn+1 exp

(
2λ1

n−kn∑
t=1

ηt +

n−kn∑
t=1

η2t

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ21 + ξk,t

))
Let Bn,n−kn+1 = I +R′, where ∥R′∥≤ r a.s.

αn,n−kn+1 = E
[
vT1 Bn,n−kn+1B

T
n,n−kn+1v1

]
= E

[
vT1 v1

]
+ E

[
vT1 (R

′ +R′T )v1
]
+ E

[
vT1 R

′R′T v1
]

≤ 1 + 2r + r2

Using Lemma 2 we have

r ≤ (1 + ϵ) knηn−kn+1 (M+ λ1)

≤ (1 + ϵ) knηn−kn (M+ λ1)

≤ 2 (1 + ϵ) knηn (M+ λ1) since ηn−kn ≤ 2ηn

Therefore,

αn,1 ≤
(
1 + 2r + r2

)
exp

(
2λ1

n−kn∑
t=1

ηt +

n−kn∑
t=1

η2t

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ21 + ξk,t

))
Hence proved.
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Theorem 3. (General Version) Let u := min {t : t ∈ [n], t− kt ≥ 0}. Under Assumptions 1, 2
and 3, for all n > u, and any decaying step-size ηi satisfying C.1 and C.2, we have,

E
[
Tr
(
V T
⊥ BnB

T
n V⊥

)]
≤ (1 + 5ϵ) exp

(
n∑

i=u+1

2ηiλ2 +
(
V ′ + λ21 + ξk,i

)
η2i−ki

)

×

d+ n∑
i=u+1

(V ′ + ξk,i)C
′
k,iη

2
i−ki

exp

 i∑
j=u+1

2ηj (λ1 − λ2)


where C ′

k,t := exp
(
2λ1

∑u
j=1 (ηj − ηt−u+j) +

∑t−u
j=1 η

2
j

(
Vk,j − Vk,j+u

))
and Bt is defined in 2.

Proof. For t ≤ n, let

αt := αt,1 = E
[
vT1 BtB

T
t v1

]
= E

[
Tr
(
vT1 BtB

T
t v1

)]
, as defined in Theorem 2

βt := E
[
Tr
(
V T
⊥ BtB

T
t V⊥

)]
Note that αt + βt = Tr

(
BtB

T
t

)
by definition. Then,

Tr
(
BtB

T
t V⊥V

T
⊥
)
= Tr

(
Bt−1B

T
t−1(I + ηtΣ)V⊥V

T
⊥ (I + ηtΣ)

)
+ ηt Tr

(
BT

t−1(I + ηtΣ)V⊥V
T
⊥ (At − Σ)Bt−1

)
+ ηt Tr

(
BT

t−1(At − Σ)V⊥V
T
⊥ (I + ηtΣ)Bt−1

)
+ η2t Tr

(
Bt−1B

T
t−1(At − Σ)V⊥V

T
⊥ (At − Σ)

)
≤ (1 + ηtλ2)

2 Tr
(
Bt−1B

T
t−1V⊥V

T
⊥
)
+ 2ηt Tr

(
Bt−1B

T
t−1(I + ηtΣ)V⊥V

T
⊥ (At − Σ)

)︸ ︷︷ ︸
Pt

+ η2t Tr
(
Bt−1B

T
t−1(At − Σ)V⊥V

T
⊥ (At − Σ)

)︸ ︷︷ ︸
Qt

Let Bt−1 = (I +R)Bt−kt
with ∥R∥2≤ r. Using Lemma S.10 with G = (I + ηtΣ)V⊥V

T
⊥ =

V⊥(I + ηtΛ⊥)V
T
⊥ , γ = 1, where Λ⊥ is a d− 1× d− 1 diagonal matrix of eigenvalues λ2, . . . , λd

of Σ, and noting that
∥∥V⊥V T

⊥
∥∥
2
= 1,

E [Pt] ≤ (1 + ηtλ1) ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−ktM
(
2 (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))

(αt−kt + βt−kt)

≤ (1 + ϵ) ηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−kt
M
(
2 (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))

(αt−kt
+ βt−kt

)

where in the last line, we used ηtλ1 ≤ ηtkt (M+ λ1) ≤ ϵ.

Using Lemma S.11 with U = V⊥V
T
⊥ , γ = 1,

E [Qt] ≤
(
V + ηt−kt+1M2 (2ηt + 2 (1 + ϵ) (1 + ϵ (1 + ϵ)) kt (M+ λ1))

)
(αt−kt + βt−kt)

(i)

≤
(
V + 2ϵηtM+ 2ηt−kt+1M2 ((1 + ϵ) (1 + ϵ (1 + ϵ)) kt (M+ λ1))

)
(αt−kt + βt−kt)

(ii)

≤
(
V + 2ϵηtM+ 2ηt−kt+1M

(
(1 + ϵ) (1 + ϵ (1 + ϵ)) k2t (M+ λ1)

2
))

(αt−kt
+ βt−kt

)

where in (i) we used ∀i, ηiM ≤ ηiki (M+ λ1) ≤ ϵ and in (ii) we used M ≤ kt (M+ λ1).
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Putting everything together, we have,

E
[
Tr
(
BtB

T
t V⊥V

T
⊥
)]

≤ (1 + ηtλ2)
2
βt−1

+ 2 (1 + ϵ) ηtηt−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−kt
M
(
2 (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))

(αt−kt
+ βt−kt

)

+ η2t

(
V + 2ϵηtM+ 2ηt−kt+1M

(
(1 + ϵ) (1 + ϵ (1 + ϵ)) k2t (M+ λ1)

2
))

(αt−kt + βt−kt)

≤ (1 + ηtλ2)
2
βt−1

+ 2 (1 + ϵ) η2t−kt

(
2V |λ2 (P )|
1− |λ2 (P )|

+ ηt−kt
M
(
2 (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t (M+ λ1)

2
))

(αt−kt
+ βt−kt

)

+ η2t−kt

(
V + 2ϵηtM+ 2ηt−kt+1M

(
(1 + ϵ) (1 + ϵ (1 + ϵ)) k2t (M+ λ1)

2
))

(αt−kt
+ βt−kt

)

≤ (1 + ηtλ2)
2
βt−1 + η2t−kt

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + ξk,t

)
(αt−kt

+ βt−kt
)

where ξk,t is as defined in S.49. Therefore using Lemma S.4,

E
[
Tr
(
BtB

T
t V⊥V

T
⊥
)]
≤
(
1 + 2ηtλ2 + η2t−kt

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ22 + ξk,t

))
βt−1

+ η2t−kt

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + ξk,t

)
αt−1 (S.52)

Let χϵ := 1 + 4ϵ (1 + ϵ)
(
1 + ϵ+ ϵ2

)
≤ 1.05. From Theorem 2 denoting

rk,t := 1 + 4 (1 + ϵ) ηt−1kt−1 (M+ λ1) + 4 (1 + c)
2
η2t−1k

2
t−1 (M+ λ1)

2 ≤ 1 + 4ϵ (1 + ϵ)
(
1 + ϵ+ ϵ2

)
= χϵ,

(S.53)

we have,

αt−1 ≤ rk,t exp

(
2λ1

t−kt−1∑
i=1

ηt +

t−kt−1∑
i=1

η2i

((
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ21 + ξk,i

))
Now, we note the definition of Vk,t and V ′ as mentioned in S.49 -

Vk,t :=
(
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V + λ21 + ξk,t

= V ′ + λ21 + ξk,t

Therefore using S.52,

βt ≤
(
1 + 2ηtλ2 + η2t−kt

Vk,t
)
βt−1 + η2t−kt

rk,t (V ′ + ξk,t) exp

(
2λ1

t−kt−1∑
i=1

ηi +

t−kt−1∑
i=1

η2i Vk,i

)
Recursing on the above inequality for u < t ≤ n where u = min {i : i ∈ [n], i− ki ≥ 0}, we have,

βn ≤ βu exp

(
2

n∑
i=u+1

ηiλ2 +
n∑

i=u+1

Vk,iη2i−ki

)

+
n∑

i=u+1

rk,i (V ′ + ξk,i) η
2
i−ki

exp

 n∑
j=i+1

(
2ηjλ2 + Vk,jη2j−kj

) exp

i−ki∑
j=1

2ηjλ1 + Vk,jη2j


≤ exp

(
n∑

i=u+1

2ηiλ2 + Vk,iη2i−ki

)

×

βu +
n∑

i=u+1

rk,i (V ′ + ξk,i) η
2
i−ki

exp

i−ki∑
j=1

(2ηjλ1 + Vk,jη2j )−
i∑

j=u+1

(
2ηjλ2 + Vk,jη2j−kj

)
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Now, since ki, kj ≥ ku = u, therefore, we have

βn ≤ exp

(
n∑

i=u+1

2ηiλ2 + Vk,iη2i−ki

)
×βu +

n∑
i=u+1

rk,i (V ′ + ξk,i) η
2
i−ki

exp

i−u∑
j=1

(2ηjλ1 + Vk,jη2j )−
i∑

j=u+1

(
2ηjλ2 + Vk,jη2j−u

)
Recall that C ′

k,i := exp
(
2λ1

∑u
j=1 (ηj − ηi−u+j) +

∑i−u
j=1 η

2
j

(
Vk,j − Vk,j+u

))
as defined in S.49.

Therefore,

βn ≤ exp

(
n∑

i=u+1

2ηiλ2 + Vk,iη2i−ki

)
×βu +

n∑
i=u+1

rk,i (V ′ + ξk,i)C
′
k,iη

2
i−ki

exp

 i∑
j=u+1

2ηj (λ1 − λ2)


Let Bu = I +R′ with ∥R′∥≤ r′ a.s. Using Lemma 2 we have

r′ ≤ (1 + ϵ) kuη1 (M+ λ1)

≤ (1 + ϵ) kuη0 (M+ λ1)

≤ 2 (1 + ϵ) kuηu (M+ λ1) since η0 = ηu−ku ≤ 2ηu

< 2ϵ (1 + ϵ)

Therefore,

βu = E
[
Tr
(
V T
⊥ BuB

T
u V⊥

)]
= E

[
Tr
(
V T
⊥ V⊥

)]
+ E

[
Tr
(
V T
⊥ (R′ +R′T )V⊥

)]
+ E

[
Tr
(
V T
⊥ R

′R′TV⊥
)]

≤ d
(
1 + 2r′ + r′2

)
≤ d

(
1 + 4ϵ (1 + ϵ) + 4ϵ2 (1 + ϵ)

2
)

= d
(
1 + 4ϵ (1 + ϵ)

(
1 + ϵ+ ϵ2

))
= χϵd

The proof follows by noting that rk,t ≤ χϵ as shown in S.53.

Theorem 4. (General Version) Under Assumptions 1, 2 and 3, for all n > kn, any decaying step-size
ηi satisfying C.1 and C.2, we have:

E
[
vT1 Bn,1B

T
n,1v1

]
≥ (1− t) exp

(
n−kn∑
i=1

2ηiλ1 −
n−kn∑
i=1

4η2i λ
2
1

)

where t := 2r + s, s := 3 (1 + r)
2
exp

(
2λ21

∑n
i=1 η

2
i

)∑n−kn

t=1 Wk,tη
2
t exp

(∑n−kn

i=t+1 η
2
i

)
,Wk,t :=

V ′ + ξk,t and Bj,i has been defined in 7.

Proof. We will start will expanding the quantity of interest using Eq S.50.

αn,t = E
[
vT1 Bn,tB

T
n,tv1

]
≥ E

[
vT1 Bn,t+1 (I + ηtΣ)

2
BT

n,t+1v1 + 2ηtPn,t

]
(S.54)

where Pn,t has been defined in Theorem 2. Let’s define

St :=
1∏

i=t

(I + ηiΣ)
t∏

i=1

(I + ηiΣ) , S0 = I and

δn,t := E
[
vT1 Bn,t+1StBT

n,t+1v1
]
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Note that δn,0 = αn,1. First we bound δn,n−kn . Let Bn,n−kn = I + R′. By Lemma 2 along with
the slow-decay assumption on the step-sizes, we know that ∥R′∥2≤ r := 2 (1 + ϵ) ηnkn (M+ λ1)
a.s. Then,

δn,n−kn −
n−kn∏
i=1

(1 + ηiλ1)
2 ≥ −2

∣∣E[vT1 R
′Sn−knv1]

∣∣ ≥ −2r n−kn∏
i=1

(1 + ηiλ1)
2

Therefore,

δn,n−kn ≥
n−kn∏
i=1

(1 + ηiλ1)
2
(1− 2r)

= (1− 2r) ∥Sn−kn
∥2 (S.55)

Now using S.54, we have

δn,t−1 ≥ δn,t + 2ηtE

vT1 Bn,t+1 (I + ηtΣ)St−1 (At − Σ)BT
n,t+1v1︸ ︷︷ ︸

Ut


First, observe that St−1 = UΛUT , where U denotes a matrix of eigenvectors of Σ, and Λ is a PSD
diagonal matrix. Since I + ηtΣ = UΛ′UT for some other PSD diagonal matrix Λ′, the product will
also be PSD.

By using Lemma S.8 with U = v1, G = (I + ηtΣ)St−1, γ = 1 and noting that Eπ [At − Σ] = 0,
we have

|E [Ut]| ≤ (1 + ηtλ1) ηt+1 ∥St−1∥2

(
2V |λ2 (P )|
1− |λ2 (P )|

+ηt+1M
(
2 (1 + 8ϵ) +

(
2 + (1 + ϵ)

2
)
k2t+1 (M+ λ1)

2
))

αn,t+kt+1

≤ (1 + ϵ) ηt+1 ∥St−1∥2Wk,tαn,t+1

where Wk,t = V ′ + ξk,t. Therefore,

δn,t−1 ≥ δn,t − 2 (1 + ϵ)Wk,tη
2
tαn,t+1 ∥St−1∥2 for t ≤ n− kn

Let

V ′ :=

(
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V

as defined in S.49. Unwinding the recursion for t ≤ n− kn, we have,

δn,0 ≥ δn,n−kn − 2 (1 + ϵ)

n−kn∑
t=1

Wk,tη
2
tαn,t+1 ∥St−1∥2

≥ (1− 2r) ∥Sn−kn∥2

− 2 (1 + ϵ) (1 + r)
2
n−kn∑
t=1

Wk,tη
2
t exp

(
2λ1

n−kn∑
i=t+1

ηi +

n−kn∑
i=t+1

η2i
(
V ′ + λ21 + Ck,i

))
∥St−1∥2

where second step followed from Theorem 2 and S.55.

Using the inequalities ∀x ∈ R, 1 + x ≤ ex and ∀x ∈ R, x ≥ 0, 1 + x ≥ ex−x2

, ∀t we
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have,

∥St∥2 =
t∏

i=1

(1 + ηiλ1)
2 ≤ exp

(
2λ1

t∑
i=1

ηi

)
, and

∥St∥2 =
t∏

i=1

(1 + ηiλ1)
2 ≥ exp

(
2λ1

t∑
i=1

ηi − 4λ21

t∑
i=1

η2i

)

Therefore denoting θϵ := 2 (1 + ϵ) exp
(
2λ21

∑n
i=1 η

2
i

)
, we have

δn,0

≥ exp

(
2λ1

n−kn∑
i=1

ηi − 4λ21

n−kn∑
i=1

η2i

)[
(1− 2r)− θϵ (1 + r)

2
n−kn∑
t=1

Wk,tη
2
t exp

(
n−kn∑
i=t+1

η2i
(
V ′ + λ21 + Ck,i

))]

≥ exp

(
2λ1

n−kn∑
i=1

ηi − 4λ21

n−kn∑
i=1

η2i

)[
(1− 2r)− θϵ (1 + r)

2
n−kn∑
t=1

Wk,tη
2
t exp

(
n−kn∑
i=t+1

η2i
(
V ′ + λ21 + Ck,i

))]

≥ exp

(
2λ1

n−kn∑
i=1

ηi − 4λ21

n−kn∑
i=1

η2i

)[
1−

(
2r + θϵ (1 + r)

2
n−kn∑
t=1

Wk,tη
2
t exp

(
n−kn∑
i=t+1

η2i Vk,i

))]

where Vk,i is defined in S.49. Hence proved.

Theorem 5. (General Version) Under Assumptions 1, 2 and 3, for all n > kn, and decaying step-size
ηi satisfying C.1 and C.2, we have:

E
[(
vT1 Bn,1B

T
n,1v1

)2] ≤ (1 + r)
4
exp

(
n−kn∑
i=1

4ηiλ1 +

n−kn∑
i=1

η2i ζk,i

)
where Bj,i has been defined in 7.

Proof. Define Qn,t := vT1 Bn,t+1(At − Σ)2BT
n,t+1v1, and Pn,t := vT1 Bn,t+1(I + ηtΣ)(At −

Σ)BT
n,t+1v1. Using S.50, we have, for n ≥ t ≥ 1,

0 ≤ vT1 Bn,tB
T
n,tv1 = vT1 Bn,t+1(I + ηtΣ)

2BT
n,t+1v1 + η2tQn,t + 2ηtPn,t

≤ vT1 Bj,t+1B
T
j,t+1v1(1 + ηtλ1)

2 + η2tM2
(
vT1 Bn,t+1B

T
n,t+1v1

)
+ 2ηtPn,t

≤ vT1 Bj,t+1B
T
j,t+1v1

(
(1 + ηtλ1)

2 + η2tM2
)︸ ︷︷ ︸

ct

+2ηtPn,t

Thus, we have -

κn,t := E
[
(vT1 Bn,tB

T
n,tv1)

2
]
≤ E

[(
ctv

T
1 Bn,t+1B

T
n,t+1v1 + 2ηtPn,t

)2]
≤ c2tκn,t+1 + 4η2tE

[
P 2
n,t

]
+ 4ctηtE

[(
vT1 Bn,t+1B

T
n,t+1v1

)
Pn,t

]
(S.56)

Note that,

E
[
P 2
n,t

]
≤ E

[(
vT1 Bn,t+1(I + ηtΣ)(At − Σ)BT

n,t+1v1
)2]

≤ (1 + ηtλ1)
2M2E

[(
vT1 Bn,t+1B

T
n,t+1v1

)2]
= (1 + ηtλ1)

2M2κn,t+1

Now we work on the cross-term. For the convenience of notation, let’s denote k := kt+1 unless
otherwise specified. Let Bn,t+1 = Bn,t+k (I +R) with,

∥R∥2≤ (1 + c)ηt+1k(M+ λ1) =: rt ≤ ϵ (1 + ϵ)
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Using Lemma 2, we have

|vT1 Bn,t+1B
T
n,t+1v1 − vT1 Bn,t+kB

T
n,t+kv1︸ ︷︷ ︸

Y1

| = |vT1 Bn,t+k(R+RT +RRT )BT
n,t+kv1|

≤ |vT1 Bn,t+kB
T
n,t+kv1|

(
2rt + r2t

)
(S.57)

We will also bound

|vT1 Bn,t+1(I + ηtΣ)(At − Σ)BT
n,t+1v1 − vT1 Bn,t+k(I + ηtΣ)(At − Σ)BT

n,t+kv1︸ ︷︷ ︸
Y2

|

= |vT1 Bn,t+kR(I + ηtΣ)(At − Σ)(I +RT )BT
n,t+kv1 + vT1 Bn,t+k(I + ηtΣ)(At − Σ)RTBT

n,t+kv1|
≤ (2rt + r2t ) (1 + ηtλ1)M|vT1 Bn,t+kB

T
n,t+kv1| (S.58)

So, now we have:

E
[(
vT1 Bn,t+1B

T
n,t+1v1Pn,t

)]
= E

[
(vT1 Bn,t+1B

T
n,t+1v1)(v

T
1 Bn,t+1(I + ηtΣ)(At − Σ)BT

n,t+1v1)
]

= E
[
(Y1 + vT1 Bn,t+kB

T
n,t+kv1)(Y2 + vT1 Bn,t+k(I + ηtΣ)(At − Σ)BT

n,t+kv1)
]

= E [Y1Y2]︸ ︷︷ ︸
T1

+E
[
Y1v

T
1 Bn,t+k(I + ηtΣ)(At − Σ)BT

n,t+kv1
]︸ ︷︷ ︸

T2

+E
[
Y2v

T
1 Bn,t+kB

T
n,t+kv1

]︸ ︷︷ ︸
T3

+ E
[
(vT1 Bn,t+kB

T
n,t+kv1)(v

T
1 Bn,t+k(I + ηtΣ)(At − Σ)BT

n,t+kv1)
]︸ ︷︷ ︸

T4

Lets start with the last term, T4. Using Lemma S.3 we have,

|T4| ≤
∣∣E [(vT1 Bn,t+kB

T
n,t+kv1)(v

T
1 Bn,t+k(I + ηtΣ)E [(At − Σ)|st+k]B

T
n,t+kv1)

]∣∣
≤ 2(1 + ηtλ1)Mdmix (k)κn,t+k

≤ 2η2t+1(1 + ηtλ1)Mκn,t+k

≤ 2η2t+1(1 + ηtλ1)Mκn,t+1

Using Eqs S.57 and S.58 the first three terms can be bounded as:

|T1|≤ E [|Y1Y2|] ≤
(
2rt + r2t

)2
(1 + ηtλ1)Mκn,t+k

≤
(
2rt + r2t

)2
(1 + ηtλ1)Mκn,t+1 using Lemma S.3

= (2 + rt)
2
r2t (1 + ηtλ1)Mκn,t+1

≤ (1 + ϵ)
2
(2 + ϵ (1 + ϵ))

2
(1 + ηtλ1) η

2
t+1k

2
t+1M (M+ λ1)

2
κn,t+1

≤ (1 + ϵ)
3 (

2 + ϵ+ ϵ2
)2
η2t+1k

2
t+1M (M+ λ1)

2
κn,t+1 since ηtλ1 ≤ ϵ

|T2| ≤ E
[
|Y1vT1 Bn,t+k(I + ηtΣ)(At − Σ)BT

n,t+kv1|
]

≤ (2 + rt) rt (1 + ηtλ1)Mκn,t+k

≤ (2 + rt) rt (1 + ηtλ1)Mκn,t+1 using Lemma S.3

≤
(
2 + ϵ+ ϵ2

)
(1 + ϵ) (1 + ηtλ1) ηt+1kt+1 (M+ λ1)Mκn,t+1

≤ (1 + ϵ)
2 (

2 + ϵ+ ϵ2
)
ηt+1kt+1M (M+ λ1)κn,t+1
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and similarly,

|T3| ≤ E
[
Y2v

T
1 Bn,t+kB

T
n,t+kv1

]
≤ rt (2 + rt) (1 + ηtλ1)Mκn,t+k

≤ (1 + ϵ)
(
2 + ϵ+ ϵ2

)
(1 + ηtλ1) ηt+1kt+1M (M+ λ1)κn,t+k

≤ (1 + ϵ)
2 (

2 + ϵ+ ϵ2
)
ηt+1kt+1M (M+ λ1)κn,t+k

≤ (1 + ϵ)
2 (

2 + ϵ+ ϵ2
)
ηt+1kt+1M (M+ λ1)κn,t+1 using Lemma S.3

Note that

ct := (1 + ηtλ1)
2 + η2tM2 ≤ 1 + 2ϵ+ 2ϵ2, and

c2t =
(
1 + 2ηtλ1 + η2t

(
M2 + λ21

))2
= 1 + 4η2t λ

2
1 + η4t

(
M2 + λ21

)2
+ 4ηtλ1 + 4η3t λ1

(
M2 + λ21

)
+ 2η2t

(
M2 + λ21

)
≤ 1 + 4ηtλ1 + η2t

(
2M2 + 6λ21 + ϵM+ ϵλ1

)
+ 4η3t λ1

(
M2 + λ21

)
≤ 1 + 4ηtλ1 + 6η2t (M+ λ1)

2
+ 4η3t λ1 (M+ λ1)

2

Define

ϕϵ := (1 + ϵ)
(
2 + ϵ+ ϵ2

)
ωϵ := 1 + 2ϵ+ 2ϵ2

ζk,t := (10 + 8 (1 + ϵ) + 4 (1 + 2ϵ)ϕϵ)ϕϵctkt+1 (M+ λ1)
2

Putting everything together in Eq S.56, for t ≤ n− kt+1 we have,
κn,t
κn,t+1

≤ c2t + 4η2t (1 + ηtλ1)
2M2 + 4 (1 + ϵ) ctηtM

(
2ϕϵηt+1kt+1 (M+ λ1) +

(
2 + ϕ2ϵk

2
t+1 (M+ λ1)

2
)
η2t+1

)
≤ c2t + 4η2t (1 + ηtλ1)

2M2 + 4 (1 + ϵ) ctηtM
(
2ϕϵηtkt+1 (M+ λ1) +

(
2 + ϕ2ϵk

2
t+1 (M+ λ1)

2
)
η2t

)
= c2t + 4η2t

[
M2 + 2ϕϵ (1 + ϵ) ctM (M+ λ1) kt+1

]
+ 4η3t

[
(1 + 2ϵ)λ1 + (1 + ϵ) ctM

(
2 + ϕ2ϵk

2
t+1 (M+ λ1)

2
)]

≤ c2t + 4η2t [2 + 2ϕϵ (1 + ϵ) ctkt+1]M (M+ λ1) + 4 (1 + 2ϵ) η3t

[
λ1 + ctM

(
2 + ϕ2ϵk

2
t+1 (M+ λ1)

2
)]

≤ 1 + 4ηtλ1 + η2t [10 + 8ϕϵ (2 + ϵ) ctkt+1] (M+ λ1)
2
+ 4 (1 + 2ϵ) η3t

[
λ1 + 2ctM+ ctϕ

2
ϵk

2
t+1 (M+ λ1)

3
]

≤ exp
(
4ηtλ1 + η2t (10 + 8ϕϵ (1 + ϵ) ctkt+1) (M+ λ1)

2
+ 4 (1 + 2ϵ) η3t

(
λ1 + ctM+ 2ctϕ

2
ϵk

2
t+1 (M+ λ1)

3
))

≤ exp
(
4ηtλ1 + η2t (10 + 8ϕϵ (1 + ϵ) ctkt+1) (M+ λ1)

2
+ 4ϵ (1 + 2ϵ) η2t

(
2ct + ctϕ

2
ϵkt+1 (M+ λ1)

2
))

≤ exp
(
4ηtλ1 + η2t

(
8ϵ (1 + 2ϵ)ωϵ + (10 + (8 (1 + ϵ) + 4ϵ (1 + 2ϵ)ϕϵ)ϕϵωϵkt+1) (M+ λ1)

2
))

≤ exp
(
4ηtλ1 + η2t

(
1 + (10 + 20kt+1) (M+ λ1)

2
))

≤ exp
(
4ηtλ1 + η2t

(
1 + (10 + 20kt+1) (M+ λ1)

2
))

≤ exp
(
4ηtλ1 + 40η2t kt+1 (M+ λ1)

2
)

since (M+ λ1) , kt+1 ≥ 1

Recall our definition of k := kt+1. We can use the above recursion for 1 ≤ t ≤ n− kt+1. We note
that t = n− kn satisfies the conditions. Therefore,

κn,1 ≤ exp

(
n−kn∑
i=1

4ηiλ1 +

n−kn∑
i=1

η2i ζk,i

)
κn,n−kn+1
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Let Bn,n−kn+1 = I +R′, with ∥R′∥2≤ r a.s.

κn,n−kn+1 = E
[(
vT1 Bn,n−kn+1B

T
n,n−kn+1v1

)2]
= E

[(
vT1 v1 + vT1 (R

′ +R′T )v1 + vT1 R
′R′T v1

)2]
≤
(
1 + 2r + r2

)2 E [(vT1 v1)2]
Using Lemma 2, we have

r ≤ (1 + ϵ) kn+1ηn−kn+1
(M+ λ1)

≤ (1 + ϵ) knηn−kn
(M+ λ1)

≤ 2 (1 + ϵ) knηn (M+ λ1) since ηn−kn
≤ 2ηn

which completes our proof.

S.5 Main Results : Details and Proofs

S.5.1 Proof of Theorem 1
Lemma S.13. This lemma proves conditions required later in the proof. Let the step-sizes be set
according to Lemma S.12 and m := 200. Define

r := 2 (1 + ϵ) ηnkn (M+ λ1) ,

s := 3(1 + r)2
n−kn−1∑

t=1

Wk,tη
2
t exp

(
n−kn−1∑
i=t+1

Vk,iη2i

)

where Wk,t is defined in Theorem 4, Vk,i is defined in S.49 and α, β, f (.) , δ are defined in Lemma
S.12. Then for sufficiently large number of samples n, such that

n

log (f (n))
>

β

log (f (0))

we have

1. 2r + s ≤ 1
2 (S.63)

2. r = 2 (1 + ϵ) ηnkn (M+ λ1) <
1
50

δ/m
1+δ/m (S.66)

Proof. For (1), using Lemma S.12-(3), we note that

s ≤ 3(1 + r)2
n−kn−1∑

t=1

Wk,tη
2
t exp

(
n−kn−1∑
i=t+1

Vk,iη2i

)

≤ 3(1 + r)2
n−kn−1∑

t=1

Wk,tη
2
t

(
1 +

δ

m

)
≤ 3(1 + r)2

100

(
1 +

δ

m

)
log

(
1 +

δ

m

)
(S.59)

≤ 3(1 + r)2 log (2)

50
since

δ

m
< 1

Therefore,

2r + s ≤ 2r +
3 (1 + r)

2

25

=
3

25
+

56

25
r +

3

25
r2 (S.60)
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Setting 3
25 + 56

25r +
3
25r

2 ≤ 1
2 , we have,

3

25
+

56

25
r +

3

25
r2 ≤ 1

2

=⇒ 6r2 + 112r − 19 ≤ 0

which holds for r ∈
[
0, 1

10

]
.

For (2), using Lemma S.12 and substituting the value of ki := τmix
(
η2i
)
≤ 2τmix

log(2) log
(

1
η2
i

)
for

ηi < 1, we note that

r ≤ 8 (1 + ϵ) τmix (M+ λ1)

log (2)

α

(λ1 − λ2) (β + n)
log

(
(λ1 − λ2) (β + n)

α

)

=
8 (1 + ϵ) τmix (M+ λ1)

log (2)

log
(

(λ1−λ2)(β+n)
α

)
(λ1−λ2)(β+n)

α

=
8 (1 + ϵ) τmix (M+ λ1)

log (2)

log (f (n))

f (n)

Therefore (2) holds for sufficiently large n, i.e,

f (n)

log (f (n))
≥

400
(
1 + δ

m

)
(1 + ϵ) τmix (M+ λ1)

log (2) δ
m

This is satisfied if

n

log (f (n))
≥

400τmix
(
1 + δ

m

)
(1 + ϵ)

log (2)

(M+ λ1)α

(λ1 − λ2) δ
m

(S.61)

From Lemma S.12, we have

β

log (f (0))
≥ 600τmix (1 + 2ϵ)

2
(M+ λ1)

2
α2

(λ1 − λ2)2 log
(
1 + δ

m

) (i)

≥
400τmix

(
1 + δ

m

)
(1 + ϵ)

log (2)

(M+ λ1)α

(λ1 − λ2) δ
m

where (i) follows since M+λ1

λ1−λ2
> 1, α > 2 and log (1 + x) ≤ x ∀x. Therefore, n

log(f(n)) >
β

log(f(0))

suffices. Further, we note that (2) implies (1) for m = 200, δ ≤ 1. Therefore, the condition on n is
sufficient for both results. Hence proved.

Lemma S.14. Let

u := min {i : i ∈ [n], i− ki ≥ 0}

where ki is defined in Lemma S.12. Then,

u ≤ ⌊β⌋ ≤ β

Proof. Using the definition of ki mentioned in Lemma S.12, we have

ki := τmix
(
η2i
)
≤ 2τmix

log (2)
log

(
1

η2i

)
=

4τmix

log (2)
log

(
(λ1 − λ2) (β + i)

α

)
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Therefore,

⌊β⌋ − k⌊β⌋ ≥ ⌊β⌋ −
4τmix

log (2)
log

(
β + ⌊β⌋

α
λ1−λ2

)

≥ β

2
− 4τmix

log (2)
log

(
2β
α

λ1−λ2

)
since β > 1

= β

[
1

2
− 4τmix

log (2)

log (2f (0))

β

]
, where f (.) is defined in Lemma S.12

Now, from Lemma S.12, we know that f (0) > e. Therefore, log (2f (0)) ≤ 2 log (f (0)). Then,

⌊β⌋ − k⌊β⌋ ≥ β
[
1

2
− 8τmix

log (2)

log (f (0))

β

]
Again, from the conditions in Lemma S.12, we know that

log (f (0))

β
≤ ϵ

6τmix

λ1 − λ2
(M+ λ1)α

≤ 1

120τmix
since α > 2,

λ1 − λ2
M+ λ1

≤ 1, ϵ ≤ 1

100

Therefore,

⌊β⌋ − k⌊β⌋ ≥ β
(
1

2
− 8

120 log (2)

)
≥ 0

Hence proved.

S.5.1.1 Numerator

Using Theorem 3 and Markov’s Inequality, we have with probability atleast (1− δ)

Tr
(
V T
⊥ BnB

T
n V⊥

)
≤

1.05
exp

(∑n
i=u+1 2ηiλ2 + Vk,iη2i−ki

)
δ

d+ n∑
i=u+1

(V ′ + ξk,i)C
′
k,iη

2
i−ki

exp

 i∑
j=u+1

2ηj (λ1 − λ2)


S.5.1.2 Denominator

Using Chebyshev’s Inequality we have, with probability atleast (1− δ)

vT1 BnB
T
n v1 ≥ E

[
vT1 BnB

T
n v1

]1−
√

1

δ

√√√√√E
[(
vT1 BnBT

n v1
)2]

E
[
vT1 BnBT

n v1
]2 − 1

 (S.62)

Let r := 2 (1 + ϵ) ηnkn (M+ λ1) ≤ 1
10 . Using Theorem 3, we have

E
[(
vT1 BnB

T
n v1

)2] ≤ (1 + r)
4
exp

(
n−kn∑
i=1

4ηiλ1 +

n−kn∑
i=1

η2i ζk,t

)

Using Theorem 4, we have

E
[
vT1 Bn,1B

T
n,1v1

]
≥ exp

(
2λ1

n−kn∑
i=1

ηi − 4λ21

n−kn∑
i=1

η2i

)[
1−

(
2r + 3 (1 + r)

2
n−kn∑
t=1

Wk,tη
2
t exp

(
n−kn∑
i=t+1

η2i Vk,i

))]
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Let

s := 3 (1 + r)
2
n−kn∑
t=1

Wk,tη
2
t exp

(
n−kn∑
i=t+1

η2i Vk,i

)

Then,

E
[(
vT1 BnB

T
n v1

)2]
E
[
vT1 BnBT

n v1
]2 ≤ (1 + r)

4

(1− 2r − s)2
exp

(
n−kn∑
i=1

η2i
(
ζk,i + 4λ21

))

By Lemma S.13, we have that

2r + s ≤ 1

2
. (S.63)

Then, using

1

(1− x)2
≤ 1 + 6x for x ∈

[
0,

1

2

]
and, (1 + x)

4 ≤ 1 + 5x for x ∈
[
0,

1

10

]
we have,

E
[(
vT1 BnB

T
n v1

)2]
E
[
vT1 BnBT

n v1
]2 ≤ (1 + 5r) (1 + 12r + 6s) exp

(
n−kn∑
i=1

η2i
(
ζk,i + 4λ21

))

≤
(
1 + 17r + 6s+ 60r2 + 30rs

)
exp

(
n−kn∑
i=1

η2i
(
ζk,i + 4λ21

))

≤ (1 + 22r + 12s) exp

(
n−kn∑
i=1

η2i
(
ζk,i + 4λ21

))
since r ≤ 1

10

By Lemma S.12-(3), we have that

exp

(
n−kn∑
i=1

η2i
(
ζk,i + 4λ21

))
≤ 1 +

δ

m
(S.64)

By S.59, we have that

12s ≤ 48(1 + r)2

100

(
1 +

δ

m

)2

log

(
1 +

δ

m

)
≤ 3

5

(
1 +

δ

m

)2

log

(
1 +

δ

m

)
since r ≤ 1

10
(S.65)

By Lemma S.13, we have that

r = 2 (1 + ϵ) ηnkn (M+ λ1) <
1

50

δ/m

1 + δ/m
(S.66)
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Then,

E
[(
vT1 BnB

T
n v1

)2]
E
[
vT1 BnBT

n v1
]2 ≤ (1 + 22r + 12s)

(
1 +

δ

m

)
= 1 +

δ

m
+ 22r

(
1 +

δ

m

)
+ 12s

(
1 +

δ

m

)
≤ 1 +

δ

m
+

22

50

δ

m
+

3

5

(
1 +

δ

m

)3

log

(
1 +

δ

m

)
≤ 1 +

δ

m
+

22

50

δ

m
+

7

10
log

(
1 +

δ

m

)
since δ ≤ 1,m = 200

≤ 1 +
δ

m
+

22

50

δ

m
+

7

10

δ

m
since ∀x, log (1 + x) ≤ x

≤ 1 + 3
δ

m

Then setting m = 200, from S.62 we have

vT1 BnB
T
n v1 ≥ exp

(
n−kn∑
i=1

2ηiλ1 − 4η2i λ
2
1

)
(1− 2r − s)

(
1−

√
1

δ

√
3δ

m

)

≥ exp

(
n−kn∑
i=1

2ηiλ1 − 4η2i λ
2
1

)(
1− 1

25

δ/m

1 + δ/m
− 1

20

(
1 +

δ

m

)2

log

(
1 +

δ

m

))(
1−

√
3

m

)

≥ 5

6
exp

(
n−kn∑
i=1

2ηiλ1 − 4η2i λ
2
1

)
since δ ≤ 1 and m = 200

The second inequality uses Eqs S.65, S.66.

S.5.1.3 Fraction

Now that we have established this result let’s calculate the fraction. Let the step-sizes be set according
to Lemma S.12. Define

S := exp

(
n∑

i=u+1

Vk,iη2i−ki
+

n−kn∑
i=1

4λ21η
2
i

)

Qu := exp

2λ1

 u∑
j=1

ηj −
n∑

j=n−kn+1

ηj


Rk,t :=

exp
(∑t−u

j=1 η
2
j

(
Vk,j − Vk,j+u

))
exp

(
2λ1

∑n
j=n−kn+1 ηj

)
exp

(
2λ1

∑u
j=1 ηt−u+j

)
Then, recall that

u := min {i : i ∈ [n], i− ki ≥ 0}

ξk,t := 6ηt−ktM
[
1 + 3k2t+1 (M+ λ1)

2
]

V ′ :=

(
1 + (3 + 4ϵ) |λ2 (P ) |

1− |λ2 (P )|

)
V

Vk,t := V ′ + λ21 + ξk,t

C ′
k,t := exp

2λ1

u∑
j=1

(ηj − ηt−u+j) +

t−u∑
j=1

η2j
(
Vk,j − Vk,j+u

) = QuRk,t
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Therefore,

Tr
(
V T
⊥ BnB

T
n V⊥

)
vT1 BnBT

n v1

≤ 1.3

δ

exp
(∑n

i=u+1 2ηiλ2 + Vk,iη2i−ki

)
exp

(∑n−kn

i=1 2ηiλ1 − 4η2i λ
2
1

)
d+ n∑

i=u+1

(V ′ + ξk,i)C
′
k,iη

2
i−ki

exp

 i∑
j=u+1

2ηj (λ1 − λ2)


≤ 1.3

δ

S
Qu

exp

(
n∑

i=u+1

2ηi (λ2 − λ1)

)d+ n∑
i=u+1

(V ′ + ξk,i)C
′
k,iη

2
i−ki

exp

 i∑
j=u+1

2ηj (λ1 − λ2)



≤ 1.3

δ
S


d exp

(∑n
i=u+1 2ηi (λ2 − λ1)

)
Qu︸ ︷︷ ︸
X1

+
n∑

i=u+1

(V ′ + ξk,i)Rk,iη
2
i−ki

exp

− n∑
j=i+1

2ηj (λ1 − λ2)


︸ ︷︷ ︸

X2


(S.67)

For X1, we have

X1 ≤
d exp

(∑n
i=u+1 2ηi (λ2 − λ1)

)
Qu

=
d exp

(∑n
i=u+1 2ηi (λ2 − λ1)

)
exp

(
2λ1

(∑u
j=1 ηj −

∑n
j=n−kn+1 ηj

))
≤

d exp
(∑n

i=u+1 2ηi (λ2 − λ1)
)

exp
(
−2λ1

(∑n
j=n−kn+1 ηj

))
≤ d exp

(
n∑

i=u+1

2ηi (λ2 − λ1)

)
exp

2λ1

 n∑
j=n−kn+1

ηj


Note that

exp

2λ1

n∑
j=n−kn+1

ηj

 ≤ exp (2 (1 + 2ϵ)λ1knηn−kn+1) using monotonicity of ηi

≤ exp (4 (1 + 2ϵ)λ1knηn) using slow-decay of ηi

≤ 1 + 2
δ

m
using Lemma S.13 along with ex ≤ 1 + x+ x2 for x ∈ (0, 1)

Therefore, using S.31

X1 ≤ d
(
1 +

2δ

m

)(
β + u

n

)2α

Next, for X2, we first have

Rk,t :=
exp

(∑t−u
j=1 η

2
j

(
Vk,j − Vk,j+u

))
exp

(
2λ1

∑n
j=n−kn+1 ηj

)
exp

(
2λ1

∑u
j=1 ηt−u+j

)
≤ exp

t−u∑
j=1

η2jVk,j

 exp

2λ1

n∑
j=n−kn+1

ηj


≤
(
1 +

2δ

m

)2

using Lemmas S.12− (3), S.13 and ex ≤ 1 + x+ x2 for x ∈ (0, 1)
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Now, using S.12-(4) we have,

n∑
i=1

Vk,iη2i−ki
exp

− n∑
j=i+1

2ηj (λ1 − λ2)

 ≤
(
2 (1 + 10ϵ)α2

2α− 1

)
V ′

(λ1 − λ2)2
1

n
+

(
800 (1 + 10ϵ)α3

(α− 1)

)
M (M+ λ1)

2
τ2mix

(λ1 − λ2)3
log2

(
(β+n)(λ1−λ2)

α

)
n2

Then,

X2 ≤
(
1 +

2δ

m

)2


(
2 (1 + 10ϵ)α2

2α− 1

)
︸ ︷︷ ︸

C1

V ′

(λ1 − λ2)2
1

n
+

(
24 (1 + 10ϵ)α3

(α− 1)

)
︸ ︷︷ ︸

C2

M (M+ λ1)
2

(λ1 − λ2)3
k2n
n2


Therefore substituting in S.67,

Tr
(
V T
⊥ BnB

T
n V⊥

)
vT1 BnBT

n v1
≤ 1.3S

δ

(
1 +

2δ

m

)2
[
d

(
β + u

n

)2α

+
C1V ′

(λ1 − λ2)2
1

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
k2n
n2

]
(S.68)

Proof of Theorem 1. To complete our proof, we bound S to simplify S.68. We note that under the
learning rate schedule presented in Lemma S.12-(3),

S ≤
(
1 +

δ

m

)
Therefore,

Tr
(
V T
⊥ BnB

T
n V⊥

)
vT1 BnBT

n v1
≤ 1.3

δ

(
1 +

2δ

m

)3
[
d

(
β + u

n

)2α

+
C1V ′

(λ1 − λ2)2
1

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
k2n
n2

]

≤ 1.4

δ

[
d

(
β + u

n

)2α

+
C1V ′

(λ1 − λ2)2
1

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
k2n
n2

]

Using lemma S.14, we have that u ≤ β. Then, using Lemma 3.1 from [15] completes our proof.

S.5.2 Proof of Corollary 1
Proof of Corollary 1. We note that the downsampled data stream can be considered to be drawn from
a Markov chain with transition kernel P k (., .) since each data-point is k steps away from the previous
one. We will denote the parameters of this transformed chain by ỹ when the corresponding parameter
is y under the original chain. For example, τ̃mix is the mixing time of the new chain.

Note that this modified transition matrix has the same stationary distribution π. It is also
reversible. This can be seen by considering the diagonal matrix of stationary distribution probabilities
Π, where Πii = πi. For a reversible Markov Chain, we have ΠP = PΠ. However, that also
implies ΠP 2 = (ΠP )P = (PΠ)P = P (ΠP ) = P 2Π. This same technique works for P k yielding
ΠP k = P kΠ.

Using standard results on Markov chains [19],

|λ2 (P ) |
1− |λ2 (P ) |

log

(
1

2ϵ

)
≤ τmix(ϵ) ≤

1

1− |λ2 (P ) |
log

(
1

ϵπmin

)
, (S.69)

where πmin := mini πi. Therefore, as noted in the theorem statement, we substitute the modified
parameters in the bound we have proven for Theorem 1.
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First, we will show that the mixing time for this new chain is Θ(1). We will use k := τmix
(
η2n
)
.

So by definition the dmix(k) ≤ η2n using the definition of dmix in Section 2.1. Hence dmix(k) ≤ 1/4
using conditions on the learning rate schedule imposed in Theorem 1. Therefore, in the transformed
chain, the “new” τ̃mix is Θ(1).

We also have:

k ≤ 2τmix

log (2)
log

(
1

η2n

)
≤ 2 log(4/πmin)

log 2︸ ︷︷ ︸
C

1

1− |λ2 (P )|
log (n)

We see that C > 1. Next, we note that for the transition kernel P k (., .), the second-largest absolute
eigenvalue is given as |λ2 (P )|k. Consider the function f (x) := x

1
1−x for x ∈ (0, 1). Then,

f ′ (x) = f (x)

(
1− x− x log (x)

x (1− x)2

)
> 0

Therefore, f (x) < limx→1 f (x) =
1
e < 1. which implies |λ2 (P )|k

(i)

≤
(
1
e

)C log(n)
< 1

e . Here (i)
follows if C > 1, n > 3, which is true. Therefore,

Ṽ ′ :=

(
1 + (3 + 4ϵ) |λ2 (P ) |k

1− |λ2 (P )|k

)
V ≤ 5V

This also implies that the mixing time for the new Markov chain for sub-sampled data is Θ(1). The
bound then follows by substituting n to be n

k = nk = Θ
(

n
Cτmix log(n)

)
and setting the τmix in the

original expression of Theorem 1 to a constant.

S.6 Additional Experiments
In this section, we provide additional experiments to support the results established in Section 3 of the
manuscript. We present experiments with distributions that have nonzero mean vectors at each state,
but zero mean with respect to the stationary distribution. This means that the Zi’s are not necessarily
zero-mean with respect to each state distribution D (s). To normalize the data-points, we estimate the
mean µ and covariance matrix Σ empirically from a much larger independently generated dataset.

We experiment with two different settings here - Figure S.2 contains the results for each state
distribution being D(s) := Bernoulli(ps) with ps ∼ U (0, 0.05) being fixed for each dataset. Figure
S.3 provides results for each state distribution being D (s) := U (0, ℓs) with ℓs ∼ U (0, 10) being
selected at the start of each random run. We observe that these experiments depict similar trends to
those shown in the main manuscript, which validates our results for the case of non-zero state means.
Furthermore, the Bernoulli data, being sparse compared to the Uniform one, seems to exhibit a clearer
difference between data downsampling and the traditional Oja’s algorithm. To provide clear plots
demonstrating the relative behavior of the algorithms considered in this paper, we have shown the
averaged sin2 errors in Figures S.2 and S.3. In Figure S.4 we show six random runs where we fixed
the ps, s ∈ Ω for each state for all runs. These figures clearly show that in general, Downsampled
Oja has a worse performance than Oja’s algorithm, which has a similar performance as the offline
algorithm. It also shows that the Downsampled algorithm has the most variability, whereas Oja’s
algorithm on the whole dataset has much less variability, and finally, and not surprisingly, the offline
algorithm has the least variability. Similar qualitative trends can be observed for the other settings.
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(a) (b) (c)
Figure S.2: Experiments with Bernoulli data. S.2a compares the three different algorithms, S.2b shows effect of
changing the eigengap of the transition_matrix and S.2c records the variation in performance on changing the
eigengap of the data covariance matrix.

(a) (b) (c)
Figure S.3: Experiments with Uniform data. S.3a compares the three different algorithms, S.3b shows effect of
changing the eigengap of the transition matrix and S.3c records the variation in performance on changing the
eigengap of the data covariance matrix.

(a) (b) (c)

(d) (e) (f)
Figure S.4: Randomly chosen runs for the Bernoulli case

49


	Introduction
	Problem Setup and Preliminaries
	Markov chain mixing times

	Main Results
	Main Technical Tools
	Intermediate Theorems for Convergence Analysis
	Experimental Validation
	Conclusion
	Acknowledgements
	Notation and assumptions
	Offline PCA with Markovian Data
	Useful Results
	Proof of Lemma 2
	Proof of Lemma 3

	Proofs : Convergence Analysis of Oja's Algorithm for Markovian Data
	Main Results : Details and Proofs
	Proof of Theorem 1
	Numerator
	Denominator
	Fraction

	Proof of Corollary 1

	Additional Experiments

