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ABSTRACT

In statistical applications, it is common to encounter parameters supported on a varying or unknown
dimensional space. Examples include the fused lasso regression, the matrix recovery under an unknown
low rank, etc. Despite the ease of obtaining a point estimate via optimization, it is much more challenging
to quantify their uncertainty. In the Bayesian framework, a major difficulty is that if assigning the prior
associated with a p-dimensional measure, then there is zero posterior probability on any lower-dimensional
subset with dimension d < p. To avoid this caveat, one needs to choose another dimension-selection prior
on d, which often involves a highly combinatorial problem. To significantly reduce the modeling burden,
we propose a new generative process for the prior: starting from a continuous random variable such as
multivariate Gaussian, we transform it into a varying-dimensional space using the proximal mapping. This
leads to a large class of new Bayesian models that can directly exploit the popular frequentist regularizations
and their algorithms, such as the nuclear norm penalty and the alternating direction method of multipliers,
while providing a principled and probabilistic uncertainty estimation. We show that this framework is
well justified in the geometric measure theory, and enjoys a convenient posterior computation via the
standard Hamiltonian Monte Carlo. We demonstrate its use in the analysis of the dynamic flow network
data. Supplementary materials for this article are available online.
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1. Introduction

Modern statistical applications often involve data that are high
dimensional. To allow signal recovery under a relatively low
sample size, one often needs to assume that the parameter 6 €
R? in fact lies in/near some lower dimensional space. Com-
monly used assumptions include sparsity (Meinshausen and
Bithlmann 2006; Zhao, Rocha, and Yu 2006; Meier, Van De Geer,
and Biithlmann 2008; Bickel, Ritov, and Tsybakov 2009), low rank
(Shen and Huang 2008; Ji et al. 2010), geometric constraints
(Goodall and Mardia 1999; Saarela and Arjas 2011), etc. In
most cases, the dimensionality d is unknown. For example, we
usually do not know the exact rank in the low-rank matrix
factorization.

Bayesian framework provides a principled way to quantify
the uncertainty on those models. A potential caveat is that
if the assigned prior is associated with a p-dimensional con-
tinuous measure, then there is zero posterior probability allo-
cated on any of the lower-dimensional subsets with dimension
d < p. Instead, from a generative perspective, one should first
choose a discrete prior to select d, then generate § within the
chosen space. For example, the spike-and-slab prior (Mitchell
and Beauchamp 1988) assigns a binomial distribution on d
as the number of nonzero coefficients in the variable selec-
tion problem; the Bayesian adaptive regression spline uses a
Poisson prior on the number of knots d, which determines
the rank of the spline matrix (DiMatteo, Genovese, and Kass

2001). On the other hand, the discrete prior creates a highly
combinatorial problem, and existing estimation methods such
as the Reversible-jump Markov chain Monte Carlo (Green and
Hastie 2009) are not very efficient to explore the high posterior
probability region.

An appealing alternative is to avoid specifying any low-
dimensional prior, but to induce a prior for 8 with the mea-
sure in R? yet having the mass concentrated near some low-
dimensional sets. Specifically, the key is to reparameterize the
parameter 6 as some transformation of a sparse vector 8, and
then assign simple continuous shrinkage prior on g to favor
near-zero values. For example, in spline regression, one uses j
as the sparse weights in the linear combination of some basis
functions. In this category, there is a rich literature covering tasks
of variable selection (Park and Casella 2008; Carvalho, Polson,
and Scott 2009; Rockova and George 2018), matrix decompo-
sition (Bhattacharya and Dunson 2011; Legramanti, Durante,
and Dunson 2020), functional data analysis (Shin, Bhattacharya,
and Johnson 2020), covariance estimation (Li, Craig, and Bhadra
2019; Kastner 2019), among others.

Clearly, this strategy has its limitations—when we cannot re-
parameterize the low-dimensional sets of 6, the prior specifica-
tion becomes awkward. This is not uncommon. For example, the
fused lasso (Tibshirani et al. 2005) is a frequentist regularization
very popular in the image/signal processing, which assumes
sparsity not only in the parameter 6 € RP, but also in the
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(p—1) increments between the neighboring elements (611 —6).
Although we could imagine assigning some shrinkage prior on
B = DO € R¥*~! with D the corresponding matrix, such a prior
isill-defined: as D is not invertible, we cannot compute 6 from S;
as B resides in the column span of D, it has a dimension p, which
is less than (2p — 1)—therefore, the shrinkage prior one blindly
assigned would be in fact an incomplete density for a degenerate
measure, making it difficult to calibrate the hyper-parameters
within and assess the effects of the prior regularization.

Motivated to generalize the Bayesian approaches for handling
most of the low-dimensional regularizations (including poten-
tially complicated ones), while avoiding the caveats of having
to explicitly specify a discrete prior, we consider a “projection”-
style approach. Starting from a continuous prior for 8 with
measure in R?, we transform it into 6 using a special mapping,
so that 6 has an induced prior on several low-dimensional
sets. The projection idea was previously considered in sev-
eral cases, such as the mixture of components with different
dimensions (Petris and Tardella 2003), the isotonic regression
(Dunson and Neelon 2003), monotone curve fitting (Lin and
Dunson 2014) and more generally, constrained space modeling
(Sen, Patra, and Dunson 2018). Nevertheless, in this article,
we explore a much more general transformation known as the
proximal mapping—it not only includes common Euclidean
projection to a constrained set, but also useful non-projection
transformation such as soft-thresholding, nuclear norm con-
trol, set expansion, etc. This mapping has been well studied
in the optimization literature, with appealing properties that
are convenient for canonical Bayesian inference, such as in the
concentration of measure and convenient computation via the
Hamiltonian Monte Carlo. We will carefully justify this prior via
the geometric measure theory and demonstrate the strengths via
several examples.

2. Method
2.1. Background on the Proximal Mapping

We first provide a brief review on the proximal mapping and
motivate its use as a transformation tool. Let € be the parameter
of interest in a certain space ©, with ® C RP. With another
parameter 8 € B C RP, the proximal mapping is a transform of
B to6:

1
0= proxkg(ﬁ) := arg min {)»g(z) + E”Z - ﬁll%} , (1)

ze®

Table 1. Some useful proximal mappings.

where g is a lower semicontinuous and convex function, and
A > 0is a scalar as a hyper parameter. This effectively induces a
parameter space:

®j¢ = {prox;,(B) : B € RP}.

For an intuitive understanding, the proximal mapping could
be viewed as a generalized projection. Given a constrained set
C, we can choose g(z) = A((z), the characteristic function of
a constrained set taking value 0 if z € C, or oo if z ¢ C. The
mapping becomes 6 = Pc(f) = argmin,ccllz — ,3||%, the
Euclidean projection of 8 into the set C. Furthermore, we can
replace X¢ with other function for g, leading to a wider class of
transformation.

Example 1 (Soft thresholding). Perhaps the most famous exam-
ple is g(z) = ||z||1 from lasso (Tibshirani 1996). It has a closed-
form proximal mapping known as the soft-thresholding oper-
ator proxxg(ﬂ) = sign(B) max(|B| — A, 0), with all operations
carried out element-wise. The induced parameter space ©;,
is in fact the union of multiple sets with varying dimensions:
{6 e RP :0; = 0forj € S,|S| = d}, where S is some index set
andd € (0,1,...,p), each is a Euclidean subspace of dimension
(p — d) — conveniently, we do not need to explicitly specify
the dimension d, since it is automatically induced through the
transformation.

This suggests that the proximal mapping can be used as a
convenient tool to develop priors on lower-dimension subsets.
We now list a few useful proximal mappings in Table 1. In
addition, the proximal mapping allows us to easily consider mul-
tiple constraints or g functions, since the intersection of convex
sets and summation of convex functions are still convex. The
general form can be computed using the alternative direction
of method of multipliers algorithm Bertsekas (2014), and we
will demonstrate one case in the data application. For example,
consider 6 being sparse while constrained in some convex set;
this would be challenging to model for conventional approaches
due to the lack of reparameterization.

2.2. Proximal Prior

We now use the above in a Bayesian modeling framework.
Suppose we have data generated from a likelihood L(y; 6), where
we want to assign a prior on 6 in some space with dimen-
sionality smaller or equal to p. We use the following generative

Space of B g(2) prox; g(8) Usage

RP X, C convex set Pc(B) Projection to a set [See Table 6.1 of
Beck (2017) for an expanded list]

RP 4R sign(B8) max(|B| — A, 0), computed element-wise Sparsity

{B e Rkxk, positive [IZ]| s, nuclear norm UAOVT, with 8 = UAVT the singular value decomposition, Low rank

semidefinite}

RMXN 12101 = ¥1/3522 AT
RP 1Dz]1 with D € RK*P
RP distc(2) = infyec 12— xll2,

distance to a set

Solvable via the alternating direction method of multipliers
aPc(B) + (1 — a)B with a = min{x /distc(8), 1}

(Ag)ji = max(0, Ajj — A)
[B; max(1 — L,O)],m:1 with B; as the ith row

Row / group sparsity

Fused lasso, convex clustering
Set expansion to C




process for 6:
B~ My,
0
A~ T, ()
0 = proxAg(ﬁ),

where H% is a continuous distribution in R?, such as the non-

degenerate Gaussian 8 ~ N(u, X) and we use I'Ig)~ to denote a
generative distribution for A > 0.

Here g is a convex and lower-semicontinuous function such
as those in Table 1. Potentially, ¢ could be known up to some
other hyper-parameter y; in that case, we denote it by g, and use
1'[(}), as the prior for y. For a clear notation, we use bold subscript
such as in TI) as a book-keeping index to refer to the variable
whose prior is being defined.

It is not hard to see that Ag(z) + 27!z — B3, as the
combination of the convex g and a quadratic term, is strictly
convex with a unique minimizer. Therefore, each 8 maps to a
unique 6, hence, we have a measurable mapping, which means
we have a valid prior distribution for 6 using (2). We denote
the conditional prior distribution for 6 as 1'[2 (6 ] A, y),and its
marginal distribution as I1) () after integrating out y and A. For
convenience, we will refer to either form as a “proximal prior”

We first show that, a proximal prior can produce a conve-
nient equivalence to a hierarchical prior of first selecting a low-
dimensional set and then assigning a conditional density within
this set. We denote the space induced by prox;,(8) as ©, and
assume that it can be partitioned into ® = e'UelU...UEP,
where ©F denotes a k-dimensional subset of ®,and @NEOF = &
if j # k (this can be achieved even if a higher dimensional set
©* overlaps/contains a lower-dimensional set &/, we set OF =
ek\ U}:ll ©/). Then the prior kernel (a mix of density and mass
functions) evaluated at 6 = t can be written as

P
My(t) =Y Tyt |6 € ©)1(t € ©)pr(d € ©5), (3)
k=0

where Zi:o pr@ € ©% = 1 and 1'[2 (t |6 € O)isa
conditional density that integrates to 1 over t € ®F using an
appropriate k-dimensional integral with respect to some proper
measure A¥, denoted by Jor IOt | 6 € Okdn = 1.
The integral and measure will be formally defined in the theory
section.

Therefore, from a generative view, the above can be under-
stood as first picking a set ©F with probability pr(6 € ©F), then
drawing a value ¢ within the space of ®. This includes those
corner cases where prox; , cannot map to some dimensional sets:

that is, for some ks, we can have pr(6 € ek =o.
Accordingly, with L(y; 0) thelikelihood, the posterior of 6 can
be derived as

p
=Y 7 'Lyt | 0 € ©H1(t € O
k=0

e =ty

[1(0=t|9 e@k,y)
zipr(6 € @k) (4)
>4, zkpr(6 € ©F)

pr(0e©ky)
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where zx = [« L(;0 = HIIY(t | 6 € ©F)Ak(df). We assume
posterior propriety almost everywhere, such that z; < oo for all
k:pr(d € ©F) > 0.

The proximal priors simplify these procedures. Using the
transformation 6 = prox;,(f), for any measurable set A € O,

pr(@ € Aly)

)4
=y 7! {/ Ly HIY(t |60 € ®k)dt}
k=0 Anek

zkpr(f € ©F)
>4 zpr(6 € ©F)

p e (b)1[prox, ,(B) € el
(@) — B g
@ szl |:/ I L{y;proxkg(b)} rprox,. (B) € OF] }
oy prox; (ANBK) prip g
_apr®c0h
>4 zpr(6 € ©F)

p
Zk Ozkpr(G € Ok) g[mx*lu\noh » proxkg(b)} s p(Ddb

where in (a) we mean that 1'[2 (t | 6 € ©% contains the
Jacobian term in the change-of-variables ¢ = prox, ,(b) (details
of the Jacobian calculation provided in the theory section). At
any given B = b, we can omit the integral and summation, and
obtain a remarkably simple posterior density of §:

NB=bly L {y;proxkg(b)} 1% ). (5)

Remark 1. To clarify, although the hierarchical form of IT)
provides a nice interpretation to our proximal prior, such an
equivalence is not strictly necessary for the proximal model-
ing framework to work. To be rigorous, the above equivalence
requires a few regularity conditions, to be formalized in the
theory section.

Therefore, compared to (4), the posterior density (5) is much
easier for Bayesian applications. This also suggests a new strategy
of “data augmentation using optimization” [instead of marginal-
ization as in Tanner and Wong (1987)]—if we can write the
parameter 6 as some proximal mapping from S, then we can
sample B first as an augmented variable; after sampling, we
compute 6 = prox, () and discard the information from 8.

We now use one example to illustrate the equivalence.

Example 2 (Affinely constrained prior under varying rank). Sup-
pose we want to assign a prior for 0 in a set of affine constraints
C =10 € R : AT = b}, where AT e R™*P is another
parameter, with m < p and b € Col(AT) the column space of
AT (so that C is not empty). Since A is not fixed, we do not know
the rank of A, hence, not the dimensionality of C. Using the
proximal prior with ga(z) = 0 ifATO = b, ga(2) = oo otherwise
(hence, prox;,, is invariant to any finite value of A > 0), and
B ~ N(u, £), we have a closed-form proximal mapping
6 = prox,,(B) = B — AATA)"(ATB ~ b),

where (-)~ is the Moore-Penrose inverse. We illustration this
mapping in Figure 1.

The 0-marginal proximal prior is a discrete mixture over
different rank of A:
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(a) Given rank(A4) =

1, the map-
ping 6 = prox,,(3) creates a two-
dimensional prior on the hyperplane

(orange).

(b) Given rank(A) = 2, the map-
ping 6 = prox,,(8) creates a one-

dimensional prior on the line (orange).

Figure 1. lllustrative example of constructing a prior on an affinely constrained set C = {6 : AT6 = b}. A challenge arises when the rank(A) is unknown, the dimensionality
of the prior is unknown. The proximal prior bypasses this hurdle by transforming a continuous prior (blue) into the constrained space (orange), without the need to explicitly

specify the dimensionality.

56 :/“3 @] A) 1% (4)dA
3 : _ %@ 4)n5@ida

= pro(rank(A) =d) fA.rank(A),d 0 |0 S

=0 Sarank(a)—a T4 (A)dA

1) [0|rank(A)=d]

and Hg (0 | A) is the degenerate Gaussian density with mean
A (ATA)71 b + P41 and covariance P41 X P41, where P41 =
I — A(ATA)™" AT, Although the summation may not have
a closed-form, the weights and conditional density can be
tractable in applications.

For illustration, we consider a Bayesian envelope linear
regression for multivariate response Y; € R?:

~ iid
Yi=u+0X;+e € ~N(0, MQrT +I,Q,I7)
0=TIn,

fori=1,...,n, each covariate X; € R™ (with p < m), and the
noise ¢; € R?; [T" ', ] together from a p x p orthonormal matrix,
with I" a pxu submatrix, n € R¥*™ full rank, and both €2 and €2,
positive definite matrices. The regression coefficient matrix ® €
RP*™ is of rank u, with u unknown. The motivation is that by
making ®X; in the subspace spanned by the leading eigenvectors
of the covariance, '] Y; is small in magnitude and independent
from X;, leading to a sufficient dimension reduction (Cook, Li,
and Chiaromonte 2010). For Bayesian inference, Khare, Pal, and
Su (2017) proposed to use a matrix-Bingham prior on I' with a
pre-specified u, so that it has conjugate forms in a Gibbs sampler
for posterior computation. On the other hand, since I" is in an

orthogonal and low-rank space, it is difficult to generalize to
other forms of prior such as letting u vary.

Using the affine constraint proximal mapping, we can bypass
these challenges. We reparameterize ', Q,I'"} = AAT, TQI'T =
Py WP} | withrank(A) = p—u, W positive definite,and © by a
linear constraint AT® = O. The proximal mapping yields ® =
P,1B, with B € RP*™ the matrix form for 8. Using matrices
YT € R™P, XT € R™™, we rewrite the envelope regression
likelihood as

L(Y;A, W, B, )

o exp ( - %tr{[YT — 1" = X", BN
(Par WPL )7 [Y — p1" — (PALB)X]}>

x |ATA|™"2 exp ( - %tr{[YT — 17144 Y — ,uT]D
P WPL, 1172,
where |- |4 is the pseudo-determinant. To complete the proximal
prior specification, we use B € RP*™ and R € RP*P, with their
elements iid from N(0, 1) (hence, full rank almost surely); then
weset A = RA,and A = diag(A;))_, with A;; = zil(zi > py)
and z; ~ Exp(1), and p, the g-quantile of Exp(1). We provide a
numerical simulation in S1.3 of the Supplementary Materials.
Focusing on the 6-marginal prior, we have: (a) the mixture
weight pr'[rank(A) = p — u] = (F)g“(1 — g)*“, where q can
be specified as a priori; (b) the conditional density containing

MY 6 | A) = @)~ ?|Pyu] ;" exp(—6TP;,6/2)



= 2m) " exp(—[0]*/2)1(AT0 = 0).

The second line is due to P41 being idempotent & = P41 8 =
Pyi6,PyiPy Pyr = Pyu,0TP4u6 = 6076 and [Pyu]y = 1.
This density is invariant to scaling of A.

Remark 2. To clarify, we use the above example (with a relatively
simple 1'[2) to illustrate the equivalence between the hierarchi-

cal specification of TTj and the continuous—l’[oﬂ—and—mapping

specification. In general cases, the former IT) may be intractable
due to the lack of closed-form, hence, motivating the proximal
mapping strategy as proposed in this article.

In Example 2, if we intuitively compare the two distributions
before and after the mapping, it reduces (or at least retains)
the distance to the center |6 — proxxg(u)Hz < |IB — ulla2.
The property shown in this example is known as the “non-
expansiveness,” which in fact holds for all proximal mappings:

l[prox; o (B1) — prox,,(B2)ll2 < 11 — B2ll2,

for any B, B2 in the domain of Prox;,. This is in particular
meaningful for Bayesian inference, as it conveniently controls
the concentration of measure for 6.

Theorem 1. If the data y come from a distribution Fy+ with a
fixed parameter 6%, and any € € (0, 1), the posterior distribu-
tions of 6 and B satisfy

pr(ll6 — 0%l > € | y)

. _ ES ))\')
<[, ominpel[B = e 1]

ﬁ*:prox)\gy
G,y [ pd,y).

In addition, if tr[cov(B | y)] < oo, then
trlcov(@ | y)] < tr[cov(B | y)].

Using the envelope regression example, we know that

(B |y, A W) ocexp{ — (1/2)tr[XX"B P41 (Py. WP}, )" P41 B]
+ tr(B"B) — 2tr{X(Y" — 1u7) (P4 WP} )" P41 B])},

which is a multivariate Gaussian for vec(B). On the other hand,
since we know ® = P,1 B, we know for any given 4, |® —
O*I7 = tulB — BY'PPu(B - BY] < |IB — B[}
with P, B* = ©%, due to P41 being idempotent and having
eigenvalues equal to either 1 or 0.

2.3. Prior Specification on \

In the proximal mapping (1), the hyper-parameter A plays an
important role, hence, we need to carefully choose its prior.
To first obtain some intuition, note when A — 0, we have
prox;,(B) — B if g(z) < oo for all z, the identity mapping;
when A — 00, we have proxkg(ﬂ) — argmin, g(z). Therefore,
as A increases, 6 becomes farther away from S, hence, the
distribution Hoﬂ (B) gets more “deformed” at a larger . We now
formalize this deformation intuition, while relaxing the finite-
valuedness of g. For conciseness, we postpone all the proofs in
the Appendix.
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Theorem 2 (Monotonicity of deformation in 1). For any function
gwithrange RU{oo},if0 < A1 < X3, then ||,3—proxhg(,3)||2 <
18 — prox,,,(B)]l2-

This result means that we can find a measurement between 0
and 1 to quantify the deformation:

_ Eglp—prox, Bl
EgllB — limjs— 0 prox; -, (B)ll2°

wjp - (6)
where the expectation is taken with respect to the prior of 8.

When lacking prior knowledge on A, we can use a Beta prior
onw € (0, 1) and solve for A:

w ~ Beta(ay, by), A = min(x : wy = ). (7)
x>0
In this article, we use a non-informative a,, = b, = 1. As

a toy example, let 8 be univariate with a finite variance, using
the proximal mapping with g(z) = z?/2, we have prox; . (B) =
B/(1 4+ X). Therefore, we have . = (1 — w)/w with an induced
prior 1Y (A) = 2/(1 + 1)* for A > 0.

In more general cases, (7) often cannot be solved analytically.
However, we can numerically compute a prior for A, using a
strategy similar to Berger et al. (2009)—for K chosen points
AL, ..., g in (0, 00), we can use the empirical estimates of the
expectation based on simulated 8 ~ H%(,B), and solve for
1, ..., wk; afterwards, we can easily interpolate to obtain the
A associated with any w.

Example 1 ((Continued). Soft-thresholding prior). To illustrate,
we compute the prior of A for the soft-thresholding prior based
on 0 = sign(B) max(|8| — 1,0). Basedon f € R and B ~
N(0, I), we compute the prior density of A and plot it in Figure 2.

In this section, we discussed the choice of 1'12 with the
generality of all possible g and prox;, in mind. On the other
hand, for some specific case such as g(z) = ||z|/; and soft-
thresholding prox,,, there is a connection to some existing
prior in the literature, such as the classic spike-and-slab prior.
For example, if H%(,B) o exp(—||Bll1/e) and A to be the

w-quantile of Exp(a~!), then we can obtain a spike-and-slab
prior with Laplace slab Hg @11 = ]—[le[wﬁo(@j) + (1 -
wy) Qo) ™! exp(—0;/a)]. A closely related discovery is the neu-
ronized prior (Shin and Liu 2021) using truncated activation
function, for which there is an equivalence to a spike-and-slab
prior with two-normal-product slab. In these cases, there are
often alternative choices for I that are justified via large sample
theory. Due to the page constraint, we defer the detailed discus-
sion and numerical experiments to S1.1 of the supplementary
materials.

3. Geometric Measure Theory on the Varying
Dimensional Sets

3.1. Hausdorff Dimension and Low Dimensional Density

We now give a more rigorous exposition on the distribution
induced by the proximal mapping. Without loss of generality,
we consider 6 as a p-element vector. Since § may correspond
to a measure of a set in the lower dimensional space, the p-
dimensional Lebesgue measure of any lower-dimensional set is
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1 1

1 1

00 05 10 15 20 25 30
1

(a) Value of A corresponding to a certain
deformation w. Larger \ leads to larger de-
formation from TI%(5) to TTg(d), which can

be quantified by w € [0, 1].

Density

(b) The prior for A, corresponding to a uni-
form prior on the deformation measurement

w.

Figure 2. lllustration of a numerically computed prior for A, which controls sparse level for the soft-thresholding mapping 6 = sign(8) max(|8| — A, 0).

zero hence is not useful. We need some tools from the geometric
measure theory to address this issue. To start, consider a set
A and suppose we do not know its dimensionality. Instead, we
can cover A with sets B;’s, each B; has its diameter diam(B;) =
sup{lx —y| : x,y € B;j} < 8. Wecallany | J,; B; D A, diam(B;) <
§ as a §-covering of A.

Then we take the infimum over all §-coverings of A, and
letting the § decrease, we obtain the s-dimensional Hausdorft
measure of A:

H(A) = gl_r)r%) inf {Z diam(B;)* : diam(B;) < §, A C UBi} .

i=1 i

(8)

Intuitively, the above can be taken as the minimum total “vol-
ume” of the covering—except s is a parameter that varies.

In fact, H*(A) is a nonincreasing function in s > 0 (Edgar
2007). More importantly, for any Borel A, and 0 < s1 < s$2,
if H°1(A) < oo then H2(A) = 0; and if H2(A) > 0 then
H*1(A) = oo [Theorem 6.1.6 (Edgar 2007)]. This means for any
Borel set A, there is a unique sp € [0, 00) U {00} as a transition
point, over which the dimensionality drops from co to 0:

H¥(A) = oo, for any s < sp;
H’(A) = 0, forany s > sp.

Such an sg is referred to as the Hausdorff dimension of A,
equivalently:

dimy (A) = inf{s > 0: H5(A) = 0}. (9)

Note that dimy;(\A) > 0 does not have to be an integer;
nevertheless, when it is, the Hausdorff measure is proportional
to the commonly used s-dimensional Lebesgue measure

o
A°(A) = inf ZVOI(B,‘) A€ U Bj, B; is an open cube ¢ ,
i=1
via A°(A) = weH*(A), where wy = 7%/2[2°T'(s/2+1)]~! due to
the volume formula of an s-dimensional ball. In addition, when
s =0, H°(A) is same as the counting measure.
Now recall that prox,, is nonexpansive, which leads to the
following theorem:

Theorem 3. For any Borel set A and proximal mapping prox; .,
we have

1. H{prox; ,(A)} < H(A) for any s > 0;
2. dimy {prox; ,(A)} < dimyy (A).

Remark 3. In the above, the statement 2 is particularly useful:
it tells us that prox; , only maps to lower or equal dimensional
space.

Now, starting from a probability distribution defined by a
certain Radon measure yu in R? for some low-dimensional sets
in ®°, one interesting question is how to differentiate this and
obtain a “density;” as [Ty (f =t | 6 € ®°) used in (3) and (4).

For a point 8 € ©°, the ball B,(0) centered at 6 with radius
r > 0 has the lower and upper s-dimensional derivatives:

/L{f/r’(j)}) 5%(9) = lim sup B (0)}

s ..
(0) = lim inf
fu,* r—=0 r—0  Wst®

Therefore, if we have the two limits coincide, we would have
a definition of an s-dimensional density: f;(0) = f, .(0) =
fli* (0), commonly referred to as the s-density.

Remark 4. To understand the s-density as a generalized concept
of “density,” for those continuous distributions associated with
a p-dimensional Lebesgue measure, such as the nondegenerate
Gaussian distribution, the p-density is the probability density
function; whereas for the discrete distributions, the 0-density is
the same as the probability mass function.

Next, similar to the probability density function, s-density
may not always exist. Therefore, it is important to state the two
required conditions, s is an integer and 6 is in a rectifiable set, as
formalized in the following theorem.

Theorem 4 (Besicovitch-Marstrand-Preiss theorem). (Preiss
1987) Let u be a locally finite Radon measure on RP, if there
exists a real s > 0 such that f; () exists, and it is positive on
a set of positive ;-measure, then s must be an integer. On the
other hand, let A C R? be Borel with H°(A) € (0,00) and s



an integer, then f, () exists for 6 € A almost everywhere with
respect to Hk, if and only if the set A is rectifiable.

To explain “rectifiability;” a Borel set A C RP is rectifiable
if there is a countable family of Lipschitz maps T; : R® — R?
which cover almost all A except for sets with zero H* measure.
That is, intuitively speaking, almost every p-element vector 6
A can be represented as some transformation of x € R*—note
that this is not the same as a simple reparameterization, as we
may obtain A via multiple fi’s (up to countably many).

3.2. Calculation of the s-Density

We now provide a way to calculate the s-density. Focusing on a
subset ©F with dim(©*) = k and ﬂk = prox;gl(G)k). We now
transform [o(8 = b | B € B¥) into an s-density with s = k.
Theorem 5. If B is (HP, p)-rectifiable and dimy B = P ek
is (Hk, k)-rectifiable and dimH(G)k) = k, with p > k, and
]kproxkg(,B) > 0 a.e.-ug. Then the s-density of 6 induced by
prox; , is

e =t|6 e

np=>b oF
_ / . (B = b)/priprox;,(B) € }W(p—k) BB,
Prox;, t

Jkprox o (b)

where ]kprox)\g(b) is the k-dimensional Jacobian of prox; , at b.

Note that if the low-dimensional set ©F can be reparameter-
ized as a transformation an k-element vector, then it is possible
to change (10) to an integration with respect to an k-dimensional
Lebesgue measure.

To explain the assumptions above, a set A is (#°, s)-rectifiable
when H°(A) < o0, and there is a set as the countable union
of Lipschitz images from bounded sets B = Uj{Tj(Cj) : G C
R* and bounded, T; Lipschitz} such that #*(A \ B) = 0. As the
result, if s-density exists, we could use (10) when both 6 and g
are finite.

Morgan (2016) gives the k-dimensional Jacobian J;T'(x) of
function T : R" — R™, differentiable at x. Let Dp(x) €
R™™ be the derivative matrix of T(x) at x, with {Dr(x)};; =
0T(x)j/dxi, 1 < i < n,1 < j < m, then the k-dimensional
Jacobian can be computed as

JkT(x) = (det M)2.

2.

Misthek x k
submatrix of D7 (x)

(10)

Note than when m = n = k, J;T(x) = | det{Dr(x)}| as more
commonly seen.

Importantly, by Rademacher’s theorem (Federer 2014), a Lip-
schitz function is differentiable almost everywhere. Therefore,
Dprox,\g (B) exists almost surely with respect to 1. In the fol-
lowing example, we illustrate the use of the above theorem to
compute the s-density for the affinely constrained prior.

Example 2 (The s-density of the affinely constrained prior). Using
(10), one can verify that the s-density of affinely constrained
prior recovers the “degenerate Gaussian density.” Starting from
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B ~ N(u, £) and let us assume A is p x d and rank(A) =
d, then it is not hard to compute that Ji,—gprox;,(8) = 1.
Using the proximal mapping, at 6 = t, we have P48 = t —
AATA) b with P4 = {I — AATA)1AT}, hence, we can
integrate over the region prO)(;g1 (t) by reparameterizing § =
P, {t — A(ATA)"'b} 4+ Ax where x € R? Integrating over x,
we have the s-density withs = p — d:

1
MYt 6 € ©~%) o exp [ - E{t —AATA) b — Py)T
Py 7P {t— AATA) b — PA,u}}

which is commonly referred to as the “degenerate density” for a
degenerate Gaussian, with its covariance P4 ¥ P4 having a rank

(p—4d.

We list a few more examples commonly considered in statis-
tics, where for each we have a guaranteed existence of s-density:
regression under linear equality constraints, matrix factoriza-
tion under low-rank constraint, sparse regression, covariance
modeling in positive-definite space, and directional modeling in
orthonormal space.

Remark 5. To clarify, the existence of s-density for 6 is not
necessary in our modeling framework using proximal mapping,
since we can always carry out computation using a valid p-
dimensional density of . On the other hand, the existence of
s-density would be required if one wants to interpret the prior
via an equivalent prior 1'[2 asin (3).

4. Posterior Computation

As shown in (5), when using B instead of 6, the posterior has a
simple density on R?, and the proximal mapping is differentiable
almost everywhere with respect to pg. Therefore, as long as
I1(0; ) is a continuous and differentiable function in 6 almost
everywhere, we can use the Hamiltonian Monte Carlo (HMC)
for posterior computation. Now we first briefly review the HMC
algorithm, then address the gradient calculation for the proximal
mapping.

To sample from target distribution 8 ~ Tlg,(-), the HMC
uses an auxiliary momentum variable v and samples from a joint
distribution I1(8,v) = I1(B | y)I1(v), where a common choice
of I1(v) is the density of N(0, M). Denote U(8) = —logIT(8 |
y)and K(v) = —logII(v) = vIM~1v/2, which are referred to
as the potential energy and kinetic energy, respectively. The total
Hamiltonian energy function is H(8,v) = U(8) + K(v).

At each state (,v), a new state is generated by simulating
Hamiltonian dynamics, which satisfies the Hamilton’s equations:

9 _HBY)
dv _ 0H(B,v) _ 0dlogT(B |y)
ot By B '

The exact solution for (11) is often intractable, while we can
numerically approximate the evolution by algorithms such as
the leapfrog scheme. The leapfrog is a reversible and volume-
preserving integrator, which updates the evolution (8%,v") —
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(,Bt+€, Vt—i-e) via

4 € dlogTl(A1y)
2 0B ’

B« B+eM Ly,

€dlogIl(B|y)

2 ap

fort = 0,¢,...,Le, and sets (B*,v*) < (B, vE€). To correct

the numeric error due to approximation, (8*,v*) is treated as

a proposal and accepted with the Metropolis-Hastings (MH)
probability

V<<V
(12)

V<—v+

min[1, exp{—~H(B*,v*) + H(B, v)].

We now discuss the gradient computation:

dlogI(B |y)  9prox,,(B) | dlogL(y;0)
EY: N p 30

dlog Mg (B)
+ %

When proxkg(,B) has a closed-form, we can use the automatic
differentiation toolbox to calculate the gradient 8proxAg (B)/98;
on the other hand, when the closed-form does not exist, some
numeric approximation is needed.

Note that the partial gradient is dprox;,(8)/9p; =
limeﬂo{proxkg(ﬁ + eje) — prox,\g(,B)}/e with e is the standard
basis with the jth element equal to one, and all others equal to
zero; using a small € gives us the finite difference approximation.
Nevertheless, when 8 is high dimensional, this would involve
(p + 1) times of calculating the proximal mapping, which can
be computationally prohibitive. To solve this problem, we follow
Spall (1992) and use the simultaneous perturbation stochastic
approximation:

0:proxlg(,8) }

. (k)
8/8] m —1 A j €

8prox)\g(,8) 1 m {prox,\g( B+ A(k)e) — prox)\g(ﬁ)}

(13)
{Agk), ces A}(,k)} has each

A;k) € {—1, 1} independently generated using pr{A;k) =1} =

pr{A;k) = —1} = 0.5. The right hand side is based on the first
order approximation to the finite difference form. The advantage
is that we only need to evaluate the proximal mapping for m
times. In this article, we use € = 1077 and m = 20 and find
empirically good stability for the HMC algorithm.

For the HMC as a gradient-based algorithm, another poten-
tial concern is that prox; , (8) may have zero gradient at certain
value of B, for example, the soft-thresholding sign(8) max(| 8| —
X, 0) will have zero gradient for those f; : |8j| < A. Fortunately,
two things prevent such a B; from being stuck at a certain
value. First, although the log-likelihood log L[y; prox; , (8)] may

forj = 1,...,p, where A®

have a zero gradient for B;, the log-prior log 1'[% does not (as it
does not depend on prox,\g)—in those cases, B; will be updated
through its prior distribution, until it enters the region where
L[y; prox, g (B)]isnolonger invariant in B;. This behavior is quite
similar to the one with augmented “continuous particle” for sam-
pling binary distribution via HMC (Pakman and Paninski 2013),

where they demonstrated excellent mixing of Markov chains.
Second, the HMC preserves the joint density of IT(8 | y)I1(v) =
I1(B* | »)T1(v*) (with the MH correction), and as we sample a
new v at the start of each iteration, the effective range of §* to
reach is {#* : TI(B* | y) = M(B | P/, I >
0, [1(v*) < II(¥)}, with ¥ the mode of I1(v). Therefore, as long
as [T(v) < I1(¥), we can have I1(v*) > T1(v), and TT1(B* | y) <
I1(B | y) allowing B* to move away from a local-optimal state.
In practice, we use the No-U-Turn algorithm (Hoffman and
Gelman 2014), which ensures that we run the dynamics for long
enough, so that the new proposal is away from the current state.
We provide some diagnostic plots in S2 of the supplementary
materials.

5. Simulation Studies
5.1. Set Expansion Prior for Hypothesis Testing

We now demonstrate the usefulness of the proximal prior in
standard statistical inference, such as the hypothesis testing of
whether 6 is in a constrained set C. Consider two hypotheses
Hy:6 € Cand Hj : 6 € C, where C() C = @. For testing, one
typically assumes a mixture prior

My(©) = pod©)1(6 € O) + (1 — po)p(O)1(B € C),  (14)

where ¢ and ¢ are the prior kernel function of # under Hy and
Hj, respectively; and py is the prior probability assigned to C.
The Bayes factor of Hy relative to Hj is defined as

_ JeLys0)@®)d6 _ pr(@ € Cly) (1 = po)
T L Lp:0)6@)d8  pr@<Cly) o

for which, a smaller value of BFy; provides stronger evidence
against Hy. Often, C is not of the same dimension with C. For
example, when testing a point null hypothesis Hy : 6; = 0,
we have dim(C) < dim(C). The standard practice has been
assigning appropriate ¢ under C (and ¢ under C), with ¢ (9) and
#(6) being 0 on C and C, respectively. However, when the null
hypothesis is low-dimensional, such as testing linear equality,
assigning density supported on the null set C can become quite
challenging.

For a convex null set C, we could define a proximal prior
based on the distance function, such that the prior density is
positive on both C and C. The distance function from point 8 to
set Cis defined as distc(B) = infyec [|x—Bll2 = I8 —Pc(B) 2.
The proximal mapping of the distance function to set C is of the
form

B+ ﬁcw){l’c(ﬁ) — B}, ifdistc(B) = 4

PrOXAdistc ('B) = PC(,3)> ifdiStC(,B) < A

Clearly, this proximal mapping projects the points in the A-
neighborhood of C into C, and keeps the rest of the points out
of C. Thus we get a prior that puts positive mass on both C and
C and can also be expressed in the form of (14).

We can easily estimate the Bayes factor

_ pridistc(8) <2 | y} pr{distc(B) = A}
pr{distc(8) > A | y} pr{distc(B) < A}

01
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(a) The data y1, ..., y20 ~ N(o, 3213) (the blue
dots), with the true mean 6y = (—0.5,0.3,1.2)T
(the red dot), shown along with the hyperplane

02(9291—{—92—{-93:1).

Figure 3. The set expansion prior for testing {6 = (61,67,03) : 61 + 6, + 63 = 1}.

via posterior sampling methods. If the prior ratio pr(0 €
C)/pr(@ € C) is not specified, in order to obtain adequate
number of samples in both C and C, we can choose a fixed A
(instead of assigning a prior on 1) such that pr{distc(8) > A} =~
pr{distc(8) < A}.

We conduct a simulated experiment: we have data y1, . . ., y20
generated from N(6p, 32) with 6y = (—0.5,0.3,1.2)T. We want
to test the linear equality hypothesis Hy : 61 + 0, + 63 = 1
against H; : 0; +6, 463 # 1. The null set C is a hyperplane with
Hausdorff dimension 2. We assign the set expansion prior to 0
by assign N(0,32) to 8 and set § = Prox; gigt. (8) with & = 2,
such that the prior ratio of C and C is around 0.48. Posterior
sampling is implemented with the HMC with 5000 samples and
2000 burn-ins. We get an estimated Bayes factor BFy; = 0.77,
and display 100 of the samples in Figure 3, panel (b).

5.2. Numerical Experiments on Variable Selection and Low
Rank Matrix Model

In addition, we conduct numerical experiments for two models
where solutions exist with conventional sparse priors: variable
selection using a spike-and-slab prior, and low-rank matrix
factorization with a discrete prior on the rank. We compare the
computational performance in the combinatorial search-based
MCMC algorithms for these models, with the HMC algorithm
for our models using proximal priors. Further, we compare with
other alternatives such as neuronized prior (Shin and Liu 2021)
and multiplicative shrinkage prior (Bhattacharya and Dunson
2011; Legramanti, Durante, and Dunson 2020). We provide the
details in S1.2 of the supplementary materials.

6. Data Application: Interpretable Factor Analysis of
the Flow Network

We now demonstrate the practical usefulness of the proximal
prior via analyzing the dynamic flow network data. The data
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(b) The posterior samples from 7(6 | y), which
are mostly distributed on the hyperplane (the

orange dots), while there are several outliers

9

far from this hyperplane (the blue dots).

(Zhu, Hu, and Collins 2020) include dynamic estimated traffic
flow on major roads in Florida every 6 hr before Hurricane Irma
made landfall until it covered the entire state (between 18:00 on
September 06, 2017 and 18:00 on September 11, 2017). In total,
the data contain 25 valid temporal records of flow networks,
denoted by YV, ..., Y?>; each Y e R">" contains the
traffic flows during a 6-hour period on the roads between ny =
382 urban regions.

Each flow network is a weighted graph {V, E, Y}, with V =
(1,...,ny) the set of ny nodes, E = {(i,j) : i,j € V} the

edges, and the weight YL;) € R, representing the amount of flow

between the two nodes, with Yi(’]t.) > Oaflowi — j,and Yi(;) <0
a flow j — i. On the diagonal, Yi(,? > 0 indicates an external
in-flow entering the network, while Yi(’? < 0 means an existing
out-flow; ¥\ = 0if (i,) ¢ E.

To find useful patterns underneath the raw observation data,

we use a low-dimensional latent factor model, with the factors
FD e R™>" shared by all time points, while letting the load-

ings yl(t) > 0 vary over time, subject to Gaussian measurement

o
error Ei(;) ~ N(O,oé) fori <j.

d
Y® =3y PF0 4 €0,
=1

(15)

Now, to make the factors useful in interpretation, we require
each FO to be a feasible flow—an idealized flow network satis-
tying the following constraints, (i) skew-symmetry (except for
the diagonal): Fl(ﬁ) = —F](ll) for i < j; (ii) flow-conservation,
that the net sum of in-flows should equal to the out-flows for
node j, 1Y, Fl(? = 0; (iii) to reduce noise, we assume that the
elements of F) are sparse. Further, as we expect that most of

the nodes do not have an external in-low/out-flow, we assume
that (iv) most of the nodes having F](? = Zi# Fl(? = 0. To
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obtain the parameter in such a highly constrained space, we use
the proximal mapping, with b ¢ Rrvxnv,

ny
1
FO = prox{®} = argmin Aillzl + 21 Y Izl + = 18D —zI3,
ZERYIV xny i 2
j=1
(16)
ny
subject to z;; = —z;; for i # jand ZziJ =0forj=1,...,ny.
i=1
The proximal mapping does not have a closed-form solution,
however, can be efficiently computed using the alternating direc-
tion method of multipliers. Note that with constraint (i) and (ii),
it is sufficient to use the lower-triangular entries to represent the
rest. In the following, we use (8;);~; to denote the ny (ny —1)/2
vector containing the lower-triangular entries. Therefore, (17) is
equivalent to

1 2
prox{(Bij)i>j} = argmin 3 Z(,Bi,j —zij)" + A1 Z |zi ]

laihi=j “ isj i>j

ny
SO DIDBEIED IR
j=1

i>j i<j

(17)

This proximal operator is evaluated via the alternating direction
method of multipliers and solved iteratively. We provide the
detailed algorithm in the Appendix.

On the prior of the loading, we assign a group shrinkage prior
by using the (2, 1)-matrix norm in the proximal mapping. For
the matrix y € R¥*T, we set:

. 1
y = prox,,.,, (0) = argmin Az zll21 + = o — 23
’ ZERdXT 2

where ||z]|2,1 = Zle v ZtT:l{zl(t)}z. This prior has the advan-

tage that {yl(l), et yl(T)} will be simultaneously zero for certain
I—which allows us to use an overfitted model with a relatively
large d = 10, with the posterior recovering only a small number
of factors with nonzero loadings. We use independent standard
normal as prior on the elements of B and p.

We run the HMC for 20,000 steps and discard the first 5000
as burn-ins, and we use thinning at every 10th iteration as the
posterior sample. The posterior shows the highest probability
at having three factors, and we visualize them in Figure 4(d)—
clearly, by forcing the external in-flows and out-flows to be
sparse, we have each factor roughly corresponding to a single
connected sub-network.

0.6
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(a) The traffic network show- (b) The posterior distribu-

ing the roads across the state tion of the number of non-
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ponents by proximal of proximal prior. nents by elementwise nents by row-sparse

prior. horseshoe. horseshoe.

Figure 4. Data analysis on the dynamic flow network, observed during the Hurricane Irma evacuation. A latent factor model is fitted to the data, with the factors reqularized
by a proximal prior that force each network to be sparse in both the flows and the number of in-flows and out-flows. (d) shows three factor flows (posterior mode) estimated
using the proximal prior. Each factor is close to a connected sub-flow network with (e) element-wise variance representing the uncertainty on the factor estimate. We
compare the proximal prior with two realizations of shrinkage priors, where (f) shows the factors estimated using elementwise horseshoe prior, which are very fragmented
and difficult to interpret. (g) shows the factors estimated using the row-sparse horseshoe, which contain many nodes with small or no flows.



Interestingly, examining the estimated loadings that change
over the time points in Figure 4(c), we see that in the beginning
of the evacuation, the factors 1 and 2 are dominant, but later
there is a sudden decrease—this in fact corresponds to the time
point when the hurricane makes the landfall, effectively forcing
the traffic in those areas to shut down. After the 60th hr, the
traffic moves up to the north part, and factor 3 represents the
late stage of the evacuation.

To compare, we also test two continuous shrinkage priors
on the factors. Specifically, we use (a) the elementwise horse-

shoe prior on each lower-diagonal Fl(? ~ N(0, 1’3]-02), Tij ~
Ct(0,1), 02 ~ Inverse-Gamma(2,0.01), and (b) the two-
way group horseshoe prior, by letting Fl(? ~ N(0, 7itjo %),
7; ~ C7(0,1), 0 ~ Inverse-Gamma(2,0.01). The purpose of
(b) is to shrink each row of F simultaneously, while satisfying
the skew-symmetry of F). Effectively these horseshoe priors
accommodate the properties of (i)(ii)(iii) of a sparse feasible

flow, nevertheless, they cannot accommodate (iv)—as each F](?
is completely determined given Fi(,? (i # j), we could not further

assign shrinkage prior on Fj()? = Zi# F](j) As the result in
Figure 4(f), the elementwise continuous shrinkage priors show a
large number of external in-flows and out-flows, leading to frag-
mented small networks in each factor. As shown in Figure 4(g),
the two-way group horseshoe finds many nodes with no flows
at all, which is not very interpretable since we would like most
of the nodes to have many in-flows and out-flows, as long as the

total net-flow is zero.

7. Discussion

In this article, we exploit the proximal mapping to produce a new
class of priors. As we have demonstrated, these priors and the
associated probabilistic models can enable statistical inference
(such as uncertainty quantification, hypothesis testing) on a
wide range of problems, where in the past, one has been limited
to point estimate only. The technique of “data augmentation
using optimization” we have introduced could be generalized
for other purposes, such as potentially new efficient algorithm
for the posterior computation. Lastly, one could consider other
type of optimization problems for a similar prior construction,
such as the popular classes of semidefinite (Vandenberghe and
Boyd 1996) and / or mixed integer programmings (Linderoth
and Savelsbergh 1999), although how to provide a probabilistic
treatment for these problems is still an open question.

Appendix
A.1. Proof of Theorem 1

Proof. For any value g* : Prox;,, (B*) = 0* using g, at given y
and A, € < ||proxkgy B) — prox, g BHIN < IIB — B*|. Therefore,
10,10 — 0% > € | y,hy) < 1(8,]B— B*|| > € | y,4, ). Taking
the minimum over 8* on the right hand side and expectation on both
sides, we obtain the first result.

Next, using the fact that for two independent copies B, B2 from

M@ | . 2ulcov(B | ) = Eg (81 — B2l | ) =
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ExyEg, 8,81 — /32||% | XA, ¥,y), and the non-expansiveness of
proximal mappings, we obtain the second result. O

A.2. Proof of Theorem 2

Proof. Let0 < A1 < A, v1 = prox)\lg(x)and vy = proxkzg(x), we
prove: (i) g(v1) > g(v2) and (i) [[v1 — x[| < [lv2 — x||. For (i),

1 1

> v2 — xII* + A2g (v2) =3 V2 — x> + A1g (v2) + (R — 21) g (v2)
@1 2
> 3 lvi — x| + 218 (v1) + (A2 — A1) g (v2)

1
=5 In —xl? +22g (1) + (2 — A1)

{g(2) —g )}

"1 )

z3 lva — xlI* + A2g (v2) + (A2 — A1)
{g) —gv},

where (a) is due to v; is the minimizer of % v —x|I% + A1g (v), and

similarly for v, in (b). Therefore, (A — A1) {g (v)—g (v1)} < 0,
which leads to g (v1) > g (v2).

For (ii), slightly changing (a),wehave% lvi — x| < % lv2 — x||1>—

M {g (1) —g ()} . Since A1 > 0, we have [lv; —x[? < [[v2 —x|%.

O

A.3. Proof of Theorem 3

Proof. Since the proximal mapping satisfies 1-Lipschitz condition,
diam{prox(B)} < diam(B) for all B in the domain of prox; ¢ Using the
definition of the Hausdorff measure, H*{prox(A)} < H°(A). To see the
statement 2, we apply the result in statement 1 and see H*{prox(A)} =
0 whenever H*(A) = 0. O

A.4. Proof of Theorem 5

Proof. Using Theorem 3.2.22 of Federer (2014), for any #? measurable
function F on ﬂk,

/,3k F(B)Jxprox, o (BYHP (dB) =/

/ F(b)HP~*(db)Hk(d0).
ek pmx;g1 ©®)

Using the assumption, we can exclude the zero-measure set where

]mkprox)hg(ﬁ) =0.
O

A.5. Algorithm to Compute the Proximal Mapping in the
Flow Network Modeling

We formulate an equivalent problem to (17)

1 ) -
prox{(Bij)ij} = argmin =3 (B — zij) +x12|zi,j|+xzj;|xj|

{zij}isjreR™Y 2 2 i~

subject to C(z;)i>j = x,
(18)
where C € R"V*nv(tv—1/2 jg the matrix such that {CGijisjlk =
Y ik Zik — O i<k k- The scaled augmented Lagrangian for (18) is

1
L= E||(/3i,j)i>j — @iisjll3 + A1l (Bijisjlly + A2 llxly

14 14
+ S 1CG i) — x + ull3 = Zlul3.
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In each iteration we update the x and z separately to minimize the
Lagrangian:

@ij)isj < Proxy, s, [+ ¥CTO T {yCT(x — u) + B}
X < proxy, |, {CEig)isj + ub,
and update u as in dual ascent:
u<—u+C@ijisj—x

until convergence (i.e., 1C(zij)i=j — x| = 0).

Supplementary Materials

Supplementary materials include (i) additional examples of proximal priors,
along with additional experimental results and (ii) code to reproduce the
results in this paper.
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