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ARTICLE INFO ABSTRACT

Handling editor: Dr F Gallucci Herein, various morphologies (Bundle of rods, rods, nanoparticles, and umbra) of cobalt molybdate (CoMoO4)
were obtained by changing the pH (6, 7, 8, and 9) of the solutions during hydrothermal synthesis. The evolution
mechanism of different morphologies was explained. These samples were used for supercapacitors and oxygen
evolution reaction (OER) catalysts. The higher double-layer capacitance (464 mF cm~2) was observed in CoMoO4
nanoparticles. It demonstrated high specific capacitance (191 F/g at a current density of 1 A/g) and excellent
cyclic stability performance (98 % retention capability after 2000 cycles) in the 3 M KOH solution. Furthermore,
CoMoOy nanoparticles showed the lowest overpotential (200 mV at 10 mA/cm?) and onset potential in linear
sweep voltammetry polarization curves, superior turnover frequency (0.0095 s~ 1), and low Tafel slopes (149
mV/dec) compared to other morphologies. According to chronoamperometry test, good electrochemical stability
was noted in nanoparticles for 10 h towards OER. The higher energy storage and OER performances of CoMoO4
nanoparticles were related to excellent oxidation/reduction/electron transfer abilities, great surface area, and
rich active sites. Thus, these findings suggest that morphology controlled CoMoO4 could be a great candidate for
efficient supercapacitor electrode materials and OER catalysts.
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1. Introduction

Due to the rapid progress of human civilization, sustainable and
clean energy sources are highly demanded to overcome the energy
shortage in the world [1-3]. It can be achieved by the development of
energy sources with storage technologies. Supercapacitors have attrac-
ted significant attention in energy storage technologies because of their
high-power density, long cycle life, short discharging time, and low
maintenance cost [4-6]. In addition, oxygen evolution reaction (OER)
plays a significant role in the production of chemical fuels which is one
of the environmentally friendly renewable energy sources [7,8]. The
electrode materials have a crucial role in supercapacitors (SCs) and OER
[9-11]. Due to the stable crystal structure, excellent redox behavior,
notable physical/chemical properties, and superior electronic conduc-
tivity, metal molybdate compounds have been considered efficient
electrode materials [12]. Cobalt molybdate (CoM0OQy) is a great candi-
date among them for SCs and OER due to low-priced, natural abun-
dance, a great combination of high specific capacitance of cobalt oxide
with rich polymorphisms of molybdenum oxide, multiple redox
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reactions, and outstanding chemical stability [13,14]. However, this
electrode material suffers from slow electrochemical kinetics and
low-rate capability [12,15].

To overcome these issues, researchers modify the electrode materials
in several ways such as tuning of morphology, deposition of metal ions,
and fabrication of composite structures with metal oxide/polymer/
MOF/carbon, and doping of metals/non-metals [16-23]. Among these
strategies, morphology-controlled is a low-cost technique via a change in
solution properties such as acidity/basicity of precursors because it can
alter the nucleation rate, growth of the crystal, and crystallinity
[24-26]. It also provides active/reactive sites for enhancing the
electron-transfer ability, specific surface area, great electrochemical
kinetics, rate capability, short diffusion pathways for electrons/ions,
improvement of diffusivity, and optimizations of the crystal-
linity/defects that enhance SCs and OER performances [21,27-32].
Even though many studies using different CoM0oO4 morphologies for
energy storage and OER have been published, there are still many ways
to tune the morphologies of the catalysts to enhance their performance.
So, tuning the morphology of CoMoO4 via changing the pH of the
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Fig. 1. Schematic illustration of synthesis procedure for CoM0O,.

solution is a perfect option to increase the SCs and OER efficiencies.

Herein, various morphologies (bundle of nanorods, rods, nano-
sphere, and umbra) of CoMoO4 were synthesized by hydrothermal
process. The electrode materials were well characterized by X-ray
diffraction (XRD), field emissions scanning electron microscopy
(FESEM), transmission electron microscopy (TEM), energy-dispersive X-
ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), X-ray photo-
electron spectroscopy (XPS), and Raman spectroscopy. The mechanism
related to the evolution of different morphologies was explained. The
electrochemical performances of electrode materials were analysed by
cyclic voltammetry (CV), electrochemical impedance spectroscopy
(EIS), galvanostatic charge-discharge (GCD), cyclic stability, linear
sweep voltammetry (LSV), and Tafel curves measurements for SCs and
OER evaluation of electrode materials. In addition, turnover number
(TON) and turnover frequency (TOF), and overpotential were investi-
gated. The mechanism related SCs/OER analysis and stability were
described.

2. Experimental section
2.1. Material synthesis

In this study, molybdic acid (H,MoO4), cobalt nitrate hexahydrate
[Co(NO3),.6H,0], and aqueous ammonia (aq. NHg) were used to syn-
thesize the CoMoO4 samples. These chemicals were purchased from
Sigma-Aldrich and used without any further purification. 0.02 mol of Co
(NO3)2.6H20 and HyMoO4 were separately dissolved in deionized water
(40 mL) at room temperature. Then, the Co (NO3)2.6H20 solution was
dropped to an HoMoO4 solution with constant stirring. After this mixing,
the precipitate was formed and maintained at different pHs (6, 7, 8, and
9) using aq. NHgs. It was magnetically stirred for 4 h. The resulting so-
lution was transferred into a Teflon-lined stainless autoclave which was
kept for 14 h at 200 °C temperature. After hydrothermal treatment, the
solution was washed multiple times with water and ethanol. It was dried
in an oven at 80 °C. It was further calcined at 400 °C for 5 h. Finally, the
powder samples were obtained which were grounded with the help of
mortar/piston. All the samples were also prepared by the same tech-
niques under similar conditions. For convenience, samples were coded
as CM-B, CM-R, CM-N, and CM-U for pH 6, pH 7, pH 8, and pH 9,
respectively. (B: bundles, R: rod, N: nanoparticle, U: umbra). The syn-
thesis route of CoMoO4 was schematically illustrated in Fig. 1.
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2.2. Material characterization

The structural and morphological characterization of CoMoO4 sam-
ples was investigated by field emission scanning electron microscopy
(FESEM, JEOL, JSM-IT800). The energy dispersive X-ray spectrometry
(EDS) and elemental mapping were measured on the Oxford instrument.
Transmission electron microscopy (TEM), High-resolution transmission
electron microscopy (HRTEM), selected area diffraction patterns (SAED)
images were obtained by JEOL 1230. The crystal structures of powder
samples were measured by X-ray diffractometer (XRD) (Rigaku, Miniflex
600) of Cu Ka radiation from 20 to 80°at a scanning speed of 1°/minute.
The surface area of samples was investigated by using Bru-
nauer-Emmett-Teller (BET) nitrogen adsorption method on Quanta
Chrome. Before the surface area investigation, all the samples were
degassed at 300 °C in a vacuum. X-ray photoelectron spectroscopy (XPS,
Thermo Scientific ESCALAB™ XI, Al Ka/200 eV) was carried out. The
Raman spectra of CoMoO4 samples were investigated by using Horiba
Raman Confocal Microscope. Calcination of samples was performed on a
programmable furnace of MTI Corporation.

2.3. Electrochemical characterization

The electrochemical characterization was performed on a CH in-
strument based on a three-electrode system (working electrode:
CoMoO4, counter electrode: Pt, and reference electrode: Ag/AgCl-in 3 M
KCl) using 3 M KOH. The working electrodes were prepared by making a
slurry of the CoMoO4 (4 mg) using 0.5 mL ethanol and 50 pL Nafion. The
well-dispersed slurry was sonicated for 2 h. After that, it was placed in
copper foil (2 ecm x 2 cm) via drop casting method. The available
working electrode was 1 cm?. Then, it was dried at 80 °C for 4 h. Cyclic
voltammetry (CV) was performed with a scan rate of 20-100 mV/s. The
electrochemical impedance spectroscopy (EIS) with 0.1 Hz-100,000 Hz
was measured. The specific capacitance of electrodes was calculated
based on galvanostatic charge-discharge (GCD) measurements accord-
ing to the equation:

C=I x At/m x AV (i)
Where I, m, At, and AV represent current (A), the mass of active mate-
rials (g), discharge time (s), and operating voltage (V) respectively [33].
The GCD stability of CM-N was performed for 2000 cycles. All potential
measured were changed into reversible hydrogen electrode (RHE) scale
using Nernst equation during linear sweep voltammetry (LSV) and Tafel
measurements for oxygen evolution reaction using the following
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Fig. 2. XRD patterns of CoMoOy4 samples.
equation:
Erng = Eagiagar + 0.197 + 0.059 pH (ii)

Where Eag/agci denotes potential against the reference electrode and
0.197 V shows the standard potential of Ag/AgCl at 25 °C [18]. LSV was
performed in the range of 1-1.6 V vs RHE at a scan rate of 5 mV/s. The
commercial RuO; (Thermo scientific) was used to compare the LSV of
CoMoO4 samples. The turnover frequency (TOF) of catalysts were
calculated using formula:

TOF = TON/time =J x A/4 x F x m (iii)
Where J, A, F, m, and TON represent current density (A/cm?) at an
overpotential (n = 300 mV), surface area of the electrode, Faraday
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constant (96485 C/mol), number of moles of active metal on electrode,
and turnover number respectively [34,35]. The stability of CM-N was
investigated for 10 h through chronoamperometry test. CM-N was
collected after stability 2000 cycles for supercapacitor and 10 h for OER.
Then, it was washed with water and ethanol several times and dried.
After that, XRD and FESEM measurements were performed.

3. Results and discussion

Fig. 2 revealed the XRD patterns of various CoMoO4 samples. The
diffraction peaks of samples were well matched with the monoclinic
structure of a-CoMoO4 (JCPDS no: 21-0868) [36]. It suggests the
lowering of crystallinity with the increase in pH during the synthesis
process. The possible reasons may associate with variations of the
nucleation process that may change the crystallite structure [37]. The
different intensities of XRD peaks showed the changes in the morpho-
logy/size of samples. Also, the position of (002) facet did not show any
significant change. It suggests that CoMoOy, lattice was not expand/-
contract even formation of different morphologies/sizes of samples.
Besides the XRD patterns of calcined samples, uncalcined samples were
shown in Fig. S1. The XRD patterns of uncalcined CoMoO4 samples also
matched monoclinic structure of a-CoMoO4. However, few peaks were
appeared in samples which can be easily indexed as hydrate cobalt
molybdate (CoM004.3/4H,0) [38,39]. It suggests that the XRD peaks
related CoM004.3/4H50 phase disappeared during calcination process
and formation of pure CoMoQO4 phase.

As expected, when making different pH of the solution during the
synthesis, many exciting morphologies appeared. The morphologies/
sizes of samples were analysed by FESEM images (Fig. 3). CM-B, CM-R,
CM-N, and CM-U revealed bundles of nanorod (100 nm-600 nm in
length and 60 nm-150 nm in width), rods (1 pm-3 pm in length and 500
nm to 1 pm width), nanoparticles (50 nm-80 nm), and umbra (1 pm),
respectively (Fig. 3a-d). To observe the effect of calcination on mor-
phologies/sizes, FESEM images of uncalcined CoMoO4 samples were
analysed (Fig. S2). The morphologies of uncalcined samples were like
that of the calcined samples. In addition, FESEM elemental mapping

Fig. 3. FESEM images of the various CoMoO4 samples. (a) CM-B, (b) CM-R, (c) CM-N, and (d) CM-U.
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Fig. 4. (a) TEM, (b) magnified part of TEM image, and (c) SAED images of CM-N sample.
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Fig. 5. Schematic formation mechanism of CoMoO,4 samples.

shows the homogenous distribution of Co, Mo, and O in samples
(Fig. S3). The EDS of samples were presented in Fig. S4 (a, b, ¢, and d)
that suggest the existence of Co, Mo, and O in samples.

The morphology of CM-N sample was further investigated by TEM
and SAED analyses (Fig. 4). As shown in Fig. 4a, the TEM image of CM-N
clearly revealed the nanoparticles. Fig. 4b revealed 0.33 nm lattice
fringes corresponding to the (002) plane of CoMoO4. Also, this plane was
strongest peak in the XRD spectrum. According to Fig. 4c, All the
interplanar spacing measured from the SAED patterns were consistent
with the crystallographic plane of CoMoOj4. In addition, lattice fringes
and the diffraction pattern suggested the crystalline nature of synthe-
sized material.

The formation mechanisms for the evolution of different morphol-
ogies have been presented in Fig. 5. The crystal nucleation and growth
were affected by altering the pH value of the precursor solution. At
acidic conditions, the H' ion may attach the MoO3 ™~ ions plane during
the crystal growth initially because of electrostatic attraction that can
affect the crystal nucleation process [26,40]. At pH 6, the nucleation rate
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was increased, and a huge number of CoMoO4 were produced. In this
process, [Co(NH3)4] 2+ intermediate may attach at the sites of CoM0O4
single nuclei due to the existence of more growth sides [41]. So, the
bundle of nanorods has appeared. However, there is a lack of growth
sides in pH 7, and rods were formed. With the increase in pH value of the
precursor solution, the crystal growth rate was increased, and the
nucleation rate was decreased. Also, huge number of highly energetic
nuclei may form. Due to these reasons, nanoparticles were observed at
pH 8. In addition, nucleation, Ostwald ripening, and oriented attach-
ment may produce umbra like structure [42].

XPS experiments were performed to know the information on the
surface chemical compositions and oxidation states of the as-synthesized
samples and the result is as displayed in Fig. 6. The XPS spectrum of Co
2p displayed four peaks that contain two spin orbit doublet character-
istics of 2p3/» (CM-B: 782.18 eV, CM-R: 782.71 eV, CM-N: 782.35 €V,
and CM-U: 782.16 eV), satellite 2p3,» (CM-B: 787.82 eV, CM-R: 787.05
eV, CM-N: 786.92 eV, and CM-U: 787.79 eV), 2p;,2 (CM-B: 798.24 eV,
CM-R: 797.74 eV, CM-N: 798.28 eV, and CM-U: 798.79 eV), and satellite
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Fig. 7. Raman spectra of CoMoO,4 samples.

2p1,2 (CM-B: 804.16 eV, CM-R: 804.36 eV, CM-N: 804.03 eV, and CM-U:
805.07 eV) (Fig. 6a-d). These peaks indicate the existence of Co®" in the
sample [43]. The Mo 3d spectrum of samples showed a spin orbit
doublet Mo 3ds/; (CM-B: 232.99 eV, CM-R: 231.93 eV, CM-N: 232.61
eV, and CM-U: 232.17 eV) and Mo 3ds,; (CM-B: 235.82 eV, CM-R:
234.99 eV, CM-N: 235.76 eV, and CM-U: 235.14 eV) (Fig. 6a-d). It
demonstrates the existence of Mo®* in the samples [44]. As shown in
Fig. 6i-1, two peaks of O 1s showed 0%~ species in lattice CM-B: 530.90
eV, CM-R: 531.10 eV, CM-N: 530.86 eV, and CM-U: 530.49 eV) and
chemisorbed or dissociated oxygen species (CM-B: 533.21 eV, CM-R:
533.99 eV, CM-N: 532.87 eV, and CM-U: 532.39 eV), respectively
[45]. These XPS results suggest that oxidation state of samples was
unaffected by different morphologies/sizes. Furthermore, Fig. S5
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revealed Co 2p, Mo 3d, O 1s, and O Auger in the survey XPS spectrum,
suggesting the co-existence of Co, Mo, and O elements in samples [46].

Fig. 7 presented the Raman spectra of CoMoO4 samples at room
temperature. The vibrational modes were observed at 926.21, 868.07,
808.34, and 352.48 cm™'. The frequency observed at 926.51 cm ™" was
assigned with a symmetric stretching mode of doubly coordinated
bridging oxygen (Mo-O) [47]. The symmetric stretching of Co-O-Mo
(868.07 cm 1) was found. In addition, the band located at 808.34 cm !
can be associated with the asymmetric stretching mode of oxygen
(0-Mo-0) [48]. Also, symmetry bending mode (O-Mo-0) was noted at
352.48 cm ™! [13]. It has been found that the intensity of Raman peaks
was decreased with an increase in the pH of samples during the synthesis
process. The highest intensity was found in CM-B whereas the lowest
intensity was noted in CM-U. The variation of peak intensity of CoMoO4
samples and slight shift in Raman peaks may be associated with crys-
tallinity, size/morphology, and structural order/disorder in the lattice
[49,50]. It also suggests that monoclinic structure of a-CoMoO4 was not
damaged during tuning the different morphologies/sizes. The Raman
spectroscopy of CoMoO4 samples were in line with XRD results. It means
that CoMoO,4 samples did not contain phases other than those shown by
XRD.

The specific surface area of the sample is one of the important pa-
rameters that determine the electrochemical performance. As shown in
Fig. S6 (a, b, ¢, and d), the isotherm of samples presented type IV with
H3 -type hysteresis loops. The BET surface area of the CM-B, CM-R, CM-
N, and CM-U were calculated to be 14.39, 23.93, 50.372, and 4.53 mz/g
respectively. The specific surface area of CM-N demonstrated a higher
surface area than others. According to Fig. S7 (a, b, ¢, and d), the intense
peaks in the pore size distribution of samples were observed at 18.30,
10.36, 11.09, and 7.93 nm for CM-B, CM-R, CM-N, and CM-U, respec-
tively. Also, a few macropores were noted in the samples. The large
specific surface area and abundant mesoporous structure could boost the
contact area between the electrode and electrolyte, leading to creating
enough active sites for redox reactions as well as great transport of
electrons/ions [51,52]. Therefore, the superior BET surface area and
mesopore structure of CM-N might reveal better electrochemical
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performance than other samples.

The electrochemical measurements were conducted to analyze the
pseudocapacitive properties of CoMoOy4 electrodes (Fig. 8) The CV
graphs of the various morphologies of CoMoO4 electrodes under the
different scan rates (20 mV/s, 40 mV/s, 60 mV/s, 80 mV/s, and 100 mV/
s) in 3 M KOH electrolyte with potential ranges from 0 to 0.6 V (vs. Ag/
AgCl) are presented in Fig. 8a-d. All the curves reveal similar shapes. In
addition, the typical Faradic reaction peaks can be clearly observed in all
samples that suggest the pseudocapacitor electrodes. The formation of
redox peaks is related to the charge-transfer kinetics of Co?*/Co>* and
OH" ions of electrolyte. During this redox reaction, CoMoOy4 interacts
with OH™ ions to form CoOOH, MoO3, CoO, and H20. CoOOH further
reacts with HyO to produce Co(OH), [51].

The shifting of redox peaks from higher to lower potential and an
increase in the potential difference between oxidation/reduction peaks
were observed with an increased scan rate. It also suggests the
enhancement of the irreversible degree and the quasi-reversible reaction
with the increment of scan rate. These may be associated with the in-
ternal resistance of the CoMoOy electrodes and the polarization in a high
scan rate [51]. The integral area of CM-N was evidently higher than
CM-B, CM-R, and CM-U (CM-N > CM-R > CM-B > CM-U), suggesting
larger specific capacitance and better electrochemical performance
(Fig. 8a—d and S8). The enhanced performance of the CM-N might be due
to a larger surface area and better pore size than others that can expose a
higher number of active sites for ion intercalation [53]. The electro-
chemical surface area (ECSA) was estimated by double-layer capaci-
tance (Cq)) via CV at various scan rates from 20 to 100 mV/s (Fig. 8e).
The Cg value of CM-N is 464 mF cm ™2 which is higher than those of
CM-B (280 mF cm™2), CM-R (413 mF cm %), and CM-U (186 mF cm™2).
The higher ESCA provides the exposure of more active surfaces for su-
perior electrocatalytic performances [54].

To determine the electron transfer kinetics at the CoMo0Q4-electro-
lyte surface, the EIS of the sample was measured (Fig. 8f). Nyquist plots
obtained from EIS revealed that samples have a semicircle in the high-
frequency region as well a as straight line in the low-frequency region.
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The arc CM-N showed smaller semicircles or low impedance which is
more beneficial for electrolyte ion diffusion/charge transfer [55]. In
addition, the equivalent circuit was shown in Fig. S9. The collected
values of solution resistance (R1), charge transfer resistance (R2),
electric double layer capacitance (C2), Warburg coefficient (), and
constant phase element (Q) were listed in Table S1. It suggests the lower
charge transfer resistance in CM-N that indicates the better electro-
catalytic property of nanoparticles.

To further explore the electrochemical behavior of CoMoO4, GCD
measurements were carried out at various current densities (1, 1.25, 1.5,
and 2 A/g) which are shown in Fig. 9a-d. CM-N electrode displayed the
longest GCD time as compared to CM-B, CM-R, and CM-U electrodes,
which is in good agreement with CV and EIS. Among the other materials,
CM-N displayed outstanding specific capacitance with 191 F/g at a
current density of 1 A/g. The specific capacitance of CoMoO4 samples
was calculated and shown in Table S2. It suggests that nanoparticles
enhanced specific capacitance by three folds than others (bundle of rods,
rod, and umbra). The possible reasons may relate to a large specific
surface area and multiple active sites that can provide electrons for
charge storage/delivery, great electrochemical active area for a redox
reaction, thereby enhancing the electrical conductivity as well as
diffusion kinetics.

For practical supercapacitor application of materials, the cyclic sta-
bility was evaluated (Fig. 10). The GCD tests over 2000 cycles were
performed for CM-N at a current density of 1 A/g. Fig. S10 presented the
first and last cycles of GCD performance of cyclic stability tests of
CoMoO,4 nanoparticles. Interestingly, the results demonstrate about 98
% retention in capacitance over 2000 cycles at 1 A/g. Also, the EIS plots
of CM-N after 2000 cycles revealed evidence of stability (Fig. S11). The
XRD pattern and FESEM image of CM-N after GCD cycling were like that
of a fresh sample indicatinggreat stability of CoMo0O4 electrode under
basic conditions that revealed the excellent supercapacitance behavior
along with long cycle durability (Figs. S12 and S13). The specific
capacitance and retention are comparable with previously reported
literature (Table 1). This Table also demonstrated the fabrication of
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Table 1

Comparison of specific capacitance and retention percentage of CoMoO4 based

on published literatures.

Synthesis Morphology Specific Capacitance Ref
technique capacitance retention
Hydrothermal Microsphere 186 F/g at 45 % for 1000  [51]
and 1A/g cycles
calcination
Microwave Nanoplatelets 95F/g - [56]
irradiation
Hydrothermal Nanorod 123F/gatl 83 % for 3000 [57]1
mA/cm? cycles
Combustion Granular 105 F/g at 86 % for 4000  [58]
1A/g cycles
Microwave Nanorod 133F/gatl 100 % for [59]
combustion mA/cm? 1000 cycles
Co-precipitation Nanorod 114 F/g at 81 % for 3000 [60]
0.5A/g cycles
Co-precipitation Rice and irregular 180 F/gat1 83 % for 5000  [36]
mA/cm? cycles
Combustion Irregular 40F/gatl 60 % for 2000  [61]
A/g cycles
Hydrothermal Bundle of 191 F/g at 98 % for 2000  Our
and nanorods, rod, 1A/g cycles work
calcination nanoparticles, and

different morphologies by various synthesis methods (hydrothermal,
microwave irradiation, combustion, and co-precipitation) for energy

storage applications.

umbra

The application of different morphologies of CoMo0O4 electrodes as
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an OER electrocatalyst was evaluated in 3 M KOH using a standard
three-electrode system (Fig. 11). Commercial RuO,, CM-B, CM-R, CM-N,
and CM-U were measured under the similar conditions for comparison.
According to LSV polarization curve, the peaks at ~1.25-1.35 versus
RHE suggested the oxidation of Co?* to Co?>" and Go** oxidation states
in CoMoO4 samples (Fig. 11a) [20]. The strong Co** oxidation peaks
indicate the existence of active sites for OER in an alkaline solution.
Also, the lowest onset potential was seen in the CM-N sample as
compared to CM-B, CM-R, CM-U, and commercial RuO5. The higher OER
performance of nanoparticles may be associated with a rich conductive
porous structure with a great surface area that permits acceleration on
the catalytic surface. For a detailed analysis of LSV, the overpotentials of
different catalyst at current densities of 10 mA/cm? was presented in
Fig. 11b. At the current density of 10 mA/cm?, the nanoparticles CM-N
catalyst only required 200 mV, which is lower than other catalysts
(CM-B: 260 mV, CM-R: 240 mV, and CM-U: 300 mV). The lower over-
potential of CM-N suggested the superior OER efficiency than others.
Furthermore, TOF analysis was used to observe the intrinsic OER per-
formance of samples (Fig. 11c). The results clearly suggests that CM-N is
the most active OER CoMoOQy4 catalyst with the highest TOF of 0.0095

Table 2
The OER performances of recent report on COMoQOjy-based catalysts.

! which is higher than those of CM-B (0.0053 s~ 1), CM-R (0.0059 s 1),
and CM-U (0.0031 s™1).

To evaluate the kinetics of OER for CoMoO4 samples, Tafel plot was
measured (Fig. 11d). The OER in CoMoOy is originated by the internal
redox process and formation of COOOH [62]. The Tafel slope of CM-N is
only 149 mV/dec, while that of others (CM-B: 173 mV/dec, CM-R: 164
mV/dec, and CM-U: 205 mV/dec) are high, indicating that the formation
of nanoparticles enhances the OER electrocatalytic activity/kinetic, and
CoMoO4 nanoparticles have better OER activity than others. The sta-
bility is key index to evaluate the performance of catalyst for OER per-
formance. The stability of CM-N was tested in 3 M KOH for 10 h at a
current density of 50 mA/cm? through chronoamperometry test
(Fig. 11e). The current density has no obvious decline, indicating a good
stability of CM-N. Meanwhile, no observable changes in XRD patterns
and morphology of CM-N after 10 h stability test, suggesting the strong
electrochemical stability of the catalyst towards OER (Fig. 11f and S14).
Beside stability, TON is also one of the important factor for evaluation of
catalyst for industrial application. TON of CM-N revealed 3.42 x 10°
that shows the good catalytic performances for OER activity. The OER
activity comparison of the as-synthesized sample with other

Catalysts Preparation method Electrolytes ~ Overpotential 10 mA cm 2/ Tafel slop (mV dec- Stability ~ Ref.
\% 1)

CoMoO4 nanostructures Solvothermal 1 M KOH 254 mV 58 16 h [63]

CoMoO,4 nanotubes Calcination 1 M KOH 315 mV 89 20 h [64]

C-coated Co304/CoMo0O, hollow Carbonization and calcination 1 M KOH 410 mV 84 5h [65]

sphere

CoMoO, flake Hydrothermal 1 M KOH 322 mV 103.5 12h [66]

F-CoMoO4_x@GF Hydrothermal - 246 mV 64.4 20 h [67]

Mo;-CoOOH@CP Scalable Pyrolysis 1 M KOH 274 mV 66 100 h [68]

CoMoO,4@co1.62M0gSs Chemical vapor deposition and 1 M KOH 200 mV 59.34 14 h [69]

hydrothermal

CoP@CoMo0O, hollow nanotube sublimation- vapor phase transformation 1 M KOH 120 mV 91 24 h [54]

Ni—-CoMoO4 Reflux 1 M KOH 291 mV 57 50 h [70]

CoMoO,4 nanostructures hydrothermal 3 M KOH 200 mV 149 10h Our
work
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CoMo0Q4-based materials was listed in Table 2. It is found that our results
are comparable as compared to previous literatures.

4. Conclusions

In summary, various morphologies/sizes of CoMoO,4 (bundle of
nanorods, rods, nanoparticles, and umbra) were synthesized by hydro-
thermal method via the change in pH of the solution during synthesis.
The as-prepared materials were well characterized by various tech-
niques, and electrochemical measurements were carried out for super-
capacitors and OER. The electrochemical performance of samples has
been found in the following order: nanoparticles > rods > bundle of
nanorods > umbra. The CoMoO4 nanoparticles revealed a high specific
capacitance of 191 F/g at 1A/g and superior stability (98 % retention
after 2000 cycles). Low overpotential, small Tafel slope, great turnover
frequency/number, and good electrochemical stability of samples sug-
gest suitable OER catalysts. In conclusion, tuning of CoMoO4
morphology is a perfect way to make bifunctional electrocatalysts for
efficient supercapacitor and OER.
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